
Ising model fog drip: the �rst two dropletsDmitry Io�e and Senya ShlosmanAbstrat. We present here a simple model desribing oexistene of solidand vapour phases. The two phases are separated by an interfae. We showthat when the onentration of supersaturated vapour reahes the dew-point,the droplet of solid is reated spontaneously on the interfae, adding to it amonolayer of a �visible� size.Mathematis Subjet Classi�ation (2000). Primary: 82B20, 82B24 Seondary:60G60 .Keywords. Ising model, Phase segregation, Condensation.
1. Introdution: Condensation phenomenon in the Ising modelThe phenomenon of droplet ondensation in the framework of the Ising modelwas �rst desribed in the papers [DS1℄, [DS2℄. It deals with the following situa-tion. Suppose we are looking at the Ising spins σt = ±1 at low temperature β−1,oupying a d-dimensional box T d

N of the linear size 2N with periodi boundaryonditions. If we impose the anonial ensemble restrition, �xing the total meanmagnetization,
MN∣∣T d

N

∣∣
∆
=

1∣∣T d
N

∣∣
∑

σt,to be equal to the spontaneous magnetization, m∗ (β) > 0, then the typial on�g-uration that we see will look as a on�guration of the (+)-phase. That means thatthe spins are taking mainly the values +1, while the values −1 are seen rarely, andthe droplets of minuses in the box T d
N are at most of the size of K (d) lnN. Wewant now to put more −1 partiles into the box T d

N , and we want to see how theabove droplet piture would evolve. That means, we want to look at the modelwith a di�erent anonial onstraint:
MN = m∗ (β)

∣∣T d
N

∣∣ − bN ,



2 Io�e and Shlosman
bN > 0. It turns out that if bN -s are small, nothing is hanged in the above piture;namely, if

bN
∣∣T d

N

∣∣ d
d+1

→ 0 as N → ∞,then in the orresponding anonial ensemble all the droplets are still mirosopi,not exeeding K (d) lnN in linear size. On the other hand, one
lim inf
N→∞

bN
∣∣T d

N

∣∣ d
d+1

> 0,the situation beomes very di�erent: among many (−)-droplets there is one of thelinear size of the order of (bN)
1/d ≥ N

d
d+1 , while all the rest of the droplets arestill at most logarithmi. Therefore bN ∼

∣∣T d
N

∣∣ d
d+1 an be alled the ondensationthreshold , or dew-point . The behavior of the system at the threshold sale, i.e.for bN = c

∣∣T d
N

∣∣ d
d+1 (1 + oN (1)) , is onsidered in the 2D ase in [BCK℄. Sharpdesription of the transition inside the threshold is onsidered in [HIK℄.The above ondensation piture su�ers from one (largely estheti) defet:both below and immediately above the ondensation threshold the droplets are�too small to be visible�, i.e. they are of the size sublinear with respet to thesystem size. This defet was to some degree bypassed in [BSS℄. It is argued thereon heuristi level, that in the low-temperature 3D Ising model in the regime when

bN is already of the volume order, i.e. bN ∼ νN3, the sequene of ondensationshappens, with �visible� results. In suh regime one expets to �nd in the box T 3
Na droplet Γ of (−)-phase, of linear size of the order of N, having the approximateshape of the Wul� rystal, whih rystal at low temperatures has 6 �at faets. Oneexpets furthermore that the surfae Γ itself has 6 �at faets, at least for somevalues of bN . However, when one further inreases the �supersaturation parameter�

bN , by an inrement of the order of N2, one expets to observe the ondensationof extra (−)-partiles on one of the �at faets of Γ (randomly hosen), forming amonolayer m of thikness of one lattie spaing, and of linear size to be cN, with
c ≥ ccrit = ccrit (β) , with ccritN being smaller than the size of the faet. As bNinreases further, the monolayer m grows, until all the faet is overed by it. So oneexpets to see here the ondensation of the supersaturated gas of (−)-partiles intoa monolayer of linear size ∼ ccritN, whih is �visible�. (Indeed, suh monolayerswere observed in the experiments of ondensation of the Pb.) The rigorous resultsobtained in [BSS℄ are muh more modest: the model studied there is the Solid-on-Solid model, and even in suh simpli�ed setting the evidene of appearane of themonolayer m of linear size is indiret.The purpose of the present paper is to onsider another 3D lattie model,where one an ompletely ontrol the piture and prove the above behavior tohappen. Namely, we onsider a system of ideal partiles in the phase transitionregime, and we put these phases � the vapour phase and the solid phase � intooexistene by applying the anonial onstraint, i.e. by �xing the total number of



Ising model fog drip 3partiles. We study the interfae Γ, separating them, and we show that when weinrease the total number of partiles, the surfae Γ hanges in the way desribedabove. More preisely, we show that for some values of onentration the surfae
Γ is essentially �at, but when the onentration inreases up to the dew-point, amonolayer m of a size at least ccritN appears on Γ, with N being the linear sizeof our system.2. Informal desription of the main resultIn this setion we desribe our results informally. We will use the language of theIsing model, though below we treat rigorously a simpler model of the interfaebetween two ideal partiles phases. Ising model language makes the desriptioneasier; moreover, we believe that our piture holds for the Ising spins as well.Suppose we are looking at the Ising spins σt = ±1 at low temperature β−1in a 3D box BN of the linear sizes RN × RN × 2N. The parameter R should behosen su�iently large in order to be ompatible with the geometry of monolayerreation as desribed below. We impose (+)-boundary onditions in the upperhalf-spae (z > 0), and (−)-boundary onditions in the lower half-spae (z < 0).These (±)-boundary onditions fore an interfae Γ between the (+) and the (−)phases in VN , and the main result of the paper [D1℄ is a laim that the interfae Γ isrigid. It means that at any loation, with probability going to 1 as the temperature
β−1 → 0, the interfae Γ oinides with the plane z = 0. If we impose the anonialensemble restrition, �xing the total mean magnetization MN to be zero, then theproperties of Γ stay the same.We will now put more −1 partiles into VN ; that is, we �x MN to be

MN = −bN = −δN2,and we will desribe the evolution of the surfae Γ as the parameter δ > 0 grows.The marosopi image of this evolution is depited on Figure 1.0. 0 ≤ δ < δ1Nothing is hanged in the above piture � namely, the interfae Γ stays rigid.It is essentially �at at z = 0; the loal �utuations of Γ are rare and do not exeed
K lnN in linear size.I. δ1 < δ < δ2The monolayer m1 appears on Γ. This is a random outgrowth on Γ, of heightone. Inside m1 the height of Γ is typially z = 1, while outside it we have typially
z = 0.For δ lose to δ1 the shape of m1 is the Wul� shape, given by the Wul�onstrution, with the surfae tension funtion τ̃2D (n) , n ∈ S

1, given by
τ̃ (n) =

d

dn
τ3D (m)

∣∣∣
m=(0,0,1)

. (2.1)Here τ3D (m) , m ∈ S
2 is the surfae tension funtion of the 3D Ising model, thederivatives in (2.1) are taken at the point (0, 0, 1) ∈ S

2 along all the tangents
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n ∈ S

1 to the sphere S
2. The �radius� of m1 is of the order of N, i.e. it equals to

r1 (δ)N, and as δ ց δ1 we have r1 (δ) ց rcr > 0. In partiular, we never see amonolayer m of radius smaller than rcrN.As we explain below rcr should sale like R2/3. In partiular, it is possibleto hoose R in suh a fashion that R > 2rcr or, in other words, for values of Rsu�iently large the ritial droplet �ts into BN .As δ inreases, the monolayer m1 grows in size, and at a ertain moment
δ = δ1.5 it touhes the faes of the box BN After that moment the shape of m1 isdi�erent from the Wul� shape. Namely, it is the Wul� plaquette (see [ShS℄), madefrom four segments on the four sides of the RN ×RN square, onneted togetherby the four quarters of the Wul� shape of radius r̃1 (δ)N. We have evidently
r̃1

(
δ1.5

)
= R/2. As δ ր δ2, the radius r̃1 (δ) dereases to some value r̃1

(
δ2

)
N,with r̃1

(
δ2

)
> 0.II. δ2< δ < δ2.5The seond monolayer m2 is formed on the top of m1. Asymptotially it isof Wul� shape with the radius r2 (δ)N, with r2 (δ) ց r+

2

(
δ2

) as δ ց δ2, with
r+
2

(
δ2

)
> 0. The �rst monolayer m1 has a shape of Wul� plaquette with radius

r̃1 (δ) , whih satis�es
r̃1 (δ) = r2 (δ) .A somewhat urious relation is:

r+
2

(
δ2

) is stritly bigger than r̃1

(
δ2

)
.In other words, the Wul�-plaquette-shaped monolayer m1 undergoes a jump in itssize and shape as the supersaturation parameter δ rosses the value δ2. In fat,the monolayer m1 shrinks in size: the radius r̃1 (δ) inreases as δ grows past δ2.II.5 δ2.5< δ < δ3At the value δ = δ2.5 the growing monolayer m2 meets the shrinking mono-layer m1, i.e. r2

(
δ2.5

)
= r̃1

(
δ2.5

)
= R/2. Past the value δ2.5 the two mono-layers m2 ⊂ m1 are in fat asymptotially equal, both having the shape of theWul� plaquette with the same radius r̃1 (δ) = r̃2 (δ) , dereasing to the value

r̃1

(
δ3

)
= r̃2

(
δ3

) as δ inreases up to δ3.III. δ3< δ < δ4The third monolayer m3 is formed, of the asymptoti radius r3 (δ)N, with
r3 (δ) ց r+

3

(
δ3

) as δ ց δ3, with r+
3

(
δ3

)
> 0. The radii of two bottom Wul�plaquettes r̃1 (δ) = r̃2 (δ) = r3 (δ) derease to the value r+

3

(
δ3

) as δ dereasesdown to δ3, with r+
3

(
δ3

)
> r̃i

(
δ3

)
, so the two Wul� plaquettes m1, m2 shrink,jumping to a smaller area, as δ passes the threshold value δ3....A omplete investigation of the restrited Wul� variational problem (see (7.5)below) and, aordingly, a rigorous treatment of the interfae repulsion phenom-enon whih shows up on the mirosopi level in all the regimes from II.5 on isrelegated to a forthoming paper [IS℄. For the rest of the paper we shall fous on
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Figure 1. Creation and evolution of marosopi monolayers on Γ as δ growsthe regimes 0, I and II in the ontext of a simpli�ed model whih we proeed tointrodue.3. Our modelWe onsider the following lattie model of two-phase oexistene. The 3D box
BN = ΛN × {−N − 1/2,−N + 1/2, ..., N − 1/2, N + 1/2}is �lled with two kinds of partiles: v-partiles (vapour phase) and s-partiles (solidphase). Here ΛN is a two-dimensional RN × RN box;

ΛN = {0, 1, . . . , RN − 1}2
,and R is a onstant, whih we shall set later on to be big enough, in order to makeour piture reaher. We have |BN | = 2R2N3. Vapour v-partiles are oupying the



6 Io�e and Shlosmanupper part of BN , while solid s-partiles � the lower part. Some sites of the box
BN an be empty. In our model the two phases are separated by an interfae Γ,whih is supposed to be an SOS-type surfae; it is uniquely de�ned by a funtion

hΓ : Λ◦
N → {−N,−N + 1, ..., N} ,where Λ◦

N is the interior of ΛN . We assume that the interfae Γ is pinned at zeroheight on the boundary ∂ΛN , that is hΓ ≡ 0 on ∂ΛN .Suh a surfae Γ splits BN into two parts; let us denote by VN (Γ) and SN (Γ)the upper and the lower halves. The set of on�gurations of our model onsiststhus from a surfae Γ plus a hoie of two subsets, σv ⊂ VN (Γ) and σs ⊂ SN (Γ) ;we have a vapour partile at a point x ∈ BN i� x ∈ σv, and similarly for solidpartiles.The partition funtion ZN (β) of our model is now given by
ZN (β) =

∑

(Γ,σv ,σs)

exp {−β |Γ| − (a |σv| + b |VN (Γ) \ σv| + c |σs| + d |SN (Γ) \ σs|)} . (3.1)Here |Γ| is the surfae area of Γ, |σv| is the number of vapour partiles, ..., while
a, b, c, d are four hemial potentials. We want the two phases to be in the equilib-rium, so we suppose that

e−a + e−b = e−c + e−d ≡ e−f ,where the last equality is our de�nition of the free energy f. Aordingly, let usde�ne mirosopi oupation probabilities in vapour and solid states as
pv = ef−a and ps = ef−c.To mimi the fat that the density of the solid state has to be higher, we imposethe relation pv < ps.We will study our model under the ondition that the total number of parti-les is �xed, and in the leading order of N it is 2ρR2N3, with ρ between the values

pv and ps. Of ourse, �at interfae at level zero should orrespond to the hoie
ρ0 =

ps + pv

2
.More generally, given ρ = ρ0+∆, one expets to �nd Γ to be loated approximatelyat the height ℓN above zero level, where ℓ satis�es

ℓ

2
(ps − pv) = ∆.The above reasoning suggests that in our model the formation of marosopimonolayers over �at interfae should happen in anonial ensemble with totalnumber of partiles being �xed at

2ρ0R
2N3 + δN2 ∆

= a0N
3 + δN2 (3.2)with varying δ.



Ising model fog drip 7We will denote by P the (�grand anonial�) probability distribution on triples
{Γ, σv, σs} orresponding to the above partition funtion. Our main interest in thispaper is the study of the onditional distribution of the random surfae Γ, underondition that the total number of partiles

Σ
∆
= |σv| + |σs| ∆

= Σv + Σs,is �xed, i.e. the distribution P

(
Γ

∣∣∣ Σ = a0N
3 + δN2

).To study this onditional distribution we rely on Bayes' rule,
P

(
Γ

∣∣∣ Σ = a0N
3 + δN2

)
=

P

(
Σ = a0N

3 + δN2
∣∣∣ Γ

)
P (Γ)

∑
Γ′ P

(
Σ = a0N3 + δN2

∣∣∣ Γ′
)

P (Γ′)
.The ontrol over the onditional probabilities P

(
•

∣∣∣ Γ
) omes from volume orderloal limit theorems for independent Bernoulli variables, whereas a-priori probabil-ities P (Γ) are derived from representation of Γ in terms of a gas of non-interatingontours.In the sequel c1, c2, . . . are positive onstants whih appear in various in-equalities and whose values are �xed in suh a way that the orresponding boundshold true.4. Volume order limit theoremsThe study of probabilities Pr

(
Σ = a0N

3 + δN2
∣∣∣ Γ

) is easy, sine we are dealingwith independent variables. Indeed, let BN = SN ∪VN be the deomposition of BNindued by Γ. Then, the P

(
•

∣∣∣ Γ
)-onditional distribution of the overall numberof partiles is

Σ =
∑

i∈SN

ξs
i +

∑

j∈VN

ξv
j ,with iid Bernoulli(ps) random variables ξs

i , and iid Bernoulli(pv) random variables
ξv
j . Let α(Γ) be the signed volume under the interfae Γ,

α(Γ) =

∫ ∫
hΓ(x, y)dxdy, (4.1)where we set hΓ to be equal to hΓ(i) in the unit box i + [1/2, 1/2]2. Clearly,

|SN | = R2N3 + α(Γ) and |VN | = R2N3 − α(Γ). Aordingly,
E

(
Σ

∣∣∣ Γ
)

= a0N
3 + α(Γ)psv ,where psv ∆

= ps − pv. Introduing the varianes Ds = ps(1 − ps), Dv = pv(1 − pv)and D = Ds + Dv, we infer from the Loal Limit Theorem (LLT) behavior: For



8 Io�e and Shlosmanevery K �xed there exist two positive onstants c1 and c2, suh that
c1 ≤

P

(
Σ = a0N

3 + δN2
∣∣∣ Γ

)

1√
πD|BN |

exp
{
− (α(Γ)psv−δN2)2

D|BN |

} ≤ c2, (4.2)uniformly in N , |δ| ≤ K and Γ, provided |α(Γ)| ≤ KN2.5. Surfae weightsWe now want to desribe the a-priori probability distribution P (Γ) . It is onvenientand natural to express it via the weights {w (Γ)}, so that
P (Γ)

∆
= Pr (Γ) =

w (Γ)∑
Γ w (Γ)

, (5.1)where we shall use an additional symbol Pr in order to stress that the orrespondingprobabilities are omputed in the ontour model we are going to introdue now.For our purposes it is neessary to introdue a ontour parameterization ofthe set of all surfaes Γ. Contours will live on the bonds of the dual (two di-mensional) box Λ∗
N = {1/2, 3/2, . . . , RN − 3/2}2, and they are de�ned as follows:Given an interfae Γ and, aordingly, the height funtion hΓ whih, by de�nition,is identially zero outside Λ◦

N , de�ne the following semi-in�nite subset Γ̂ of R
3,

Γ̂ =
⋃

(x,y,k)

k<hΓ(x,y)

(
(x, y, k) + Ĉ

)
,where Ĉ = [−1/2, 1/2]3 is the unit ube. The above union is over all (x, y) ∈ Z

2and k ∈ 1/2 + Z.Consider now the level sets of Γ, i.e. the sets
Hk = Hk

(
Γ̂
)

=
{

(x, y) ∈ R
2 : (x, y, k) ∈ Γ̂

}
, k = −N, −N + 1, . . . , N.We de�ne ontours as the onneted omponents of sets ∂Hk. The length |γ| of aontour is de�ned in an obvious way. Sine, by onstrution all ontours are losedpolygons omposed of the nearest neighbour bonds of Λ∗

N , the notions of interiour
int(γ) and exteriour ext(γ) of a ontour γ are well de�ned. A ontour γ is alled a
⊕-ontour (⊖-ontour), if the values of the funtion hΓ at the immediate exteriorof γ are smaller (bigger) than those at the immediate interiour of γ.Alternatively, let us orient the bonds of eah ontours γ ⊆ ∂Hk in suh away that when we traverse γ the set Hk remains to the right. Then ⊕-ontoursare those whih are lokwise oriented with respet to their interiour, whereas
⊖-ontours are ounter-lokwise oriented with respet to their interiour.Let us say that two oriented ontours γ and γ′ are ompatible, γ ∼ γ′, if1. Either int(γ) ∩ int(γ′) = ∅ or int(γ) ⊆ int(γ′) or int(γ′) ⊆ int(γ).



Ising model fog drip 92. Whenever γ and γ′ share a bond b, b has the same orientation in both γ and
γ′.A family Γ = {γi} of oriented ontours is alled onsistent, if ontours of

Γ are pair-wise ompatible. It is lear that the interfaes Γ are in one-to-oneorrespondene with onsistent families of oriented ontours. The height funtion
hΓ ould be reonstruted from a onsistent family Γ = {γ} in the following way:For every ontour γ the sign of γ, whih we denote as sign(γ), ould be read fromit orientation. Then,

hγ(x, y) = sign(γ)χint(γ)(x, y) and hΓ =
∑

γ∈Γ

hγ ,where χA is the indiator funtion of A.We are �nally ready to speify the weights w(Γ) whih appear in (5.1): Let
Γ = {γ} be a onsistent family of oriented (signed) ontours, Then,

w(Γ) = exp




−β
∑

γ∈Γ

|γ|




 . (5.2)By de�nition the weight of the �at interfae w(Γ0) = 1.6. Estimates in the ontour ensembleIn order to make the ontour model (5.1) , (5.2) tratable one should, evidently,make ertain assumptions on the largeness of β, e.g. eβ should be ertainly largerthan the onnetive onstant of self-avoiding random walks on Z
2 [MS℄. In fat, itwould be possible to push for optimal results in terms of the range of β along thelines of reent developments in the Ornstein-Zernike theory [I, CIV1, CIV2℄. How-ever, in order to failitate the exposition and in order to fous on the phenomenonof monolayer reation per se, we shall just onveniently assume that β is so largethat one or another form of luster expansion goes through, see eg. [D2℄. Due tothe (±-ontour) symmetry of the model the orresponding tehniques would bequite similar to those developed in the ontext of the 2D low temperature Isingmodel in [DKS℄. Consequently, instead of stating onditions on β expliitly weshall just assume that β > β0, where β0 is so large that all the laims formulatedbelow are true.In the sequel we shall employ the following notation: C for lusters of non-ompatible ontours and Φβ(C) for the orresponding luster weights whih showsup in the luster expansion representation of partition funtions.Peierls estimate on appearane of γ. Given a ontour γ and a onsistent familyof ontours Γ, let us say that γ

k∈ Γ, if γ appears in Γ exatly k times. Then,
Pr

(
γ

k∈ Γ

)
≤ e−kβ|γ|. (6.1)



10 Io�e and ShlosmanIndeed, every Γ satisfying γ
k∈ Γ an be deomposed as Γ = Γ′ ∪ γ ∪ · · · ∪ γ.Therefore,

Pr

(
γ

k∈ Γ

)
≤

∑
Γ′ w(Γ′)e−kβ|γ|
∑

Γ′ w(Γ′)
,where the sums are over all onsistent families whih are ompatible with γ, butdo not ontain it.Flutuations of α(Γ) and absene of intermediate ontours. The following rougha-priori statement is a onsequene of (6.1): There exist positive ν suh that forevery b0 > 0 �xed,

Pr
(
|α(Γ)| > bN2

)
≤ c3e

−νN
√

b, (6.2)uniformly in b ≥ b0 and in N large enough.In view of (4.2) (omputed with respet to the �at interfae Γ0 with α(Γ0) =

0) the bound (6.2) implies that the anonial distribution P

(
•

∣∣∣Σ = a0N
3 + δN2

)is onentrated on Γ with
α(Γ) ≤ N2 max

{
δ4

ν2D2R4
, b0

}
. (6.3)Now let the interfae Γ be given by a onsistent olletion of ontours, and assumethat γ ∼ Γ. Of ourse α(Γ ∪ γ) = α(Γ) + α(γ). Let us assume that the surfae Γsatis�es the estimate (6.3). Then

P

(
Γ ∪ γ

∣∣∣ Σ = a0N
3 + δN2

)

≤
P

(
Σ = a0N

3 + δN2
∣∣∣ Γ ∪ γ

)

P

(
Σ = a0N3 + δN2

∣∣∣ Γ
) · Pr (Γ ∪ γ)

Pr (Γ)

≤ c4 exp

{
c5
|α(γ)|

N
− β|γ|

}
≤ c4 exp

{
c6
|γ|2
N

− β|γ|
}where we have suessively relied on Bayes' rule, (4.2) and on the isoperimetriinequality.It follows that for every K there exists ǫ = ǫ(β) > 0 suh that intermediateontours γ with

1

ǫ
log N < |γ| < ǫN (6.4)are, uniformly in |δ| < K, improbable under the onditional distribution

P

(
•

∣∣∣Σ = a0N
3 + δN2

)
.In the sequel we shall frequently ignore intermediate ontours, as if they do notontribute at all to the distribution (5.1). To avoid onfusion, we shall use P̂r forthe restrited ontour ensemble, whih is de�ned exatly as in (5.1), exept thatthe intermediate ontours γ satisfying (6.4) are suppressed.



Ising model fog drip 117. The surfae tension and the Wul� shapeSine we are antiipating formation of a monolayer droplet on the interfae, weare going to need the surfae tension funtion in order to study suh a droplet andto determine its shape. It is de�ned in the following way: Let λ be an orientedsite self avoiding path on the dual lattie Z
2
∗. An oriented ontour γ is said to beompatible with λ; γ ∼ λ, if λ ∩ int(γ) = ∅ and if whenever λ and γ share a bond

b, the orientation of b is the same in both λ and γ. Aordingly, if C is a luster of(inompatible) ontours, then C ∼ λ if γ ∼ λ for every γ ∈ C.In the sequel 0∗ = (1/2, 1/2) denotes the origin of Z
2
∗. Let x ∈ Z

2
∗. Set,

Tβ(x) =
∑

λ:0∗→x

exp




−β|λ| −
∑

C6∼λ

Φβ(C)




 ,where the sum is over all oriented self-avoiding paths from 0∗ to x.Let n ∈ S
1 be a unit vetor, and n⊥ ∈ S

1 is orthogonal to it. The surfaetension τβ in diretion n is de�ned as
τβ(n) = − lim

L→∞

1

L
log Tβ(⌊Ln⊥⌋).Consider the Wul� variational problem, whih is a question of �nding theminimum wβ (S) of the funtional,

wβ (S) ≡ min
{λ:Area(λ)=S}

W (λ) .Here
W (λ) =

∫

λ

τβ (ns) ds,

ns being the unit normal to λ at the point λ (s) , and the minimum is taken over alllosed self-avoiding loops λ, enlosing the area S. Of ourse, wβ (S) =
√

Swβ (1) .Let us denote by Wβ the Wul� shape, whih is the minimizing loop with area
S = 1.As in [DKS℄ it ould be shown that if β is su�iently large, then τβ is wellde�ned and stritly positive. Furthermore, the boundary of the optimal loop Wβis loally analyti and has uniformly positive and bounded urvature.One an now apply to the present setting the mahinery and the results of[DKS℄, [DS1℄, [DS2℄, [ShS℄ and [ISh℄. They allow us to study the probabilities ofthe events

Pr (Ab) ≡ Pr {Γ : α(Γ) = b} , (7.1)where we onsider here the probability distribution (5.1).As it follows from loal limit results in the restrited phase [DKS℄ withoutintermediate ontours (6.4), for all values of b, the probability P̂r (Ab) is boundedabove by
P̂r (Ab) ≤ c7 exp

{
−c8

b2

N2
∧ N

}
. (7.2)



12 Io�e and ShlosmanIn partiular, for the values of b ≪ N3/2 the main ontribution to P̂r (Ab) omesfrom small ontours; |γ| < ǫ−1 log N . In other words, for suh values of b, ondi-tional distribution P̂r
(
·
∣∣∣ Ab

) is onentrated on the interfaes Γ whih are essen-tially �at: all ontours γ of a typial surfae Γ are less than ǫ−1 log N in length,while their density goes to zero as β → ∞.On the other hand, for values of b ≫ N3/2 long ontours ontribute, and theprobabilities Pr (Ab) satisfy
log Pr (Ab) = −

√
bwβ (1) (1 + oN (1)) , (7.3)provided, of ourse, that the saled Wul� shape √

b/N2 Wβ �ts into the square
[0, R]2. Under these two restritions on b the analysis of [DKS℄ implies that theonditional distribution Pr

(
·
∣∣∣ Ab

) is onentrated on the interfaes Γ whih are�oupying two onseutive levels�. Namely, the set {γi} of ontours, omprising
Γ, ontains exatly one large ontour, γ0, of diameter ∼ √

b, while the rest of themhave their lengths not exeeding ǫ−1 lnN . The ontour γ0 is of ⊕-type, so for themajority of points inside γ0 the value of the height funtion hΓ is 1, while outside
γ0 it is mainly zero. Finally, the ontour γ0 has

• Asymptoti shape: The ontour γ0 is of size ∼
√

b, and it follows very losethe urve √
bWβ . Namely, the latter an be shifted in suh a way that theHausdor� distane

ρH

(
γ0,

√
bWβ

)
≤ 3

√
b. (7.4)Of ourse, all the laims above should be understood to hold only on the setof typial on�gurations, i.e. on the sets of (onditional) probabilities going to 1as N → ∞.In the present paper we also we need to onsider suh values of b ∼ 2R2N2,when the saled Wul� shape √

b/N2 Wβ does not �t into the square [0, R]2. Thissituation was partially treated in the paper [ShS℄, and the tehnique of that paperprovides us with the following information about the typial behavior of Γ underthe distribution P̂r
(
·
∣∣∣ Ab

) for the remaining values of b.Namely, instead of the Wul� variational problem we have to onsider thefollowing restrited Wul� variational problem, whih is a problem of �nding theminimum
wrst

β (S) ≡ min
{k;λ1,...,λk}

Wrst
S (k; λ1, ..., λk) ≡ W (λ1) + ... + W (λk) , (7.5)where

• the urves λ1, ..., λk are losed pieewise smooth loops inside the unit square
Q1;

• the loops λi are nested: Int (λk) ⊆ Int (λk−1) ⊆ ... ⊆ Int (λ1) ;
• Area (λk) + Area (λk−1) + ... + Area (λ1) = S.The parameter k is not �xed; we have to minimize over k as well. For the areaparameter S small enough, the minimum in (7.5) is attained at k = 1, while λ1 is



Ising model fog drip 13the saled Wul� shape, √SWβ . In other words, in this regime wrst
β (S) = wβ (S) .Let S1 be the maximal value, for whih the inlusion √

SWβ ⊂ Q1 is possible. Inthe range S1 < S < 1 the solution to (7.5) is given by k = 1, while the loop λ1 isthe orresponding Wul� plaquette, desribed above. In the range 1 < S < 2S1 thesolution has the value k = 2, the urve λ1 is the Wul� plaquette, while the urve
λ2 ⊂ λ1 is the Wul� shape; they are uniquely de�ned by the two onditions:1. Area (λ2) + Area (λ1) = S,2. the urved parts of λ1 are translations of the orresponding quarters of λ2.In the range 2S1 < S < 2 we have k = 2, while the loops λ2 = λ1 are identialWul� plaquettes.The relation (7.3) is generalized to

log Pr (Ab) = −RNwrst
β

(
b

R2N2

)
(1 + oN (1)) . (7.6)The funtion wrst

β (S) is evidently inreasing in S. For S small it behaves as
c′
√

S. In the viinity of the point S = 1 it behaves as c′′
√

S − 1 for S > 1, andas c′′′
√

1 − S for S < 1. Otherwise it is a smooth funtion of S, 0 ≤ S < 2. Thetwo singularities we just pointed out, are responsible for the interesting geometribehavior of our model, whih has been desribed informally in Setion 2, and willbe expliitely formulated in the next Setion. Namely, eah one is responsible forthe appearane of the orresponding droplet.Aordingly, one the Wul� shape √
b/N2 Wβ does not �t into the square

[0, R]2, while b ≤ c (β) R2N2 ( where the onstant c (β) → 1 as β → ∞) the ondi-tional distribution Pr
(
·
∣∣∣ Ab

) is onentrated on the interfaes Γ whih again areoupying two onseutive levels. The set {γi} of ontours, omprising Γ, ontainsone large ontour, γ0, this time of diameter ∼ R, whih in some plaes is goingvery lose to the boundary of our box. The rest of ontours have their lengths notexeeding ǫ−1 lnN . The ontour γ0 is of ⊕-type, and for the majority of pointsinside γ0 the value of the height funtion hΓ is 1, while outside γ0 it is mainly zero.Finally, the ontour γ0 has asymptoti shape of the Wul� plaquette, in the samesense as in (7.4) .In the remaining range R2N2 ≤ b ≤ 2R2N2 the set {γi} of ontours, om-prising Γ, ontains exatly two large ontours, γ0 and γ1, with γ1 ⊂ Int (γ0) , bothof the ⊕-type. The interfae Γ is, naturally, oupying three onseutive levels: itis (typially) at the height 2 inside γ1, at height 1 between γ0 and γ1, and at height
0 outside γ0. Note that for b lose to R2N2 the ontour γ1 is free to move inside
γ0, so its loation is random (as is also the ase in the regime of the unique largeontour, when the saled Wul� shape √

b/N2 Wβ �ts into the square [0, R]2). Theontour γ0, on the other hand, is (nearly) touhing all four sides of the boundaryof our box, so it is relatively less free to �utuate.In the omplementary regime, when b is lose to 2R2N2, the two ontours γ0and γ1 have the same size in the leading order (whih is linear in N), while the



14 Io�e and ShlosmanHausdor� distane between them is only ∼ N1/2; it is reated as a result of theentropi repulsion between them. In partiular, in the limit as N → ∞, and underthe 1
N saling, the two ontours oinide, going in asymptoti shape to the sameWul� plaquette. The study of this ase needs the tehnique, additional to thatontained in [DKS℄, [DS1℄, [DS2℄, [ShS℄ and [ISh℄, sine the ase of two repellinglarge ontours was not onsidered there. The ase of the values b above 2R2N2is even more involved, sine there we have to deal with several large mutuallyrepelling ontours. We will return to it in a separate publiation, see [IS℄.8. Main resultWe are ready now to desribe the monolayers reation in our model: Let us �x

ps > pv (and hene psv and D), and let β be su�iently large. Let us also �x Rlarge enough, so that the resaled Wul� shape of area
3

√
D2w2

β (1)

psv
R4/3�ts into the R × R square.Theorem 8.1. Let Γ be a typial interfae drawn from the onditional distribution

P
(
•

∣∣Σ = a0N
3 + δN2

). De�ne
δ1 =

3

2
3

√
D2w2

βpsvR4/3. (8.1)
• For values of δ satisfying 0 < δ < δ1, the interfae Γ is essentially �at: allontours of Γ have lengths bounded above by ǫ−1 log N .
• There exists δ2 > δ1, suh that for δ1 < δ < δ2 the interfae Γ has onemonolayer. Preisely, Γ ontains exatly one large ontour γ0 of approxi-mately Wul� shape (or Wul� plaquette shape), suh that

α(γ0) >
2δ

3psv
N2. (8.2)The rest of ontours of Γ are small; their lengths are bounded above by

ǫ−1 log N .
• Similarly, there exists a value δR, suh that for δ2 < δ < δR the interfae Γhas two monolayers, and ontains exatly two large ontours, γ0 and γ1 ⊂

Int (γ0). The bigger one, γ0, has the shape of the Wul� plaquette, while thesmaller one has the Wul� shape. Again, α(γ1) > 2δ
3psv N2.9. Proof of the main resultLet us �x δ and onsider the surfae distribution P
(
•

∣∣Σ = a0 + δN2
). Sinewe an ignore intermediate ontours (6.4) and sine we already know how thetypial surfaes looks like in the onstraint ensembles P̂r

(
•

∣∣Ab

), it would be



Ising model fog drip 15enough to study onditional probabilities P
(
Ab

∣∣ Σ = a0 + δN2
). Namely, for ev-ery δ we need to know the range of the typial values of the �volume� observ-able b. To do this we will ompare the probabilities P

(
Ab , Σ = a0 + δN2

)
∼

P
(

Σ = a0 + δN2
∣∣ Ab

)
P̂r (Ab) for various values of b, in order to �nd the domi-nant one.There are three regimes to be worked out: Fix η ∈ (0, 1/2) and c9 smallenough.Case 1. b ≤ N1+η. By (4.2) and (7.2),

c10exp

{
− δ2

2DR2
N − O

(
b2

N2

)}

≤ N3/2
P

(
Σ = a0 + δN2

∣∣Ab

)
P̂r (Ab)

≤ c11exp

{
− δ2

2DR2
N

}
.

(9.1)Case 2. N1+η < b ≤ c9N
2. By (4.2) and (7.2),

P
(
Σ = a0 + δN2

∣∣Ab

)
P̂r (Ab) ≤ c12exp

{
− δ2

2DR2
N +

δpsvb

NR2D
− c8

b2

N2
∧ N

}
.(9.2)Obviously, one c9 is hosen to be su�iently small, the right hand side of (9.2)is negligible with respet to the lower bound on left-hand side of (9.1) (omputedat b ≪ N1+η).Case 3. b = ρN2 with ρ > c9. By (7.6) and, one again, by volume order loal limitresult (4.2),

exp

{
− (δ − psvρ)2

DR2
N − RNwrst

β

( ρ

R2

)
− o(N)

}

≤ P
(
Σ = a0 + δN2

∣∣ Ab

)
Pr (Ab)

≤ exp

{
− (δ − psvρ)2

2DR2
N − RNwrst

β

( ρ

R2

)
+ o(N)

}
.

(9.3)Therefore, in order to �gure out the dominant ontribution between (9.1)and (9.3), we have to �nd the global minimum of the funtion
(δ − psvρ)

2

2DR2
+ Rwrst

β

( ρ

R2

) (9.4)on the interval ρ ∈ [0, 2R2]. This minimization problem needs just the elementaryalulus, see e.g. [BCK℄. For small values of ρ our funtion redues to (δ−psvρ)2

2DR2 +
wβ (1)

√
ρ. After the following hange of variables:

λ =
psvρ

δ
and κ = κ (δ) =

δ3/2

2DR2wβ (1)
√

psv
,



16 Io�e and Shlosmanwe have to look for global minimizers of
φκ(λ)

∆
= κ(1 − λ)2 +

√
λ.Set

κc = κ
(
δ1

)
=

1

2

(
3

2

)3/2

. (9.5)One easily sees that
• If κ < κc, then the global minimizer is 0.
• If κ = κc then there are exatly two global minimizers; 0 and λc = 2/3.
• If κ > κc, then the global minimizer λm is the maximal solution of

4κ
√

λ (1 − λ) ,whih, in partiular, satis�es λm > 2/3.A similar analysis applies in the viinity of the singularity of the funtion
wrst

β

(
ρ

R2

) at ρ
R2 ∼ 1. Sine the funtion wrst

β (S) is monotone, and has the deriv-ative equal to +∞ at S = 1, the point of the global minimum of (9.4), whih is amonotone funtion of δ, never belongs to some neighborhood of the point ρ
R2 = 1.Therefore at some δ = δ2 it jumps from some value ρ− < R2 to ρ+ > R2.The proof of Theorem 1 is, thereby, ompleted.10. ConlusionsIn this paper we have desribed a model of the interfae between the vapour andliquid phases, evolving as the total number of partiles inreases. We have shownthat the evolution of the interfae goes via the spontaneous formation on it ofone monolayer of the size of the system. We believe that the same result an beproven for the 3D Ising model with the same boundary onditions, i.e. periodiin two horizontal diretions and ± in the vertial one. It will be very interestingto establish the phenomenon of the monolayer formation in the 3D Ising modelwith (+)-boundary onditions, when the monolayer attahes itself to a faet of theWul�-like (random) rystal. This problem, however, seems to be quite di�ult,sine one needs to ontrol the rounded part of the rystal. This rounded part isprobably behaving as a massless Gaussian random surfae (ompare with [K℄),and this alone indiates enough the omplexity of the problem.Referenes[BCK℄ Biskup, M., Chayes, L. and Koteky, R.: Critial Region for Droplet Formation Inthe Two-Dimensional Ising Model, Comm. Math. Phys., v. 242, pp 137-183, 2003.[BSS℄ Bodineau, T., Shonmann, R. and Shlosman, S.: 3D Crystal: How Flat its FlatFaets Are? Comm. Math. Phys., v. 255, Number 3, pp 747 - 766, 2005.[CIV1℄ M. Campanino, D. Io�e and Y. Velenik: Ornstein-Zernike theory for �nite rangeIsing models above Tc, Probab. Theory Related Fields 125 (2003), no. 3, 305�349.
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