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Abstract
We consider, in quantum scattering theory, symmetrised time delay definedin

terms of sojourn times in arbitrary spatial regions symmetric with respect tothe origin.
For potentials decaying more rapidly than|x|−4 at infinity, we show the existence of
symmetrised time delay, and prove that it satisfies an anisotropic version of Lavine’s
formula. The importance of an anisotropic dilations-type operator is revealed in our
study.

1 Introduction and main results

It is known for long that the definition oftime delay(in terms of sojourn times) in scat-
tering theory has to besymmetrisedin the case of multichannel-type scattering processes
(seee.g. [3, 4, 12, 13, 21, 22]). More recently [6] it has been shown that symmetrised
time delay does exist, in two-body scattering processes, for arbitrary dilated spatial re-
gions symmetric with respect to the origin (usual time delaydoes exist only for spherical
spatial regions [20]). This leads to a generalised formula for time delay, which reduces to
the usual one in the case of spherical spatial regions. The aim of the present paper is to
provide a reasonable interpretation of this formula for potential scattering by proving its
identity with an anisotropic version of Lavine’s formula [11].

Let us recall the definition of symmetrised time delay for a two-body scattering
process inR

d, d ≥ 1. Consider a bounded open setΣ in R
d containing the origin

and the dilated spatial regionsΣr := {rx | x ∈ Σ}, r > 0. Let H0 := − 1
2∆ be

the kinetic energy operator inH := L
2(Rd) (endowed with the norm‖ · ‖ and scalar

product〈·, ·〉). Let H be a selfadjoint perturbation ofH0 such that the wave operators
W± := s-limt→±∞ eitH e−itH0 exist and are complete (so that the scattering operator
S := W ∗

+W− is unitary). Then one defines for some statesϕ ∈ H andr > 0 two sojourn
times, namely:

T 0
r (ϕ) :=

∫ ∞

−∞

dt

∫

x∈Σr

ddx
∣∣(e−itH0 ϕ)(x)

∣∣2
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and

Tr(ϕ) :=

∫ ∞

−∞

dt

∫

x∈Σr

ddx
∣∣(e−itH W−ϕ)(x)

∣∣2 .

If the stateϕ is normalized to one the first number is interpreted as the time spent by the
freely evolving statee−itH0 ϕ inside the setΣr, whereas the second one is interpreted as
the time spent by the associated scattering statee−itH W−ϕ within the same region. The
usual time delay of the scattering process with incoming stateϕ for Σr is defined as

τ in
r (ϕ) := Tr(ϕ) − T 0

r (ϕ),

and the corresponding symmetrised time delay forΣr is given by

τr(ϕ) := Tr(ϕ) − 1
2

[
T 0

r (ϕ) + T 0
r (Sϕ)

]
.

If Σ is spherical and some abstract assumptions are verified, thelimits of τ in
r (ϕ) andτr(ϕ)

asr → ∞ exist and satisfy [6, Sec. 4.3]

lim
r→∞

τr(ϕ) = lim
r→∞

τ in
r (ϕ) = − 1

2

〈
H

−1/2
0 ϕ, S∗[D,S]H

−1/2
0 ϕ

〉
, (1.1)

whereD is the generator of dilations. IfΣ is not spherical the limit ofτ in
r (ϕ) asr → ∞

does not exist anymore [20], but the limit ofτr(ϕ) asr → ∞ does still exist, as soon as
Σ is symmetric with respect to the origin [6, Rem. 4.8].

In this paper we studyτr(ϕ) in the setting of potential scattering. For potentials
decaying more rapidly than|x|−4 at infinity, we prove the existence oflimr→∞ τr(ϕ) by
using the results of [6]. In a first step we show that the limit satisfies the equality

lim
r→∞

τr(ϕ) = −
〈
f(H0)

−1/2ϕ, S∗[DΣ, S]f(H0)
−1/2ϕ

〉
, (1.2)

wheref is a real symbol of degree1 andDΣ ≡ DΣ(f) is an operator acting as an
anisotropic generator of dilations. Then we prove that Formula (1.2) can be rewritten as an
anisotropic Lavine’s formula. Namely, one has (see Theorem4.5 for a precise statement)

lim
r→∞

τr(ϕ) =

∫ ∞

−∞

ds
〈
e−isH W−f(H0)

−1/2ϕ,VΣ,f e−isH W−f(H0)
−1/2ϕ

〉
, (1.3)

where the operator
VΣ,f = f(H) − f(H0) − i[V,DΣ]

generalises the virial̃V := 2V − i[V,D]. Formula (1.3) provides an interesting relation
between the potentialV and symmetrised time delay, which we discuss.

Let us give a description of this paper. In section 2 we introduce the condition on
the setΣ (see Assumption 2.1) under which our results are proved. We also define the
anisotropic generator of dilationsDΣ and establish some of its properties. Section 3 is
devoted to symmetrised time delay in potential scattering;the existence of symmetrised
time delay for potentials decaying more rapidly than|x|−4 at infinity is established in
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Theorem 3.5. In Theorem 4.5 of Section 4 we prove the anisotropic Lavine’s formula
(1.3) for the same class of potentials. Remarks and examplesare to be found at the end of
Section 4.

We emphasize that the extension of Lavine’s formula to non spherical setsΣ is
not straightforward due, among other things, to the appearance of a singularity in the
space of momenta not present in the isotropic case (see Equation (2.7) and the paragraphs
that follow). The adjunction of the symbolf in the definition of the operatorDΣ (see
Definition 2.2) is made to circumvent the difficulty.

Finally we refer to [9] (see also [8, 11, 15, 16, 17]) for a related work on Lavine’s
formula for time delay.

2 Anisotropic dilations

In this section we define the operatorDΣ and establish some of its properties in relation
with the generator of dilationsD and the shape ofΣ. We start by recalling some notations.

Given two Hilbert spacesH1 andH2, we writeB(H1,H2) for the set of bounded
operators fromH1 toH2 with norm‖ · ‖H1→H2

, and putB(H1) := B(H1,H1). We set
Q := (Q1, Q2, . . . , Qd) andP := (P1, P2, . . . , Pd), whereQj (resp.Pj) stands for the
j-th component of the position (resp. momentum) operator inH. N := {0, 1, 2, . . .} is the
set of natural numbers.Hk, k ∈ N, are the usual Sobolev spaces overR

d, andHs
t (R

d),
s, t ∈ R, are the weighted Sobolev spaces overR

d [1, Sec. 4.1], with the convention that
Hs(Rd) := Hs

0(R
d) andHt(R

d) := H0
t (R

d). Given a setM ⊂ R
d we write 1lM for

the characteristic function forM. We always assume thatΣ is a bounded open set inRd

containing0, with boundary∂Σ of classC4. Often we even suppose thatΣ satisfies the
following stronger assumption (see [6, Sec. 2]).

Assumption 2.1. Σ is a bounded open set inRd containing0, with boundary∂Σ of class
C4. FurthermoreΣ satifies

∫ ∞

0

dµ [1lΣ(µx) − 1lΣ(−µx)] = 0, ∀x ∈ R
d.

If p ∈ R
d, then the number

∫ ∞

0
dt 1lΣ(tp) is the sojourn time inΣ of a free classical parti-

cle moving along the trajectoryt 7→ x(t) := tp, t ≥ 0. ObviouslyΣ satisfies Assumption
2.1 if Σ is symmetric with respect to0 (i.e. Σ = −Σ). Moreover ifΣ is star-shaped with
respect to0 and satisfies Assumption 2.1, thenΣ = −Σ.

We recall from [6, Lemma 2.2] that the limit

RΣ(x) := lim
εց0

(∫ +∞

ε

dµ

µ
1lΣ(µx) + ln ε

)
(2.4)

exists for eachx ∈ R
d \ {0}, and we define the functionGΣ : R

d \ {0} → R by

GΣ(x) := 1
2 [RΣ(x) +RΣ(−x)] . (2.5)
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The functionGΣ : R
d \ {0} → R is of classC4 since∂Σ of classC4. Let x ∈ R

d \ {0}
andt > 0, then Formulas (2.4) and (2.5) imply that

GΣ(tx) = GΣ(x) − ln(t).

From this one easily gets the following identities for the derivatives ofGΣ:

x · (∇GΣ)(x) = −1, (2.6)

t|α|
(
∂αGΣ

)
(tx) =

(
∂αGΣ

)
(x), (2.7)

whereα is ad-dimensional multi-index with|α| ≥ 1 and∂α := ∂α1

1 · · · ∂αd

d . The second
identity suggests a way of regularizing the functions∂jGΣ which partly motivates the
following definition. We use the notationSµ(R; R), µ ∈ R, for the vector space of real
symbols of degreeµ onR.

Definition 2.2. Letf ∈ S1(R; R) be such that

(i) f(0) = 0 andf(u) > 0 for eachu > 0,

(ii) for each j = 1, 2, . . . , d, the functionx 7→ (∂jGΣ)(x)f(x2/2) (a priori only de-
fined forx ∈ R

d \ {0}) belongs toC3(Rd; R).

Then we defineFΣ : R
d → R

d byFΣ(x) := −(∇GΣ)(x)f(x2/2).

Given a setΣ there are many appropriate choices for the functionf . For instance if
γ > 0 one can always takef(u) = 2(u2 + γ)−1u3, u ∈ R. But whenΣ is equal to the
open unit ballB := {x ∈ R

d | |x| < 1} one can obviously make a simpler choice. Indeed
in such case one has [6, Rem. 2.3.(b)](∂jGB)(x) = −xjx

−2, and the choicef(u) = 2u,
u ∈ R, leads to theC∞-functionFΣ(x) = x.

Remark 2.3. One can associate to each setΣ a unique set̃Σ symmetric and star-shaped
with respect to0 such thatGΣ = GΣ̃ [6, Rem. 2.3.(c)]. The boundary∂Σ̃ of Σ̃ satisfies

∂Σ̃ :=
{

eGΣ(x) x | x ∈ R
d \ {0}

}
,

and Σ̃r :=
{
rx | x ∈ Σ̃

}
, r > 0. Thus the vector fieldFΣ = FΣ̃ is orthogonal to the

hypersurfaces∂Σ̃r in the following sense: ifv belongs to the tangent space of∂Σ̃r at
y ∈ ∂Σ̃r, thenFΣ(y) is orthogonal tov. To see this lets 7→ y(s) ≡ r eGΣ(x(s)) x(s)

be any differentiable curve on∂Σ̃r. Then d
ds y(s) belongs to the tangent space of∂Σ̃r at

y(s), and a direct calculation using Equations(2.6)-(2.7)givesFΣ(y(s)) · d
ds y(s) = 0.

In the rest of the section we give a meaning to the expression

DΣ := 1
2 [FΣ(P ) ·Q+Q · FΣ(P )],

and we establish some properties ofDΣ in relation with the generator of dilations

D := 1
2 (P ·Q+Q · P ).

For the next lemma we emphasize thatH2 is contained in the domainD
(
f(H0)

)
of

f(H0). The notation〈·〉 stands for
√

1 + | · |2, andS is the Schwartz space onRd.
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Lemma 2.4. LetΣ be a bounded open set inRd containing0, with boundary∂Σ of class
C4. Then

(a) The operatorDΣ is essentially selfadjoint onS . As a bounded operator,DΣ ex-
tends to an element ofB

(
Hs

t ,H
s−1
t−1

)
for eachs ∈ R, t ∈ [−2, 0] ∪ [1, 3].

(b) One has for eacht ∈ R andϕ ∈ D(DΣ) ∩ D
(
f(H0)

)

e−itH0 DΣ eitH0 ϕ = [DΣ − tf(H0)]ϕ. (2.8)

In particular one has the equality

i[H0,DΣ] = f(H0) (2.9)

as sesquilinear forms onD(DΣ) ∩H2.

The second claim of point (a) is sufficient for our purposes, even if it is only a
particular case of a more general result.

Proof. (a) The essential seladjointness ofDΣ on S follows from the fact thatFΣ is of
classC3 (seee.g.[1, Prop. 7.6.3.(a)]).

Due to the hypotheses onFΣ one has for eachϕ ∈ S the bound
∥∥(∂αFΣj)(P )ϕ‖ ≤ Const. ‖〈P 〉ϕ‖ , (2.10)

whereFΣj is thej-th component ofFΣ andα is ad-dimensional multi-index with|α| ≤
3. Furthermore

‖DΣ‖Hs
3
→Hs−1

2

≤
∑

j≤d

sup
ϕ∈S ,‖ϕ‖Hs

3
=1

∥∥ 〈P 〉
s−1

〈Q〉
2 [
FΣj(P )Qj + i

2 (∂jFΣj)(P )
]
ϕ
∥∥

for eachs ∈ R. Since〈Q〉
2 acts as the operator1 − ∆ after a Fourier transform, the

inequalities above imply thatDΣ extends to an element ofB(Hs
3,H

s−1
2 ). A similar argu-

ment shows thatDΣ extends to an element ofB(Hs
1,H

s−1) for eachs ∈ R. The second
part of the claim follows then by using interpolation and duality.

(b) Let ϕ ∈ e−itH0 S . Sincee−itH0 Qj eitH0 ϕ = (Qj − tPj)ϕ, it follows by
Formula (2.6) that

e−itH0 DΣ eitH0 ϕ = [DΣ + tP · (∇GΣ)(P )f(H0)]ϕ = [DΣ − tf(H0)]ϕ.

This together with the essential selfajointness ofe−itH0 DΣ eitH0 on e−itH0 S implies
the first part of the claim. Relation (2.9) follows by taking the derivative of (2.8) w.r.t.t in
the form sense and then posingt = 0.

Remark 2.5. If Σ = B and f(u) = 2u, thenFΣ(x) = x for eachx ∈ R
d, and the

operatorsDΣ andD coincide. IfΣ is not spherical it is still possible to determine part of

5



the behaviour of the groupWt := eitDΣ . Indeed letR×R
d ∋ (t, x) 7→ ξt(x) ∈ R

d be the
flow associated to the vector field−FΣ, that is, the solution of the differential equation

d

dt
ξt(x) = (∇GΣ)(ξt(x))f

(
ξt(x)

2/2
)
, ξ0(x) = x. (2.11)

Then it is known (seee.g.the proof of [1, Prop. 7.6.3.(a)]) that the groupWt acts in the
Fourier space as (

Ŵtϕ
)
(x) :=

√
ηt(x)ϕ(ξt(x)), (2.12)

whereηt(x) ≡ det(∇ξt(x)) is the Jacobian atx of the mappingx 7→ ξt(x). Taking the
scalar product of Equation(2.11)with ξt(x) and then using Formula(2.6) leads to the
equation

d

dt
ξt(x)

2 = −2f
(
ξt(x)

2/2
)
, ξ0(x) = x.

If t < 0 andx 6= 0, thenξt(x)2 ≥ x2 > 0, andξt(x)2 is given by the implicit formula

2t+

∫ ξt(x)2

x2

du f(u/2)−1 = 0.

This, together with the facts thatx 7→ f(x2/2) belongs toS2(R; R) and f(u) > 0
for u > 0, implies the estimate〈ξt(x)〉 ≤ e−Ct 〈x〉 for some constantC > 0. Since
〈ξt(x)〉 ≤ 〈x〉 for eacht ≥ 0 it follows that

〈ξt(x)〉 ≤ (1 + e−Ct) 〈x〉 (2.13)

for all t ∈ R andx ∈ R
d (the casex = 0 is covered sinceξt(0) = 0 for all t ∈ R).

Equation(2.13)implies that the domainH2 ofH0 is left invariant by the groupWt.

The results of Remarks 2.3 and 2.5 suggest thatWt may be interpreted as an anisotropic
version of the dilations group, which reduces to the usual dilations group in the case
Σ = B andf(u) = 2u.

In the next lemma we show some properties of the mollified resolvent

Rλ := iλ(DΣ + iλ)−1, λ ∈ R \ {0}.

We refer to [18, Lemma 6.2] for the same results in the case of the usual dilations gen-
eratorD, that is, whenΣ = B andf(u) = 2u. See also [5, Lemma 4.5] for a general
result.

Lemma 2.6. LetΣ be a bounded open set inRd containing0, with boundary∂Σ of class
C4. Then

(a) One has for eacht ∈ R andϕ ∈ D
(
ξt(P )2

)

eitDΣ H0 e−itDΣ ϕ = 1
2 ξt(P )2ϕ. (2.14)
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(b) For eachλ ∈ R with |λ| large enough,Rλ belongs toB(H2), andRλ extends to
an element ofB(H−2). Furthermore we have for eachϕ ∈ H2 and eachψ ∈ H−2

lim
|λ|→∞

‖(1 −Rλ)ϕ‖H2 = 0 and lim
|λ|→∞

‖(1 −Rλ)ψ‖H−2 = 0.

Proof. (a) Letϕ ∈ eitDΣ S . A direct calculation using Formula (2.12) gives

(F eitDΣ H0 e−itDΣ ϕ)(k) = 1
2 ξt(k)

2(Fϕ)(k),

whereF is the Fourier transform. This together with the essential selfajointness ofeitDΣ H0 e−itDΣ

on eitDΣ S implies the claim.
(b) Let ϕ ∈ H2 and takeλ ∈ R with |λ| > C, whereC is the constant in the

inequality (2.13). Using the (strong) integral formula

(DΣ + iλ)−1 = i

∫ ∓∞

0

dt eλt e−itDΣ , sgn(λ) = ±1,

and Relation (2.14) we get the equalities

(DΣ + iλ)−1ϕ = (H0 + 1)−1(DΣ + iλ)−1(H0 + 1)ϕ

+ i

∫ ∓∞

0

dt eλt
[
e−itDΣ , (H0 + 1)−1

]
(H0 + 1)ϕ

= (H0 + 1)−1(DΣ + iλ)−1(H0 + 1)ϕ

− i

∫ ∓∞

0

dt eλt(H0 + 1)−1 e−itDΣ

[
H0 −

1
2ξt(P )2

]
ϕ

= (H0 + 1)−1(DΣ + iλ)−1ϕ+ i
2 (H0 + 1)−1

∫ ∓∞

0

dt eλt e−itDΣ ξt(P )2ϕ.

It follows that

H0Rλϕ = −λ
2

∫ ∓∞

0

dt eλt e−itDΣ ξt(P )2ϕ, sgn(λ) = ±1.

Now |λ| > C, and
∥∥ξt(P )2ϕ

∥∥ ≤ (1 + e−Ct)‖ϕ‖H2 due to the bound (2.13). Thus

‖H0Rλϕ‖ ≤ |λ|
2

∫ ∞

0

dt e−|λ|t
∥∥ξ− sgn(λ)t(P )2ϕ

∥∥

≤ |λ|
2

∫ ∞

0

dt
(
e−|λ|t +e(sgn(λ)C−|λ|)t

)
‖ϕ‖H2

≤ Const.‖ϕ‖H2 . (2.15)

Using the estimate (2.15) and a duality argument one gets thebounds

‖Rλ‖H2→H2 ≤ Const. and ‖Rλ‖H−2→H−2 ≤ Const., (2.16)
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which imply the first part of the claim. For the second part we remark that

1 −Rλ = (iλ)−1DΣRλ

onH. Using this together with the bounds (2.16) one easily showsthat lim|λ|→∞ ‖(1 −
Rλ)ϕ‖H2 = 0 for eachϕ ∈ H2 and thatlim|λ|→∞ ‖(1 − Rλ)ψ‖H−2 = 0 for each
ψ ∈ H−2.

3 Symmetrised time delay

In this section we collect some facts on short-range scattering theory in connection with
the existence of symmetrised time delay. We always assume that the potentialV satisfies
the usual Agmon-type condition:

Assumption 3.1. V is a multiplication operator by a real-valued function suchthat V
defines a compact operator fromH2 toHκ for someκ > 1.

By using duality, interpolation and the fact thatV commutes with the operator〈Q〉
t,

t ∈ R, one shows thatV also defines a bounded operator fromH2s
t toH

2(s−1)
t+κ for anys ∈

[0, 1], t ∈ R. Furthermore the operator sumH := H0 + V is selfadjoint onD(H) = H2,
the wave operatorsW± exist and are complete, and the projections1lΣr

(Q) are locally
H-smooth on(0,∞) \ σpp(H) (seee.g.[7, Sec. 3] and [19, Sec. XIII.8]).

Since the first two lemmas are somehow standard, we give theirproofs in the ap-
pendix.

Lemma 3.2. LetV satisfy Assumption 3.1 withκ > 1, and takez ∈ C\{σ(H0)∪σ(H)}.

Then the operator(H − z)−1 extends to an element ofB
(
H−2s

t ,H
2(1−s)
t

)
for eachs ∈

[0, 1], t ∈ R.

Alternate formulations of the next lemma can be found in [7, Lemma 4.6] and [22,
Lemma 3.9]. For eachs ≥ 0 we define the dense set

Ds :=
{
ϕ ∈ D(〈Q〉

s
) | η(H0)ϕ = ϕ for someη ∈ C∞

0 ((0,∞) \ σpp(H))
}
.

Lemma 3.3. Let V satisfy Assumption 3.1 withκ > 2. Then one has for eachϕ ∈ Ds

with s > 2 ∥∥(W− − 1) e−itH0 ϕ
∥∥ ∈ L

1(R−,dt) (3.17)

and ∥∥(W+ − 1) e−itH0 ϕ
∥∥ ∈ L

1(R+,dt). (3.18)

Lemma 3.4. LetV satisfy Assumption 3.1 withκ > 4, and letϕ ∈ Ds for somes > 2.
Then there existss′ > 2 such thatSϕ ∈ Ds′ , and the following conditions are satisfied:

∥∥(W− − 1) e−itH0 ϕ
∥∥ ∈ L

1(R−,dt) and
∥∥(W+ − 1) e−itH0 Sϕ

∥∥ ∈ L
1(R+,dt).
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Proof. The first part of the claim follows by [10, Thm. 1.4.(ii)]. Sinceϕ ∈ Ds andSϕ ∈
Ds′ with s, s′ > 2, the second part of the claim follows by Lemma 3.3.

Theorem 3.5. LetΣ satisfy Assumption 2.1. Suppose thatV satisfies Assumption 3.1 with
κ > 4. Letϕ ∈ Ds with s > 2. Then the limit ofτr(ϕ) asr → ∞ exists, and one has

lim
r→∞

τr(ϕ) = −
〈
f(H0)

−1/2ϕ, S∗[DΣ, S]f(H0)
−1/2ϕ

〉
. (3.19)

Proof. Due to Lemma 3.4 all the assumptions for the existence oflimr→∞ τr(ϕ) are
verified (see [6, Sec. 4]), and we know by Theorem [6, Thm. 4.6]that

lim
r→∞

τr(ϕ) = − 1
2

〈
ϕ, S∗

[
i[Q2, GΣ(P )], S

]
ϕ
〉
.

It follows that

lim
r→∞

τr(ϕ) = 1
2 〈ϕ, S

∗[Q · (∇GΣ)(P ) + (∇GΣ)(P ) ·Q,S]ϕ〉

= 1
2

〈
f(H0)

−1/2ϕ, S∗
[
f(H0)

1/2
(
Q · (∇GΣ)(P )

+ (∇GΣ)(P ) ·Q
)
f(H0)

1/2, S
]
f(H0)

−1/2ϕ
〉

= −
〈
f(H0)

−1/2ϕ, S∗[DΣ, S]f(H0)
−1/2ϕ

〉
.

Note that Theorem 3.5 can be proved with the functionf(u) = 2u, even ifΣ is not
spherical. Indeed, in such a case, point (ii) of Definition 2.2 is the only assumption not
satisfied byf , and a direct inspection shows that this assumption does notplay any role
in the proof of Theorem 3.5.

Remark 3.6. Some results of the literature suggest that Theorem 3.5 may be proved under
a less restrictive decay assumption onV if one modifies some of the previous definitions.
Typically one proves the existence of (usual) time delay forpotentials decaying more
rapidly than|x|−2 (or even|x|−1) at infinity by using smooth cutoff in configuration space
and by considering particular potentials. The reader is referred to [2, 14, 15, 23, 24] for
more informations on this issue.

4 Anisotropic Lavine’s formula

In this section we prove the anisotropic Lavine’s formula (1.3). We first give a precise
meaning to some commutators.

Lemma 4.1. LetΣ be a bounded open set inRd containing0 with boundary∂Σ of class
C4. LetV satisfy Assumption 3.1 withκ > 1. Then

(a) The commutator[V,DΣ], defined as a sesquilinear form onD(DΣ) ∩ H2, extends
uniquely to an element ofB(H2,H−2).
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(b) For eacht ∈ R the commutator[DΣ, e
−itH ], defined as a sesquilinear form on

D(DΣ) ∩H2, extends uniquely to an element[DΣ, e
−itH ]a of B(H2,H−2) which

satisfies ∥∥[DΣ, e
−itH ]a

∥∥
H2→H−2

≤ Const. |t|.

(c) For eachη ∈ C∞
0 (R) the commutator[DΣ, η(H)], defined as a sesquilinear form

onD(DΣ) ∩H2, extends uniquely to an element ofB(H). In particular, the oper-
ator η(H) leavesD(DΣ) invariant.

Proof. Point (a) follows easily from Lemma 2.4.(a) and the hypotheses onV . Given point
(a) and Lemma 2.6.(b), one shows points (b) and (c) as in [18, Lemma 7.4].

If V satisfies Assumption 3.1 withκ > 2, then the result of Lemma 4.1.(a) can be
improved by using Lemma 2.4.(a). Namely, there existsδ > 1

2 such that the commutator
[V,DΣ], defined as a sesquilinear form onD(DΣ) ∩ H2, extends uniquely to an element
[V,DΣ]a of B

(
H2

−δ,H
−2
δ

)
.

Next Lemma is a generalisation of [9, Lemmas 2.5 & 2.7]. It is proved under the
following assumption on the functionf .

Assumption 4.2. For eacht ∈ R there existsρ > 1 such that the operatorf(H)−f(H0),
defined onH2, extends to an element ofB

(
H2

t ,Ht+ρ

)
.

We refer to Remark 4.4 for examples of admissible functionsf . Here we only note
that the operator

VΣ,f := f(H) − i[H,DΣ]a = f(H) − f(H0) − i[V,DΣ]a.

belongs toB(H2
−δ,H

−2
δ ) for someδ > 1

2 as soon asf satisfies Assumption 4.2.

Lemma 4.3. LetΣ be a bounded open set inRd containing0, with boundary∂Σ of class
C4. Let V satisfy Assumption 3.1 withκ > 2. Suppose that Assumption 4.2 is verified.
Then

(a) One has for eachη ∈ C∞
0 ((0,∞) \ σpp(H)) and eacht ∈ R the inequality

∥∥(DΣ + i)−1 e−itH η(H)(DΣ + i)−1
∥∥ ≤ Const. 〈t〉

−1
.

(b) For eachη ∈ C∞
0 ((0,∞)\σpp(H)) the operators[DΣ,W±η(H0)] and[DΣ,W

∗
±η(H)],

defined as sesquilinear forms onD(DΣ), extend uniquely to elements ofB(H). In
particular, the operatorsW±η(H0) andW ∗

±η(H) leaveD(DΣ) invariant.

Proof. (a) Since the caset = 0 is trivial, we can supposet 6= 0. Letϕ,ψ ∈ D(DΣ)∩H2,
then

〈
DΣϕ, e

−itH ψ
〉
−

〈
ϕ, e−itH DΣψ

〉
= lim

λ→∞

∫ t

0

ds
〈
ϕ, ei(s−t)H i[H,DΣRλ] e−isH ψ

〉

10



due to Lemma 2.6.(b). By using Lemma 2.4.(b) and Lemma 4.1.(b) we get inB(H2,H−2)
the equalities

[DΣ, e
−itH ]a = e−itH

∫ t

0

ds eisH i[H,DΣ]a e−isH

= t e−itH f(H) − e−itH

∫ t

0

ds eisH
VΣ,f e−isH . (4.20)

Take η, ϑ ∈ C∞
0 ((0,∞) \ σpp(H)) with ϑ identically one on the support ofη, and

let ζ ∈ C∞
0 ((0,∞) \ σpp(H)) be defined byζ(u) := f(u)−1ϑ(u). Then η(H) =

f(H)ζ(H)η(H) and

e−itH η(H) =
1

t
ζ(H)t e−itH f(H)η(H)

=
1

t
ζ(H) e−itH

∫ t

0

ds eisH
VΣ,f e−isH η(H) +

1

t
ζ(H)[DΣ, e

−itH ]aη(H).

SinceVΣ,f belongs toB(H2
−δ,H

−2
δ ) for someδ > 1

2 , a localH-smoothness argument
shows that the first term is bounded byConst.|t|−1 in H. Furthermore by using Lemma
4.1.(c) one shows that(DΣ + i)−1ζ(H)[DΣ, e

−itH ]aη(H)(DΣ + i)−1 is bounded inH
by a constant independent oft. Thus

∥∥(DΣ + i)−1 e−itH η(H)(DΣ + i)−1
∥∥ ≤ Const. |t|−1,

and the claim follows.
(b) Consider first[DΣ,W+η(H0)]. Given η ∈ C∞

0 ((0,∞) \ σpp(H)) let ζ ∈
C∞

0 ((0,∞) \ σpp(H)) be identically one on the support ofη. Due to Lemma 4.1.(c)
one has onD(DΣ)

[DΣ, ζ(H) eitH η(H) e−itH0 ζ(H0)]

= ζ(H)[DΣ, e
itH η(H) e−itH0 ]ζ(H0) + [DΣ, ζ(H)] eitH η(H) e−itH0 ζ(H0)

+ ζ(H) eitH η(H) e−itH0 [DΣ, ζ(H0)],

and the last two operators belong toB(H) with norm uniformly bounded int. Let
ϕ,ψ ∈ D(DΣ). Using Lemma 2.4.(b) and Lemma 2.6.(b) one gets for the first opera-
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tor the following equalities
〈
ϕ, ζ(H)[DΣ, e

itH η(H) e−itH0 ]ζ(H0)ψ
〉

=
〈
ϕ, ζ(H)[DΣ, e

itH ]η(H) e−itH0 ζ(H0)ψ
〉

+
〈
ϕ, ζ(H) eitH [DΣ, η(H)] e−itH0 ζ(H0)ψ

〉

+
〈
ϕ, ζ(H) eitH η(H)[DΣ, e

−itH0 ]ζ(H0)ψ
〉

= −

∫ t

0

ds
〈
ϕ, ζ(H) ei(t−s)H i[H,DΣ]a eisH η(H) e−itH0 ζ(H0)

〉

+
〈
ϕ, ζ(H) eitH [DΣ, η(H)] e−itH0 ζ(H0)ψ

〉

+ t
〈
ϕ, ζ(H) eitH η(H) e−itH0 f(H0)ζ(H0)ψ

〉

=

∫ t

0

ds
〈
ϕ, ζ(H) ei(t−s)H

VΣ,f eisH η(H) e−itH0 ζ(H0)
〉

+
〈
ϕ, ζ(H) eitH [DΣ, η(H)] e−itH0 ζ(H0)ψ

〉

− t
〈
ϕ, η(H) eitH{f(H) − f(H0)} e−itH0 ζ(H0)ψ

〉
.

The first two terms are bounded byC‖ϕ‖ ·‖ψ‖ with C > 0 independent ofϕ,ψ andt (use
the localH-smoothness ofVΣ,f for the first term). Furthermore due to the localH- and
H0-smoothness off(H) − f(H0) one can find a sequencetn → ∞ asn→ ∞ such that

lim
n→∞

tn
〈
ϕ, η(H) eitnH{f(H) − f(H0)} e−itnH0 ζ(H0)ψ

〉
= 0.

This together with the previous remarks implies that

lim
n→∞

〈
ϕ, [DΣ, ζ(H) eitnH η(H) e−itnH0 ζ(H0)]ψ

〉
≤ C′‖ϕ‖ · ‖ψ‖,

with C′ > 0 independent ofϕ,ψ and t. Thus using the intertwining relation and the
identityη(H0) = ζ(H0)η(H0)ζ(H0) one finds that

∣∣ 〈DΣϕ,W+η(H0)ψ〉 − 〈ϕ,W+η(H0)ψ〉
∣∣

= lim
n→∞

∣∣ 〈
ϕ, [DΣ, ζ(H) eitnH η(H) e−itnH0 ζ(H0)]ψ

〉 ∣∣

≤ C′‖ϕ‖ · ‖ψ‖.

This proves the result for[DΣ,W+η(H0)]. A similar proof holds for[DΣ,W−η(H0)].
Since the wave operators are complete, one hasW ∗

±η(H) = s-limt→±∞ eitH0 e−itH η(H),
and an analogous proof can be given for the operators[DΣ,W

∗
±η(H)].

Remark 4.4. In the caseΣ = B the requirements of Definition 2.2 and Assumption 4.2
are satisfied by many functionsf . A natural choice isf(u) = 2u, u ∈ R, since in such
a casef(H) − f(H0) = 2V ∈ B

(
H2

t ,Ht+κ

)
, t ∈ R, κ > 1. If Σ is not spherical

there are still many appropriate choices forf . For instance ifγ > 0, then the function

12



f(u) = 2(u2 + γ)−1u3, u ∈ R, satisfies all the desired requirements. Indeed in such a
case one has onH2 the following equalities

f(H) − f(H0)

= 2V − 2γ
[
(H2 + γ)−1H − (H2

0 + γ)−1H0

]

= 2V − 2γ(H2 + γ)−1V + 2γ(H2 + γ)−1(H0V + V H0 + V 2)(H2
0 + γ)−1H0,

and thusf(H) − f(H0) also extends to an element ofB
(
H2

t ,Ht+κ

)
, t ∈ R, κ > 1, due

to Lemma 3.2 and the assumptions onV .

Next Theorem provides a rigorous meaning to the anisotropicLavine’s formula
(1.3).

Theorem 4.5. Let Σ satisfy Assumption 2.1. LetV satisfy Assumption 3.1 withκ > 4.
Suppose that Assumption 4.2 is verified. Then one has for eachϕ ∈ Ds with s > 2

lim
r→∞

τr(ϕ) =

∫ ∞

−∞

ds
〈
e−isH W−f(H0)

−1/2ϕ,VΣ,f e−isH W−f(H0)
−1/2ϕ

〉
2,−2

,

(4.21)
where〈 · , · 〉

2,−2
: H2 ×H−2 → C is the anti-duality map betweenH2 andH−2.

Proof. (i) SetW (t) := eitH e−itH0 , and letψ := η(H)ψ̃, whereη ∈ C∞
0 ((0,∞) \

σpp(H)) andψ̃ ∈ D(DΣ). We shall prove that‖DΣW (t)∗ψ‖ ≤ C, with C independent
of t. Due to Lemma 2.4.(b) and Lemma 4.1.(c) one has

‖DΣW (t)∗ψ‖ =
∥∥ e−itH0 DΣ eitH0 e−itH η(H)(DΣ + i)−1ψ1

∥∥

≤ |t|
∥∥{f(H) − f(H0)} e−itH η(H)(DΣ + i)−1ψ1

∥∥ (4.22)

+
∥∥{DΣ − tf(H)} e−itH η(H)(DΣ + i)−1ψ1

∥∥,

whereψ ≡ η(H)(DΣ + i)−1ψ1. Let z ∈ C \ {σ(H0) ∪ σ(H)} and set̃η(H) := (H −
z)2η(H). Then Lemmas 2.4.(a), 3.2, and 4.3.(a) imply that

|t|
∥∥{f(H) − f(H0)} e−itH η(H)(DΣ + i)−1ψ1

∥∥

≤ |t|
∥∥{f(H) − f(H0)}(H − z)−2(DΣ + i)

∥∥ ·
∥∥(DΣ + i)−1 e−itH η̃(H)(DΣ + i)−1

∥∥
≤ Const.

Calculations similar to those of Lemma 4.3.(a) show that thesecond term of (4.22) is also
bounded uniformly int.

(ii) Let W (t) andψ be as in point (i). Lemma 2.4.(b), Lemma 4.1.(c), and commu-
tator calculations as in (4.20) lead to

〈W (t)∗ψ,DΣW (t)∗ψ〉 =
〈
ψ, eitH DΣ e−itH ψ

〉
− t

〈
ψ, eitH f(H0) e−itH ψ

〉

= 〈ψ,DΣψ〉 −

∫ t

0

ds
〈
e−isH ψ,VΣ,f e−isH ψ

〉
2,−2

+ t
〈
ψ, eitH{f(H) − f(H0)} e−itH ψ

〉
.
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The localH-smoothness off(H) − f(H0) implies the existence of a sequencetn → ∞
asn→ ∞ such that

lim
n→∞

tn
〈
ψ, eitnH{f(H) − f(H0)} e−itnH ψ

〉
= 0.

This together with point (i) and the localH-smoothness ofVΣ,f implies that

〈
W ∗

+ψ,DΣW
∗
+ψ

〉
= 〈ψ,DΣψ〉 −

∫ ∞

0

ds
〈
e−isH ψ,VΣ,f e−isH ψ

〉
2,−2

.

Similarly, one finds

〈
W ∗

−ψ,DΣW
∗
−ψ

〉
= 〈ψ,DΣψ〉 +

∫ 0

−∞

ds
〈
e−isH ψ,VΣ,f e−isH ψ

〉
2,−2

,

and thus

〈
W ∗

+ψ,DΣW
∗
+ψ

〉
−

〈
W ∗

−ψ,DΣW
∗
−ψ

〉
= −

∫ ∞

−∞

ds
〈
e−isH ψ,VΣ,f e−isH ψ

〉
2,−2

.

(4.23)
Let ϕ ∈ Ds with s > 2. Due to Lemma 4.3.(b) the vectorW−f(H0)

−1/2ϕ is of the
form η(H)ψ̃, with η ∈ C∞

0 ((0,∞) \ σpp(H)) and ψ̃ ∈ D(DΣ). Thus one can put
ψ = W−f(H0)

−1/2ϕ in Formula (4.23). This gives
〈
Sf(H0)

−1/2ϕ,DΣSf(H0)
−1/2ϕ

〉
−

〈
f(H0)

−1/2ϕ,DΣf(H0)
−1/2ϕ

〉

= −

∫ ∞

−∞

ds
〈
e−isH W−f(H0)

−1/2ϕ,VΣ,f e−isH W−f(H0)
−1/2ϕ

〉
2,−2

,

and the claim follows by Theorem 3.5.

Remark 4.6. Symmetrised time delay and usual time delay are equal whenΣ is spherical
(see Formula(1.1)). Therefore in such a case Formula(4.21)must reduces to the usual
Lavine’s formula. This turns out to be true. Indeed ifΣ = B and f(u) = 2u, then
f(H0) = 2H0, VΣ,f is equal to the virialṼ := 2V − i[V,D]a, and Formula(4.21)takes
the usual form

lim
r→∞

τr(ϕ) =

∫ ∞

−∞

ds
〈
e−isH W−H

−1/2
0 ϕ,

{
V − i

2 [V,D]a
}

e−isH W−H
−1/2
0 ϕ

〉
2,−2

.

In the following remark we give some insight on the meaning ofFormula (4.21)
whenΣ is not spherical. Then we present two simple examples as an illustration.

Remark 4.7. LetV satisfy Assumption 3.1 withκ > 4, and choose a setΣ 6= B satisfying
Assumption 2.1. In such a case the functionfγ(u) := 2(u2 + γ)−1u3, u ∈ R, fulfills the
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requirements of Definition 2.2 and Assumption 4.2 (see Remark 4.4). Thus Theorem 4.5
applies, and one has forϕ ∈ Ds with s > 2

lim
r→∞

τr(ϕ)

= lim
γց0

∫ ∞

−∞

ds
〈
e−isH W−fγ(H0)

−1/2ϕ,VΣ,fγ
e−isH W−fγ(H0)

−1/2ϕ
〉
2,−2

.

Nowfγ(H0)ϕ converges in norm to2H0ϕ asγ ց 0, so formally one gets the identity

lim
r→∞

τr(ϕ) = 1
2

∫ ∞

−∞

ds
〈
e−isH W−H

−1/2
0 ϕ,VΣ e−isH W−H

−1/2
0 ϕ

〉
2,−2

, (4.24)

where

VΣ := 2V − i[V,DΣ]a = 2V − i
2

∑

j≤d

{[
V, FΣj(P )

]
·Qj +Qj ·

[
V, FΣj(P )

]}
,

and
FΣj(P ) = −(∂jGΣ)(P )P 2. (4.25)

The pseudodifferential operatorVΣ generalises the virial̃V of the isotropic case. It
furnish a measure of the variation of the potentialV along the vector field−FΣ, which
is orthogonal to the hypersurfaces∂Σr due to Remark 2.3. Therefore Formula(4.24)
establishes a relation between symmetrised time delay and the variation ofV along−FΣ.
Moreover one can rewriteVΣ as

VΣ = Ṽ + i[V,D −DΣ]a

= Ṽ + i
2

∑

j≤d

{[
V,

(
Pj − FΣj(P )

)]
·Qj +Qj ·

[
V,

(
Pj − FΣj(P )

)]}
.

whereP−FΣ(P ) is orthogonal toP due to Formulas(4.25)and(2.6). Consequently there
are two distinct contributions to symmetrised time delay. The first one is standard; it is
associated to the term̃V , and it is due to the variation of the potentialV along the radial
coordinate (see [11, Sec. 6] for details). The second one is new; it is associated to the term
i[V,D −DΣ]a and it is due to the variation ofV along the vector fieldx 7→ x− FΣ(x).

Example 4.8(Examples inR2). Setd = 2, suppose thatV satisfies Assumption 3.1 with
κ > 4, and letΣ be equal to the superellipseE :=

{
(x1, x2) ∈ R

2 | x4
1 + x4

2 < 1
}

.

Then one hasGE(x) = − 1
4 ln

(
x4

1 + x4
2

)
and(∂jGE)(x) = −x3

j

(
x4

1 + x4
2

)−1
. Thus due

to Remark 4.7 the symmetrised time delay associated toE is (formally) caracterised by
the pseudodifferential operator

VE = 2V − i
2

∑

j≤d

{[
V, FE j(P )

]
·Qj +Qj ·

[
V, FE j(P )

]}
,

whereFE j(P ) = P 3
j P

2
(
P 4

1 + P 4
2

)−1
(see Figure 1).
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Figure 1:The vector field FE and the sets ∂Er

WhenΣ is equal to the star-type set

S :=
{
ℓ(θ) eiθ ∈ R

2 | θ ∈ [0, 2π), ℓ(θ) <
[
cos(2θ)8 + sin(2θ)8

]−1/2
}
,

one hasGS(x) = 7
2 ln(x2

1+x2
2)−

1
2 ln

[
(x2

1−x
2
2)

8+28(x1x2)
8
]
, and a direct calculation

using Formula(4.25)gives the vector fieldFS . The result is plotted in Figure 2.

Figure 2:The vector field FS and the sets ∂Sr
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Appendix

Proof of Lemma 3.2.We first prove that(H−z)−1 extends to an element ofB
(
H−2

t ,Ht

)

for eacht ≥ 0. This clearly holds fort = 0. Since(H0−z)
−1 〈P 〉

2
= 2+(1+2z)(H0−

z)−1 one has by virtue of the second resolvent equation

〈Q〉
t
(H − z)−1 〈P 〉

2
〈Q〉

−t (4.26)

= 2 + (1 + 2z) 〈Q〉
t
(H0 − z)−1 〈Q〉

−t

− 〈Q〉
t
(H0 − z)−1(〈Q〉V ) 〈Q〉

−t
· 〈Q〉

t−1
(H − z)−1 〈P 〉

2
〈Q〉

−t
.

If we taket = 1 we find that each term on the r.h.s. of (4.26) is inB(H) due to [2, Lemmas
1 & 2]. Hence, by interpolation,〈Q〉

t
(H − z)−1 〈P 〉

2
〈Q〉

−t
∈ B(H) for eacht ∈ [0, 1].

Next we chooset ∈ (1, 2] and obtain, by using the preceding result and (4.26), that
〈Q〉

t
(H − z)−1 〈P 〉

2
〈Q〉

−t
∈ B(H) for these values oft. By iteration (taket ∈ (2, 3],

then t ∈ (3, 4], etc.) one obtains that〈Q〉
t
(H − z)−1 〈P 〉

2
〈Q〉

−t
∈ B(H) for each

t > 0. Thus(H − z)−1 extends to an element ofB
(
H−2

t ,Ht

)
for eacht ≥ 0. A similar

argument shows that(H − z)−1 also extends to an element ofB
(
H−2

t ,Ht

)
for each

t < 0. The claim follows then by using duality and interpolation.

Proof of Lemma 3.3.Forϕ ∈ Ds andt ∈ R, we have (see the proof of [7, Lemma 4.6])

(W− − 1) e−itH0 ϕ = −i e−itH

∫ t

−∞

dτ eiτH V e−iτH0 ϕ,

where the integral is strongly convergent. Hence to prove (3.17) it is enough to show that

∫ −δ

−∞

dt

∫ t

−∞

dτ
∥∥V e−iτH0 ϕ

∥∥ <∞ (4.27)

for someδ > 0. If ζ := min{κ, s}, then
∥∥ 〈Q〉

ζ
ϕ
∥∥ < ∞, andV 〈P 〉

−2
〈Q〉

ζ belongs to
B(H) due to Assumption 3.1. Sinceη(H0)ϕ = ϕ for someη ∈ C∞

0 ((0,∞) \ σpp(H)),
this implies that

∥∥V e−iτH0 ϕ
∥∥ ≤ Const.

∥∥ 〈Q〉
−ζ

〈P 〉
2
η(H0) e−iτH0 〈Q〉

−ζ ∥∥.

For eachε > 0, it follows from [2, Lemma 9] that there exists a constantC > 0 such that∥∥V e−iτH0 ϕ
∥∥ ≤ C (1 + |τ |)

−ζ+ε. Sinceζ > 2, this implies (3.17). The proof of (3.18)
is similar.
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382, 1987.

[3] W. O. Amrein and Ph. Jacquet. Time delay for one-dimensional quantum systems
with steplike potentials.Phys. Rev. A, 022106, 2007.
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