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Abstract

The generalized Fermi-Dirac thermo-statistics is developed for relativistic nu-
clear matter. We introduce the generalized thermodynamic potential using the
q-deformed exponential and logarithm. The baryon density has a form of the q-
expectation value. Then, we use the mapping of the non-extensive thermo-statistics
onto the extensive one. Therefore, the Clausius extensive entropy and the physical
intensive temperature are determined through the Gibbs thermodynamic relation.
The power-law index is constrained into a region 1 < q < 4=3 and assumed to
be density dependent. The pressure-density isotherms exhibit the liquid-gas phase
transition. The calculated critical temperature agrees with the experimental value
for �nite nuclei of intermediate masses. There is little di¤erence in the boiling tem-
peratures from the standard and generalized thermo-statistics, although the latter
improves the caloric curve of nuclear liquid. It is found that the cut-o¤ prescription
by Teweldeberhan et al. for the generalized Fermi-Dirac distribution breaks the
third-law of thermodynamics.

1 Introduction

Now, the thermo-statistics generalized by power-law [1,2] has been acknowledged to be be-

yond the standard Boltzmann-Gibbs thermo-statistics and applicable to non-equilibrium

systems, small systems, gravitational systems and others. (The comprehensive references

are found in Ref. [3].) Although the theoretical origin [4] of the power-law is still an open

problem, the generalized thermo-statistics is also useful [5-7] in nuclear physics.

In the present paper we investigate warm nuclear matter in the relativistic mean-�eld

(RMF) model [8] within the generalized thermo-statistics. Although there have been

already similar works [9,10], our investigation is essentially di¤erent from them in the

following respects. 1) We use the RMF model of �eld-dependent meson-nucleon coupling

constants developed in Ref. [11]. The �eld-dependence is due to many-body correlation

in dense nuclear medium. The correlation might lead to the power-law. 2) The baryon

densities in Refs. [9,10] do not have the forms of q-expectation but the normal ones.

3) We introduce the physical intensive temperature and the conjugate extensive entropy

[12-14] through the Gibbs thermodynamic relation.
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2 Generalized Fermi-Dirac thermo-statistics

In the standard Fermi-Dirac thermo-statistics1, the thermodynamic potential per volume

of nuclear matter in the RMF model [8] is
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We have neglected the e¤ect of anti-nucleon. M� and E� (k) = (k2 +M�2)
1=2 are the

e¤ective mass and the energy of nucleon in nuclear matter. The Boltzmann constant is

kB. The spin-isospin degeneracy is  = 4. The � is de�ned using the chemical potential

� and the vector potential V of nucleon as

� = �� V: (2)

Then, in order to develop the generalized Fermi-Dirac thermo-statistics, we extend Eq.

(1) by replacing exp(x) and ln(x) with q-deformed functions:

expq(x) � [ 1 + (1� q)x ]
1=(1�q) ; (3)
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A su¢ x q has been attached to temperature because as shown below Tq is not a physical

intensive temperature. Consequently, the baryon density is
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where the generalized Fermi-Dirac distribution is
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Although the precise derivation of the generalized Fermi-Dirac distribution has been

1In the present paper the Fermi-Dirac thermo-statistics means the thermodynamics based on the
quantum statistical mechanics of relativistic spin-1=2 particle.
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attempted in Ref. [15], Eq. (8) is widely acknowledged [9,10,16,17] to be useful. The

baryon density (7), which has a form of q-expectation, is the same as Ref. [17] but is

di¤erent from Refs. [9,10] where the normal expectations are used.

As will be shown in Appendix we can derive the entropy in di¤erentiating 
q by Tq.

In the present work we however introduce the extensive entropy S through the Gibbs

thermodynamic relation [13]:


q = Uq � TS � � �B: (9)

(Precisely, S is the entropy per volume and S=�B is the entropy per baryon. Both the

quantities can be de�ned only for extensive entropy but not for non-extensive one.) Uq
is the energy density de�ned by

Uq = 

Z
d3k

(2�)3
(E� (k) + V ) (nq (k))
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2
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� h�i
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2
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2 : (10)

The intensive quantity T , which is conjugate to the extensive entropy S, is just the

physically observed temperature. To the contrary Tq is only an inverse of the Lagrange

multiplier [17]. In this sense our theory is the extensive thermo-statistics generalized by

power-law. Here, it is noted [1] that the power-law is also involved in the non-extensive

thermo-statistics. If the power-law index is identical to the non-extensivity index, we can

utilize the mapping [13,14,18] of the non-extensive thermo-statistics onto the extensive

one. Both of the intensive temperature T and the extensive entropy S are derived from

the proper non-extensive entropy �Sq [1]:

�Sq (A�B) = �Sq (A) + �Sq (B) + (1� q) �Sq (A) �Sq (B) : (11)

In practice the non-extensivity (11) is equivalent to the extensivity,

ln
�
1 + (1� q) �Sq (A�B)

�
= ln

�
1 + (1� q) �Sq (A)

�
+ ln

�
1 + (1� q) �Sq (B)

�
: (12)

We can therefore de�ne [12,13] the Clausius extensive entropy, which satis�es the �rst

law of thermodynamics:

S

�B
=
lnCq
1� q ; (13)

where

Cq = 1 + (1� q) �Sq: (14)

The conjugate intensive temperature [12-14] is given by

T = Cq Tq: (15)
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The explicit expression of �Sq is not necessary because it is calculated through the Gibbs

thermodynamic relation (9). For a de�nite value of physical temperature T , given a trial

value of �Sq, the virtual temperature Tq is determined from Eq. (15). Once Tq is given,

the thermodynamic potential, the energy density and the baryon density are calculated.

Then, the extensive entropy S is calculated from the Gibbs thermodynamic relation (9).

Finally, the non-extensive entropy �Sq is calculated again from Eq. (13). The procedure

is iterated until the value of �Sq is converged. On the other hand, for a de�nite value

of virtual temperature Tq, the thermodynamic relation becomes a nonlinear equation to

determine physical temperature T :

T ln
�
T=T q

�
1� q =

Uq � 
q
�B

� �: (16)

The e¤ective mass M� and the vector potential V are determined by extremizing the

thermodynamic potential 
q. The resultant equations are formally the same as those at

T = 0:
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where M is the free nucleon mass, M� = m�M and V = vM . The scalar density is

de�ned as

�S = 

Z
d3k

(2�)3
M�

E� (k)
(nq (k))

q: (19)

The e¤ective meson-nucleon coupling constant is given by [11]

g �NN�(!) = h gNN�(!) =
1

2

�
(1 + �) + (1� �)

�
m�2 � v2

��
gNN�(!): (20)

The free meson-nucleon coupling constants gNN� and gNN! and the renormalization para-

meter � are determined so as to reproduce the properties of nuclear matter at saturation.

Their values are found in Table 1 of Ref. [11].
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3 Numerical analyses

We have already investigated in Ref. [19] the standard Fermi-Dirac thermo-statistics of

nuclear matter and found the critical temperature T = 16:47MeV. (Although the e¤ect

of anti-nucleon is taken into account in Ref. [19], it is negligible below T = 20MeV.)

The value agrees well with the empirical one [20] T = 16:6� 0:86MeV. There is therefore
no room to introduce the generalized thermo-statistics. However, the above value is for

in�nite nuclear matter. The critical temperatures for �nite nuclei [21] are lower than it.

The present paper studies whether the properties of warm �nite nuclei are reproduced in

the generalized thermo-statistics of nuclear matter.

Using a partial integration in Eq. (5) we have

�
q = P +
 kBT

6�2

�
q � 1
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� 1
1�q

k
4�3q
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���
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where P is the pressure,

P =


3

Z
d3k

(2�)3
k2

E� (k)
(nq (k))

q � 1
2
m2
� h�i

2 +
1

2
m2
! h!0i

2 : (22)

The thermodynamic relation P = �
q therefore requires

1 < q < 4=3: (23)

This constraint is also imposed on the �rst term in Eq. (22). In fact, following to the

similar analysis in Ref. [10], the �rst term behaves asymptotically in the limit k !1:Z
d3k

(2�)3
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(nq (k))
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q
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The asymptotic behavior of the �rst term in the energy density (10) is also the same.

The pressure and the energy density are �nite only if the power-law index satis�es the

condition (23). Moreover, the baryon density (7) behaves asymptotically asZ
d3k

(2�)3
(nq (k))

q ! k3

k
q

q�1
= k

3�2q
1�q ; (25)

and so a constraint 1 < q < 3=2 is imposed, while the scalar density (19) behaves

asymptotically as Z
d3k

(2�)3
M�

E� (k)
(nq (k))

q ! k2

k
q

q�1
= k

2�q
1�q ; (26)

and so a constraint 1 < q < 2 is imposed. In general the second law of thermodynamics

[22] also requires q < 2. Consequently, Eq. (23) is the condition for �nite values of
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the pressure, the energy density, the baryon and scalar densities. It is looser than the

condition 1 < q < 5=4 in Ref. [10] because of the q-expectations in Eqs. (22) and

(24)-(26) against the normal expectations in Ref. [10].

We have introduced the physical intensive temperature in Eq. (15). It may be however

negative for q > 1 because the entropy is generally large at low density. (See Eq. (13).)

So as to avoid a problem jq � 1j � 1 should be satis�ed at low baryon densities. In

the present work we assume that the power-law index depends on the baryon density as

follows:

q � 1 = 1

3

�B=�0
�B=�0 + 2

; (27)

where �0 is the saturation density. At present the physical origin of power-law is an

open problem. If it is due to the many-body correlation incorporated in the e¤ective

coupling constant (20), the density dependence of power-law index is reasonable because

the correlation is stronger at higher density.

We still have to specify the cut-o¤ prescription [17] for the generalized Fermi-Dirac

distribution (8), which can be de�ned precisely only for 1+ (q � 1) E
�(k)��
kBTq

> 0. Here, we

follow the standard Tsallis prescription:

nq (k) =

8>>>>>><>>>>>>:

1

1 +
h
1 + (q � 1) E�(k)��

kBTq

i 1
q�1

for 1 + (q � 1) E
� (k)� �
kBTq

> 0

1 for 1 + (q � 1) E
� (k)� �
kBTq

� 0

: (28)

For de�nite physical temperature T and the baryon density �B we solve 4th-rank non-

linear simultaneous equations (7), (9), (17) and (18) using Newton-Raphson algorithm,

so that we have the e¤ective mass M�, the vector potential V , the chemical potential �

and the non-extensive entropy �Sq. The pressure, the energy density and the extensive

entropy are determined at a time. Figure 1 shows the isotherms on pressure-density

plane. (In the following calculations we set kB = 1.) They exhibit typical nature of van

der Waals equation-of-state. The critical temperature is T = 12:09MeV and the critical

point lies on P = 0:2296MeV=fm3 and �B = 0:058fm�3. The �ash temperature, above

which the pressure is always positive at any density, is T = 10:46MeV. Both the tem-

peratures are lower than the values [19] in the standard Fermi-Dirac thermo-statistics.

However, the critical temperature agrees with T = 12:4�0:99MeV [21] for �nite nuclei of
140 < A < 180. The result suggests that the generalized thermo-statistics of nuclear

matter takes into account �niteness of nuclei.

The black and red curves in Fig. 2 show the pressure-density isotherms at

T = 10MeV in the standard and generalized thermo-statistics, respectively. There is

large di¤erence between the dotted parts in the two curves, which correspond to the

liquid-gas phase transition. Because we are founded on the extensive entropy in Eq.
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(9), the phase equilibrium condition is the same as the standard Gibbs one. Therefore,

the Maxwell construction of phase equilibrium between liquid and gas phases leads to

the horizontal lines, while the dotted parts are not physically realized. We see that in

the equilibrium pressure of liquid-gas mixed phase there is little di¤erence between the

standard and generalized thermo-statistics.

Next, at de�nite pressure P = 0:01MeV=fm3 we calculate the caloric curve by solving

4th-rank nonlinear simultaneous equations (7), (17), (18) and (22), so that we have

the e¤ective mass M�, the vector potential V , the chemical potential � and the virtual

temperature Tq. The physical temperature T is determined from Eq. (16). Then, the

extensive entropy is calculated from Eq. (13). The result is shown by the red curve in Fig.

3 while the black curve is the result in the standard Fermi-Dirac thermo-statistics. The

horizontal lines are the boiling temperatures from the Maxwell construction of liquid-gas

phase equilibrium. The experimental data are from Ref. [23]. Although there is little

di¤erence in the two boiling temperatures, the generalized thermo-statistics improves the

caloric curve in the region of low excitation or nuclear liquid.

We have used the cut-o¤prescription (28) for the generalized Fermi-Dirac distribution,

while Ref. [10] used another one proposed in Ref. [17]:

nq (k) =

8>>>>>>><>>>>>>>:

1

1 +
h
1 + (q � 1) E�(k)��

kBTq

i 1
q�1

for E� (k)� � > 0

1

1 +
h
1 + (1� q) E�(k)��

kBTq

i 1
1�q

for E� (k)� � � 0
: (29)

This is based on a requirement that the q-deformed exponential satis�es the similar rela-

tion expq (�x) = 1= expq (x) to exp (�x) = 1= exp (x) of the normal exponential. We have
recalculated the caloric curve using (29) but found that the third-law of thermodynamics

is broken. As a matter of fact Fig. 4 shows the Clausius entropy per baryon S=�B as

a function of the physical temperature T . The solid and dotted curves are the results

using the cut-o¤ prescription (28) and (29), respectively. The dashed curve is the result

in the standard Fermi-Dirac thermo-statistics. We really see limT!0 (S=�B) = 0 for Eq.

(28) but S=�B = 0 at T > 0 for Eq. (29). The problem caused by Eq. (29) might be

characteristic of our model of the generalized thermo-statistics. It is however concluded

that the standard Tsallis prescription (28) is robust in application of the generalized

Fermi-Dirac distribution.

4 Summary

We have investigated the generalized thermo-statistics of nuclear matter. Our formulation

starts at the q-deformed thermodynamic potential expressed in terms of the q-deformed
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exponential and logarithm. The baryon density is directly obtained in di¤erentiating the

thermodynamic potential by chemical potential. It has a form of the q-expectation value.

We have used the mapping of the non-extensive thermo-statistics onto the extensive

one, so that the Clausius extensive entropy and the conjugate intensive temperature are

determined through the Gibbs thermodynamic relation.

The power-law index is constrained into a region 1 < q < 4=3 so as to produce �nite

values of pressure, energy density, baryon and scalar densities. Moreover, the index is as-

sumed to be density dependent so that the physical intensive temperature is not negative

at low baryon densities. We have calculated the pressure-density isotherms. They ex-

hibit the nature of van der Waals equation-of-state. The calculated critical temperature

is lower than the empirical value for in�nite nuclear matter but agrees with the experi-

mental value for �nite nuclei of intermediate masses. The generalized thermo-statistics

can take into account the e¤ect by �niteness of nuclei. In the equilibrium pressure of

liquid-gas mixed phase from the Maxwell construction, there is little di¤erence between

the standard and generalized thermo-statistics.

Next, we have calculated the caloric curve. In the boiling temperature from the

Maxwell construction of liquid-gas mixed phase there is also little di¤erence between

the standard and generalized thermo-statistics. However, the latter improves the caloric

curve in pure phase of nuclear liquid. Moreover, we have investigated the two cut-o¤

prescriptions by Tsallis and by Teweldeberhan et al. for the generalized Fermi-Dirac

distribution. It is found that the latter breaks the third-law of thermodynamics.

In the present paper we have considered symmetric nuclear matter. In practice the

nuclear liquid-gas phase transition is experimentally investigated in heavy-ion reactions,

which produce the asymmetric nuclear matter. It is the binary system that has two

independent chemical potentials of proton and neutron. The phase transition in binary

system cannot be described in the Maxwell construction, but we need the Gibbs con-

struction [24] to take into account the equilibrium of two chemical potentials. In a future

work we will extend the present investigation to asymmetric nuclear matter.

Appendix

Here, we derive the entropy from di¤erentiating the thermodynamic potential (5) by

virtual temperature. Because Eq. (6) is rewritten as

� � E� (k)
kBTq

=
(Zq (k)� 1)1�q � 1

1� q ; (30)

we have

Sq = �
@ 
q
@ Tq

=  kB

Z
d3k

(2�)3

"
(Zq (k))

1�q � 1
1� q � (nq (k))q

(Zq (k)� 1)1�q � 1
1� q

#
: (31)
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Moreover, because Eq. (8) is rewritten as

Zq (k)� 1 = nq (k)Zq (k) ; (32)

Eq. (31) becomes

Sq =  kB

Z
d3k

(2�)3

�
(nq (k))

q � 1
1� q + (Zq (k))

1�q 1� nq (k)
1� q

�
: (33)

Finally, using Zq (k) = [ 1� nq (k) ]�1 from Eq. (32), we have

Sq =  kB

Z
d3k

(2�)3
(nq (k))

q + (1� nq (k))q � 1
1� q ;

= �  kB
Z

d3k

(2�)3

�
nq (k)� (nq (k))q

1� q +
(1� nq (k))� (1� nq (k))q

1� q

�
;

= �  kB
Z

d3k

(2�)3
[(nq (k))

q lnq (nq (k)) + (1� nq (k))q lnq (1� nq (k))]: (34)

The result is a q-deformed extension of the Boltzmann-Fermi-Dirac entropy. The essen-

tially same result is also derived in Ref. [17].
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Figure 1: The isotherms of pressure-density plane for symmetric nuclear matter in the
generalized thermo-statistics.
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Figure 2: The black and red curves are the pressure-density isotherms at T = 10MeV in
the standard and generalized thermo-statistics, respectively. The horizontal lines are the
equilibrium pressures of liquid-gas mixed phases from the Maxwell construction.
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Figure 3: The black and red curves are the caloric curves of nuclear matter at
P = 0:01MeV=fm3 in the standard and generalized thermo-statistics, respectively. The
horizontal lines are the boiling temperatures from the Maxwell construction of liquid-gas
phase equilibrium. The experimental data are from Ref. [23].
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Figure 4: The Clausius entropy per baryon versus physical temperature under constant
pressure P = 0:01MeV=fm3. The solid and dotted curves are the results using the cut-o¤
prescription (28) and (29), respectively. The dashed curve is the result in the standard
Fermi-Dirac thermo-statistics.
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