STRUCTURE AND f-DEPENDENCE OF THE A.C.I.M. FOR A UNIMODAL MAP f OF MISIUREWICZ TYPE.

by David Ruelle*.

Abstract

By using a suitable Banach space on which we let the transfer operator act, we make a detailed study of the ergodic theory of a unimodal map f of the interval in the Misiurewicz case. We show in particular that the absolutely continuous invariant measure ρ can be written as the sum of $1 /$ square root spikes along the critical orbit, plus a continuous background. We conclude by a discussion of the sense in which the map $f \mapsto \rho$ may be differentiable.

[^0]
0 Introduction.

This paper is part of an attempt to understand the smoothness of the map $f \mapsto \rho$ where (M, f) is a differentiable dynamical system and ρ an SRB measure. [For a general introduction to the problems involved, see for instance [2], [31]]. Smoothness has been established for uniformly hyperbolic systems (see [17], [21], [14], [22], [9]). In that case, one finds that the derivative of ρ with respect to f can be expressed in terms of the value at $\omega=0$ of a susceptibility function $\Psi\left(e^{i \omega}\right)$ which is holomorphic when the complex frequency ω satisfies $\operatorname{Im} \omega>0$, and meromorphic for $\operatorname{Im} \omega>$ some negative constant. In the absence of uniform hyperbolicity, $f \mapsto \rho$ need not be continuous. Consider then a family $\left(f_{\kappa}\right)_{\kappa \in \mathbf{R}}$. A theorem of H . Whitney [29] gives general conditions under which, if ρ_{κ} is defined on $K \subset \mathbf{R}$, then $\kappa \mapsto \rho_{\kappa}$ extends to a differentiable function of κ on \mathbf{R}. Taking ρ_{κ} to be an SRB measure for f_{κ}, this gives a reasonable meaning to the differentiability of $\kappa \mapsto \rho_{\kappa}$ on K (as proposed in [24], see [20], [11] for a different application of Whitney's theorem), even though we start with a noncontinuous function $\kappa \mapsto \rho_{\kappa}$ on \mathbf{R}.

Using Whitney's theorem to study SRB states as proposed above is a delicate matter. A simple situation that one may try to analyze is when (M, f) is a unimodal map of the interval and ρ an absolutely continuous invariant measure (a.c.i.m.). [From the vast literature on this subject, let us mention [12], [13], [6], [7], [8], [28]]. A preliminary study of the Markovian case (i.e., when the critical orbit is finite, see [23], [16]) shows that the susceptibility function $\Psi(\lambda)$ has poles for $|\lambda|<0$, but is holomorphic at $\lambda=1$. This study suggests that in non-Markovian situations Ψ may have a natural boundary separating $\lambda=0$ (around which Ψ has a natural expansion) and $\lambda=1$ (corresponding to $\omega=0$). Misiurewicz [19] has studied a class of unimodal maps where the critical orbit stays away from the critical point, and he has proved the existence of an a.c.i.m. ρ for this class. This seems a good situation where one could study the dependence of ρ on f, as pointed out to the author by L.-S. Young.

A desirable starting point to study the dependence of the a.c.i.m. ρ on f is to have an operator \mathcal{L} on a Banach space \mathcal{A} such that $\mathcal{L} \rho=\rho$, and 1 is a simple isolated eigenvalue of \mathcal{L}. The main content of the present paper is the construction of \mathcal{A} and \mathcal{L} with the desired properties. Specifically we write $\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2}$, where \mathcal{A}_{2} consists of spikes, i.e., $1 /$ square root singularities at points of the critical orbit, which are known to be present in ρ. We are thus able to prove that the a.c.i.m. ρ is the sum of a continuous background, and of the spikes (see Theorem 9, and the Remarks 16). Note that the construction of an operator \mathcal{L} with a spectral gap had been achieved earlier by G. Keller and T. Nowicki [18], and by L.-S. Young [30] (our construction, in a more restricted setting, leads to stronger results).

We start studying the smoothness of the map $f \mapsto \rho$ by an informal discussion in Section 17. Theorem 19 proves the differentiability along topological conjugacy classes (which are codimension 1) and relates the derivative to the value at $\lambda=1$ of a modified susceptibility function $\Psi(X, \lambda)$. [Following an idea of Baladi and Smania [5], it is plausible that differentiability in the sense of Whitney holds in directions tangent to a conjugacy class, see below]. Transversally to topological conjugacy classes the map $f \mapsto \rho$ is continuous, but appears not to be differentiable. While this nondifferentiability is not rigorously proved, it seems to be an unavoidable consequence of the fact that the weight of the n-th
spike is roughly $\sim \alpha^{n / 2}$ (for some $\alpha \in(0,1)$) while its speed when f changes is $\sim \alpha^{-n}$. [See Section 16(c). In fact, for a smooth family $\left(f_{\kappa}\right)$ restricted to values $\kappa \in K$ such that f_{κ} is in a suitable Misiurewicz class, the estimates just given for the weight and speed of the spikes suggest that $\kappa \rightarrow \rho_{\kappa}(A)$ for smooth A is $\frac{1}{2}$-Hölder, and nothing better, but we have not proved this]. Physically, let us remark that the spikes of high order n will be drowned in noise, so that discontinuities of the derivative of $f \mapsto \rho$ will be invisible.

Note that the susceptibility functions $\Psi(\lambda), \Psi(X, \lambda)$ to be discussed may have singularities both for large $|\lambda|$ and small $|\lambda|$. [The latter singularities do not occur for uniformly hyperbolic systems, but show up for the unimodal maps of the interval in the Markovian case, as we have mentioned above. A computer search of such singularities is of interest [10]].

A study similar to that of the present paper has been made (Baladi [3], Baladi and Smania [5]) for piecewise expanding maps of the interval. In that case it is found that $f \mapsto \rho$ is not differentiable in general, but Baladi and Smania study the differentiability of $f \mapsto \rho$ along directions tangent to topological conjugacy classes (horizontal directions), not just for f restricted to a class. Note that our $1 /$ square root spikes are replaced in the piecewise expanding case by jump discontinuities. This entails some serious differences, in particular, in the piecewise expanding case $\Psi(\lambda)$ is holomorphic for $|\lambda|<1$.

Acknowledgments.

I am very indebted to Lai-Sang Young and Viviane Baladi for their help and advice in the elaboration of the present paper. L.-S. Young was most helpful in getting this study started, and V. Baladi in getting it finished.

1 Setup.

Let I be a compact interval of \mathbf{R}, and $f: \mathbf{R} \rightarrow \mathbf{R}$ be real-analytic. We assume that there is c in the interior of I such that $f^{\prime}(c)=0, f^{\prime}(x)>0$ for $x<c, f^{\prime}(x)<0$ for $x>c$, and $f^{\prime \prime}(c)<0$. Replacing I by a possibly smaller interval, we assume that $I=[a, b]$ where $b=f c, a=f^{2} c$, and $a<f a$.

We shall construct a horseshoe $H \subset(a, b)$, i.e., a mixing compact hyperbolic set with a Markov partition for f. Following Misiurewicz [19] we shall assume that $f a \in H$.

Under natural conditions to be discussed below we shall study the existence of an a.c.i.m. $\rho(x) d x$ for f, and its dependence on f.

2 Construction of the set $H\left(u_{1}\right)$.
Let $u_{1} \in[a, b]$ and define the closed set

$$
H\left(u_{1}\right)=\left\{x \in[a, b]: f^{n} x \geq u_{1} \text { for all } n \geq 0\right\}
$$

We have thus $f H\left(u_{1}\right) \subset H\left(u_{1}\right)$. Assuming that $H\left(u_{1}\right)$ is nonempty, let v be its minimum element, then $H\left(u_{1}\right)=H(v)$. [Since $v \in H\left(u_{1}\right)$ we have $v \geq u_{1}$, hence $H(v) \subset H\left(u_{1}\right)$. If $H\left(u_{1}\right)$ contained an element $w \notin H(v)$ we would have $H\left(u_{1}\right) \ni f^{k} w<v$ for some $k \geq 0$, in contradiction with the minimality of v]. Therefore we may (and shall) assume that $H\left(u_{1}\right) \ni u_{1}$. We shall also assume

$$
a<u_{1}<c, f a
$$

(and $f^{2} u_{1} \neq u_{1}$, which will later be replaced by a stronger condition). There is $u_{2} \in[a, b]$ such that $f u_{2}=u_{1}$ and, since $u_{1}<f a$, it follows that u_{2} is unique and satisfies $c<u_{2}<b$. We have $u_{2} \in H\left(u_{1}\right)$ [because $u_{2}>c>u_{1}$ and $f u_{2} \in H\left(u_{1}\right)$] and if $x \in H\left(u_{1}\right)$ then $x \leq u_{2}$ [because $x>u_{2}$ implies $f x<u_{1}$]. Therefore, u_{2} is the maximum element of $H\left(u_{1}\right)$. Let

$$
V_{0}=\left\{x \in[a, b]: f x>u_{2}\right\}
$$

then $u_{1}<V_{0}$ [because $x \leq u_{1}$ implies $f x \leq f u_{1} \in H\left(u_{1}\right) \leq u_{2}$] and $V_{0}<u_{2}$ [because $x \geq u_{2}$ implies $f x \leq f u_{2}=u_{1}<u_{2}$]. Thus we may write $V_{0}=\left(v_{1}, v_{2}\right)$, with $u_{1}<v_{1}<$ $c<v_{2}<u_{2}\left[u_{1} \neq v_{1}\right.$ because $\left.f^{2} u_{1} \neq u_{1}\right]$. We have $v_{1}, v_{2} \in H\left(u_{1}\right)$ [because $v_{1}, v_{2}>u_{1}$ and $\left.f v_{1}=f v_{2}=u_{2} \in H\left(u_{1}\right)\right]$.

Our assumptions $\left(H\left(u_{1}\right) \ni u_{1}, a<u_{1}<c, f a\right.$ and $\left.f^{2} u_{1} \neq u_{1}\right)$ and definitions give thus

$$
\begin{aligned}
& H\left(u_{1}\right) \subset\left[u_{1}, v_{1}\right] \cup\left[v_{2}, u_{2}\right] \\
& f\left[u_{1}, v_{1}\right] \subset\left[u_{1}, u_{2}\right] \quad, \quad f\left[v_{2}, u_{2}\right]=\left[u_{1}, u_{2}\right]
\end{aligned}
$$

and

$$
H\left(u_{1}\right)=\left\{x \in\left[u_{1}, u_{2}\right]: f^{n} x \notin V_{0} \text { for all } n \geq 0\right\}=f H\left(u_{1}\right)
$$

Let us say that the open interval $V_{\alpha} \subset\left[u_{1}, u_{2}\right]$ is of order n if f^{n} maps homeomorphically V_{α} onto $\left(v_{1}, v_{2}\right)=V_{0}$. We have thus

$$
H\left(u_{1}\right)=\left[u_{1}, u_{2}\right] \backslash \cup \text { all } V_{\alpha}
$$

By induction on n we shall see that

$$
\left[u_{1}, u_{2}\right] \backslash \cup \text { the } V_{\alpha} \text { of order } \leq n
$$

is composed of disjoint closed intervals J, such that $f^{n} J \subset\left[u_{1}, v_{1}\right]$ or $\left[v_{2}, u_{2}\right]$ when $n>0$, and the endpoints of $f^{n} J$ are $u_{1}, u_{2}, v_{1}, v_{2}$ or an image of these points by f^{k} with $k \leq n$. Assume that the induction assumption holds for n (the case of $n=0$ is trivial) and let J be as indicated. Since $f^{n} J \subset\left[u_{1}, v_{1}\right]$ or $\left[v_{2}, u_{2}\right], f^{n+1}$ is monotone on J, and the endpoints of J are mapped by f^{n+1} outside of V_{0} [because $u_{1}, u_{2}, v_{1}, v_{2}$ and their images by f^{ℓ} are in $H\left(u_{1}\right)$, hence $\left.\notin\left(v_{1}, v_{2}\right)\right]$. The interval V_{0} is thus either inside of $f^{n+1} J$ or disjoint from $f^{n+1} J$. Each V_{α} of order $n+1$ thus obtained is disjoint from other V_{α} of order $\leq n+1$, and the closed intervals \tilde{J} in $\left[u_{1}, u_{2}\right] \backslash \cup$ the V_{α} of order $\leq n+1$, are such that the endpoints of $f^{n+1} \tilde{J}$ are $u_{1}, u_{2}, v_{1}, v_{2}$ or an image of these points by f^{k} with $k \leq n+1$, in agreement with our induction assumption.

We assume now that, for some $N \geq 0$, we have $f^{N+1} u_{1}=u_{1}$ (take N smallest with this property), and we assume also that $\left(f^{N+1}\right)^{\prime}\left(u_{1}\right)>0$. $[N=0,1$ cannot occur, in particular $f^{2} u_{1} \neq u_{1}$. Thus $N \geq 2$, with $f^{N} u_{1}=u_{2}, f^{N-1} u_{1} \in\left\{v_{1}, v_{2}\right\}$. Furthermore, $\left(f^{N-1}\right)^{\prime}\left(u_{1}\right)<0$ if $f^{N-1} u_{1}=v_{1}$, and $\left(f^{N-1}\right)^{\prime}\left(u_{1}\right)>0$ if $f^{N-1} u_{1}=v_{2}$, i.e., $f^{N-1}\left(u_{1}+\right)=$ $v_{1}-$ or $\left.v_{2}+\right]$.

Using the above assumption we now show that none of the intervals J in

$$
\left[u_{1}, u_{2}\right] \backslash \cup \text { the } V_{\alpha} \text { of order } \leq n
$$

is reduced to a point. We proceed by induction on n, assuming that $f^{n} J=\left[f^{n} x_{1}, f^{n} x_{2}\right]$, where $f^{n} x_{1}<f^{n} x_{2}$ and $f^{n} x_{1}$ is of the form v_{2}, u_{1} or $f^{\ell} u_{1}$ with $\left(f^{\ell}\right)^{\prime}\left(u_{1}\right)>0$ while $f^{n} x_{2}$ is of the form v_{1}, u_{2} or $f^{\ell} u_{2}$ with $\left(f^{\ell}\right)^{\prime}\left(u_{2}\right)>0$. Therefore the lower limit of $f^{n+1} J$ is of the form $f^{m} u_{1}$ with $\left(f^{m}\right)^{\prime}\left(u_{1}\right)>0$ while the upper limit is of the form $f^{m} u_{2}$ with $\left(f^{m}\right)^{\prime}\left(u_{2}\right)>0$. If

$$
f^{n+1} J \supset\left(v_{1}, v_{2}\right)
$$

so that a new V_{α} of order $n+1$ is created, the set $f^{n+1} J \backslash\left(v_{1}, v_{2}\right)$ consists of two closed intervals, and one of them can be reduced to a point only if $f^{m} u_{1}=v_{1}$ with $\left(f^{m}\right)^{\prime}\left(u_{1}\right)>0$ or if $f^{m} u_{2}=v_{2}$ with $\left(f^{m}\right)^{\prime}\left(u_{2}\right)>0$. So, either $f^{m+2} u_{1}=u_{1}$ with $\left(f^{m+2}\right)^{\prime}\left(u_{1}\right)<0$, or $f^{m+1} u_{2}=u_{2}$ with $\left(f^{m+1}\right)^{\prime}\left(u_{2}\right)<0$ hence $f^{m+1} u_{1}=u_{1}$ with $\left(f^{m+1}\right)^{\prime}\left(u_{1}\right)<0$, in contradiction with our assumption that $\left(f^{N+1}\right)^{\prime}\left(u_{1}\right)>0$.

3 Consequences.

(No isolated points)
$H\left(u_{1}\right)$ is obtained from $\left[u_{1}, u_{2}\right]$ by taking away successively intervals V_{α} of increasing order. A given $x \in H\left(u_{1}\right)$ will, at each step, belong to some small closed interval J, and the endpoints of J will not be removed in later steps, so that x cannot be an isolated point: $H\left(u_{1}\right)$ has no isolated points.
(Markov property)
Our assumption $f^{N+1} u_{1}=u_{1}$ implies that, for $n=1, \ldots, N-1$, the point $f^{n} u_{1}$ is one of the endpoints of an interval V_{α} of order $N-1-n$, which we call V_{N-1-n}. These open intervals V_{k} are disjoint, and their complement in $\left[u_{1}, u_{2}\right]$ consists of N intervals U_{1}, \ldots, U_{N}. Each U_{i} is closed, nonempty, and not reduced to a point. Furthermore, each U_{i} (for $i=1, \ldots, N$) is mapped by f homeomorphically to a union of intervals U_{j} and V_{k} : this is what we call Markov property.

We impose now the following condition:

4 Hyperbolicity.

There are constants $A>0, \alpha \in(0,1)$ such that if $x, f x, \ldots, f^{n-1} x \in\left[u_{1}, v_{1}\right] \cup\left[v_{2}, u_{2}\right]$, then

$$
\left|\frac{d}{d x} f^{n} x\right|^{-1}<A \alpha^{n}
$$

We label the intervals U_{1}, \ldots, U_{N} from left to right, so that u_{1} is the lower endpoint of U_{1}, and u_{2} the upper endpoint of U_{N}. Define also an oriented graph with vertices U_{j} and edges $U_{j} \rightarrow U_{k}$ when $f U_{j} \supset U_{k}$. Write $U_{j_{0}} \stackrel{\ell}{\Longrightarrow} U_{j_{\ell}}$ if $U_{j_{0}} \rightarrow U_{j_{1}} \rightarrow \cdots \rightarrow U_{j_{\ell}}$, and $U_{j} \Longrightarrow U_{k}$ if $U_{j} \xlongequal{\ell} U_{k}$ for some $\ell>0$.

5 Lemma (mixing).
(a) For each U_{j} there is $r \geq 0$ such that $U_{j} \stackrel{r+3}{\Longrightarrow} U_{1}$.
(b) If there is $s>0$ such that $U_{1} \xlongequal{s} U_{1}$ and $U_{1} \xlongequal{s} U_{N}$, then $U_{1} \xlongequal{s} U_{k}$ for $k=1, \ldots, N$.
(c) If there is $s>0$ such that $U_{j} \xlongequal{s} U_{k}$ for all $U_{j}, U_{k} \in\left\{U_{j}: U_{1} \Longrightarrow U_{j} \Longrightarrow U_{1}\right\}$, then $U_{j} \xlongequal{s} U_{k}$ for all $U_{j}, U_{k} \in\left\{U_{1} \ldots, U_{N}\right\}$, and we say that $H\left(u_{1}\right)$ is mixing.
(d) In particular if $N+1$ is a prime, then $H\left(u_{1}\right)$ is mixing.
(e) Let $u_{1}<\tilde{u}_{1}<c, f a$, and suppose that $f^{\tilde{N}+1} \tilde{u}_{1}=\tilde{u}_{1},\left(f^{\tilde{N}+1}\right)^{\prime}\left(u_{1}\right)>0$. Then if $H\left(u_{1}\right)$ is mixing, so is $H\left(\tilde{u}_{1}\right)$.
(a) The interval U_{j} is contained in either $\left[u_{1}, v_{1}\right]$ or $\left[v_{2}, u_{2}\right]$. Let the same hold for the successive images up to $f^{r} U_{j}$, but $f^{r+1} U_{j} \ni c$ [hyperbolicity and the fact that U_{j} is not reduced to a point imply that r is finite]. Then $U_{j} \stackrel{r+1}{\Longrightarrow} U_{k}$ with $U_{k} \ni v_{1}$ or v_{2}, hence $U_{k} \stackrel{2}{\Longrightarrow} U_{1}$ and $U_{j} \stackrel{r+3}{\Longrightarrow} U_{1}$.
(b) The U_{j} such that $U_{1} \xlongequal{s} U_{j}$ form a set of consecutive intervals and, since this set contains U_{1} and U_{N} by assumption, it contains all U_{j} for $j=1, \ldots, N$.
(c) By assumption, $U_{1} \xlongequal{s} U_{1}$ and $U_{1} \xlongequal{s} U_{N}$, so that $U_{1} \xlongequal{s} U_{k}$ for $k=1, \ldots, N$ by (b). Therefore, $\left\{U_{j}: U_{1} \Longrightarrow U_{j} \Longrightarrow U_{1}\right\}=\left\{U_{1}, \ldots, U_{N}\right\}$ by (a), and thus $U_{j} \xlongequal{s} U_{k}$ for all $U_{j}, U_{k} \in\left\{U_{1} \ldots, U_{N}\right\}$.
(d) The transitive set $\left\{U_{j}: U_{1} \Longrightarrow U_{j} \Longrightarrow U_{1}\right\}$ decomposes into n disjoint subsets S_{0}, \ldots, S_{n-1} such that $S_{0} \xlongequal{1} S_{1} \xlongequal{1} \cdots \xlongequal{1} S_{n-1} \xlongequal{1} S_{0}$ and there is $s>0$ such that $U_{j} \xlongequal{s n} U_{k}$ for all $U_{j}, U_{k} \in S_{m}$, where $m=0, \ldots, n-1$. We may suppose that $U_{1} \in S_{0}$, and therefore if $U_{(k)}$ denotes the interval containing $f^{k} u_{1}$ we have $U_{(k)} \in S_{(k)}$ where $(k)=k(\bmod n)$. Therefore $N+1$ is a multiple of n, where $n \leq N<N+1$. In particular, if $N+1$ is prime, then $n=1$, and $U_{j} \xlongequal{s} U_{k}$ for all $U_{j}, U_{k} \in\left\{U_{j}: U_{1} \Longrightarrow U_{j} \Longrightarrow U_{1}\right\}$, so that (c) can be applied.
(e) Since $H\left(\tilde{u}_{1}\right)$ is a compact subset of $H\left(u_{1}\right)$, without isolated points, the fact that $H\left(u_{1}\right)$ is mixing implies that $H\left(\tilde{u}_{1}\right)$ is mixing. \square

6 Horseshoes.

Note that we have

$$
H\left(u_{1}\right)=\left\{x \in\left[u_{1}, u_{2}\right]: f^{n} x \notin V_{0} \text { for all } n \geq 0\right\}=\cap_{n \geq 0} f^{-n}\left(\left[u_{1}, u_{2}\right] \backslash V_{0}\right)
$$

The sets $U_{i} \cap H\left(u_{1}\right)$ form a Markov partition of $H\left(u_{1}\right)$, i.e., $f\left(U_{i} \cap H\left(u_{1}\right)\right)$ is a finite union of sets $U_{j} \cap H\left(u_{1}\right)$.

A set $H=H\left(u_{1}\right)$ as constructed in Section 2, with the hyperbolicity and mixing conditions will be called a horseshoe. A horseshoe is thus a mixing hyperbolic set with a Markov partition.

Remember that the open interval $V_{\alpha} \subset\left[u_{1}, u_{2}\right]$ is of order n if f^{n} maps V_{α} homeomorphically onto $V_{0}=\left(v_{1}, v_{2}\right)$, and let $\left|V_{\alpha}\right|$ be the length of V_{α}. Hyperbolicity has the following consequence.

7 Lemma (a consequence of hyperbolicity).
There are constants $B>0, \beta \in(0,1)$ such that

$$
\sum_{\alpha: \text { order } V_{\alpha}=n}\left|V_{\alpha}\right| \leq B \beta^{n}
$$

It suffices to prove that

$$
\text { Lebesgue meas. }\left(\left[u_{1}, u_{2}\right] \backslash \cup \text { the } V_{\alpha} \text { of order } \leq n\right) \leq G \beta^{n}
$$

[incidentally, this shows that $H\left(u_{1}\right)$ has Lebesgue measure 0].
Let J denote one of the closed intervals in

$$
\left[u_{1}, u_{2}\right] \backslash \cup \text { the } V_{\alpha} \text { of order } \leq n
$$

and suppose that J is one of the two intervals adjacent to a given V_{α} of order n. There is $n^{\prime}>n$ such that J contains no interval V of order $<n^{\prime}$, but $J \supset V_{\alpha^{\prime}}$ of order n^{\prime}. We write $J=J_{n n^{\prime}}\left(V_{\alpha}, V_{\alpha^{\prime}}\right)$ and note that J is entirely determined by V_{α} and $V_{\alpha^{\prime}}$ (of orders n, n^{\prime} respectively). The intervals in

$$
\left[u_{1}, u_{2}\right] \backslash \cup \text { the } V_{\alpha} \text { of order } \leq n
$$

are all the $J_{n_{1} n_{2}}$ with $n_{1} \leq n$ and $n_{2}>n$. There is a graph Γ with vertices V_{α} and oriented edges $J_{n n^{\prime}}\left(V_{\alpha}, V_{\alpha^{\prime}}\right)$ such that for each V_{α} of order n two edges $J_{n n_{1}}\left(V_{\alpha}, V_{\alpha_{1}}\right)$ come out of V_{α} and, if $n>0$, one edge $J_{n_{0} n}\left(V_{\alpha_{0}}, V_{\alpha}\right)$ goes in. The graph Γ is a tree, rooted at V_{0}.

We want to show that

$$
\sum_{n_{1} \leq n, n_{2}>n} \sum_{\alpha_{1} \alpha_{2}}\left|J_{n_{1} n_{2}}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)\right| \leq G \beta^{n}
$$

In order to do this we shall introduce intervals $\tilde{J}_{n_{1} n_{2}}^{n}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right) \supset J_{n_{1} n_{2}}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)$ such that, for fixed n, the $\tilde{J}_{n_{1} n_{2}}^{n}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)$ are disjoint, and we shall find $\theta \in(0,1)$ and an integer $N>0$ such that

$$
\sum_{n_{1} \leq n, n_{2}>n}\left|\tilde{J}_{n_{1}+2 N, n_{2}+2 N}^{n+2 N}\left(V_{\alpha_{1}^{\prime}}, V_{\alpha_{2}^{\prime}}\right)\right| \leq \theta \sum_{n_{1} \leq n, n_{2}>n}\left|\tilde{J}_{n_{1} n_{2}}^{n}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)\right|
$$

(where sums over $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$ and α_{1}, α_{2} are implied). In fact, we shall prove that

$$
\begin{equation*}
\sum^{*}\left|\tilde{J}_{n_{1}^{\prime}, n_{2}^{\prime}}^{n+2 N}\left(V_{\alpha_{1}^{\prime}}, V_{\alpha_{2}^{\prime}}\right)\right| \leq \theta\left|\tilde{J}_{n_{1} n_{2}}^{n}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)\right| \tag{*}
\end{equation*}
$$

for fixed $\tilde{J}_{n_{1} n_{2}}^{n}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)$ such that $n_{1} \leq n, n_{2}>n$, where the sum \sum^{*} extends over all $\tilde{J}_{n_{1}^{\prime}, n_{2}^{\prime}}^{n+2 N}\left(V_{\alpha_{1}^{\prime}}, V_{\alpha_{2}^{\prime}}\right)$ such that $J_{n_{1}^{\prime}, n_{2}^{\prime}}\left(V_{\alpha_{1}^{\prime}}, V_{\alpha_{2}^{\prime}}\right)$ is above $J_{n_{1} n_{2}}^{n}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)$ in the tree Γ, and that $n_{1}^{\prime} \leq n+2 N, n_{2}^{\prime}>n+2 N$. [This means that \sum^{*} extends over $\tilde{J}^{n+2 N}$ corresponding to the closed intervals J^{*} of

$$
\left[u_{1}, u_{2}\right] \backslash \cup \text { the } V_{\alpha^{\prime}} \text { of order } \leq n+2 N
$$

such that $\left.J^{*} \subset J_{n_{1} n_{2}}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)\right]$.
Note that $J_{n_{1} n_{2}}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right) \supset V_{\alpha_{2}}$ and that for some constant K_{1} independent of n_{1}, n_{2} we may write $\left|J_{n_{1} n_{2}}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)\right| \leq K_{1}\left|V_{\alpha_{2}}\right|$ [otherwise $J_{n_{1} n_{2}}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)$ would contain a V_{α} of order $\left.<n_{2}\right]$. We can also compare $\left|V_{\alpha_{1}}\right|$ and $\left|V_{\alpha_{2}}\right|$ because $f^{n_{1}} V_{\alpha_{1}}=f^{n_{2}} V_{\alpha_{2}}=V_{0}$: using hyperbolicity and the smoothness of f we find a constant K_{2} such that $\left|V_{\alpha_{2}}\right| \leq$ $K_{2} \alpha^{n_{2}-n_{1}}\left|V_{\alpha_{1}}\right|$. Thus

$$
\left|J_{n_{1} n_{2}}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)\right| \leq K_{1} K_{2} \alpha^{n_{2}-n_{1}}\left|V_{\alpha_{1}}\right| \leq \alpha^{n_{2}-n_{1}-N} \frac{1}{3}\left|V_{\alpha_{1}}\right|
$$

for suitable N. We also assume that $2 \alpha^{N}<1$.

If $n_{2}-n_{1}<2 N$ we define $\tilde{J}_{n_{1} n_{2}}^{n}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)=J_{n_{1} n_{2}}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)$. If $n_{2}-n_{1} \geq 2 N$ we define $\tilde{J}_{n_{1} n_{2}}^{n}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)$ as the union of $J_{n_{1} n_{2}}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)$ and an adjacent subinterval $\tilde{V} \subset V_{\alpha_{1}}$ such that $|\tilde{V}|=\alpha^{\frac{1}{2}\left(n-n_{1}\right)} \frac{1}{3}\left|V_{\alpha_{1}}\right|$ and therefore $\left(\right.$ since $\left.n<n_{2}\right)$

$$
|\tilde{V}|>\alpha^{\frac{1}{2}\left(n_{2}-n_{1}\right)} \frac{1}{3}\left|V_{\alpha_{1}}\right|>\alpha^{n_{2}-n_{1}-N} \frac{1}{3}\left|V_{\alpha_{1}}\right| \geq\left|J_{n_{1} n_{2}}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)\right|
$$

If $n+2 N<n_{2}$, there is only one term in the left-hand side of $(*)$, and this term is $\tilde{J}_{n_{1} n_{2}}^{n+2 N}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)$, so that

$$
\begin{gathered}
\left|\frac{\tilde{J}_{n_{1} n_{2}}^{n+2 N}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)}{\tilde{J}_{n_{1} n_{2}}^{n}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)}\right| \leq \frac{\alpha^{\frac{1}{2}\left(n-n_{1}+2 N\right)} \frac{1}{3}\left|V_{\alpha_{1}}\right|+\alpha^{n_{2}-n_{1}-N} \frac{1}{3}\left|V_{\alpha_{1}}\right|}{\alpha^{\frac{1}{2}\left(n-n_{1}\right) \frac{1}{3}\left|V_{\alpha_{1}}\right|}} \begin{array}{c}
\quad=\alpha^{N}+\alpha^{n_{2}-\frac{1}{2} n_{1}-\frac{1}{2} n-N} \leq \alpha^{N}+\alpha^{n_{2}-n-N} \leq 2 \alpha^{N}
\end{array} .
\end{gathered}
$$

If $n+2 N \geq n_{2}$ there are several terms in the left-hand side of $(*)$, obtained from the interval $J_{n_{1} n_{2}}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)$ from which at least a subinterval of length $\frac{1}{3}\left|V_{\alpha_{2}}\right|$ has been taken out. Therefore

$$
\sum^{*} \leq\left|J_{n_{1} n_{2}}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)\right|-\frac{1}{3}\left|V_{\alpha_{2}}\right|
$$

and

$$
\frac{\sum^{*}}{\left|\tilde{J}_{n_{1} n_{2}}^{n}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)\right|} \leq 1-\frac{\frac{1}{3}\left|V_{\alpha_{2}}\right|}{\left|J_{n_{1} n_{2}}\left(V_{\alpha_{1}}, V_{\alpha_{2}}\right)\right|} \leq 1-\frac{\frac{1}{3}\left|V_{\alpha_{2}}\right|}{K_{1}\left|V_{\alpha_{2}}\right|} \leq 1-\frac{1}{3 K_{1}}
$$

We have thus proved (*) with $\theta=\max \left(2 \alpha^{N}, 1-1 / 3 K_{1}\right)$, and the lemma follows, with $\beta^{N}=\theta$. \square

8 Remark (the set \tilde{H}).
Starting from the horseshoe $H=H\left(u_{1}\right)$ we can, by increasing u_{1} to \tilde{u}_{1} such that $\tilde{u}_{1}<c, f a$, obtain a set $\tilde{H}=H\left(\tilde{u}_{1}\right) \subset H$ such that $\tilde{u}_{1} \in \tilde{H}$ and the distance of \tilde{H} to $\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ is $\geq \epsilon>0$. [In fact, using our hyperbolicity assumption we can arrange that there is \tilde{N} such that $f^{\tilde{N}+1} \tilde{u}_{1}=\tilde{u}_{1},\left(f^{\tilde{N}+1}\right)^{\prime}\left(\tilde{u}_{1}\right)>0$. In that case \tilde{H} is mixing (Lemma $5(\mathrm{e})$) and therefore again a horseshoe].

9 Theorem.

Let $H=H\left(u_{1}\right)$ be a horseshoe, suppose that $f a=f^{2} b \in H$, and that $\left\{f^{n} b: n \geq 0\right\}$ has a distance $\geq \epsilon>0$ from $\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$. Then f has a unique a.c.i.m. $\rho(x) d x$. Furthermore

$$
\rho(x)=\phi(x)+\sum_{n=0}^{\infty} C_{n} \psi_{n}(x)
$$

The function ϕ is continuous on $[a, b]$, with $\phi(a)=\phi(b)=0$. For $n \geq 0$ we shall choose $w_{n} \in\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ with $\left(w_{n}-c\right)\left(c-f^{n} b\right)<0$ and let θ_{n} be the characteristic function
of $\left\{x:\left(w_{n}-x\right)\left(x-f^{n} b\right)>0\right\}$. Then, the above constants C_{n} and spikes ψ_{n} are defined by

$$
\begin{aligned}
C_{n} & =\phi(c)\left|\frac{1}{2} f^{\prime \prime}(c) \prod_{k=0}^{n-1} f^{\prime}\left(f^{k} b\right)\right|^{-1 / 2} \\
\psi_{n}(x) & =\frac{w_{n}-x}{w_{n}-f^{n} b} \cdot\left|x-f^{n} b\right|^{-1 / 2} \theta_{n}(x)
\end{aligned}
$$

[The condition that $\left\{f^{n} b: n \geq 0\right\}$ has distance $\geq \epsilon$ from $\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ is achieved, according to Remark 8, by taking $\epsilon \leq\left|u_{1}-a\right|,\left|u_{2}-b\right|$, and $f^{2} b \in \tilde{H}$. Note also that $\psi_{n}(c)=0$, so that $\phi(c)=\rho(c)$. Other choices of ψ_{n} can be useful, with the same singularity at $f^{n} b$, but greater smoothness at w_{n} and/or satisfying $\int d x \psi_{n}(x)=0$].

10 Analysis.

We analyze the problem before starting the proof. Near c we have

$$
y=f x=b-A(x-c)^{2}+\text { h.o. }
$$

with $A=-f^{\prime \prime}(c) / 2>0$, hence $x-c= \pm((b-y) / A)^{1 / 2}+O(b-y)$. Therefore, writing $U=\rho(c) / \sqrt{A}$, the density of the image $f(\rho(x) d x)$ by f of $\rho(x) d x$ has, near b, a singularity

$$
\frac{U}{\sqrt{(b-x)}}+O(\sqrt{b-x})
$$

and, near a, a singularity

$$
\frac{U}{\sqrt{-f^{\prime}(b)(x-a)}}+O(\sqrt{x-a})
$$

To deal with the general case of the singularity at $f^{n} b$, define $s_{n}=-\operatorname{sgn} \prod_{k=0}^{n-1} f^{\prime}\left(f^{k} b\right)$, so that

$$
\prod_{k=0}^{n-1} f^{\prime}\left(f^{k} b\right)=-s_{n} U^{2} C_{n}^{-2}
$$

The density of $f(\rho(x) d x)$ has then, near $f^{n} b$, a singularity given when $s_{n}\left(x-f^{n} b\right)>0$ by

$$
\begin{gathered}
\frac{U}{\sqrt{\left(\prod_{k=0}^{n-1}\left|f^{\prime}\left(f^{k} b\right)\right|\right)\left|x-f^{n} b\right|}}+O\left(\sqrt{\left|x-f^{n} b\right|}\right) \\
= \\
\frac{U}{\sqrt{-\left(x-f^{n} b\right) \prod_{k=0}^{n-1} f^{\prime}\left(f^{k} b\right)}}+O\left(\sqrt{\left|x-f^{n} b\right|}\right) \\
=\frac{C_{n}}{\sqrt{s_{n}\left(x-f^{n} b\right)}}+O\left(\sqrt{s_{n}\left(x-f^{n} b\right)}\right)
\end{gathered}
$$

and by 0 when $s_{n}\left(x-f^{n} b\right)<0$.
We let now $w_{0}=u_{2}$ and, for $n \geq 0$, define $w_{n+1} \in\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ inductively by:

$$
\left(w_{n+1}-c\right)\left(f^{n+1} b-c\right)>0 \quad, \quad\left(w_{n+1}-f^{n+1} b\right)\left(f w_{n}-f^{n+1} b\right)>0
$$

We have thus $w_{0}=u_{2}, w_{1}=u_{1}$, and in general
$w_{n} \in\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\} \quad, \quad\left(w_{n}-c\right)\left(f^{n} b-c\right)>0 \quad, \quad s_{n}\left(w_{n}-f^{n} b\right)>0 \quad, \quad\left|w_{n}-f^{n} b\right| \geq \epsilon$

The above considerations show that the singularity expected near $f^{n} b$ for the density of $f(\rho(x) d x)$ is also represented by

$$
\begin{gathered}
\quad\left(1-\frac{x-f^{n} b}{w_{n}-f^{n} b}\right) \cdot \frac{C_{n}}{\sqrt{s_{n}\left(x-f^{n} b\right)}} \theta_{n}(x) \\
=C_{n} \frac{w_{n}-x}{w_{n}-f^{n} b}\left|x-f^{n} b\right|^{-1 / 2} \theta_{n}(x)=C_{n} \psi_{n}(x)
\end{gathered}
$$

in agreement with the claim of the theorem.

11 Lemma.

Write

$$
f\left(\psi_{n}(x) d x\right)=\tilde{\psi}_{n+1}(x) d x \quad, \quad \tilde{\psi}_{n+1}=\left|f^{\prime}\left(f^{n} b\right)\right|^{-1 / 2} \psi_{n+1}+\chi_{n}
$$

Then, for $n \geq 0$, the χ_{n} are continuous of bounded variation on $[a, b]$, with $\chi_{n}(a)=$ $\chi_{n}(b)=0$, and the $\operatorname{Var} \chi_{n}=\int_{a}^{b}\left|d \chi_{n} / d x\right| d x$ are bounded uniformly with respect to n. Furthermore, if $n \geq 1$ and $V_{\alpha} \subset \operatorname{supp} \chi_{n}$, then $\chi_{n} \mid V_{\alpha}$ extends to a holomorphic function $\chi_{n \alpha}$ in a complex neighborhood D_{α} of the closure of V_{α} in \mathbf{R} (further specified in Section 12), with the $\left|\chi_{n \alpha}\right|$ uniformly bounded.

The case $n=0$ can be handled by inspection, and we shall assume $n \geq 1$. We let

$$
I_{n}=\left\{\begin{array}{lll}
(f a, b) & \text { if } & f^{n} b \in[a, c) \\
(a, b) & \text { if } & f^{n} b \in(c, b)
\end{array}\right.
$$

And define $f_{n}^{-1}: I_{n} \mapsto(a, b)$ to be the inverse of f restricted respectively to (a, c) or (c, b) in the two cases above. We have then

$$
\tilde{\psi}_{n+1}(x)=\frac{\psi_{n}\left(f_{n}^{-1} x\right)}{\left|f^{\prime}\left(f_{n}^{-1} x\right)\right|}
$$

Since $n \geq 1$, the region of interest $f \operatorname{supp} \psi_{n} \cup \operatorname{supp} \psi_{n+1}$ is $\subset\left[u_{1}, u_{2}\right] \subset(a, b)$, and we have

$$
f_{n}^{-1} x-f^{n} b=\left(x-f^{n+1} b\right) A_{n}(x)
$$

where A_{n} is real analytic and $A_{n}\left(f^{n+1} b\right)=\left(f^{\prime}\left(f^{n} b\right)\right)^{-1}$. Therefore we may write

$$
\begin{gathered}
\frac{1}{f_{n}^{-1} x-f^{n} b}=\frac{f^{\prime}\left(f^{n} b\right)}{x-f^{n+1} b}\left(1+\left(x-f^{n+1} b\right) \tilde{A}_{n}(x)\right) \\
\frac{1}{f^{\prime}\left(f_{n}^{-1} x\right)}=\frac{1}{f^{\prime}\left(f^{n} b\right)}\left(1+\left(x-f^{n+1} b\right)\right) \tilde{B}_{n}(x) \\
\frac{w_{n}-f_{n}^{-1} x}{w_{n}-f^{n} b}=1+\left(x-f^{n+1} b\right) \tilde{C}_{n}(x)
\end{gathered}
$$

and since

$$
\psi_{n}\left(f_{n}^{-1} x\right)=\theta_{n}\left(f_{n}^{-1} x\right)\left|\frac{w_{n}-f_{n}^{-1} x}{w_{n}-f^{n} b}\right| \cdot\left|f_{n}^{-1} x-f^{n} b\right|^{-1 / 2}
$$

we find

$$
\tilde{\psi}_{n+1}(x)=\frac{\theta_{n}\left(f_{n}^{-1} x\right)\left|f^{\prime}\left(f^{n} b\right)\right|^{-1 / 2}}{\sqrt{\left|x-f^{n+1} b\right|}}\left(1+\left(x-f^{n+1} b\right) \tilde{D}_{n}(x)\right)
$$

with \tilde{D}_{n} real analytic. Note that $\tilde{\psi}_{n+1}$ and $\left|f^{\prime}\left(f^{n} b\right)\right|^{-1 / 2} \psi_{n+1}$ have the same singularity at $f^{n+1} b$. It follows readily that $\tilde{\psi}_{n+1}-\left|f^{\prime}\left(f^{n} b\right)\right|^{-1 / 2} \psi_{n+1}$ is a continuous function χ_{n} vanishing at the endpoints of its support, and bounded uniformly with respect to n. It is easy to see that Var χ_{n} is bounded uniformly in n. The extension of $\chi_{n} \mid V_{\alpha}$ to holomorphic $\chi_{n \alpha}$ in D_{α} is also handled readily (see Section 12 for the description of the D_{α}).

12 The operator \mathcal{L} and the space \mathcal{A}.

We have $f(\rho(x) d x)=\left(\mathcal{L}_{(1)} \rho\right)(x) d x$, where the transfer operator $\mathcal{L}_{(1)}$ on $L^{1}(a, b)$ is defined by

$$
\mathcal{L}_{(1)} \rho=\sum_{ \pm} \frac{\rho \circ f_{ \pm}^{-1}}{\left|f^{\prime} \circ f_{ \pm}^{-1}\right|}
$$

and we have denoted by

$$
f_{-}^{-1}:[f a, b] \mapsto[a, c] \quad \text { and } \quad f_{+}^{-1}[a, b] \mapsto[c, b]
$$

the branches of the inverse of f. The invariance of $\rho(x) d x$ under f is thus expressed by

$$
\rho=\mathcal{L}_{(1)} \rho
$$

We shall look for a solution of this equation in a Banach space \mathcal{A} defined below. Roughly speaking, \mathcal{A} consists of functions

$$
\phi+\sum_{n=0}^{\infty} c_{n} \psi_{n}
$$

where the ψ_{n} are defined in the statement of Theorem 9 , and $\phi:[a, b] \rightarrow \mathbf{C}$ is a less singular rest with certain analyticity properties.

Remember that we may write

$$
[a, b]=H \cup\left[a, u_{1}\right) \cup\left(u_{2}, b\right] \cup \text { the } V_{\alpha} \text { of all orders } \geq 0
$$

We have (see Remark 8)

$$
\operatorname{clos}\left[a, u_{1}\right) \subset\left[a, \tilde{u}_{1}\right) \quad, \quad \operatorname{clos}\left(u_{2}, b\right] \subset\left(\tilde{u}_{2}, b\right] \quad, \quad \operatorname{clos} V_{0} \subset \tilde{V}_{0}
$$

where \tilde{u}_{2} and $\tilde{V}_{0}=\left(\tilde{v}_{1}, \tilde{v}_{2}\right)$, are defined for \tilde{H} as u_{2} and V_{0} were defined for H. It is convenient to define $V_{-1}=\left(u_{2}, b\right]$ and $V_{-2}=\left[a, u_{1}\right)$ (of order -1 and -2 respectively) so that

$$
[a, b]=H \cup \text { the } V_{\alpha} \text { of all orders } \geq-2
$$

We also define $\tilde{V}_{-1}=\left(\tilde{u}_{2}, b\right], \tilde{V}_{-2}=\left[a, \tilde{u}_{1}\right)$. We let now \tilde{V}_{α} denote the unique interval in $[a, b] \backslash \tilde{H}$ such that $V_{\alpha} \subset \tilde{V}_{\alpha}$. Note that the map $V_{\alpha} \mapsto \tilde{V}_{\alpha}$ is not injective!

For each V_{α} of order ≥ 0 we may choose an open set $D_{\alpha} \subset \mathbf{C}$ such that

$$
\tilde{V}_{\alpha} \supset D_{\alpha} \cap \mathbf{R} \supset \operatorname{clos} V_{\alpha}
$$

and, if $f V_{\beta}=V_{\alpha}$ of order $\geq 0, f D_{\beta} \supset \operatorname{clos} D_{\alpha}$ [we have here denoted by clos V_{α} the closure of V_{α} in \mathbf{R}, and by clos D_{α} the closure of D_{α} in $\left.\mathbf{C}\right]$. Let also R_{a}, R_{b} be two-sheeted Riemann surfaces, branched respectively at a, b, with natural projections $\pi_{a}, \pi_{b}: R_{a}, R_{b} \rightarrow \mathbf{C}$. We may choose open sets $D_{-1}, D_{-2} \subset \mathbf{C}$ such that, for $\alpha=-1,-2$,

$$
\tilde{V}_{\alpha} \supset D_{\alpha} \cap\{x \in \mathbf{R}: a \leq x \leq b\} \supset \operatorname{clos} V_{\alpha}
$$

and f extends to holomorphic maps $\tilde{f}_{-1}: D_{0} \rightarrow R_{b}, \tilde{f}_{-2}:\left(\tilde{f}_{-1} D_{0}\right) \rightarrow R_{a}$ such that $\tilde{f}_{-1} D_{0} \supset \pi_{b}^{-1} \operatorname{clos} D_{-1}, \tilde{f}_{-2} \pi_{b}^{-1} D_{-1} \supset \pi_{a}^{-1} \operatorname{clos} D_{-2}$. [We shall say that \tilde{f}_{-1} sends $\left(v_{1}, c\right)$ to the upper sheet of R_{b} and $\left(c, v_{2}\right)$ to the lower sheet of $R_{b} ; \tilde{f}_{-2}$ sends the upper (lower) sheet of R_{b} to the upper (lower) sheet of R_{a}].

We come now to a precise definition of the complex Banach space \mathcal{A}. We write $\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2}$ where the elements of \mathcal{A}_{1} are of the form $\left(\phi_{\alpha}\right)$ and the elements of \mathcal{A}_{2} of the form $\left(c_{n}\right)$. Here the index set of the ϕ_{α} is the same as the index set of the intervals V_{α} (of order ≥-2); the index n of the $c_{n} \in \mathbf{C}$ takes the values $0,1, \ldots$ [the c_{n} should not be confused with the critical point $c]$. We assume that ϕ_{α} is a holomorphic function in D_{α} when V_{α} is of order ≥ 0, while ϕ_{-1}, ϕ_{-2} are holomorphic on $\pi_{b}^{-1} D_{-1}, \pi_{a}^{-1} D_{-2}$ and, for all $\alpha,\left\|\phi_{\alpha}\right\|=\sup _{z \in D_{\alpha}}\left|\phi_{\alpha}(z)\right|<\infty$.
[We shall later consider a function $\phi:[a, b] \rightarrow \mathbf{C}$ such that $\phi\left|V_{\alpha}=\phi_{\alpha}\right| V_{\alpha}$ when V_{α} is of order ≥ 0. For $x \in V_{-1}$ we shall require $\phi(x)=\Delta \phi(x)=\phi_{-1}\left(x^{+}\right)-\phi_{-1}\left(x^{-}\right)$where $x^{+}\left(x^{-}\right)$is the preimage of x by π_{b} on the upper (lower) sheet of $\pi_{b}^{-1} D_{-1}$; for $x \in V_{-2}$ we shall require $\phi(x)=\Delta \phi_{-2}(x)=\phi_{-2}\left(x^{+}\right)-\phi_{-2}\left(x^{-}\right)$where $x^{+}\left(x^{-}\right)$is the preimage of x by π_{a} on the upper (lower) sheet of $\pi_{a}^{-1} D_{-2}$. But at this point we discuss an operator \mathcal{L} on \mathcal{A} instead of the transfer operator $\mathcal{L}_{(1)}$ acting on functions $\left.\phi+\sum_{n} c_{n} \psi_{n}\right]$.

Let γ, δ be such that $1<\gamma<\beta^{-1}, 1<\delta<\alpha^{-1 / 2}$ with β as in Lemma 7 and α as in the definition of hyperbolicity (Section 4). We write

$$
\left\|\left(\phi_{\alpha}\right)\right\|_{1}=\sup _{n \geq-2} \gamma^{n} \sum_{\alpha: \text { order } V_{\alpha}=n}\left|V_{\alpha}\right| \cdot| | \phi_{\alpha}\|\quad, \quad\|\left(c_{n}\right) \|_{2}=\sup _{n \geq 0} \delta^{n}\left|c_{n}\right|
$$

and, for $\Phi=\left(\left(\phi_{\alpha}\right),\left(c_{n}\right)\right)$, we let $\|\Phi\|=\left\|\left(\phi_{\alpha}\right)\right\|_{1}+\left\|\left(c_{n}\right)\right\|_{2}$. We let then $\mathcal{A}_{1}, \mathcal{A}_{2}$ be the Banach spaces of sequences $\left(\phi_{\alpha}\right),\left(c_{n}\right)$ as above, such that the norms $\left\|\left(\phi_{\alpha}\right)\right\|_{1},\left\|\left(c_{n}\right)\right\|_{2}$ are finite. We shall define \mathcal{L} on \mathcal{A} such that $\mathcal{L} \Phi=\tilde{\Phi}$. We first describe what contribution each ϕ_{α} or c_{n} gives to $\tilde{\Phi}$ and then we shall check that this is a consistent description of an element $\tilde{\Phi}$ of \mathcal{A}.
(i) $\phi_{\beta} \Rightarrow \hat{\phi}_{\beta \alpha}=\frac{\phi_{\beta}}{\left|f^{\prime}\right|} \circ\left(f \mid D_{\beta}\right)^{-1} \quad$ in D_{α} if order $\beta>0$ and $f V_{\beta}=V_{\alpha}$
[we have here denoted by $\left|f^{\prime}\right|$ the holomorphic function $\pm f^{\prime}$ such that $\pm f^{\prime}>0$ for real argument, we shall use the same notation in (ii)-(vi) below].
(ii) $\phi_{0} \Rightarrow\left(\hat{c}_{0}=C_{0} \phi_{0}(c), \hat{\phi}_{-1}= \pm \frac{\phi_{0}}{\left|f^{\prime}\right|} \circ \tilde{f}_{-1}^{-1}-C_{0} \phi_{0}(c)\left(\pm \frac{1}{2} \psi_{0} \circ \pi_{b}\right) \quad\right.$ in $\left.\pi_{b}^{-1} D_{-1}\right)$ where the signs \pm correspond to the upper/lower sheet of $\pi_{b}^{-1} D_{-1}$. We claim that $\hat{\phi}_{-1}$ is holomorphic in $\pi_{b}^{-1} D_{-1}$ as the difference of two meromorphic functions with a simple pole at the branch point b, with the same residue. To see this we uniformize $\pi_{b}^{-1} D_{-1}$ by the map $u \mapsto b-u^{2}$. We have thus to express $\pm \frac{\phi_{0}}{\left|f^{\prime}\right|}(c+x)=\frac{\phi_{0}}{f^{\prime}}(c+x)$ in terms of u where $c+x=\tilde{f}_{-1}^{-1}\left(b-u^{2}\right)$ or $u=\sqrt{b-\tilde{f}_{-1}(c+x)}$ which gives a meromorphic function with a simple pole $1 / 2 \sqrt{A} u$. Since $\pm C_{0} \phi_{0}(c) \psi_{0}\left(b-u^{2}\right)$ is meromorphic with the same simple pole, $\hat{\phi}_{-1}$ is holomorphic in $\pi_{b}^{-1} D_{-1}$.
(iii) $\phi_{-1} \Rightarrow \hat{\phi}_{-2}=\frac{\phi_{-1}}{\left|f^{\prime}\right|} \circ \tilde{f}_{-2}^{-1} \quad$ in $\pi_{a}^{-1} D_{-2}$.
(iv) $\phi_{-2} \Rightarrow \hat{\phi}_{\alpha}=\frac{\Delta \phi_{-2}}{f^{\prime}} \circ f^{-1} \quad$ in D_{α} if $f\left(a, u_{1}\right) \supset V_{\alpha}, 0$ otherwise [we have written $\Delta \phi_{-2}(x)=\phi_{-2}\left(x^{+}\right)-\phi_{-2}\left(x^{-}\right)$where $x^{+}\left(x^{-}\right)$is the preimage of x by π_{a} on the upper (lower) sheet of $\pi_{a}^{-1} D_{-2}$].
(v) $c_{0} \Rightarrow\left(\hat{c}_{1}=\left|f^{\prime}(b)\right|^{-1 / 2} c_{0}, \chi_{0}= \pm \frac{1}{2} c_{0}\left(\frac{\psi_{0}}{\left|f^{\prime}\right|} \circ \pi_{b} \circ \tilde{f}_{-2}^{-1}-\left|f^{\prime}(b)\right|^{-1 / 2} \psi_{1} \circ \pi_{a}\right)\right.$ in $\pi_{a}^{-1} D_{-2}$) where the sign \pm corresponds to the upper/lower sheet of $\pi_{a}^{-1} D_{-2}$.
(vi) $c_{n} \Rightarrow\left(\hat{c}_{n+1}=\left|f^{\prime}\left(f^{n} b\right)\right|^{-1 / 2} c_{n}, \chi_{n \alpha}=c_{n}\left[\frac{\psi_{n}}{\left|f^{\prime}\right|} \circ f_{n}^{-1}-\left|f^{\prime}\left(f^{n} b\right)\right|^{-1 / 2} \psi_{n+1}\right]\right.$ in D_{α} if $V_{\alpha} \subset\left\{x: \theta_{n}\left(f_{n}^{-1} x\right)>0\right\}, 0$ otherwise $)$
if $n \geq 1$.
We may now write

$$
\tilde{\Phi}=\left(\left(\tilde{\phi}_{\alpha}\right),\left(\tilde{c}_{n}\right)\right)
$$

where

$$
\begin{aligned}
& \tilde{\phi}_{-2}=\hat{\phi}_{-2}+\chi_{0} \quad(\text { see }(\mathrm{iii}),(\mathrm{v})) \\
& \tilde{\phi}_{-1}=\hat{\phi}_{-1} \quad(\text { see }(\mathrm{ii})) \\
& \tilde{\phi}_{\alpha}=\sum_{\beta: f V_{\beta}=V_{\alpha}} \hat{\phi}_{\beta \alpha}+\hat{\phi}_{\alpha}+\sum_{n \geq 1} \chi_{n \alpha} \text { if order } \alpha \geq 0 \quad \text { (see (i),(iv),(vi)) } \\
& \tilde{c}_{0}=\hat{c}_{0} \quad(\text { see (ii)) } \\
& \tilde{c}_{1}=\hat{c}_{1} \quad(\text { see (v)) } \\
& \tilde{c}_{n}=\hat{c}_{n} \quad \text { for } n>1 \quad(\text { see }(\mathrm{vi}))
\end{aligned}
$$

Note that, corresponding to the decomposition $\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2}$, we have

$$
\mathcal{L}=\left(\begin{array}{cc}
\mathcal{L}_{0}+\mathcal{L}_{1} & \mathcal{L}_{2} \\
\mathcal{L}_{3} & \mathcal{L}_{4}
\end{array}\right)
$$

where

$$
\begin{aligned}
& \mathcal{L}_{0}\left(\phi_{\alpha}\right)=\left(\sum_{\beta: f V_{\beta}=V_{\alpha}} \hat{\phi}_{\beta \alpha}\right) \\
& \mathcal{L}_{1}\left(\phi_{\alpha}\right)=\left(\hat{\phi}_{\alpha}\right) \\
& \mathcal{L}_{2}\left(c_{n}\right)=\left(\chi_{0},\left(\sum_{n \geq 1} \chi_{n \alpha}\right)_{\alpha>-1}\right) \\
& \mathcal{L}_{3}\left(\phi_{\alpha}\right)=\left(\hat{c}_{0},(0)_{n>0}\right) \\
& \mathcal{L}_{4}\left(c_{n}\right)=\left(0,\left(\hat{c}_{n}\right)_{n>0}\right)
\end{aligned}
$$

Holomorphic functions in D_{α} are defined by (i),(iv),(vi) when order $\alpha \geq 0$, and in $\pi_{b}^{-1} D_{-1}$, $\pi_{a}^{-1} D_{-2}$ by (ii),(iii),(v). Using Lemma 7 , one sees that $\mathcal{L}_{0}, \mathcal{L}_{1}$ are bounded $\mathcal{A}_{1} \rightarrow \mathcal{A}_{1}$. Using Lemma 11, one sees that \mathcal{L}_{3} is bounded $\mathcal{A}_{2} \rightarrow \mathcal{A}_{1}$. It is also readily seen that $\mathcal{L}_{2}, \mathcal{L}_{4}$ are bounded, so that $\mathcal{L}: \mathcal{A} \rightarrow \mathcal{A}$ is bounded.

13 Theorem (structure of \mathcal{L}).
With our definitions and assumptions, the bounded operator $\mathcal{L}: \mathcal{A} \rightarrow \mathcal{A}$ is a compact perturbation of $\mathcal{L}_{0} \oplus \mathcal{L}_{4}$; its essential spectral radius is $\leq \max \left(\gamma^{-1}, \delta \alpha^{1 / 2}\right)$.

Since $f a \in \tilde{H}$, we may assume that $f\left(a, u_{1}\right) \supset V_{\alpha}$ implies $f\left(D_{-2} \backslash\right.$ negative reals $) \supset$ $\operatorname{clos} D_{\alpha}$. Therefore, $\phi_{-2} \mapsto \hat{\phi}_{\alpha} \mid D_{\alpha}$ is compact. For N positive integer, define the operator $\mathcal{L}_{N 1}$ such that

$$
\mathcal{L}_{N 1}\left(\phi_{\alpha}\right)=\frac{\Delta \phi_{-2}}{f^{\prime}} \circ f^{-1} \quad \text { in } D_{\alpha} \text { if } f\left(a, u_{1}\right) \supset V_{\alpha} \text { and order } \alpha>N, 0 \text { otherwise }
$$

Then \mathcal{L}_{1} is a perturbation of $\mathcal{L}_{N 1}$ by a compact operator and, using Lemma 7 , we see that

$$
\left\|\mathcal{L}_{N 1}\left(\phi_{\alpha}\right)\right\|_{1} \leq C \sup _{n>N} \gamma^{n} \beta^{n} \rightarrow 0 \quad \text { when } N \rightarrow \infty
$$

We can write $\mathcal{L}_{2}=\mathcal{L}_{N 2}+$ finite range, where

$$
\mathcal{L}_{N 2}\left(c_{n}\right)=\left(0,0,\left(\sum_{n \geq N} \chi_{n \alpha}\right)_{\alpha \geq 0}\right)
$$

Using Lemma 11 we find a bound $\left\|\sum_{n \geq N} \chi_{n \alpha}\right\| \leq C^{\prime} \delta^{N}$ and, using Lemma 7,

$$
\left\|\mathcal{L}_{N 2}\right\|_{\mathcal{A}_{2} \rightarrow \mathcal{A}_{1}} \leq C^{\prime \prime} \delta^{N} \rightarrow 0 \quad \text { when } N \rightarrow \infty
$$

The operator \mathcal{L}_{3} has one-dimensional range. Therefore $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$ are compact operators, and the essential spectral radius of \mathcal{L} is the max of the essential spectral radius of \mathcal{L}_{0} on \mathcal{A}_{1} and \mathcal{L}_{4} on \mathcal{A}_{2}.

The spectral radius of \mathcal{L}_{4} is

$$
\leq\left\|\mathcal{L}_{4}^{N}\right\|^{1 / N} \leq\left(\delta^{N} C^{\prime \prime \prime} \sup _{\ell \geq 0} \prod_{k=0}^{N-1}\left|f^{\prime}\left(f^{k+\ell} b\right)\right|^{-1 / 2}\right)^{1 / N} \quad \text { with limit }<\delta \alpha^{1 / 2} \text { when } N \rightarrow \infty
$$

The essential spectral radius of \mathcal{L}_{0} is

$$
\begin{gathered}
\leq \lim _{N \rightarrow \infty} \frac{\sup _{n \geq N} \gamma^{n} \sum_{\alpha: \text { order } V_{\alpha}=n}\left|V_{\alpha}\right| \cdot| | \sum_{\beta: f V_{\beta}=V_{\alpha}} \hat{\phi}_{\beta \alpha} \|}{\sup _{n \geq N} \gamma^{n+1} \sum_{\beta: \text { order } V_{\beta}=n+1}\left|V_{\beta}\right| \cdot| | \phi_{\beta}| |} \\
\quad \leq \gamma^{-1} \lim _{\operatorname{order}_{\alpha} \rightarrow \infty} \frac{\left|V_{\alpha}\right| \cdot \| \sum_{\beta: f V_{\beta}=V_{\alpha}} \hat{\phi}_{\beta \alpha}| |}{\sum_{\beta: f V_{\beta}=V_{\alpha}}\left|V_{\beta}\right| \cdot| | \phi_{\beta}| |}=\gamma^{-1}
\end{gathered}
$$

In fact, no eigenvalue of \mathcal{L}_{0} can be $>\gamma^{-1}$, so the spectral radius of \mathcal{L}_{0} acting on \mathcal{A}_{1} is $\leq \gamma^{-1}$. The essential spectral radius of \mathcal{L} is thus $\leq \max \left(\gamma^{-1}, \delta \alpha^{1 / 2}\right)$. \square
[Note also that when $\gamma \rightarrow \beta^{-1}, \delta \rightarrow 1$, we have $\max \left(\gamma^{-1}, \delta \alpha^{1 / 2}\right) \rightarrow \max \left(\beta, \alpha^{1 / 2}\right)$].

14 The eigenvalue 1 of \mathcal{L}.

Let the map $\Delta: \mathcal{A}_{1} \rightarrow L^{1}(a, b)$ be such that $\Delta\left(\phi_{\alpha}\right)\left|\left(a, u_{1}\right)=\Delta \phi_{-2}, \Delta\left(\phi_{\alpha}\right)\right|\left(u_{2}, b\right)=$ $\Delta \phi_{-1}$, and $\Delta\left(\phi_{\alpha}\right) \mid V_{\beta}=\phi_{\beta}$ if order $\beta \geq 0$. We also define $w: \mathcal{A} \rightarrow L^{1}(a, b)$ by $w\left(\left(\phi_{\alpha}\right),\left(c_{n}\right)\right)=\Delta\left(\phi_{\alpha}\right)+\sum_{n=0}^{\infty} c_{n} \psi_{n}$ and check readily that

$$
w \mathcal{L} \Phi=\mathcal{L}_{(1)} w \Phi
$$

If $\lambda^{0} \neq 0$ is an eigenvalue of \mathcal{L}, and $\Phi^{0}=\left(\left(\phi_{\alpha}^{0}\right),\left(c_{n}^{0}\right)\right)$ is an eigenvector to this eigenvalue, we have $w \Phi^{0} \neq 0$ [because $w \Phi^{0}=0$ implies $\phi_{0}^{0}=0$, hence $\phi_{-1}^{0}=0, \phi_{-2}^{0}=0$, and $\left(c_{n}^{0}\right)=0$; then $\Delta\left(\phi_{\alpha}^{0}\right)=0$, so $\phi_{\alpha}^{0}=0$ when order $\alpha \geq 0$, i.e., $\left.\Phi_{0}=0\right]$. Therefore

$$
\begin{gathered}
\lambda^{0} w \Phi^{0}=\mathcal{L}_{(1)}\left(w \Phi^{0}\right) \\
\left|\lambda^{0}\right| \int_{a}^{b}\left|w \Phi^{0}\right|=\int_{a}^{b}\left|\mathcal{L}_{(1)}\left(w \Phi^{0}\right)\right| \leq \int_{a}^{b} \mathcal{L}_{(1)}\left|w \Phi^{0}\right|=\int_{a}^{b}\left|w \Phi^{0}\right|
\end{gathered}
$$

hence $\left|\lambda^{0}\right| \leq 1$.
If $c_{0}^{0}=0$, then $\left(c_{n}^{0}\right)=0$, and λ^{0} is thus an eigenvalue of \mathcal{L}_{0} acting on \mathcal{A}_{1}, so that $\left|\lambda^{0}\right| \leq$ γ^{-1} (see Section 13). Therefore $\left|\lambda^{0}\right|>\gamma^{-1}$ implies $c_{0}^{0} \neq 0, c_{1}^{0} \neq 0$, hence $\Delta \phi_{-1}+c_{0} \psi_{0} \neq 0$,
$\Delta \phi_{-2}+c_{1} \psi_{1} \neq 0$. Note that, by analyticity, $\Delta \phi_{-2}+c_{1} \psi_{1}$ is nonzero almost everywhere in $\left(a, u_{1}\right)$. The image $f\left(a, u_{1}\right)$ contains some (small) interval $U_{i_{0}} \cap f^{-1}\left(U_{i_{1}} \cap f^{-1}\left(U_{i_{2}} \ldots\right)\right)$ on which the image of $\Delta \phi_{-2}+c_{1} \psi_{1}$ by $\mathcal{L}_{(1)}$ does not vanish, and therefore (by mixing),

$$
\int_{a}^{b}\left|\mathcal{L}_{(1)} w \Phi^{0}\right|<\int_{a}^{b} \mathcal{L}_{(1)}\left|w \Phi^{0}\right|
$$

when $w \Phi^{0} /\left|w \Phi^{0}\right|$ is not constant on (a, b). Thus either (after multiplication of Φ^{0} by a suitable constant $\neq 0), w \Phi^{0} \geq 0$, or

$$
\begin{equation*}
\left|\lambda^{0}\right| \int_{a}^{b}\left|w \Phi^{0}\right|<\int_{a}^{b}\left|w \Phi^{0}\right| \tag{*}
\end{equation*}
$$

i.e., $\left|\lambda^{0}\right|<1$. Thus 1 is the only possible eigenvalue λ^{0} with $\left|\lambda^{0}\right|=1$, but 1 is an eigenvalue, otherwise the spectral radius of \mathcal{L} would be <1 [contradicting the fact that $\int_{a}^{b} w \mathcal{L}^{n} \Phi=$ $\int_{a}^{b} w \Phi>0$ when $\left.w \Phi>0\right]$. (*) also implies that if $\mathcal{L} \Phi^{1}=\Phi^{1}$, then $w \Phi^{1}$ is proportional to $w \Phi^{0}$, hence ϕ_{0}^{1} is proportional to ϕ_{0}^{0}, hence Φ^{1} is proportional to Φ^{0}. Furthermore, the generalized eigenspace to the eigenvalue 1 contains only the multiples of Φ_{0} [otherwise there would exist Φ^{1} such that $\mathcal{L}^{n} \Phi^{1}=\Phi^{1}+n \Phi^{0}$, contradicting $\left.\int_{a}^{b} w \mathcal{L} \Phi^{1}=\int_{a}^{b} w \Phi^{1}\right]$. We have proved the first part of the following

15 Proposition.

(a) Apart from the simple eigenvalue 1, the spectrum of \mathcal{L} has radius <1. The eigenvector Φ^{0} to the eigenvalue 1 (after multiplication by a suitable constant $\neq 0$) satisfies $w \Phi^{0} \geq 0$.
(b) Write $\Phi^{0}=\left(\left(\phi_{\alpha}^{0}\right),\left(c_{n}^{0}\right)\right)$ and $\Delta\left(\phi_{\alpha}^{0}\right)=\phi^{0}$, then ϕ^{0} is continuous, of bounded variation, and $\phi^{0}(a)=\phi^{0}(b)=0$.

The interval $\left[u_{1}, u_{2}\right.$] is divided into N closed intervals W_{1}, \ldots, W_{N} by the points $f^{n} u_{1}$ for $n=1, \ldots, N-1$. The intervals W_{1}, \ldots, W_{N} are ordered from left to right, by doubling the common endpoints we make the W_{j} disjoint. Define $\gamma^{0}=\left(\gamma_{j}^{0}\right)_{j=1}^{N}$ by $\gamma_{j}^{0}=\phi^{0} \mid W_{j} \in L^{1}\left(W_{j}\right)$. Then, the equation $\Phi^{0}=\mathcal{L} \Phi^{0}$ implies

$$
\begin{equation*}
\gamma^{0}=\mathcal{L}_{*} \gamma^{0}+\eta \tag{*}
\end{equation*}
$$

or

$$
\gamma_{j}^{0}=\sum_{k} \mathcal{L}_{j k} \gamma_{k}^{0}+\eta_{j}
$$

where $\mathcal{L}=\left(\mathcal{L}_{j k}\right)$ is a transfer operator defined as follows. Letting $\left(f^{-1}\right)_{k j}: W_{j} \rightarrow W_{k}$ be such that $f \circ\left(f^{-1}\right)_{k j}$ is the identity on W_{j} we write

$$
\mathcal{L}_{j k} \gamma_{k}=\left\{\begin{array}{cc}
\frac{\gamma_{k} \circ\left(f^{-1}\right)_{k j}}{\left|f^{\prime} \circ\left(f^{-1}\right)_{k j}\right|} & \text { if } f W_{k} \supset W_{j} \\
0 & \text { otherwise }
\end{array}\right.
$$

[the term $\mathcal{L}_{*} \gamma^{0}$ in (*) comes from (i) in Section 12]. We let

$$
\eta_{j}=\sum_{n=0}^{\infty} \eta_{j n}
$$

Here

$$
\eta_{j 0}(x)=\frac{\Delta \phi_{-2}^{0}(y)}{f^{\prime}(y)}
$$

if $f\left(a, u_{1}\right) \cap W_{j}$ contains more than one point, and $y \in\left(a, u_{1}\right), f y=x \in W_{j}$; we let $\eta_{j 0}(x)=$ 0 otherwise [this term comes from (iv) in Section 12]. For $n \geq 1$, we let $\eta_{j n}=C_{n} \chi_{n} \mid W_{j}$ where $\chi_{n}=\left(\psi_{n} /\left|f^{\prime}\right|\right) \circ f_{n}^{-1}-\left|f^{\prime}\left(f^{n} b\right)\right|^{-1 / 2} \psi_{n+1}$ [this term comes from (vi) in Section 12].

Because $f u_{1}$ is one of the division points between the intervals W_{j}, the function $\eta_{j 0}$ is continuous on W_{j}; the $\eta_{j n}$ for $n \geq 1$ are also continuous. Furthermore, $\eta_{j 0}$ and the $\eta_{j n}$ for $n \geq 1$ are uniformly of bounded variation. If \mathcal{H}_{j} denotes the Banach space of continuous functions of bounded variation on W_{j} we have thus $\eta_{j} \in \mathcal{H}_{j}$ for $j=1, \ldots, N$. We shall now obtain an upper bound on the essential spectral radius of \mathcal{L}_{*} acting on $\mathcal{H}=\oplus_{1}^{N} \mathcal{H}_{j}$ by studying $\left\|\mathcal{L}_{*}^{n}-F_{n}\right\|$, where F_{n} has finite-dimensional range (we use here a simple case of an argument due to Baladi and Keller [4]). Define

$$
W_{i_{n} \cdots i_{0}}=\left\{x \in W_{i_{n}}: f x \in W_{i_{n-1}}, \ldots, f^{n} x \in W_{i_{0}}\right\}
$$

when $f W_{i_{k}} \supset W_{i_{k-1}}$ for $k=n, \ldots, 1$. For $\eta=\left(\eta_{j}\right) \in \mathcal{H}$, we let $\pi_{n} \eta=\left(\pi_{j n} \eta_{j}\right)$ where $\pi_{j n} \eta_{j}$ is a piecewise affine function on W_{j} such that $\left(\pi_{j n} \eta_{j}\right)(x)=\eta_{j}(x)$ whenever x is an endpoint of W_{j} or of an interval $W_{j i_{n-1} \cdots i_{0}}$, and is affine between all such endpoints. Then $F_{n}=\mathcal{L}_{*}^{n} \pi_{n}$ has finite rank (i.e., finite-dimensional range), and $\mathcal{L}_{*}^{n}-F_{n}=\mathcal{L}_{*}^{n}\left(1-\pi_{n}\right)$ maps \mathcal{H} to \mathcal{H}. Let $\operatorname{Var} \gamma=\sum_{1}^{N} \operatorname{Var}_{j} \gamma_{j}$ where Var_{j} is the total variation on W_{j}. Let also $\|\cdot\|_{0}$ denote the sup-norm and $\|\cdot\|=\max \left\{\operatorname{Var} \cdot,\|\cdot\|_{0}\right\}$ be the bounded variation norm. We have

$$
\begin{gathered}
\operatorname{Var}\left(\gamma-\pi_{n} \gamma\right) \leq 2 \operatorname{Var} \gamma \\
\sum_{i_{0} \cdots i_{n}}\left\|\left(\gamma-\pi_{n} \gamma\right) \mid W_{i_{n} \cdots i_{0}}\right\|_{0} \leq \operatorname{Var} \gamma
\end{gathered}
$$

[the second inequality follows from the first because $\gamma-\pi_{n} \gamma$ vanishes at the endpoints of $\left.W_{i_{n} \cdots i_{0}}\right]$. Since $\mathcal{L}_{*}^{n}\left(1-\pi_{n}\right) \gamma$ vanishes at the endpoints of the W_{j}, we have

$$
\begin{gathered}
\left\|\left(\mathcal{L}_{*}^{n}-F_{n}\right) \gamma\right\|=\operatorname{Var}\left(\left(\mathcal{L}_{*}^{n}-F_{n}\right) \gamma\right) \\
=\operatorname{Var} \sum_{i_{0} \cdots i_{n}}\left(\left(\gamma-\pi_{n} \gamma\right)_{i_{n}} \circ \tilde{f}_{i_{n} \cdots i_{0}}\right)\left(\tilde{f}^{\prime} \circ \tilde{f}_{i_{n} \cdots i_{0}}\right) \cdots\left(\tilde{f}^{\prime} \circ \tilde{f}_{i_{1} i_{0}}\right)
\end{gathered}
$$

where we have written

$$
\tilde{f}_{i_{\ell} \cdots i_{0}}=\left(f^{-1}\right)_{i_{\ell} i_{\ell-1}} \circ \cdots\left(f^{-1}\right)_{i_{1} i_{0}}
$$

and

$$
\tilde{f}^{\prime}=\frac{1}{\left|f^{\prime}\right|}
$$

hence

$$
\begin{gathered}
\left\|\left(\mathcal{L}_{*}^{n}-F_{n}\right) \gamma\right\| \leq \sum_{i_{0} \cdots i_{n}} \operatorname{Var}\left[\left(\left(\gamma-\pi_{n} \gamma\right)_{i_{n}} \circ \tilde{f}_{i_{n} \cdots i_{0}}\right)\left(\tilde{f}^{\prime} \circ \tilde{f}_{i_{n} \cdots i_{0}}\right) \cdots\left(\tilde{f}^{\prime} \circ \tilde{f}_{i_{1} i_{0}}\right)\right] \\
=\sum_{i_{0} \cdots i_{n}} \operatorname{Var}\left[\left(\left(\gamma-\pi_{n} \gamma\right) \mid W_{i_{n} \cdots i_{0}}\right) \prod_{\ell=0}^{n-1}\left(\tilde{f}^{\prime} \circ\left(f^{\ell} \mid W_{i_{n} \cdots i_{0}}\right)\right)\right]
\end{gathered}
$$

The right-hand side is bounded by a sum of $n+1$ terms where Var is applied to ($\gamma-$ $\left.\pi_{n} \gamma\right) \mid W_{i_{n} \cdots i_{0}}$ or a factor $\tilde{f}^{\prime} \circ\left(f^{\ell} \mid W_{i_{n} \cdots i_{0}}\right)$), and the other factors are bounded by their $\|\cdot\|_{0}$-norm. Thus, using the hyperbolicity condition of Section 4, we have

$$
\begin{gathered}
\left\|\left(\mathcal{L}_{*}^{n}-F_{n}\right) \gamma\right\| \\
\leq \operatorname{Var}\left(\gamma-\pi_{n} \gamma\right) \cdot A \alpha^{n}+\sum_{\ell=0}^{n-1} \sum_{i_{0} \cdots i_{n}}\left\|\left(\gamma-\pi_{n} \gamma\right) \mid W_{i_{n} \cdots i_{0}}\right\|_{0} \cdot A \alpha^{\ell} \cdot \operatorname{Var}\left(\tilde{f}^{\prime} \mid W_{i_{n-\ell} \cdots i_{0}}\right) \cdot A \alpha^{n-\ell-1} \\
\leq 2 A \alpha^{n} \operatorname{Var} \gamma+n A^{2} \alpha^{n-1} \operatorname{Var} \tilde{f}^{\prime} \sum_{i_{0} \cdots i_{n}}\left\|\left(\gamma-\pi_{n} \gamma\right) \mid W_{i_{n} \cdots i_{0}}\right\|_{0} \\
\leq\left(2 A+n A^{2} \alpha^{-1} \operatorname{Var} \tilde{f}^{\prime}\right) \alpha^{n} \operatorname{Var} \gamma \leq\left(2 A+n A^{2} \alpha^{-1} \operatorname{Var} \tilde{f}^{\prime}\right) \alpha^{n}\|\gamma\|
\end{gathered}
$$

so that

$$
\left\|\mathcal{L}_{*}^{n}-F_{n}\right\| \leq\left(2 A+n A^{2} \alpha^{-1} \operatorname{Var} \tilde{f}^{\prime}\right) \alpha^{n}
$$

and therefore \mathcal{L}_{*} has essential spectral radius $\leq \alpha<1$ on \mathcal{H}. Suppose that there existed an eigenfunction $\gamma \in \mathcal{H}$ to the eigenvalue 1 of \mathcal{L}_{*}; the fact that γ is continuous and $\neq 0$ on some W_{j} would imply

$$
\int\left(\mathcal{L}_{*}^{n}|\gamma|\right)(x) d x<\int|\gamma|(x) d x
$$

[because, for some n, \mathcal{L}_{*}^{n} sends "mass" into V_{0}]. But this is in contradiction with

$$
\int|\gamma|(x) d x=\int\left|\mathcal{L}_{*}^{n} \gamma\right|(x) d x \leq \int\left(\mathcal{L}_{*}^{n}|\gamma|\right)(x) d x
$$

Therefore, 1 cannot be an eigenvalue of \mathcal{L}_{*}, and there is $\gamma=\left(1-\mathcal{L}_{*}\right)^{-1} \eta \in H$ such that

$$
\gamma=\mathcal{L}_{*} \gamma+\eta
$$

Since γ^{0} satisfies the same equation in L^{1}, we have $\gamma^{0}-\gamma=\mathcal{L}_{*}\left(\gamma^{0}-\gamma\right)$ hence $\gamma^{0}-\gamma=0$ by the same argument as above $\left[\left|\gamma^{0}-\gamma\right|\right.$ is in L^{1}, with "mass" in some V_{α} because $H\left(u_{1}\right)$ has measure 0 , and this is sent to V_{0} by \mathcal{L}_{*}^{n} for some $\left.n\right]$. Thus γ^{0} is continuous of bounded variation on the intervals W_{j} for $j=1, \ldots, N$, and ϕ^{0} has bounded variation on $[a, b]$, with possible discontinuities only at $f^{n} u_{1}$ for $n=0, \ldots, N$, and $\phi^{0}(a)=\phi^{0}(b)=0$. We have

$$
\mathcal{L}_{(1)} \phi^{0}-c_{0}^{0} \psi_{0}+\sum_{n=0}^{\infty} c_{n}^{0} \chi_{n}=\phi^{0}
$$

Therefore, hyperbolicity along the periodic orbit of u_{1} shows that ϕ^{0} cannot have discontinuities, and this proves part (b) of Proposition 15. [

This also concludes the proof of Theorem 9. $\quad \square$

16 Remarks.

(a) Theorem 9 shows that the density $\rho(x)$ of the unique a.c.i.m. $\rho(x) d x$ for f can be written as the sum of spikes $\approx\left|x-f^{n} b\right|^{-1 / 2} \theta_{n}(x)$ (where θ_{n} vanishes unless $x>f^{n} b$ or $x<f^{n} b$) and a continuous background $\phi(x)$. In fact, one can also write $\rho(x)$ as the sum of singular terms $\approx\left|x-f^{n} b\right|^{-1 / 2} \theta_{n}(x),\left|x-f^{n} b\right|^{1 / 2} \theta_{n}(x)$ and a background $\phi(x)$ which is now differentiable. This result is discussed in Appendix A. It seems clear that one could write $\rho(x)$ as a sum of terms $\left|x-f^{n} b\right|^{k / 2} \theta_{n}(x)$ with $k=-1,1, \ldots, \frac{2 \ell-1}{2}$ and a background $\phi(x)$ of class C^{ℓ}, but we have not written a proof of this.
(b) Let $u \in\left(-\infty, u_{1}\right) \cup\left(u_{1}, v_{1}\right) \cup\left(v_{2}, u_{2}\right) \cup\left(u_{2}, \infty\right)$ and choose $w \in\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ such that w is an endpoint of the interval containing u. If $\pm(w-u)>0$ and $\theta_{ \pm}$is the characteristic function of $\{x:(w-x)(x-u)>0\}$ we define

$$
\psi_{(u \pm)}(x)=\frac{w-x}{w-u} \cdot|x-u|^{-1 / 2} \theta_{ \pm}(x)
$$

or a similar expression with the same singularity at u, greater smoothness at w, and/or $\int \psi_{(u \pm)}=0$. [Note that the ψ_{n} are of this form]. Claim: if $u \in \tilde{H}$, there exists a unique $\left(\phi_{\alpha}\right) \in \mathcal{A}_{1}$ such that $\phi_{\alpha}=\psi_{(u \pm)} \mid V_{\alpha}$ for all α; furthermore $\left\|\left(\phi_{\alpha}\right)\right\|_{1}$ has a bound independent of $u \pm$. These results are proved in Appendix B (assuming $\gamma<\alpha^{-1 / 2}$).

Note that if $\left(\left(\phi_{\alpha}\right),\left(c_{n}\right)\right) \in \mathcal{A}$ and $c_{0}=c_{1}=0$, there is $\left(\tilde{\phi}_{\alpha}\right) \in \mathcal{A}_{1}$ such that $\Delta\left(\tilde{\phi}_{\alpha}\right)=$ $w\left(\left(\phi_{\alpha}\right),\left(c_{n}\right)\right)$. It seems thus that we might have replaced \mathcal{A} by \mathcal{A}_{1} in our earlier discussions. However, separating the spikes $\left(c_{n}\right)$ from the background $\left(\phi_{\alpha}\right)$ was needed in the spectral study of \mathcal{L}.
(c) The eigenvector Φ^{0} of \mathcal{L} corresponding to the eigenvalue 1 (with $w \Phi^{0} \geq 0, \int w \Phi^{0}=$ 1) depends continuously on f. To make sense of this statement we may consider a oneparameter family $\left(f_{\kappa}\right)$ such that $f_{0}=f$. We let $H_{\kappa}, \tilde{H}_{\kappa}$ (hyperbolic sets) and $\mathcal{A}_{1 \kappa}$ (Banach space) reduce to H, H and \mathcal{A}_{1} when $\kappa=0$. We restrict κ to a compact set K such that $f_{\kappa}^{3} c_{\kappa} \in \tilde{H}_{\kappa}$ (where c_{κ} is the critical point of f_{κ}). The intervals $V_{\kappa \alpha}$ associated with H_{κ} can be mapped to the V_{α} associated with H, providing an identification $\eta_{\kappa}: \mathcal{A}_{\kappa 1} \rightarrow \mathcal{A}_{1}$. There are natural definitions of $\mathcal{L}_{\kappa}: \mathcal{A}_{\kappa 1} \oplus \mathcal{A}_{2} \rightarrow \mathcal{A}_{\kappa 1} \oplus \mathcal{A}_{2}$ and the eigenvector Φ_{κ}^{0} reducing to \mathcal{L} and Φ^{0} when $\kappa=0$. We claim that $\kappa \mapsto \Phi_{\kappa}^{\times}=\left(\eta_{\kappa}, \mathbf{1}\right) \Phi_{\kappa}^{0}$ is a continuous function $K \rightarrow \mathcal{A}_{1} \oplus \mathcal{A}_{2}$. This result is proved in Appendix C. It implies that, if A is smooth, $\kappa \rightarrow\left\langle\Phi_{f_{\kappa}}^{0}, A\right\rangle$ is continuous on K. The weight of the n-th spike is $C_{0} \prod_{k=1}^{n}\left|f_{\kappa}^{\prime}\left(f_{\kappa}^{k-1} b_{\kappa}\right)\right|^{-1 / 2}$ and its speed is

$$
\frac{d}{d \kappa} f_{\kappa}^{n} b_{\kappa}=\prod_{k=1}^{n} f_{\kappa}^{\prime}\left(f_{\kappa}^{k-1} b_{\kappa}\right) \frac{d b_{\kappa}}{d \kappa}+\sum_{\ell=1}^{n} \prod_{k=\ell+1}^{n} f_{\kappa}^{\prime}\left(f_{\kappa}^{k-1} b_{\kappa}\right) f_{\kappa}^{*}\left(f_{\kappa}^{\ell-1} b_{\kappa}\right) \quad \text { with } \quad f_{\kappa}^{*}=\frac{d f_{\kappa}}{d \kappa}
$$

The weight may be roughly estimated as $\sim \alpha^{n / 2}$ and the speed as $\sim \alpha^{-n}$ for some $\alpha \in$ $(0,1)$, suggesting that $\kappa \rightarrow\left\langle\Phi_{f_{\kappa}}^{0}, A\right\rangle$ is $\frac{1}{2}$-Hölder on K.

17 Informal study of the differentiability of $f \mapsto\left\langle\Phi_{f}^{0}, A\right\rangle$.
Writing Φ_{f}^{0} instead of Φ^{0} we want to study the change of $\left\langle\Phi_{f}^{0}, A\right\rangle=\int d x\left(w \Phi_{f}^{0}\right)(x) A(x)$ when f is replaced by \hat{f} close to f (and the critical orbit $\hat{f}^{k} \hat{c}$ for $k \geq 3$ is in the perturbed hyperbolic set $\hat{\tilde{H}})$. Writing $g=\mathrm{id}-\hat{f}(\hat{c})+f(c)$, we see that \hat{f} is conjugate to $g \circ \hat{f} \circ g^{-1}$, which has maximum $f(c)$ at $g(\hat{c})$. With proper choice of the inverse f^{-1} we have $f^{-1} \circ$ $\left(g \circ \hat{f} \circ g^{-1}\right)=h$ close to id, hence $g \circ \hat{f} \circ g^{-1}=f \circ h$ and $(h \circ g) \circ \hat{f} \circ(h \circ g)^{-1}=h \circ f$, i.e., \hat{f} is conjugate to $h \circ f$ and we may write

$$
\left\langle\Phi_{\hat{f}}^{0}, A\right\rangle=\left\langle\Phi_{h \circ f}^{0}, A \circ h \circ g\right\rangle
$$

The differentiability of $\hat{f} \mapsto A \circ h \circ g$ is trivial, and we concentrate on the study of $h \mapsto\left\langle\Phi_{h \circ f}^{0}, A\right\rangle$. Writing $h=\mathrm{id}+X$, where X is analytic, we see that the change $\delta\left(w \Phi_{f}^{0}\right)$ when f is replaced by $(\mathrm{id}+X) \circ f$ is, to first order in X, formally

$$
(1-\mathcal{L})^{-1} \mathcal{D}\left(-X \Phi_{f}^{0}\right)
$$

where \mathcal{D} denotes differentiation. [The above formula is standard first order perturbation calculation, and we have omitted the w map from our formula].

Writing $\Phi_{f}^{0}=\left(\left(\phi_{\alpha}^{0}\right),\left(C_{n}\right)\right)$, we can identify $\mathcal{D}\left(-X\left(\left(\phi_{\alpha}^{0}\right), 0\right)\right)$ with an element Φ^{\times}of \mathcal{A} (so that $w \Phi^{\times}=\mathcal{D}\left(X w\left(\left(\phi_{\alpha}^{0}\right), 0\right)\right)$ and $\int d x w \Phi^{\times}(x)=0$, use Appendix A) which is easy to study, and we are left to analyze the singular part $\mathcal{D}\left(-X\left(0,\left(C_{n}\right)\right)\right)$. To study this singular part we shall write $\left(0,\left(C_{n}\right)\right)=\sum_{n=0}^{\infty} C_{n} \psi_{\left(f^{n} b\right)}$, and use the equivalence \sim modulo the elements of \mathcal{A}. We extend the domain of definition of \mathcal{L} so that $\mathcal{L} \psi_{(u)} \sim\left|f^{\prime}(u)\right|^{-1 / 2} \psi_{(f u)}$, where we use the notation $\psi_{(u \pm)}$ of Section 16(b), but omit the \pm, and we assume that $\int \psi_{(u)}=0$. We have thus

$$
\begin{aligned}
& \mathcal{D}\left(-X\left(0,\left(C_{n}\right)\right)\right) \sim-\left.\sum_{n=0}^{\infty} C_{n} X\left(f^{n} b\right) \mathcal{D} \psi_{\left(f^{n} b\right)} \sim \sum_{n=0}^{\infty} C_{n} X\left(f^{n} b\right) \frac{d}{d u} \psi_{(u)}\right|_{u=f^{n} b} \\
= & \sum_{n=0}^{\infty} C_{n} X\left(f^{n} b\right)\left[\prod_{k=0}^{n-1} f^{\prime}\left(f^{k} b\right)\right]^{-1} \frac{d}{d b} \psi_{\left(f^{n} b\right)} \sim \sum_{n=0}^{\infty} X\left(f^{n} b\right)\left[\prod_{k=0}^{n-1} f^{\prime}\left(f^{k} b\right)\right]^{-1} \frac{d}{d b} \mathcal{L}^{n} C_{0} \psi_{(b)}
\end{aligned}
$$

We may thus write (introducing $(1-\lambda \mathcal{L})^{-1}$ instead of $\left.(1-\mathcal{L})^{-1}\right)$

$$
\begin{aligned}
(1-\lambda \mathcal{L})^{-1} \mathcal{D}(& \left.-X\left(0,\left(C_{n}\right)\right)\right) \sim \sum_{n=0}^{\infty} X\left(f^{n} b\right)\left[\prod_{k=0}^{n-1} f^{\prime}\left(f^{k} b\right)\right]^{-1} \lambda^{-n} \frac{d}{d b}(1-\lambda \mathcal{L})^{-1}(\lambda \mathcal{L})^{n} C_{0} \psi_{(b)} \\
& =\sum_{n=0}^{\infty} X\left(f^{n} b\right)\left[\prod_{k=0}^{n-1} f^{\prime}\left(f^{k} b\right)\right]^{-1} \lambda^{-n} \frac{d}{d b}(1-\lambda \mathcal{L})^{-1} C_{0} \psi_{(b)}-Z
\end{aligned}
$$

where

$$
\begin{gathered}
Z=\sum_{n=0}^{\infty} X\left(f^{n} b\right)\left[\prod_{k=0}^{n-1} f^{\prime}\left(f^{k} b\right)\right]^{-1} \lambda^{-n} \frac{d}{d b} \sum_{\ell=0}^{n-1}(\lambda \mathcal{L})^{\ell} C_{0} \psi_{(b)} \\
\sim \sum_{n=0}^{\infty} X\left(f^{n} b\right)\left[\prod_{k=0}^{n-1} f^{\prime}\left(f^{k} b\right)\right]^{-1} \sum_{\ell=0}^{n-1} \lambda^{-n+\ell}\left|\prod_{k=0}^{\ell-1} f^{\prime}\left(f^{k} b\right)\right|^{-1 / 2} \frac{d}{d b} C_{0} \psi_{\left(f^{\ell} b\right)} \\
=\left.\sum_{n=0}^{\infty} X\left(f^{n} b\right) \sum_{\ell=0}^{n-1} \lambda^{-n+\ell}\left[\prod_{k=\ell}^{n-1} f^{\prime}\left(f^{k} b\right)\right]^{-1}\left|\prod_{k=0}^{\ell-1} f^{\prime}\left(f^{k} b\right)\right|^{-1 / 2} \frac{d}{d u} C_{0} \psi_{(u)}\right|_{u=f^{\ell} b} \\
\sim-\mathcal{D} \sum_{n=0}^{\infty} X\left(f^{n} b\right) \sum_{\ell=0}^{n-1} \lambda^{-n+\ell}\left[\prod_{k=\ell}^{n-1} f^{\prime}\left(f^{k} b\right)\right]^{-1} C_{\ell} \psi_{\ell} \\
=-\mathcal{D} \sum_{r=1}^{\infty} \sum_{\ell=0}^{\infty} X\left(f^{\ell+r} b\right) \lambda^{-r}\left[\prod_{k=0}^{r-1} f^{\prime}\left(f^{\ell+k} b\right)\right]^{-1} C_{\ell} \psi_{\ell} \\
=-\mathcal{D} \sum_{\ell=0}^{\infty} C_{\ell} \psi_{\ell} \sum_{r=1}^{\infty} \lambda^{-r}\left[\prod_{k=0}^{r-1} f^{\prime}\left(f^{\ell+k} b\right)\right]^{-1} X\left(f^{\ell+r} b\right)
\end{gathered}
$$

We have thus an (informal) proof of the following result
For $\ell=0,1, \ldots$, define

$$
F_{\ell}(X)=\sum_{n=1}^{\infty} \lambda^{-n}\left[\prod_{k=0}^{n-1} f^{\prime}\left(f^{k+\ell} b\right)\right]^{-1} X\left(f^{n+\ell} b\right)
$$

which are holomorphic functions of λ when $|\lambda|>\alpha$. Then the susceptibility function

$$
\Psi(\lambda)=\left\langle(1-\lambda \mathcal{L})^{-1} \mathcal{D}\left(-X \Phi_{f}^{0}\right), A\right\rangle
$$

has the form

$$
\Psi(\lambda) \sim\left(X(b)+F_{0}(X)\right) \frac{d}{d b}\left\langle(1-\lambda \mathcal{L})^{-1} C_{0} \psi_{(b)}, A\right\rangle-\sum_{\ell=0}^{\infty} F_{\ell}(X) C_{\ell}\left\langle\psi_{\ell}, \mathcal{D} A\right\rangle
$$

The derivative $\frac{d}{d b}\left\langle(1-\lambda \mathcal{L})^{-1} C_{0} \psi_{(b)}, A\right\rangle$ exists as a distribution, but is in principle a divergent quantity for given b. The corresponding term disappears however if $X(b)+$ $F_{0}(X)=0$, and we are then left with a finite expression, meromorphic in λ for $\alpha<|\lambda|<$ $\min \left(\beta^{-1}, \alpha^{-1 / 2}\right)$ and holomorphic when $\alpha<|\lambda| \leq 1$.

Note that in writing the equivalence \sim we have omitted terms with the singularities of $(1-\lambda \mathcal{L})^{-1}$; this explains the meromorphic contributions for $|\lambda|>1$. The condition $X(b)+F_{0}(X)=0$ for $\lambda=1$ is known as horizontality (see the discussion in Section 19 below).

18 A modified susceptibility function $\Psi(X, \lambda)$.

At this point we extend the definition of the operator \mathcal{L} to \mathcal{L}^{\sim} acting on a larger space. Remember that \mathcal{L} was obtained from the transfer operator $\mathcal{L}_{(1)}$ by separating the spikes ψ_{n} from the background in order to obtain better spectral properties. We now also introduce derivatives ψ_{n}^{\prime} of spikes, so that the transfer operator sends ψ_{n}^{\prime} to

$$
\frac{f^{\prime}\left(f^{n} b\right)}{\left|f^{\prime}\left(f^{n} b\right)\right|^{1 / 2}} \psi_{n+1}^{\prime}+\text { a term in } w\left(\mathcal{A}_{1}+\mathcal{A}_{2}\right)
$$

The coefficients of ψ_{n}^{\prime} form an element of $\mathcal{A}_{3}=\left\{\left(Y_{n}\right):\left\|\left(Y_{n}\right)\right\|_{3}=\sup _{n} \delta^{n}\left|Y_{n}\right|<\infty\right\}$. We define \mathcal{L}^{\sim} on $\mathcal{A}_{1}+\mathcal{A}_{2}+\mathcal{A}_{3}$ so that

$$
\mathcal{L}^{\sim}=\left(\begin{array}{ccc}
\mathcal{L}_{0}+\mathcal{L}_{1} & \mathcal{L}_{2} & \mathcal{L}_{5} \\
\mathcal{L}_{3} & \mathcal{L}_{4} & \mathcal{L}_{6} \\
0 & 0 & \mathcal{L}_{7}
\end{array}\right)
$$

where we omit the explicit definition of $\mathcal{L}_{5}, \mathcal{L}_{6}$, and let

$$
\mathcal{L}_{7}\left(\frac{Z_{n}}{\prod_{k=0}^{n-1}\left|f^{\prime}\left(f^{k} b\right)\right|^{1 / 2}}\right)=\left(\frac{\tilde{Z}_{n}}{\prod_{k=0}^{n-1}\left|f^{\prime}\left(f^{k} b\right)\right|^{1 / 2}}\right)
$$

with $\tilde{Z}_{0}=0, \tilde{Z}_{n}=f^{\prime}\left(f^{n-1} b\right) Z_{n-1}$ for $n>0$. Since

$$
\left(\begin{array}{ccc}
0 & 0 & \mathcal{L}_{5} \\
0 & 0 & \mathcal{L}_{6} \\
0 & 0 & \mathcal{L}_{7}
\end{array}\right) \mathcal{L}=0
$$

we have

$$
\mathcal{L}^{\sim n}=\mathcal{L}^{n}+\sum_{k=1}^{n} \mathcal{L}^{k-1}\left(\mathcal{L}_{5}+\mathcal{L}_{6}\right) \mathcal{L}_{7}^{n-k}+\mathcal{L}_{7}^{n}
$$

and formally

$$
\left(\mathbf{1}-\lambda \mathcal{L}^{\sim}\right)^{-1}=\left(\mathbf{1}_{12}-\lambda \mathcal{L}\right)^{-1}+\left(\mathbf{1}_{3}-\lambda \mathcal{L}_{7}\right)^{-1}+\left(\mathbf{1}_{12}-\lambda \mathcal{L}\right)^{-1} \lambda\left(\mathcal{L}_{5}+\mathcal{L}_{6}\right)\left(\mathbf{1}_{3}-\lambda \mathcal{L}_{7}\right)^{-1}
$$

where $\mathbf{1}_{12}$ and $\mathbf{1}_{3}$ denote the identity on $\mathcal{A}_{1} \oplus \mathcal{A}_{2}$ and \mathcal{A}_{3} respectively.
For λ close to $1,\left(\mathbf{1}_{3}-\lambda \mathcal{L}_{7}\right)^{-1}$ and thus $\left(\mathbf{1}-\lambda \mathcal{L}^{\sim}\right)^{-1}$ are not well defined. But there is a natural definition of a left inverse $\mathcal{L}_{7 L}^{-1}$ of \mathcal{L}_{7} where

$$
\mathcal{L}_{7 L}^{-1}\left(\frac{Z_{n}}{\prod_{k=0}^{n-1}\left|f^{\prime}\left(f^{k} b\right)\right|^{1 / 2}}\right)=\left(\frac{\tilde{Z}_{n}}{\prod_{k=0}^{n-1}\left|f^{\prime}\left(f^{k} b\right)\right|^{1 / 2}}\right)
$$

with $\tilde{Z}_{n}=f^{\prime}\left(f^{n} b\right)^{-1} Z_{n+1}$ for $n \geq 0$. The spectral radius of $\mathcal{L}_{7 L}^{-1}$ is thus $\leq \alpha^{1 / 2} / \delta$. This gives natural left inverses

$$
\left(\mathbf{1}_{3}-\lambda \mathcal{L}_{7}\right)_{L}^{-1}=-\sum_{n=1}^{\infty} \lambda^{-n} \mathcal{L}_{7 L}^{-n}
$$

for $|\lambda|>\alpha^{1 / 2} / \delta$, and

$$
\left(\mathbf{1}-\lambda \mathcal{L}^{\sim}\right)_{L}^{-1}=\left(\mathbf{1}_{12}-\lambda \mathcal{L}\right)^{-1}+\left(\mathbf{1}_{3}-\lambda \mathcal{L}_{7}\right)_{L}^{-1}+\left(\mathbf{1}_{12}-\lambda \mathcal{L}\right)^{-1} \lambda\left(\mathcal{L}_{5}+\mathcal{L}_{6}\right)\left(\mathbf{1}_{3}-\lambda \mathcal{L}_{7}\right)_{L}^{-1}
$$

when $|\lambda|>\alpha^{1 / 2} / \delta$ and $\left(\mathbf{1}_{12}-\lambda \mathcal{L}\right)^{-1}$ exists. This gives a modified susceptibility function

$$
\Psi_{L}(\lambda)=\left\langle\left(\mathbf{1}-\lambda \mathcal{L}^{\sim}\right)_{L}^{-1} \mathcal{D}\left(-X \Phi_{f}^{0}\right), A\right\rangle
$$

meromorphic in λ for $\alpha<|\lambda|<\min \left(\beta^{-1}, \alpha^{-1 / 2}\right)$ and holomorphic for $\alpha<|\lambda| \leq 1$.
Note that the \mathcal{A}_{3} part of $\mathcal{D}\left(-X \Phi_{f}^{0}\right)$ is

$$
\left(Y_{n}\right)=\left(\frac{-X\left(f^{n} b\right)}{\frac{1}{2}\left|f^{\prime \prime}(c)\right|^{1 / 2} \prod_{k=0}^{n-1}\left|f^{\prime}\left(f^{k} b\right)\right|^{1 / 2}}\right)_{n \geq 0}
$$

where $\sup _{n}\left|X\left(f^{n} b\right)\right|<\infty$. Therefore, for small $|\lambda|$,

$$
\left(\mathbf{1}_{3}-\lambda \mathcal{L}_{7}\right)^{-1}\left(Y_{n}\right)=\left(\frac{-\sum_{k=0}^{n} \lambda^{k}\left(\prod_{\ell=1}^{k} f^{\prime}\left(f^{n-\ell} b\right)\right) X\left(f^{n-k} b\right)}{\frac{1}{2}\left|f^{\prime \prime}(c)\right|^{1 / 2} \prod_{k=0}^{n-1}\left|f^{\prime}\left(f^{k} b\right)\right|^{1 / 2}}\right)_{n \geq 0}
$$

because the right-hand side is in \mathcal{A}_{3}. Note that the right-hand side is also in \mathcal{A}_{3} under the condition

$$
\begin{equation*}
\sum_{n=0}^{\infty} \lambda^{-n}\left(\prod_{k=0}^{n-1} f^{\prime}\left(f^{k} b\right)\right)^{-1} X\left(f^{n} b\right)=0 \tag{*}
\end{equation*}
$$

because this condition implies

$$
-\sum_{k=0}^{n} \lambda^{-k}\left(\prod_{\ell=0}^{k-1} f^{\prime}\left(f^{\ell} b\right)\right)^{-1} X\left(f^{k} b\right)=\sum_{k=n+1}^{\infty} \lambda^{-k}\left(\prod_{\ell=0}^{k-1} f^{\prime}\left(f^{\ell} b\right)\right)^{-1} X\left(f^{k} b\right)
$$

hence, multiplying by $\lambda^{n} \prod_{\ell=0}^{n-1} f^{\prime}\left(f^{\ell} b\right)$,

$$
-\sum_{k=0}^{n} \lambda^{n-k}\left(\prod_{\ell=k}^{n-1} f^{\prime}\left(f^{\ell} b\right)\right) X\left(f^{k} b\right)=\sum_{k=n+1}^{\infty} \lambda^{n-k}\left(\prod_{\ell=n}^{k-1} f^{\prime}\left(f^{\ell} b\right)\right)^{-1} X\left(f^{k} b\right)
$$

or

$$
-\sum_{k=0}^{n} \lambda^{k}\left(\prod_{\ell=1}^{k} f^{\prime}\left(f^{n-\ell} b\right)\right) X\left(f^{n-k} b\right)=\sum_{k=1}^{\infty} \lambda^{-k}\left(\prod_{\ell=0}^{k-1} f^{\prime}\left(f^{n+\ell} b\right)\right)^{-1} X\left(f^{n+k} b\right)
$$

for each n, provided $|\lambda|>\alpha$. We have proved that:
Under the condition (*), a resummation of the series defining

$$
\left\langle\left(\mathbf{1}-\lambda \mathcal{L}^{\sim}\right)^{-1} \mathcal{D}\left(-X \Phi_{f}^{0}\right), A\right\rangle
$$

yields $\Psi_{L}(\lambda)$.
It is then natural to define a modified susceptibility function $\Psi(X, \lambda)$ by

$$
(X, \lambda) \mapsto \Psi(X, \lambda)=\Psi_{L}(\lambda) \quad \text { on } \quad\{(X, \lambda):(*) \text { holds }\}
$$

Note that the left-hand side of $(*)$ is equal to the quantity $X(b)+F_{0}(X)$ met in Section 17 , and that $(*)$ with $\lambda=1$ reduces to the horizontality condition.

We conclude with a rigorous result agreeing in part with the informal study in Section 17, in part with a conjecture of Baladi [3], Baladi and Smania [5].

19 Theorem (differentiability along topological conjugacy classes).
Let $f_{\kappa}=h_{\kappa} \circ f$ where the h_{κ} are real analytic, depend smoothly on κ, and $f_{\kappa}^{3} c=\xi_{\kappa} f^{3} c$ identically in κ. [This last condition expresses that f_{κ} belongs to a conjugacy class, and $\xi_{k}: H \rightarrow H_{\kappa}$ is the conjugacy defined in Appendix C]. Then, if A is smooth, $\kappa \mapsto\left\langle\Phi_{\kappa}^{0}, A\right\rangle=$ $\int d x\left(w \Phi_{f_{k}}^{0}\right)(x) A(x)$ is continuously differentiable. Furthermore

$$
\left.\frac{d}{d \kappa}\left\langle\Phi_{f_{k}}^{0}, A\right\rangle\right|_{\kappa=0}=\Psi(X, 1)
$$

where $\Psi(X, \lambda)$ is defined in Section 18 with $X=\left.\frac{d}{d \kappa} h_{\kappa}\right|_{\kappa=0}$, and $\Psi(X, \lambda)$ is holomorphic for $\alpha<|\lambda| \leq 1$, meromorphic for $\alpha<|\lambda|<\min \left(\beta^{-1}, \alpha^{-1 / 2}\right)$.
[The value $\kappa=0$ plays no special role, and is chosen for notational simplicity in the formulation of the theorem].

Our notion of topological conjugacy class is a special case of that discussed in [1].
Note that $\xi_{0}=\mathrm{id}$, and that ξ_{κ} depends differentiably on κ. Since $f_{\kappa}^{3} c=\xi_{\kappa} f^{3} c$ and $f_{\kappa} \xi_{\kappa}=\xi_{\kappa} f$ on H, we have $f_{\kappa}^{n} c=\xi_{\kappa} f^{n} c$ for $n \geq 3$ and by differentiation (writing $\left.\xi^{\prime}=\left.\frac{d}{d \kappa} \xi_{\kappa}\right|_{\kappa=0}\right):$

$$
\sum_{k=1}^{n}\left[\prod_{\ell=k}^{n-1} f^{\prime}\left(f^{\ell} c\right)\right] X\left(f^{k} c\right)=\xi^{\prime}\left(f^{n} c\right)
$$

or

$$
\sum_{k=1}^{n}\left[\prod_{\ell=1}^{k-1} f^{\prime}\left(f^{\ell} c\right)\right]^{-1} X\left(f^{k} c\right)=\left[\prod_{\ell=1}^{n-1} f^{\prime}\left(f^{\ell} c\right)\right]^{-1} \xi^{\prime}\left(f^{n} c\right)
$$

and letting $n \rightarrow \infty$:

$$
\sum_{k=1}^{\infty}\left[\prod_{\ell=1}^{k-1} f^{\prime}\left(f^{\ell} c\right)\right]^{-1} X\left(f^{k} c\right)=0 \quad \text { or } \quad \sum_{n=0}^{\infty}\left[\prod_{k=0}^{n-1} f^{\prime}\left(f^{k} b\right)\right]^{-1} X\left(f^{n} b\right)=0
$$

This is the horizontality condition derived much more generally in [1].

The proof of the theorem will be based on Appendices A, B, C, and use particularly the notation of Appendix C. We write $\Phi_{f_{\kappa}}^{0}=\Phi_{\kappa}^{0}$ and recall that the expression

$$
\left\langle\Phi_{\kappa}^{0}, A\right\rangle_{\kappa}=\int d x\left(w_{\kappa} \Phi_{\kappa}^{0}\right)(x) A(x)=\sum_{\alpha} \int_{V_{\kappa \alpha}} \phi_{\kappa \alpha}^{0} A(x) d x+\sum_{n} c_{\kappa n}^{0} \int \psi_{\kappa n}(x) A(x) d x
$$

depends explicitly on the intervals $V_{\kappa \alpha}$ and the points $f_{\kappa}^{k} c$ for $k \geq 1$. We shall first prove the existence of $\left.\frac{d}{d \kappa}\left\langle\Phi_{\kappa}^{0}, A\right\rangle_{\kappa}\right|_{\kappa=0}=\lim _{\kappa \rightarrow 0} \frac{1}{\kappa} \int\left(w_{\kappa} \Phi_{\kappa}^{0}-w \Phi^{0}\right) A$ and give an expression involving only the intervals V_{α} and the points $f^{k} c$ (corresponding to $\kappa=0$). Then we shall transform the expression obtained to the form $\Psi(X, 1)$.

Since the map $\xi_{\kappa}: H \rightarrow H_{\kappa}$ depends smoothly on κ (in particular $f_{\kappa}^{\prime}\left(f_{\kappa}^{k} b_{\kappa}\right)=$ $f_{\kappa}^{\prime}\left(\xi_{\kappa} f^{k} b\right)$ is continuous uniformly in $\left.k\right)$, it is easily seen that the operator $\mathcal{L}_{\kappa}^{\times}$defined in Appendix C now depends continuously and even differentiably on κ.

We may write

$$
\begin{gathered}
\left\langle\Phi_{\kappa}^{0}, A\right\rangle_{\kappa}=\sum_{\alpha} \int_{V_{\kappa \alpha}} \phi_{\kappa \alpha}^{0}(x) A(x) d x+\sum_{n} c_{\kappa n}^{0} \int \psi_{\kappa n}(x) A(x) d x \\
=\left\langle\left(\left(\phi_{\kappa \alpha}^{0}\right),\left(c_{\kappa n}^{0}\right)\right),\left(\left(A \mid V_{\kappa \alpha}\right), A\right)\right\rangle_{\kappa} \\
=\left\langle\Phi_{\kappa}^{0},\left(\left(A \mid V_{\kappa \alpha}\right), 0\right)\right\rangle_{\kappa}+\left\langle\Phi_{\kappa}^{0},\left(0,\left(c_{\kappa n}^{0}\right)\right)\right\rangle_{\kappa}
\end{gathered}
$$

For notational simplicity we study the derivative of this quantity at $\kappa=0$ but the proof will show that the derivative depends continuously on κ. We have

$$
\frac{1}{\kappa}\left[\left\langle\Phi_{\kappa}^{0}, A\right\rangle_{\kappa}-\left\langle\Phi^{0}, A\right\rangle\right]=I+I I
$$

where

$$
\begin{aligned}
& I I=\frac{1}{\kappa} \sum_{n} \int\left[c_{\kappa n}^{0} \psi_{\kappa n}(x)-c_{n}^{0} \psi_{n}(x)\right] A(x) d x \\
\rightarrow & \left.\sum_{n} \int\left[\frac{d c_{\kappa n}^{0}}{d \kappa} \psi_{n}(x)+c_{n}^{0} \frac{d}{d \kappa} \psi_{\kappa n}(x)\right] A(x) d x\right|_{\kappa=0}
\end{aligned}
$$

$\left[\frac{d}{d \kappa} \psi_{\kappa n}\right.$ is a distribution with singular part $\frac{d}{d \kappa}\left|x-f_{\kappa}^{n} b_{\kappa}\right|^{-1 / 2}$; integrating by part over x, and using $f_{\kappa}^{n} b_{\kappa}=\xi_{\kappa} f^{n} b$ for $k \geq 2$, we see that the right-hand side makes sense, and is the limit of the left-hand side when $\kappa \rightarrow 0$].

We also have

$$
\left\langle\Phi_{\kappa}^{0},\left(\left(A \mid V_{\kappa \alpha}\right), 0\right)\right\rangle_{\kappa}=\left\langle\Phi_{\kappa}^{\times},\left(\left(A_{\kappa \alpha}\right), 0\right)\right\rangle
$$

where $A_{\kappa \alpha}=\left(A \mid V_{\kappa \alpha}\right) \circ \tilde{\eta}_{\kappa \alpha}^{-1}$, so that

$$
I=\left\langle\frac{\Phi_{\kappa}^{\times}-\Phi_{0}^{\times}}{\kappa},\left(\left(A_{\kappa \alpha}\right), 0\right)\right\rangle+\left\langle\Phi_{0}^{\times},\left(\left(\frac{A_{\kappa \alpha}-A_{0 \alpha}}{\kappa}\right), 0\right)\right\rangle
$$

and the second term is readily seen to tend to a limit when $\kappa \rightarrow 0$. In the first term remember that for $\kappa=0$ we have $\Phi_{\kappa}^{\times}=\Phi_{0}^{\times}=\Phi^{0}$, and $\mathcal{L}_{\kappa}^{\times}=\mathcal{L}_{0}^{\times}=\mathcal{L}$. Also

$$
(1-\mathcal{L})\left(\Phi_{\kappa}^{\times}-\Phi_{0}^{\times}\right)=\left(\mathcal{L}_{\kappa}^{\times}-\mathcal{L}_{0}^{\times}\right) \Phi_{\kappa}^{\times}
$$

hence

$$
\Phi_{\kappa}^{\times}-\Phi_{0}^{\times}=(\mathbf{1}-\mathcal{L})^{-1}\left(\mathcal{L}_{\kappa}^{\times}-\mathcal{L}_{0}^{\times}\right) \Phi_{\kappa}^{\times}
$$

Since $(\mathbf{1}-\mathcal{L})^{-1}$ is bounded and $\kappa \mapsto \mathcal{L}_{\kappa}^{\times}$differentiable, we have

$$
\left\langle\frac{\Phi_{\kappa}^{\times}-\Phi_{0}^{\times}}{\kappa},\left(\left(A_{\kappa \alpha}\right), 0\right)\right\rangle \rightarrow\left\langle(\mathbf{1}-\mathcal{L})^{-1}\left(\left.\frac{d}{d \kappa} \mathcal{L}_{\kappa}^{\times}\right|_{\kappa=0}\right) \Phi^{0},\left(\left(A_{0 \alpha}\right), 0\right)\right\rangle
$$

when $\kappa \rightarrow 0$, proving that $\kappa \mapsto\left\langle\Phi_{\kappa}^{0}, A\right\rangle$ is differentiable.
If we replace in the above calculation the Banach space $\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2}$ by $\mathcal{A}^{\prime}=\mathcal{A}_{1}^{\prime} \oplus \mathcal{A}_{2}^{\prime}$ as in Appendix A, we obtain an expression of $\left.\frac{d}{d \kappa}\left\langle\Phi_{\kappa}^{0}, A\right\rangle_{\kappa}\right|_{\kappa=0}$ that can be re-expressed in terms of the $\psi_{n}^{\prime}, \psi_{n}$ and an element of \mathcal{A}_{1}. We may thus write

$$
\left.\frac{d}{d \kappa}\left\langle\Phi_{\kappa}^{0}, A\right\rangle_{\kappa}\right|_{\kappa=0}=\langle\tilde{\Phi}, A\rangle^{\sim}
$$

where $\tilde{\Phi} \in \mathcal{A}_{1} \oplus \mathcal{A}_{2} \oplus \mathcal{A}_{3}$. The part $\tilde{\Phi}_{3}$ of $\tilde{\Phi}$ in \mathcal{A}_{3} is uniquely determined by $A \mapsto\langle\tilde{\Phi}, A\rangle^{\sim}$; the calculation of II above shows that n-th component of $\tilde{\Phi}_{3}$ is

$$
\begin{gathered}
-\left.\frac{d}{d \kappa} f_{\kappa}^{n} b_{\kappa}\right|_{\kappa=0} c_{n}^{0}=-\left.\frac{d}{d \kappa} f_{\kappa}^{n+1} c\right|_{\kappa=0} c_{n}^{0} \\
=-\sum_{k=1}^{n+1} X\left(f^{k} c\right)\left(\prod_{\ell=k}^{n} f^{\prime}\left(f^{\ell} c\right)\right) c_{n}^{0}=-\sum_{k=0}^{n} X\left(f^{k} b\right)\left(\prod_{\ell=k}^{n-1} f^{\prime}\left(f^{\ell} b\right)\right) c_{n}^{0}
\end{gathered}
$$

and as a result

$$
\begin{gathered}
\left(\mathbf{1}-\mathcal{L}_{7}\right) \tilde{\Phi}_{3}=\left(-X\left(f^{n} b\right) C_{n}^{0}\right)_{n \geq 0} \\
\tilde{\Phi}_{3}=\left(\mathbf{1}-\mathcal{L}_{7}\right)_{L}^{-1}\left(-X\left(f^{n} b\right) C_{n}^{0}\right)_{n \geq 0}
\end{gathered}
$$

The part Φ^{*} of $\tilde{\Phi}$ in $\mathcal{A}_{1} \oplus \mathcal{A}_{2}$ is not uniquely determined (because of the ambiguity discussed in Appendix B); this part satisfies $\int w \Phi^{*}=0$.

If $\mathcal{L}_{(1) \kappa}$ is the transfer operator corresponding to f_{κ}, we have $\mathcal{L}_{(1) \kappa} w_{\kappa} \Phi_{\kappa}^{0}=w_{\kappa} \Phi_{\kappa}^{0}$, hence

$$
\left(\mathbf{1}-\mathcal{L}_{(1)}\right)\left(w_{\kappa} \Phi_{\kappa}^{0}-w \Phi^{0}\right)=\left(\mathcal{L}_{(1) \kappa}-\mathcal{L}_{(1)}\right) w_{\kappa} \Phi_{\kappa}^{0}
$$

Therefore (using the fact that we may let $\mathcal{L}_{(1)}$ act on A) we have

$$
\left\langle\left(\mathbf{1}-\mathcal{L}^{\sim}\right) \tilde{\Phi}, A\right\rangle^{\sim}=\lim _{\kappa \rightarrow 0} \int A \frac{1}{\kappa}\left(\mathbf{1}-\mathcal{L}_{(1)}\right)\left(w_{\kappa} \Phi_{\kappa}^{0}-w \Phi^{0}\right)
$$

$$
=\lim _{\kappa \rightarrow 0} \int A \frac{1}{\kappa}\left(\mathcal{L}_{(1) \kappa}-\mathcal{L}_{(1)}\right) w_{\kappa} \Phi_{\kappa}^{0}=\lim _{\kappa \rightarrow 0} \int A \frac{1}{\kappa}\left(\mathrm{id}^{*}-h_{-\kappa}^{*}\right) w_{\kappa} \Phi_{\kappa}^{0}=\lim _{\kappa \rightarrow 0} \int A \frac{1}{\kappa}\left(h_{\kappa}^{*}-\mathrm{id}^{*}\right) w \Phi^{0}
$$

where h^{*} denotes the direct image of a measure (here a L^{1} function) under h, and the last equality uses the existence of a continuous derivative for $\kappa \mapsto\left\langle\Phi_{\kappa}^{0}, A\right\rangle_{\kappa}$. According to Appendix A we may write $w \Phi^{0}$ as a sum of terms $C_{n}^{(0)} \psi_{n}^{(0)}, C_{n}^{(1)} \psi_{n}^{(1)}$, and a differentiable background. Corresponding to this we may identify $\lim _{\kappa \rightarrow 0} \frac{1}{\kappa}\left(h_{\kappa}^{*}-\mathrm{id}^{*}\right) \Phi^{0}$ with a naturally defined element $\mathcal{D}\left(-X \Phi^{0}\right)$ of $\mathcal{A}_{1} \oplus \mathcal{A}_{2} \oplus \mathcal{A}_{3}$, where \mathcal{D} denotes differentiation. We write $\mathcal{D}\left(-X \Phi^{0}\right)=\left(D^{*}, D_{3}\right)$ with $D^{*} \in \mathcal{A}_{1} \oplus \mathcal{A}_{2}, D_{3} \in \mathcal{A}_{3}$. Since the coefficient of ψ_{n}^{\prime} in $\mathcal{D}\left(-X \Phi^{0}\right)$ is $-X\left(f^{n} b\right) c_{n}^{0}$, we have $D_{3}=\left(\mathbf{1}-\mathcal{L}_{7}\right) \tilde{\Phi}_{3}$. With $\tilde{\Phi}=\left(\Phi^{*}, \tilde{\Phi}_{3}\right)$ we have thus

$$
\left\langle\left(\mathbf{1}-\mathcal{L}^{\sim}\right)\left(\Phi^{*}, \tilde{\Phi}_{3}\right), A\right\rangle^{\sim}=\left\langle\mathcal{D}\left(-X \Phi^{0}\right), A\right\rangle^{\sim}
$$

and

$$
\left\langle(\mathbf{1}-\mathcal{L}) \Phi^{*}, A\right\rangle=\left\langle\mathcal{D}\left(-X \Phi^{0}\right)-\left(\mathbf{1}-\mathcal{L}^{\sim}\right)\left(0, \tilde{\Phi}_{3}\right), A\right\rangle
$$

In particular $\int w\left[\mathcal{D}\left(-X \Phi^{0}\right)-\left(\mathbf{1}-\mathcal{L}^{\sim}\right)\left(0, \tilde{\Phi}_{3}\right)\right]=0$ and we may define

$$
\Phi=(\mathbf{1}-\mathcal{L})^{-1}\left[\mathcal{D}\left(-X \Phi^{0}\right)-\left(\mathbf{1}-\mathcal{L}^{\sim}\right)\left(0, \tilde{\Phi}_{3}\right)\right] \in \mathcal{A}
$$

We have then $\left\langle(\mathbf{1}-\mathcal{L})\left(\Phi^{*}-\Phi\right), A\right\rangle=0$, hence

$$
w(\mathbf{1}-\mathcal{L})\left(\Phi^{*}-\Phi\right)=0
$$

hence

$$
w\left(\Phi^{*}-\Phi\right)=\mathcal{L}_{(1)} w\left(\Phi^{*}-\Phi\right)
$$

with $\int w\left(\Phi^{*}-\Phi\right)=0$, so that $w\left(\Phi^{*}-\Phi\right)=0$, and

$$
\begin{gathered}
\left\langle\Phi^{*}, A\right\rangle=\langle\Phi, A\rangle=\left\langle(\mathbf{1}-\mathcal{L})^{-1}\left[\mathcal{D}\left(-X \Phi^{0}\right)-\left(\mathbf{1}-\mathcal{L}^{\sim}\right)\left(0, \tilde{\Phi}_{3}\right)\right], A\right\rangle \\
\left.\left.=\left\langle(\mathbf{1}-\mathcal{L})^{-1}\left[D^{*}+\mathcal{L}_{5}+\mathcal{L}_{6}\right) \tilde{\Phi}_{3}\right], A\right\rangle=\left\langle(\mathbf{1}-\mathcal{L})^{-1}\left[D^{*}+\mathcal{L}_{5}+\mathcal{L}_{6}\right)\left(\mathbf{1}-\mathcal{L}_{7}\right)_{L}^{-1} D_{3}\right], A\right\rangle \\
=\left\langle\left(\mathbf{1}-\mathcal{L}^{\sim}\right)_{L}^{-1}\left(D^{*}, D_{3}\right), A\right\rangle-\left\langle\left(\mathbf{1}-\mathcal{L}_{7}\right)_{L}^{-1} D_{3}, A\right\rangle=\Psi(X, 1)-\left\langle\left(0, \tilde{\Phi}_{3}\right), A\right\rangle^{\sim}
\end{gathered}
$$

so that finally

$$
\left.\frac{d}{d \kappa}\left\langle\Phi_{\kappa}^{0}, A\right\rangle_{\kappa}\right|_{\kappa=0}=\langle\tilde{\Phi}, A\rangle^{\sim}=\Psi(X, 1)
$$

as announced.
Note that in [5], Baladi and Smania study (in the case of piecewise expanding maps) the more difficult problem of differentiability in horizontal directions (i.e., directions tangent to a topological class). It appears likely that this could be done here also (as conjectured in [5]), but we have not tried to do so.

20 Discussion.

The codimension 1 condition $X(b)+F_{0}(X)=0$ for $\lambda=1$ expresses that X is a horizontal perturbation, which means that it is tangent to a topological class of unimodal maps (see [1] and references given there). In our case, a family $\left(f_{\kappa}\right)$ is in a topological conjugacy class if $f_{\kappa}^{3} c_{\kappa}=\xi_{\kappa} f^{3} c$ in the notation of Appendix C. The informal result obtained in Section 17 and the formal proof of differentiability along a topological conjugacy class given by Theorem 19 support the conjecture by Baladi and Smania [5] that the map $f \mapsto\left\langle\Phi_{f}^{0}, A\right\rangle$ is differentiable (in the sense of Whitney) in horizontal directions, i.e., along a curve tangent to a topological conjugacy class. Our theorem 19 also relates the derivative along a topological conjugacy class to a naturally defined susceptibility function. It seems unlikely that a derivative (in the sense of Whitney) exists in nonhorizontal directions. Note however that if $f \mapsto\left\langle\Phi_{f}^{0}, A\right\rangle$ is nondifferentiable, it will be in a mild way: the "nondifferentiable" contribution to $\Psi(\lambda)$ is, as we saw above, proportional to

$$
\frac{d}{d b}\left\langle(1-\lambda \mathcal{L})^{-1} \psi_{(b)}, A\right\rangle \sim \sum_{n} \lambda^{n} \frac{d}{d b}\left\langle\mathcal{L}^{n} \psi_{(b)}, A\right\rangle
$$

where $\left\langle\mathcal{L}^{n} \psi_{(b)}, A\right\rangle$ decreases exponentially with n, while $\frac{d}{d b}\left\langle\mathcal{L}^{n} \psi_{(b)}, A\right\rangle$ increases exponentially. Therefore, if one does not see the small scale fluctuations of $b \mapsto\left\langle(1-\lambda \mathcal{L})^{-1} \psi_{(b)}, A\right\rangle$, this function will seem differentiable. But the singularities with respect to λ (with $|\lambda|<1$) may remain visible. In conclusion, a physicist may see singularities with respect to λ of a derivative (with respect to f or b) while this derivative may not exist for a mathematician.

A Appendix (proof of Remark 16(a)).
We return to the analysis in Section 10, and note that by an analytic change of variable $x \mapsto \xi(x)$ we can get $y=f x=b-\xi^{2}$ [we have indeed $b-y=A(x-c)^{2}(1+\beta(x) .(x-c))$ with β analytic, and we can take $\left.\xi=(x-c) A^{1 / 2}(1+\beta(x) \cdot(x-c))^{\frac{1}{2}}\right]$. Write $\rho(x) d x=\tilde{\rho}(\xi) d \xi$ (where $\tilde{\rho}$ is analytic near 0). The density of the image $\delta(y) d y$ by f of $\rho(x) d x=\tilde{\rho}(\xi) d \xi$ is, near b,

$$
\delta(y)=\frac{1}{2 \sqrt{y-b}}(\tilde{\rho}(\sqrt{y-b})+\tilde{\rho}(-\sqrt{y-b}))=\frac{\hat{\rho}(y-b)}{\sqrt{y-b}}
$$

where $\hat{\rho}$ is analytic near 0 . Therefore, near b,

$$
\delta(x)=\frac{U}{\sqrt{b-x}}+U^{\prime} \sqrt{b-x}+\ldots
$$

where $U=\rho(c) / \sqrt{A}$, and U^{\prime} is linear in $\rho(c), \rho^{\prime}(c), \rho^{\prime \prime}(c)$ with coefficients depending on the derivatives of f at c. Near a we find

$$
\delta(x)=U\left|f^{\prime}(b)\right|^{-1 / 2} \frac{1}{\sqrt{x-a}}+\left(U^{\prime}\left|f^{\prime}(b)\right|^{-3 / 2}-\frac{3}{4} U f^{\prime \prime}(b)\left|f^{\prime}(b)\right|^{-5 / 2}\right) \sqrt{x-a}
$$

Writing $s_{n}=-\operatorname{sgn} \prod_{k=0}^{n-1} f^{\prime}\left(f^{k} b\right), t_{n}=\left|\prod_{k=0}^{n-1} f^{\prime}\left(f^{k} b\right)\right|^{-1 / 2}$, we claim that near $f^{n} b$ we have a singularity given for $s_{n}\left(x-f^{n} b\right)<0$ by 0 , and for $s_{n}\left(x-f^{n} b\right)>0$ by

$$
\delta(x)=\frac{U t_{n}}{\sqrt{s_{n}\left(x-f^{n} b\right)}}+\left(U^{\prime} t_{n}^{3}-\frac{3}{4} U t_{n} \sum_{k=0}^{n-1} s_{k+1} \frac{f^{\prime \prime}\left(f^{k} b\right)}{\left|f^{\prime}\left(f^{k} b\right)\right|} \frac{t_{n}^{2}}{t_{k}^{2}}\right) \sqrt{s_{n}\left(x-f^{n} b\right)}
$$

[to prove this we use induction on n, and the fact that, when $f: x \mapsto y$ for x close to $f^{n} b$ we have:

$$
\begin{gathered}
s_{n}\left(x-f^{n} b\right)=\frac{s_{n+1}\left(y-f^{n+1} b\right)}{\left|f^{\prime}\left(f^{n} b\right)\right|}\left[1-\frac{f^{\prime \prime}\left(f^{n} b\right)}{2\left|f^{\prime}\left(f^{n} b\right)\right|^{2}}\left(y-f^{n+1} b\right)\right] \\
d x=\frac{d y}{\left|f^{\prime}\left(f^{n} b\right)\right|}\left[1-\frac{f^{\prime \prime}\left(f^{n} b\right)}{\left|f^{\prime}\left(f^{n} b\right)\right|^{2}}\left(y-f^{n+1} b\right)\right]
\end{gathered}
$$

Define now

$$
\begin{gathered}
\psi_{n}^{(0)}(x)=\left(1-\left(\frac{x-f^{n} b}{w_{n}-f^{n} b}\right)^{2}\right) \frac{\theta_{n}(x)}{\sqrt{s_{n}\left(x-f^{n} b\right)}} \\
\psi_{n}^{(1)}(x)=\left(1-\left(\frac{x-f^{n} b}{w_{n}-f^{n} b}\right)^{2}\right) \theta_{n}(x) \sqrt{s_{n}\left(x-f^{n} b\right)}
\end{gathered}
$$

for $s_{n}\left(x-f^{n} b\right)>0,0$ otherwise. Then, the expected singularity of δ near $f^{n} b$ is given by

$$
U t_{n} \psi_{n}^{(0)}+\left(U^{\prime} t_{n}^{3}-\frac{3}{4} U t_{n} \sum_{k=0}^{n-1} s_{k+1} \frac{f^{\prime \prime}\left(f^{k} b\right)}{\left|f^{\prime}\left(f^{k} b\right)\right|} \frac{t_{n}^{2}}{t_{k}^{2}}\right) \psi_{n}^{(1)}=C_{n}^{(0)} \psi_{n}^{(0)}+C_{n}^{(1)} \psi_{n}^{(1)}
$$

where $C_{0}^{(0)}=U, C_{0}^{(1)}=U^{\prime}$, and

$$
\begin{gathered}
C_{n+1}^{(0)}=\left|f^{\prime}\left(f^{n} b\right)\right|^{-1 / 2} C_{n}^{(0)} \\
C_{n+1}^{(1)}=\left|f^{\prime}\left(f^{n} b\right)\right|^{-3 / 2} C_{n}^{(1)}-\frac{3}{4} s_{n+1}\left|f^{\prime}\left(f^{n} b\right)\right|^{-5 / 2} f^{\prime \prime}\left(f^{n} b\right) C_{n}^{(0)} \\
=\left|f^{\prime}\left(f^{n} b\right)\right|^{-3 / 2}\left(C_{n}^{(1)}-\frac{3}{4} s_{n+1} \frac{f^{\prime \prime}\left(f^{n} b\right)}{\left|f^{\prime}\left(f^{n} b\right)\right|} C_{n}^{(0)}\right)
\end{gathered}
$$

Let

$$
f\left(\psi_{n}^{(0)}(x) d x\right)=\tilde{\psi}_{n+1}^{(0)}(x) d x \quad, \quad f\left(\psi_{n}^{(1)}(x) d x\right)=\tilde{\psi}_{n+1}^{(1)}(x) d x
$$

and write

$$
\begin{gathered}
\tilde{\psi}_{n+1}^{(0)}=\left|f^{\prime}\left(f^{n} b\right)\right|^{-1 / 2} \psi_{n+1}^{(0)}-\frac{3}{4} s_{n+1}\left|f^{\prime}\left(f^{n} b\right)\right|^{-5 / 2} f^{\prime \prime}\left(f^{n} b\right) \psi_{n+1}^{(1)}+\chi_{n}^{(0)} \\
\tilde{\psi}_{n+1}^{(1)}=\left|f^{\prime}\left(f^{n} b\right)\right|^{-3 / 2} \psi_{n+1}^{(1)}+\chi_{n}^{(1)}
\end{gathered}
$$

The density of $f\left(C_{n}^{(0)} \psi_{n}^{(0)}(x) d x+C_{n}^{(1)} \psi_{n}^{(1)}(x) d x\right)$ is then

$$
C_{n+1}^{(0)} \psi_{n+1}^{(0)}+C_{n+1}^{(1)} \psi_{n+1}^{(1)}+C_{n}^{(0)} \chi_{n}^{(0)}+C_{n}^{(1)} \chi_{n}^{(1)}
$$

The functions $\chi_{n}^{(0)}, \chi_{n}^{(1)}$ have been constructed such that they and their first derivatives $\chi_{n}^{(0) \prime}, \chi_{n}^{(1) \prime}$ have the properties of Lemma 11. Namely, $\chi_{n}^{(0)}, \chi_{n}^{(1)}, \chi_{n}^{(0) \prime}, \chi_{n}^{(1) \prime}$ are continuous with bounded variation on $[a, b]$ uniformly in n, they vanish at a, b, and if $n \geq 1$ they extend to holomorphic functions on the appropriate D_{α}, with uniform bounds.

Let $\mathcal{A}_{1}^{\prime} \subset \mathcal{A}_{1}$ consist of the $\left(\phi_{\alpha}\right)$ such that the derivatives $\phi_{-1}^{\prime}, \phi_{-2}^{\prime}$ of ϕ_{-1}, ϕ_{-2} vanish at $\pi_{b}^{-1} b$ and $\pi_{a}^{-1} a$ respectively. Let also \mathcal{A}_{2}^{\prime} consist of the sequences $\left(c_{n}^{(0)}, c_{n}^{(1)}\right)$, with $c_{n}^{(0)}, c_{n}^{(1)} \in \mathbf{C}, n=0,1, \ldots$ such that

$$
\left\|\left(c_{n}^{(0)}, c_{n}^{(1)}\right)\right\|_{2}^{\prime}=\sup _{n \geq 0} \delta^{n}\left(\left|c_{n}^{(0)}\right|+\left|c_{n}^{(1)}\right|\right)<\infty
$$

If $\Phi^{\prime}=\left(\left(\phi_{\alpha}\right),\left(c_{n}^{(0)}, c_{n}^{(1)}\right)\right) \in \mathcal{A}^{\prime}=\mathcal{A}_{1}^{\prime} \oplus \mathcal{A}_{2}^{\prime}$ we let $\left\|\Phi^{\prime}\right\|^{\prime}=\left\|\left(\phi_{\alpha}\right)\right\|_{1}+\left\|\left(c_{n}^{(0)}, c_{n}^{(1)}\right)\right\|_{2}^{\prime}$, making \mathcal{A}^{\prime} into a Banach space. We may now proceed as in Section 12, replacing \mathcal{A} by \mathcal{A}^{\prime}, and defining $\mathcal{L}^{\prime}: \mathcal{A}^{\prime} \mapsto \mathcal{A}^{\prime}$ in a way similar to $\mathcal{L}: \mathcal{A} \mapsto \mathcal{A}$, but with (ii), (v), (vi) replaced as follows:

$$
\text { (ii) } \phi_{0} \Rightarrow\left(\left(\hat{c}_{0}^{(0)}, \hat{c}_{0}^{(1)}\right)=\left(U, U^{\prime}\right), \hat{\phi}_{-1}= \pm \frac{\phi_{0}}{\left|f^{\prime}\right|} \circ \tilde{f}_{-1}^{-1}-U\left(\pm \frac{1}{2} \psi_{0}^{(0)} \circ \pi_{b}\right)-U^{\prime}\left(\pm \frac{1}{2} \psi_{0}^{(1)} \circ \pi_{b}\right)\right)
$$

so that $\hat{\phi}_{-1}$ is holomorphic in $\pi_{b}^{-1} D_{-1}$ with vanishing derivative at $\pi_{b}^{-1} b$

$$
\begin{aligned}
& \quad(\mathrm{v})\left(c_{0}^{(0)}, c_{0}^{(1)}\right) \Rightarrow\left(\left(\hat{c}_{1}^{(0)}, \hat{c}_{1}^{(1)}\right)=\left(\left|f^{\prime}(b)\right|^{-1 / 2} c_{0}^{(0)},\left|f^{\prime}(b)\right|^{-3 / 2} c_{0}^{(1)}-\frac{3}{4}\left|f^{\prime}(b)\right|^{-5 / 2} f^{\prime \prime}(b) c_{0}^{(0)}\right),\right. \\
& \chi_{0}= \pm \frac{1}{2} c_{0}^{(0)}\left(\frac{\psi_{0}^{(0)}}{\left|f^{\prime}\right|} \circ \pi_{b} \circ \tilde{f}_{-2}^{-1}-\left|f^{\prime}(b)\right|^{-1 / 2} \psi_{1}^{(0)} \circ \pi_{a}+\frac{3}{4}\left|f^{\prime}(b)\right|^{-5 / 2} f^{\prime \prime}(b) \psi_{1}^{(1)} \circ \pi_{a}\right) \\
& \left. \pm \frac{1}{2} c_{0}^{(1)}\left(\frac{\psi_{0}^{(1)}}{\left|f^{\prime}\right|} \circ \pi_{b} \circ \tilde{f}_{-2}^{-1}-\left|f^{\prime}(b)\right|^{-3 / 2} \psi_{1}^{(1)} \circ \pi_{a}\right) \text { in } \pi_{a}^{-1} D_{-2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad(\mathrm{vi})\left(c_{n}^{(0)}, c_{n}^{(1)}\right) \Rightarrow \\
& \left(\left(\hat{c}_{n+1}^{(0)}, \hat{c}_{n+1}^{(1)}\right)=\left(\left|f^{\prime}\left(f^{n} b\right)\right|^{-1 / 2} c_{n}^{(0)},\left|f^{\prime}\left(f^{n} b\right)\right|^{-3 / 2} c_{n}^{(1)}-\frac{3}{4} s_{n+1}\left|f^{\prime}\left(f^{n} b\right)\right|^{-5 / 2} f^{\prime \prime}\left(f^{n} b\right) c_{n}^{(0)}\right),\right. \\
& \chi_{n \alpha}=c_{n}^{(0)}\left[\left.\frac{\psi_{n}^{(0)}}{\left|f^{\prime}\right|} \circ f_{n}^{-1}-\left|f^{\prime}\left(f^{n} b\right)\right|^{-1 / 2} \psi_{n+1}^{(0)}+\frac{3}{4} s_{n+1}\left|f^{\prime}\left(f^{n} b\right)\right|^{-5 / 2} f^{\prime \prime}\left(f^{n} b\right) \right\rvert\, \psi_{n+1}^{(1)}\right] \\
& \left.+c_{n}^{(1)}\left[\frac{\psi_{n}^{(1)}}{\left|f^{\prime}\right|} \circ f_{n}^{-1}-\left|f^{\prime}\left(f^{n} b\right)\right|^{-3 / 2} \psi_{n+1}^{(1)}\right] \quad \text { in } D_{\alpha} \text { if } V_{\alpha} \subset\left\{x: \theta_{n}\left(f_{n}^{-1} x\right)>0\right\}, 0 \text { otherwise }\right)
\end{aligned}
$$ if $n \geq 1$.

We write then

$$
\mathcal{L}^{\prime} \Phi^{\prime}=\tilde{\Phi}^{\prime}=\left(\left(\tilde{\phi}_{\alpha}\right),\left(\tilde{c}_{n}^{(0)}, \tilde{c}_{n}^{(1)}\right)\right)
$$

where

$$
\begin{gathered}
\tilde{\phi}_{-2}=\hat{\phi}_{-2}+\chi_{0} \quad, \quad \tilde{\phi}_{-1}=\hat{\phi}_{-1} \\
\tilde{\phi}_{\alpha}=\sum_{\beta: f V_{\beta}=V_{\alpha}}^{\hat{\phi}_{\beta \alpha}+\hat{\phi}_{\alpha}+\sum_{n \geq 1} \chi_{n \alpha} \quad \text { if order } \alpha \geq 0} \\
\left(\tilde{c}_{n}^{(0)}, \tilde{c}_{n}^{(1)}\right)=\left(\hat{c}_{n}^{(0)}, \hat{c}_{n}^{(1)}\right) \quad \text { for } n \geq 0
\end{gathered}
$$

With the above definitions and assumptions we find, by analogy with Theorem 13, that $\mathcal{L}^{\prime}: \mathcal{A}^{\prime} \rightarrow \mathcal{A}^{\prime}$ has essential spectral radius $\leq \max \left(\gamma^{-1}, \delta \alpha^{1 / 2}\right)$. There is (see Proposition 15) a simple eigenvalue 1 , and the rest of the spectrum has radius <1. It is convenient to denote by $\Phi^{0}=\left(\left(\phi_{\alpha}^{0}\right),\left(c_{n}^{0(0)}, c_{n}^{0(1)}\right)\right)$ the eigenfunction to the eigenvalue 1. We find again that $\phi^{0}=\Delta\left(\phi_{\alpha}^{0}\right)$ is continuous, of bounded variation, and satisfies $\phi^{0}(a)=\phi^{0}(b)=0$, but we can say more. Using the notation in the proof of Proposition 15, we have again

$$
\gamma_{j}^{0}=\sum_{k} \mathcal{L}_{j k} \gamma_{k}^{0}+\eta_{j}
$$

with $\eta_{j}=\sum_{n=0}^{\infty} \eta_{j n}$, but now $\eta_{j n}=c_{n}^{0(0)} \chi_{n}^{(0)}+c_{n}^{0(1)} \chi_{n}^{(1)} \mid W_{j}$ for $n \geq 1$, so that the η_{j} have derivatives $\eta_{j}^{\prime} \in \mathcal{H}_{j}$. The derivatives $\gamma_{j}^{0 \prime}$ of the γ_{j}^{0} are measures satisfying

$$
\gamma_{j}^{0 \prime}=\sum_{k} \mathcal{L}_{j k}^{\prime} \gamma_{k}^{0 \prime}+\eta_{j}^{*}
$$

The operator $\mathcal{L}_{j k}^{\prime}$ has the same form as $\mathcal{L}_{j k}$, but with an extra denominator $f^{\prime} \circ\left(f^{-1}\right)_{k j}$, and therefore $\mathcal{L}_{*}^{\prime}=\left(\mathcal{L}_{j k}^{\prime}\right)$ acting on measures has spectral radius $\leq \alpha<1$. The term η_{j}^{*} is the sum of η_{j}^{\prime} and a term $\sum_{k} \mathcal{L}_{k j} \gamma_{k}^{0}$ where $\mathcal{L}_{k j}^{\sim}$ involves the derivative of $\left|f^{\prime} \circ\left(f^{-1}\right)_{k j}\right|^{-1}$ so that $\eta_{j}^{*} \in \mathcal{H}_{j}$. The operator \mathcal{L}_{*}^{\prime} also maps \mathcal{H} to \mathcal{H} and, by the same argument as for \mathcal{L}_{*}, has essential spectral radius <1 on \mathcal{H}. Furthermore, 1 cannot be an eigenvalue since \mathcal{L}_{*}^{\prime} has spectral radius <1 on measures. It follows that $\left(\gamma^{0 \prime}\right)=\left(\gamma_{j}^{0 \prime}\right)=\left(1-\mathcal{L}_{*}^{\prime}\right)^{-1}\left(\eta_{j}^{*}\right) \in \mathcal{H}$. Therefore, the derivative $\phi^{0 \prime}$ of ϕ^{0} may have discontinuities only on the orbit of u_{1}, and hyperbolicity again shows that this cannot happen. In conclusion, ϕ^{0} and its derivative $\phi^{0 \prime}$ are both of bounded variation, continuous, and vanishing at a, b.

A discussion similar to the above shows that the equation $\gamma=\left(1-\mathcal{L}_{*}^{\prime}\right)^{-1} \eta^{*}$ also defines γ with finite norm in \mathcal{A}_{1}, and this γ must coincide with $\left(\gamma^{0 \prime}\right)$ as a measure. Therefore the family of derivatives $\left(\phi_{\alpha}^{0 \prime}\right)$ is an element of \mathcal{A}_{1}. [For simplicity, we have written $\phi_{-1}^{0 \prime}, \phi_{-2}^{0 \prime}$ for the functions which, under application of Δ, give the derivative of $\left.\Delta \phi_{-1}^{0}, \Delta \phi_{-2}^{0}\right]$. $]$

B Appendix (proof of Remark 16(b)).
If $u \in \tilde{H}$ and $\psi_{(u \pm)}$ is defined as in Remark 16(b), we want to show that there is a unique $\left(\phi_{\alpha}\right)$ in \mathcal{A}_{1} such that $\phi_{\alpha}=\psi_{(u \pm)} \mid V_{\alpha}$ for all α. Furthermore $\left\|\left(\phi_{\alpha}\right)\right\|_{1}$ is bounded uniformly for $u \in \tilde{H}$, provided we assume $1<\gamma<\min \left(\beta^{-1}, \alpha^{-1 / 2}\right)$.

Note that uniqueness is automatic, and that $\phi_{\alpha}=0$ unless order $V_{\alpha}>0$. Omitting the \pm we let

$$
f\left(\psi_{\left(f^{n} u\right)}(x) d x\right)=\left[\left|f^{\prime}\left(f^{n} u\right)\right|^{-1 / 2} \psi_{\left(f^{n+1} u\right)}(x)+\chi_{\left(f^{n} u\right)}(x)\right] d x
$$

For $n \geq 0$ there is a unique $\omega_{u n}$ such that $f^{n+1}\left(\omega_{u n} d x\right)=\prod_{k=0}^{n-1}\left|f^{\prime}\left(f^{k} u\right)\right|^{-1 / 2} \chi_{\left(f^{n} u\right)} d x$ and $\left[f^{k} u-c\right] \times\left[\operatorname{supp} f^{k}\left(\omega_{u n}(x) d x\right)-c\right]>0$ for $0 \leq k \leq n$. Furthermore $\psi_{(u)}=\sum_{n=0}^{\infty} \omega_{u n}$ where the sum restricted to each V_{α} is finite. If $\left[\chi_{\left(f^{n} u\right)}\right]$ denotes the element of \mathcal{A}_{1} corresponding to $\chi_{\left(f^{n} u\right)}$, we find that $\left\|\left[\chi_{\left(f^{n} u\right)}\right]\right\|_{1}$ is bounded uniformly in n and u. Also note that we obtain $\omega_{u n}$ from $\prod_{k=0}^{n-1}\left|f^{\prime}\left(f^{k} u\right)\right|^{-1 / 2} \chi_{\left(f^{n} u\right)}$ by multiplying with $\prod_{k=0}^{n-1}\left|f^{\prime}\left(f^{k} u\right)\right|$ (up to a factor bounded uniformly in n because of hyperbolicity) and composing with f^{n+1} (restricted to a small interval J such that $f^{n+1} \mid J$ is invertible). We have thus

$$
\left\|\left[\omega_{u n}\right]\right\|_{1} \leq \mathrm{const} \gamma^{n} \prod_{k=0}^{n-1}\left|f^{\prime}\left(f^{k} u\right)\right|^{-1 / 2}
$$

where $\left[\omega_{u n}\right.$] is the element of \mathcal{A}_{1} corresponding to $\omega_{u n}$ [This is because the replacement of $\left|V_{\alpha}\right|$ by $\left|(f \mid J)^{-n-1} V_{\alpha}\right|$ in the definition of $\|\cdot\|_{1}$ is compensated up to a multiplicative constant by the factor $\left.\prod_{k=0}^{n-1}\left|f^{\prime}\left(f^{k} u\right)\right|\right]$. Thus

$$
\left\|\left[\omega_{u n}\right]\right\|_{1} \leq \operatorname{const}\left(\gamma \alpha^{1 / 2}\right)^{n}
$$

Since $\gamma<\alpha^{-1 / 2}$ we find that $\sum_{n}\left\|\left[\omega_{u n}\right]\right\|_{1}<$ constant independent of u. Therefore, since $\left(\phi_{\alpha}\right)=\sum_{n}\left[\omega_{u n}\right]$, we see that $\left\|\left(\phi_{\alpha}\right)\right\|_{1}$ is bounded independently of u.

C Appendix (proof of Remark 16(c)).
We consider a one-parameter family $\left(f_{\kappa}\right)$ of maps, reducing to $f=f_{0}$ for $\kappa=0$. We assume that $(\kappa, x) \mapsto f_{\kappa} x$ is real-analytic. For κ close to $0, f_{\kappa}$ has a critical point c_{κ} and maps $\left[a_{\kappa}, b_{\kappa}\right.$] to itself, with $b_{\kappa}=f_{\kappa} c_{\kappa}, a_{\kappa}=f_{\kappa}^{2} c_{\kappa}$. There is (by hyperbolicity of H with respect to f) a homeomorphism $\xi_{\kappa}: H \rightarrow H_{\kappa}$ where H_{κ} is an f_{κ}-invariant hyperbolic set for f_{κ} and $f_{\kappa} \circ \xi_{\kappa}=\xi_{\kappa} \circ f$ on H. We shall consider a compact set K of values of κ such that $f_{\kappa} a_{\kappa} \in \tilde{H}_{\kappa}$; we let $K \ni 0, K$ of small diameter, and assume now $\kappa \in K$. We may in a natural way define a Banach space $\mathcal{A}_{\kappa}=\mathcal{A}_{\kappa 1} \oplus \mathcal{A}_{2}$ and an operator $\mathcal{L}_{\kappa}: \mathcal{A}_{\kappa} \rightarrow \mathcal{A}_{\kappa}$ associated with f_{κ} so that $\mathcal{A}_{\kappa}, \mathcal{L}_{\kappa}$ reduce to \mathcal{A}, \mathcal{L} for $\kappa=0$. Note that, since $\kappa \in K$ is close to 0 , we may assume that the constants A, α in the definition (Section 4) of hyperbolicity, and the constants B, β (Section 7) are uniform in κ.

Let $\eta_{\kappa,-2}$ be a biholomorphic map of the complex neighborhood D_{-2} of $\left[a, u_{1}\right]$ to the complex neighborhood $D_{\kappa,-2}$ of the corresponding interval $\left[a_{\kappa}, u_{\kappa 1}\right.$], and lift $\eta_{\kappa,-2}$ to a holomorphic map $\tilde{\eta}_{\kappa,-2}: \pi_{a}^{-1} D_{-2} \rightarrow \pi_{a_{\kappa}}^{-1} D_{\kappa,-2}$. We also lift $\eta_{\kappa,-1}=f_{\kappa}^{-1} \circ \eta_{\kappa,-2} \circ f$ to

$$
\tilde{\eta}_{\kappa,-1}=\tilde{f}_{\kappa,-2}^{-1} \circ \eta_{\kappa,-2} \circ \tilde{f}
$$

where the notation is that of Section 12, with obvious modification. We write

$$
\tilde{\eta}_{\kappa 0}=\tilde{f}_{\kappa,-1}^{-1} \circ \tilde{\eta}_{\kappa,-1} \circ \tilde{f}_{-1}
$$

and

$$
\tilde{\eta}_{\kappa \beta}=\left(f_{\kappa} \mid V_{\kappa \beta}\right)^{-1} \circ \tilde{\eta}_{\kappa \alpha} \circ f \mid V_{\beta}
$$

if order $\beta>0$ and $f V_{\beta}=V_{\alpha}$. We have defined $\eta_{\kappa \alpha}$ above for $\alpha=-1,-2$, and we let $\eta_{\kappa \alpha}=\tilde{\eta}_{\kappa \alpha}$ when order $\alpha \geq 0$.

We introduce a map $\eta_{\kappa}: \mathcal{A}_{\kappa 1} \rightarrow \mathcal{A}_{1}$ by

$$
\eta_{\kappa}\left(\phi_{\kappa \alpha}\right)=\left(\left(\phi_{\kappa \alpha} \circ \tilde{\eta}_{\kappa \alpha}\right) \cdot \eta_{\kappa \alpha}^{\prime}\right)
$$

so that $\mathcal{L}_{\kappa}^{\times}=\left(\eta_{\kappa}, \mathbf{1}\right) \mathcal{L}_{\kappa}\left(\eta_{\kappa}^{-1}, \mathbf{1}\right)$ acts on \mathcal{A}. Using the decomposition

$$
\mathcal{L}_{\kappa}=\left(\begin{array}{cc}
\mathcal{L}_{\kappa 0}+\mathcal{L}_{\kappa 1} & \mathcal{L}_{\kappa 2} \\
\mathcal{L}_{\kappa 3} & \mathcal{L}_{\kappa 4}
\end{array}\right)
$$

as in Section 12 , we define L_{κ}^{\times}on \mathcal{A}_{1} by

$$
\begin{aligned}
& L_{\kappa}^{\times}\left(\phi_{\alpha}\right)=\eta_{\kappa}\left(\mathcal{L}_{\kappa 0}+\mathcal{L}_{\kappa 1}\right) \eta_{\kappa}^{-1}\left(\phi_{\alpha}\right)+\left(\eta_{\kappa}^{-1} \phi_{\alpha}\right)_{0}\left(c_{\kappa}\right) \cdot \eta_{\kappa} \mathcal{L}_{\kappa 2}\left(\left|\frac{1}{2} f_{\kappa}^{\prime \prime}\left(c_{\kappa}\right) \prod_{k=0}^{n-1} f_{\kappa}^{\prime}\left(f_{\kappa}^{k} b_{k}\right)\right|^{-1 / 2}\right) \\
& \quad=\mathcal{L}_{0}\left(\phi_{\alpha}\right)+\eta_{\kappa} \mathcal{L}_{\kappa 1} \eta_{\kappa}^{-1}\left(\phi_{\kappa}\right)+\eta_{\kappa 0}^{\prime}\left(c_{\kappa}\right)^{-1} \phi_{0}\left(c_{\kappa}\right) \cdot \eta_{\kappa} \mathcal{L}_{\kappa 2}\left(\left|\frac{1}{2} f_{\kappa}^{\prime \prime}\left(c_{\kappa}\right) \prod_{k=0}^{n-1} f_{\kappa}^{\prime}\left(f_{\kappa}^{k} b_{k}\right)\right|^{-1 / 2}\right)
\end{aligned}
$$

L_{κ}^{\times}is a compact perturbation of $\mathcal{L}_{\kappa 0}$, and has therefore essential spectral radius $\leq \gamma^{-1}$. If $\left(\phi_{\alpha}\right)$ is a (generalized) eigenfunction of L_{κ}^{\times}to the eigenvalue μ, then

$$
\left(\left(\phi_{\alpha}\right), \eta_{\kappa 0}\left(c_{\kappa}\right)^{-1} \phi_{0}\left(c_{\kappa}\right) \cdot\left(\left|\frac{1}{2} f_{\kappa}^{\prime \prime}\left(c_{\kappa}\right) \prod_{k=0}^{n-1} f_{\kappa}^{\prime}\left(f_{\kappa}^{k} b_{k}\right)\right|^{-1 / 2}\right)\right)
$$

is a (generalized) eigenfunction of $\mathcal{L}_{\kappa}^{\times}$to the same eigenvalue μ. We have thus a multiplicitypreserving bijection of the eigenvalues μ of L_{κ}^{\times}and $\mathcal{L}_{\kappa}^{\times}$when $|\mu|>\max \left(\gamma^{-1}, \delta \alpha^{1 / 2}\right)$. In particular, 1 is a simple eigenvalue of L_{κ}^{\times}for the values of κ considered (a compact neighborhood K of 0).

The operator L_{κ}^{\times}acting on \mathcal{A}_{1} depends continuously on κ. [This is because $\hat{\phi}_{\kappa \alpha}$, $\chi_{\kappa 0}, \chi_{\kappa n \alpha}$ depend continuously on κ (in particular, the $\chi_{\kappa n \alpha}$ for large n are uniformly small). Note however that $\mathcal{L}_{\kappa}^{\times}$does not depend continuously on κ because the continuity of $f_{\kappa}^{\prime}\left(f_{\kappa}^{k} b_{\kappa}\right)$ is not uniform in $\left.k\right]$. There is $\epsilon>0$ such that L_{κ}^{\times}has no eigenvalue μ_{κ} with $\left|\mu_{\kappa}-1\right|<\epsilon$ except the simple eigenvalue 1 [otherwise the continuity of $\kappa \rightarrow L_{\kappa}^{\times}$would imply that 1 has multiplicity >1 for some κ]. Therefore, the 1 -dimensional projection corresponding to the eigenvalue 1 of L_{κ}^{\times}depends continuously on κ, and so does the eigenvector $\Phi_{\kappa}^{\times}=\left(\eta_{\kappa}, 1\right) \Phi_{\kappa}^{0}$ of $\mathcal{L}_{\kappa}^{\times}$, where Φ_{κ}^{0} denotes the eigenvector the the eigenvalue 1 of \mathcal{L}_{κ} normalized so that $w_{\kappa} \Phi_{\kappa}^{0} \geq 0$ and $\int w_{\kappa} \Phi_{\kappa}^{0}=1$, with the obvious definition of w_{κ} (involving the spikes $\psi_{\kappa n}$ associated with f_{κ}).

Note that a number of results have been obtained earlier on the continuous dependence of the a.c.i.m. ρ on parameters. I am indebted to Viviane Baladi for communicating the references [25], [27], [15], and also [26].

References.

[1] A. Avila, M. Lyubich, and W. de Melo "Regular or stochastic dynamics in real analytic families of unimodal maps." Invent. Math. 154,451-550(2003).
[2] V. Baladi Positive transfer operators and decay of correlations. World Scientific, Singapore, 2000.
[3] V. Baladi "On the susceptibility function on piecewise expanding interval maps." Commun. Math. Phys. 275,839-859(2007).
[4] V. Baladi and G. Keller "Zeta functions and transfer operators for piecewise monotone transformations." Commun. Math. Phys. 127,459-479(1990).
[5] V. Baladi and D. Smania "Linear response formula for piecewise expanding unimodal maps." To appear.
[6] M. Benedicks and L. Carleson "On iterations of $1-a x^{2}$ on ($-1,1$). Ann. Math. 122,1-25(1985).
[7] M. Benedicks and L. Carleson "The dynamics of the Hénon map." Ann. Math. 133,73-169(1991).
[8] M. Benedicks and L.-S. Young "Absolutely continuous invariant measures and random perturbation for certain one-dimensional maps." Ergod Th. Dynam Syst. 12,1337(1992).
[9] O. Butterley and C. Liverani "Smooth Anosov flows: correlation spectra and stability." J. Modern Dynamics 1,301-322(2007).
[10] B. Cessac "Does the complex susceptibility of the Hénon map have a pole in the upper half plane? A numerical investigation." Submitted to Nonlinearity.
[11] L. Chierchia and G. Gallavotti "Smooth prime integrals for quasi-integrable Hamiltonian systems." Nuovo Cim. 67B,277-295(1982).
[12] P. Collet and J.-P. Eckmann "Positive Lyapunov exponents and absolute continuity for maps of the interval." Ergod Th. Dynam Syst. 3,13-46(1981).
[13] M. Jakobson "Absolutely continuous invariant measures for certain maps of an interval." Commun. Math. Phys. 81,39-88(1981).
[14] D. Dolgopyat "On differentiability of SRB states for partially hyperbolic systems." Invent. Math. 155,389-449(2004).
[15] J.M. Freitas "Continuity of SRB measure and entropy for Benedicks-Carleson quadratic maps." Nonlinearity 18,831-854(2005).
[16] Y. Jiang and D. Ruelle "Analyticity of the susceptibility function for unimodal Markovian maps of the interval." Nonlinearity 18,2447-2453(2005).
[17] A. Katok, G. Knieper, M. Pollicott, and H. Weiss. "Differentiability and analyticity of topological entropy for Anosov and geodesic flows." Invent. Math. 98,581-597(1989).
[18] G. Keller and T. Nowicki "Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps." Commun. Math. Phys. 149,31-69(1992).
[19] M. Misiurewicz "Absolutely continuous measures for certain maps of an interval." Publ. Math. IHES 53,17-52(1981).
[20] J. Pöschel "Integrability of Hamiltonian systems on Cantor sets." Commun in Pure and Appl. Math. 35,653-696(1982).
[21] D. Ruelle "Differentiation of SRB states." Commun. Math. Phys. 187,227241(1997); "Correction and complements." Commun. Math. Phys. 234,185-190(2003).
[22] D. Ruelle "Differentiation of SRB states for hyperbolic flows." Ergod. Th. Dynam. Syst., to appear.
[23] D.Ruelle "Differentiating the absolutely continuous invariant measure of an interval map f with respect to f." Commun.Math. Phys. 258,445-453(2005).
[24] D. Ruelle "Application of hyperbolic dynamics to physics: some problems and conjectures." Bull. Amer. Math. Soc. (N.S.) 41,275-278(2004).
[25] M. Rychlik and E. Sorets "Regularity and other properties of absolutely continuous invariant measures for the quadratic family." Commun. Math. Phys. 150,217236(1992).
[26] B. Szewc "The Perron-Frobenius operator in spaces of smooth functions on an interval." Ergod. Th. Dynam. Syst. 4,613-643(1984).
[27] M. Tsujii "On continuity of Bowen-Ruelle-Sinai measures in families of one dimensional maps." Commun. Math. Phys. 177,1-11(1996).
[28] Q.-D. Wang and L.-S. Young "Nonuniformly expanding 1D maps." Commun. Math. Phys. 264,255-282(2006).
[29] H. Whitney "Analytic expansions of differentiable functions defined in closed sets." Trans. Amer. Math. Soc. 36,63-89(1934).
[30] L.-S. Young "Decay of correlations for quadratic maps." Commun. Math. Phys. 146,123-138(1992).
[31] L.-S. Young "What are SRB measures, and which dynamical systems have them?" J. Statistical Phys. 108,733-754(2002).

[^0]: * Mathematics Dept., Rutgers University, and IHES, 91440 Bures sur Yvette, France. ruelle@ihes.fr

