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Abstract. This is a comprehensive review of the uses of potential
theory in studying the spectral theory of orthogonal polynomials.
Much of the article focuses on the Stahl–Totik theory of regular
measures, especially the case of OPRL and OPUC. Links are made
to the study of ergodic Schrödinger operators where one of our new
results implies that, in complete generality, the spectral measure is
supported on a set of zero Hausdorff dimension (indeed, of capacity
zero) in the region of strictly positive Lyapunov exponent. There
are many examples and some new conjectures and indications of
new research directions. Included are appendices on potential the-
ory and on Fekete–Szegő theory.

1. Introduction

This paper deals with applications of potential theory to spectral and
inverse spectral theory, mainly to orthogonal polynomials especially on
the real line (OPRL) and unit circle (OPUC). This is an area that has
traditionally impacted both the orthogonal polynomial community and
the spectral theory community with insufficient interrelation. The OP
approach emphasizes the procedure of going from measure to recursion
parameters, that is, the inverse spectral problem, while spectral theo-
rists tend to start with recursion parameters and so work with direct
spectral theory.

Potential theory ideas in the orthogonal polynomial community go
back at least to a deep 1919 paper of Faber [35] and a seminal 1924
paper of Szegő [107] with critical later developments of Kalmár [63] and
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Erdös–Turán [34]. The modern theory was initiated by Ullman [114]
(see also [115, 116, 117, 118, 112, 119, 123] and earlier related work
of Korovkin [68] and Widom [122]), followed by an often overlooked
paper of Van Assche [120], and culminating in the comprehensive and
deep monograph of Stahl–Totik [105]. (We are ignoring the important
developments connected to variable weights and external potentials,
which are marginal to the themes we study; see [91] and references
therein.)

On the spectral theory community side, theoretical physicists re-
discovered Szegő’s potential theory connection of the growth of poly-
nomials and the density of zeros—this is called the Thouless formula
after [110], although discovered slightly earlier by Herbert and Jones
[51]. The new elements involve ergodic classes of potentials, especially
Kotani theory (see [69, 96, 70, 71, 30, 27]).

One purpose of this paper is to make propaganda on both sides: to
explain some of the main aspects of the Stahl–Totik results to spectral
theorists and the relevant parts of Kotani theory to the OP community.
But this article looks forward even more than it looks back. In thinking
through the issues, I realized there were many interesting questions to
examine. Motivated in part by the remark that one can often learn from
wrong conjectures [56], I make several conjectures which, depending
on your point of view, can be regarded as either bold or foolhardy (I
especially have Conjectures 8.7 and 8.11 in mind).

The potential of a measure µ on C is defined by

Φµ(x) =

∫
log|x− y|−1 dµ(y) (1.1)

which, for each x, is well defined (although perhaps ∞) if µ has compact
support. The relevance of this to polynomials comes from noting that
if Pn is a monic polynomial,

Pn(z) =
n∏

j=1

(z − zj) (1.2)

and dνn its zero counting measure, that is,

νn =
1

n

n∑

j=1

δzj
(1.3)

the point measure with nνn({w}) = multiplicity of w as a root of Pn,
then

|Pn(z)|1/n = exp(−Φνn
(z)) (1.4)
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If now dµ is a measure of compact support on C, let Xn(z) and xn(z)
be the monic orthogonal and orthonormal polynomials for dµ, that is,

Xn(z) = zn + lower order (1.5)

with ∫
Xn(z)Xm(z) dµ(z) = ‖Xn‖2

L2δnm (1.6)

and

xn(z) =
Xn(z)

‖Xn‖L2

(1.7)

Here and elsewhere ‖ ·‖ without a subscript means the L2 norm for the
measure currently under consideration.

When supp(dµ) ⊂ R, we use Pn, pn and note (see [108, 39]) there are
Jacobi parameters {an, bn}∞n=1 ∈ [(0,∞) × R]∞, so

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x) (1.8)

‖Pn‖ = a1 . . . anµ(R)1/2

and if supp(dµ) ⊂ ∂D, the unit circle, we use Φn, ϕn and note (see
[108, 44, 98, 99]) there are Verblunsky coefficients {αn}∞n=0 ∈ D∞, so

Φn+1(z) = zΦn − ᾱnΦ∗
n(z) (1.9)

‖Φn(z)‖ = ρ0 . . . ρn−1µ(∂D)1/2 (1.10)

where

Φ∗
n(z) = zn Φn(1/z̄) ρj = (1 − |αj |2)1/2 (1.11)

As usual, we will use J for the Jacobi matrix formed from the param-
eters in the OPRL case, that is, J is tridiagonal with bj on diagonal
and aj off-diagonal.

The Xn minimize L2 norms, that is,

‖Xn‖L2(dµ) = min{‖Qn‖L2 | Qn(z) = zn + lower order} (1.12)

Given a compact E ⊂ C, the Chebyshev polynomials are defined by
(L∞ is the sup norm over E)

‖Tn‖L∞(E) = min{‖Qn‖L∞ | Qn(z) = zn + lower order} (1.13)

These minimum conditions suggest that extreme objects in potential
theory, namely, the capacity, C(E), and equilibrium measure, dρE,
discussed in [50, 73, 81, 88, 91] and Appendix A will play a role (ter-
minology from Appendix A is used extensively below). In fact, going
back to Szegő [107] (we sketch a proof in Appendix B), one knows
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Theorem 1.1 (Szegő [107]). For any compact E ⊂ C with Chebyshev

polynomials, Tn, one has

lim
n→∞

‖Tn‖1/n
L∞(E) = C(E) (1.14)

This has an immediate corollary (it appears with this argument in
Widom [122] and may well be earlier):

Corollary 1.2. Let µ be a measure of compact support, E, in C. Let

Xn(z; dµ) be its monic OPs. Then

lim sup
n→∞

‖Xn‖1/n

L2(C,dµ) ≤ C(E) (1.15)

Proof. By (1.12),

‖Xn‖1/n
L2(C,dµ) ≤ ‖Tn‖1/n

L2(C,dµ) (1.16)

where Tn are the Chebyshev polynomials for E. On E, |Tn(z)| ≤
‖Tn‖L∞(E) so, since supp(dµ) = E,

‖Xn‖1/n
L2(C,dµ) ≤ ‖Tn‖1/n

L∞(E)µ(E)1/2n (1.17)

and (1.15) follows from (1.14). �

For OPRL and OPUC, the relation (1.15) says

lim sup(a1 . . . an)1/n ≤ C(E) (OPRL) (1.18)

lim sup(ρ1 . . . ρn)1/n ≤ C(E) (OPUC) (1.19)

(1.18) is a kind of thickness indication of the spectrum of discrete
Schrödinger operators (with aj ≡ 1) where it is not widely appreci-
ated that C(E) ≥ 1.

In many cases that occur in spectral theory, one considers discrete
and essential spectrum. In this context, σess(dµ) is the nonisolated
points of supp(dµ). σd(dµ) = supp(dµ)\σess(dµ) is a countable discrete
set. If dν is any measure with finite Coulomb energy ν(σd(dµ)) = 0,
thus C(supp(dµ)) = C(σess(dµ)); so we will often consider E = σess(dµ)
in (1.15). In fact, as discussed in Appendix A after Theorem A.13, we
should take E = σcap(dµ).

The inequality (1.16) suggests singling out a special case. A measure
dµ of compact support, E, on C is called regular if and only if

lim
n→∞

‖Xn‖1/n

L2(dµ) = C(E) (1.20)

For E = [−1, 1], this class was singled out by Ullman [114]; the general
case is due to Stahl–Totik [105].
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Example 1.3. The Nevai class , N(a, b), with a > 0, b ∈ R, is the set
of probability measures on R whose Jacobi parameters obey

an → a bn → b (1.21)

The Jacobi matrix with an ≡ a, bn ≡ b is easily seen to have spectrum

E(a, b) = [b− 2a, b+ 2a] (1.22)

so, by (A.8),
C(E(a, b)) = a (1.23)

By Weyl’s theorem, if µ ∈ N(a, b), σess(µ) = E(a, b), so µ is regular. �

Example 1.4. Here is an example of a regular measure on R not in a
Nevai class. Let dµ be the measure with Jacobi parameters bn ≡ 0 and

an =

{
1 n 6= k2 for all k
1
2

n = k2 for some k
(1.24)

Clearly, lim(a1 . . . an)1/n = 1, so if supp(dµ) = [−2, 2] (which has ca-
pacity 1 by (1.23)), we will have a regular measure not in a Nevai
class. Since ( 0 c

c 0 ) ≥
(−c 0

0 −c

)
for any c > 0, the Jacobi matrix J as-

sociated to dµ is bounded below by a diagonal matrix with elements
either −1

2
, −1, −3

2
, or −2 (for n = 1, 2, k2 or k2 + 1 and otherwise),

so J ≥ −2. Similarly, J ≤ 2. Thus, σ(J) = supp(dµ) ⊂ [−2, 2]. On
the other hand, since lim(a1 . . . an)1/n = 1, (1.18) implies C(E) ≥ 1
where E = supp(dµ). If E $ [−2, 2], it is missing an open subset
and so |E| < 4 and C(E) < 1 (by (A.57)). Thus C(E) ≥ 1 implies
E = [−2, 2]. Alternatively, using plane wave trial functions cut off to
live in [k2 + 2, (k + 1)2 − 1], we easily see directly that [−2, 2] ⊂ σ(J).

This example has no a.c. spectrum by results of Remling [90]. In
Section 8 (see Example 8.12), we have models which are regular, not
in Nevai class with nonempty a.c. spectrum. �

Example 1.5. The CN (for Cesàro–Nevai) class was introduced by
Golinskii-Khrushchev [46] for OPUC and it has an OPRL analog. For
OPRL, it says

1

n

[ n∑

j=1

|aj − 1| + |bj |
]
→ 0 (1.25)

Example 1.4 is in this class and is regular, but it is not true that every
element of CN for OPRL is regular; for example, if an ≡ 1 and each bj
is 0 or 1 so (1.25) holds but with arbitrarily long strings of only 0’s and
also of only 1’s, e.g., bj = 1 if n2 ≤ j ≤ n2 + n and bj = 0 otherwise.
Then σ(J) = [−2, 3] with C(σ(J)) = 5

4
, but (a1 . . . an)1/n → 1. (To

see that σ(J) = [−2, 3], let J+, J− be the matrices with an ≡ 1 and
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bn ≡ 1 (for J+) and bn ≡ 0 (for J−). Then −2 ≤ J− ≤ J ≤ J+ ≤ 3,
so σ(J) ⊂ [−2, 3]. On the other hand, because of the long strings,
a variational argument shows σ(J+) ∪ σ(J−) ⊂ σ(J).) However, for
OPUC, the subset of CN class with supn|αn| < 1 consists of only
regular measures. For by Theorem 4.3.17 of [98], σ(dµ) = ∂D with
capacity 1. On the other hand, if A = supn|αn| and

L(A) = − log(1 − A)

2A

then (since log|1 − x| is convex)

− log ρj ≤ L(A)|αj|2

so

1

n

n−1∑

j=0

log ρj ≤ L(A)
1

n

n−1∑

j=0

|αj|2 ≤ L(A)
1

n

n−1∑

j=0

|αj|

goes to zero so (ρ0 . . . ρn−1)
1/n → 1. It is easy to see that if supn|αn| < 1

is dropped, regularity can be lost. �

Example 1.6. Let an ≡ 1
2

and let bn = ±1 chosen as identically
distributed random variables. As above, all these random J ’s have
−2 ≤ J ≤ 2, so supp(dµ) ⊂ [−2, 2]. Since there will be, with
probability 1, long stretches of bn ≡ 1 or bn ≡ −1, it is easy to
see supp(dµ) ⊃ ([−1, 1] + 1) ∪ ([−1, 1] − 1) = [−2, 2]. Thus, a typ-
ical random dµ has support [−2, 2] with capacity 1, but obviously
lim(a1 . . . an)1/n = 1

2
. This shows there are measures which are not

regular. By Example 1.3, random slowly decaying Jacobi matrices are
regular, so neither randomness nor pure point measures necessarily de-
stroy regularity. We return to pure point measures in Theorem 5.5 and
Corollary 5.6. �

Section 8 has many more examples of regular measures. Regularity
is important because of its connections to zero distributions and to root
asymptotics. Let dνn denote the zero distribution for Xn(z) defined by
(1.3). Then

Theorem 1.7. Let dµ be a measure on R with σess(dµ) = E compact

and C(E) > 0. If µ is regular, then dνn converges weakly to dρE, the

equilibrium measure for E.

Remarks. 1. For E = [0, 1], ideas close to this occur in Erdös–Turán
[34]. The full result is in Stahl–Totik [105] who prove a stronger result.
Rather than E ⊂ R, they need that the unbounded component, Ω, of
C \ E is dense in C. We will prove Theorem 1.7 in Section 2.
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2. The result is false for measures on ∂D. Indeed, it fails for dµ =
dθ
2π

, that is, αn ≡ 0 and Φn(z) = zn. However, there is a result for
paraorthogonal polynomials and for the balayage of dνn. Theorem 1.7
is true if supp(dµ) ⊂ ∂D but is not all of ∂D. We will discuss this
further in Section 3 where we also prove a version of Theorem 1.7 for
OPUC.

For later purposes, we note

Proposition 1.8. Let dµ be a measure on R with σess(dµ) = E com-

pact. Then any limit of dνn is supported on E.

Proof. It is known (see [98, Sect. 1.2]) that if (a, b) ∩ supp(dµ) = ∅,
then Pn(x) has at most one zero in (a, b). It follows that if e is an
isolated point of supp(dµ), then (e − δ, e + δ) has at most three zeros
for δ small (with more argument, one can get two). Thus, points not
in E have neighborhoods, N , with νn(N) ≤ 3

n
. �

Stahl–Totik [105] also have the following almost converse (their
Sect. 2.2)—for E ⊂ R, we prove a slightly stronger result; see The-
orem 2.5.

Theorem 1.9. Let dµ be a measure on R with σess(dµ) = E compact

and C(E) > 0. Suppose that dνn → dρE, the equilibrium measure.

Then either dµ is regular or there exists a Borel set, X, with dµ(R \
X) = 0 and C(X) = 0.

Remarks. 1. As an example where such an X exists even though
C(supp(µ)) > 0, consider a µ which is dense pure point on [−2, 2].

2. In Section 8, we will see explicit examples where dνn → dρE but
dµ is not regular.

The other connection is to root asymptotics of the OPs. Recall the
Green’s function, GE(z), is defined by (A.40); it vanishes q.e. (quasi-
everywhere, defined in Appendix A) on E, is harmonic on Ω, and as-
ymptotic to log|z| − logC(E) + o(1) as |z| → ∞. The main theorem
on root asymptotics is:

Theorem 1.10. Let E ⊂ C be compact and let µ be a measure of

compact support with σess(µ) = E. Then the following are equivalent:

(i) µ is regular, that is, limn→∞ ‖Xn‖1/n
L2(dµ) = C(E).

(ii) For all z in C, uniformly on compacts,

lim sup|xn(z)|1/n ≤ eGE(z) (1.26)
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(iii) For q.e. z in ∂Ω (with Ω the unbounded connected component of

C \ E), we have

lim sup|xn(z)|1/n ≤ 1 (1.27)

Moreover, if (i)–(iii) hold, then (here cvh = closed convex hull)
(iv) For every z ∈ C \ cvh(supp(dµ)), we have

lim
n→∞

|xn(z)|1/n = eGE(z) (1.28)

(v) For q.e. z ∈ ∂Ω,

lim sup
n→∞

|xn(z)|1/n = 1 (1.29)

(vi) For any sequence Qn(z) of polynomials of degree n, for all z ∈ C,

lim sup

∣∣∣∣
Qn(z)

‖Qn‖L2(dµ)

∣∣∣∣
1/n

≤ eGE(z) (1.30)

Remark. It is easy to see that (iv), (v) or (vi) are equivalent to (i)–
(iii).

For E ⊂ R, we will prove this in Section 2. For E ⊂ ∂D, we prove it
in Section 3.

The original result asserting cases where regularity holds was proven
in 1940!

Theorem 1.11 (Erdös–Turán [34]). Let dµ be supported on [−2, 2] and

suppose

dµ(x) = w(x) dx+ dµs (1.31)

with dµs singular. Suppose w(x) > 0 for a.e. x in [−2, 2]. Then µ is

regular.

Remarks. 1. Erdös–Turán [34] worked on [−1, 1] and had dµs = 0.

2. We now have a stronger result than this—namely, Rakhmanov’s
theorem (see [99, Ch. 9]). If w(x) > 0 for a.e. x, one knows an → 1
(and bn → 0) much more than (a1 . . . an)1/n → 1 (equivalently, we have
ratio asymptotics on the p’s and not just root asymptotics). Regularity
is a “poor man’s” Rakhmanov’s theorem. But unlike Rakhmanov’s
theorem which is only known for a few other E’s (see [29, 90] and the
discussion in Section 8), this weaker version holds very generally.

3. In this case, dρE is equivalent to dx, so (1.31) and W (x) > 0 for
a.e. x is equivalent to saying that ρE is µ-a.c.

In Section 4, we will prove the following vast generalization of the
Erdös–Turán result:
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Theorem 1.12 (Widom [122]). Let µ be a measure on R with com-

pact support and E = σess(dµ) and C(E) > 0. Suppose dρE is the

equilibrium measure for E and

dµ = w(x) dρE(x) + dµs (1.32)

where dµs is dρE-singular. Suppose w(x) > 0 for dρE-a.e. x. Then µ
is regular.

Remarks. 1. As above, (1.32) +w(x) > 0 is equivalent to saying that
dρE is absolutely continuous with respect to dµ.

2. Widom’s result is much more general than what we have in this
theorem. His E is a general compact set in C. His polynomials are
defined by general families of minimum conditions, for example, Lp

minimizers. Most importantly, he has a general family of support con-
ditions that, as he notes in a one-sentence remark, include the case
where dρE is a.c. with respect to dµ. Because of its spectral theory
connection, we have focused on the L2 minimizers, although it is not
hard to accommodate more general ones. We focus on the w > 0 case
because if one goes beyond that, it is better to look at conditions that
depend on weights and not just supports of the measure as Widom
(and Ullman [114]) do (see Theorem 1.13 below).

3. In Section 4, we will give a proof of this theorem due to Van
Assche [120] who mentions Widom’s paper but says it is not clear his
hypotheses apply despite an explicit (albeit terse) aside in Widom’s
paper. Stahl–Totik [105] state Theorem 1.12 explicitly. They seem to
be unaware of Van Assche’s paper or Widom’s aside.

It was Geronimus [43] who seems to have first noted that there are
non-a.c. measures which are regular (and later Widom [122] and Ullman
[114]). Of course, with the discovery of Nevai class measures which are
not a.c. [95, 32, 111, 78, 79, 80, 97, 67], there are many examples, but
given a measure, one would like to know effective criteria. Stahl–Totik
[105, Ch. 4] have many, of which we single out:

Theorem 1.13 (Stahl–Totik [105]). Let E be a finite union of disjoint

closed intervals in R. Suppose µ is a measure on R with σess(dµ) = E,

and for any η > 0 (|·| is Lebesgue measure),

lim
m→∞

∣∣{x
∣∣ µ([x− 1

m
, x+ 1

m
]) ≤ e−mη

}∣∣ = 0 (1.33)

Then µ is regular.

Theorem 1.14 (Stahl–Totik [105]). Let E be a finite union of disjoint

closed intervals in R. Suppose µ is a measure on R and that µ is
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regular. Then for any η > 0,

lim
m→∞

C
({
x ∈ E

∣∣ µ([x− 1
m
, x+ 1

m
]) ≤ e−mη

})
= 0 (1.34)

Remarks. 1. We will prove Theorem 1.13 in Section 5.

2. Stahl–Totik [105] state these results for E = [−1, 1], but it is easy
to accommodate finite unions of disjoint closed intervals; see Corol-
lary 6.6.

In Section 6, we turn to structural results (all due to Stahl–Totik
[105]) connected to inheritance of regularity when measures have a
relation, for example, when restrictions of regular measures are regular.

Section 7 discusses relations of potential theory and ergodic Jacobi
matrices. This theory concerns OPRL (or OPUC) whose recursion
coefficients are samples of an ergodic process—as examples, totally
random or almost periodic cases. In that case, various ergodic the-
orems guarantee the existence of lim(a1 . . . an)1/n, of dν∞ ≡ lim dνn,
and of a natural Lyapunov exponent, γ(z), which off of supp(dµ) is
lim|pn(z; dµ)|1/n and is subharmonic on C. In that section, we will
prove some of the few new results of this paper:

Theorem 1.15. Let dµω be the measures associated to an ergodic fam-

ily of OPRL, dν∞ and γ its density of states and Lyapunov exponent.

Let E = supp(dν∞). Then the following are equivalent:

(a) γ(x) = 0 for dρE-a.e. x

(b) lim
n→∞

(a1(ω) . . . an(ω))1/n = C(E) (1.35)

for a.e. ω. Moreover, if (a) and (b) hold, then

dν∞(x) = dρE(x) (1.36)

with dρE the equilibrium measure for E. Conversely, if (1.36) holds,

either (a) and (b) hold, or else for a.e. ω, dµω is supported on a set of

capacity zero.

Remarks. 1. We will prove that for a.e. ω,

lim
n→∞

(a1(ω) . . . an(ω))1/n = C(E) exp

(
−

∫
γ(x) dρE(x)

)
(1.37)

2. In Section 8, we will see examples where dν∞ = dρE but (1.35)
fails. Of course, (a) also fails.

The following is an ultimate version of what is sometimes called the
Pastur–Ishii theorem (see Section 7).
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Theorem 1.16. Let dµω be a family of measures associated to an er-

godic family of OPRL and let γ be its Lyapunov exponent. Let S ⊂ R
be the Borel set of x ∈ R with γ(x) > 0. Then for a.e. ω, there exists

Qω of capacity zero so dµω(S \ Qω) = 0. In particular, dµω ↾ S is of

local Hausdorff dimension zero.

We should explain what is really new in this theorem. It has been
known since Pastur [86] and Ishii [53] that for ergodic Schrödinger op-
erators, the spectral measures are supported on the eigenvalues union
the bad set where Lyapunov behavior fails (this bad set actually occurs,
e.g., [12, 60]). The classic result is that the bad set has Lebesgue mea-
sure zero. The new result here (elementary given a potential theoretic
point of view!) is that the bad set has capacity zero.

Section 8 describes examples, open questions, and conjectures. Sec-
tion 9 has some remarks on the possible extensions of these ideas to
continuum Schrödinger operators. Appendix A is a primer of potential
theory and Appendix B proves Theorem 1.1 on Chebyshev polynomials.

It is a pleasure to thank Jonathan Breuer, Jacob Christiansen, David
Damanik, Svetlana Jitomirskaya, Yoram Last, Christian Remling, Vil-
mos Totik, and Maxim Zinchenko for useful discussions. I would also
like to thank Ehud de Shalit and Yoram Last for the hospitality of the
Einstein Institute of Mathematics of the Hebrew University where part
of this paper was written.

2. Regular Measures for OPRL

In this section, our main goal is to prove Theorems 1.7 and 1.10
for OPRL. The key will be a series of arguments familiar to spectral
theorists as the Thouless formula, albeit in a different (nonergodic)
guise. The key will be an analog of positivity of the Lyapunov exponent
off the spectrum.

Lemma 2.1. (a) Let J be a bounded Jacobi matrix and let H be the

convex hull of the spectrum of J . For any ϕ ∈ L2(R, dµ),

|〈ϕ, (J − z)ϕ〉| ≥ dist(z,H)‖ϕ‖2 (2.1)

(b) The Jacobi parameters an obey (recall an > 0)

an ≤ 1
2

diam(H) (2.2)

Proof. In a spectral representation, J is multiplication by x. If d =
dist(z,H), there is ω ∈ ∂D with Re[(x− z)ω] ≥ d for all x ∈ H . Thus
Re(〈ϕ, (J − z)ϕ〉ω) ≥ d‖ϕ‖2, which yields (2.1).
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Let D = 1
2
diam(H) and c = center of H so H = [c−D, c+D]. Then

an =

∫
xpnpn−1 dµ

=

∫
(x− c)pnpn−1 dµ

≤ sup
σ(J)

|x− c| = D

proving (2.2). �

The following is related to the proof of Theorem 4.3.15 in [98]:

Proposition 2.2. Let dµ be a measure on R of compact support,

pn(x, dµ) the normalized OPRL, and H the convex hull of the sup-

port of dµ. For z /∈ H, let d(z) = dist(z,H). Let D = 1
2
diam(H).

Then for such z,

|pn(z, dµ)|2 ≥
(
d

D

)2(
1 +

(
d

D

)2)n−1

(2.3)

In particular, pn(z) 6= 0 for all n and

lim inf|pn(z, dµ)|1/n ≥
(

1 +

(
d

D

)2)1/2

> 1 (2.4)

Remark. Of course, it is well known that pn has all its zeros on H .

Proof. Let ϕn(x) be the function

ϕn(x) =
n∑

j=0

pn(z)pn(x) (2.5)

which has components ϕn = 〈p0(z), . . . , pn(z), 0, 0, . . . 〉 in pn(x) basis.
Then, by the recursion relation,

[(J − z)ϕn]j =





0 j 6= n, n+ 1

−an+1pn+1(z) j = n

an+1pn(z) j = n + 1

(2.6)

(a version of the CD formula!). Thus,

〈ϕn, (J − z)ϕn〉 = −an+1pn+1(z) pn(z) (2.7)

and (2.1) becomes

an+1|pn+1(z)pn(z)| ≥ d

n∑

j=0

|pj(z)|2 (2.8)
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By (2.2),

|pn+1(z)pn(z)| ≥ d

D

n∑

j=0

|pj(z)|2 (2.9)

Next use 2|xy| ≤ αx2 + α−1y2 for any α to see

|pn+1(z)pn(z)| ≤ 1

2

d

D
|pn(z)|2 +

1

2

D

d
|pn+1(z)|2 (2.10)

which, with (2.9), implies

|pn+1(z)|2 ≥
(
d

D

)2 n∑

j=0

|pj(z)|2 (2.11)

This implies that
n+1∑

j=0

|pj(z)|2 ≥
[
1 +

(
d

D

)2] n∑

j=0

|pj(z)|2 (2.12)

so, since p0(z) = 1, we obtain
n∑

j=0

|pj(z)|2 ≥
[
1 +

(
d

D

)2]n

(2.13)

(2.13) plus (2.11) imply (2.3), and that implies (2.4). �

Remark. (2.4) is also related to Schnol’s theorem (see [92, 93] and [98,
Lemma 4.3.13]) and to Combes–Thomas estimates [23, 1].

This yields the key estimate, given the following equality:

Theorem 2.3. Let dµ be a measure of compact support on R with H
the convex hull of supp(dµ). Let n(j) be a subsequence (i.e., n(1) <
n(2) < n(3) < . . . in {0, 1, 2, . . .}) so that the zero counting measures

dνn(j) have a weak limit dν∞ and so that (a1 . . . an(j))
1/n(j) has a nonzero

limit A. Then, for any z /∈ H,

lim
j→∞

|pn(j)(z)|1/n(j) = A−1 exp(−Φν∞(z)) (2.14)

where Φν is the potential of ν. In particular,

exp(−Φν∞(z)) > A (2.15)

Proof. (1.4) says that

|pn(j)(z)|1/n(j)(a1 . . . an(j))
1/n(j) = exp(−Φνn(j)

(z)) (2.16)

For z /∈ H , log|z − y|−1 is continuous on H so since νn and so ν∞
are supported on H (indeed, ν∞ is supported on σess(dµ)), Φνn(j)

(z) →
Φν∞(z) and (2.16) implies (2.14). By (2.4), LHS of (2.14) > 1, which
implies (2.15). �
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Note: (2.15) implies that Φν∞ is bounded above which, by arguments
of Craig–Simon [25], implies ν∞((−∞, E]) is log-Hölder continuous.
This is a new result, although the fact for ergodic Jacobi matrices is
due to Craig–Simon [25].

This yields an independent proof of Corollary 1.2 for OPRL, and
more:

Theorem 2.4. Under the hypotheses of Theorem 2.3, if E = σess(dµ),
then A ≤ C(E), and if A = C(E), then dν∞ = dρE, the equilibrium

measure for E. In particular, if µ is regular (i.e., lim(a1 . . . an)1/n =
C(E)), then dνn → dρE and (1.28) holds for z /∈ H.

Remark. Thus, we have proven Corollary 1.2 again, Theorem 1.7, and
one part of Theorem 1.10.

Proof. By (2.15) for z /∈ H ,

Φν∞(z) ≤ log(A−1) (2.17)

By lower semicontinuity, this also holds on H . Integrating dν∞ using
(A.6), we obtain

E(ν∞) ≤ log(A−1) (2.18)

Since infν(E(ν)) = log(C(E)−1), we obtain log(C(E)−1) ≤ log(A−1),
that is, A ≤ C(E). By uniqueness of minimizers, if A = C(E), dν∞ =
dρE and regularity implies dρE is the only limit point. By compactness,
dνn → dρE , and then, by (2.14), we obtain (1.28) for z /∈ H . �

Completion of the Proof of Theorem 1.10 for OPRL. We proved
above that (i) ⇒ (iv) and so, by the submean property of |f(z)|1/n

(alternatively, by the subharmonicity of log|f(z)|) for analytic func-
tions, we get (ii) also on H and thus have (i) ⇒ (ii) in full. (ii) ⇒ (iii)
is trivial.

(iii) ⇒ (i). Pick a subsequence n(j) so that (a1 . . . an(j))
1/n(j) →

lim inf(a1 . . . an(j))
1/n = A, and so νn(j) → ν∞. By (1.4) and Theo-

rem A.7, (iii) implies for q.e. x in E we have that Φν∞(x) ≥ log(A−1).
Thus, since dρE gives zero weight to zero capacity sets (see Proposi-
tion A.6) and (A.2),

log(A−1) ≤
∫

log Φν∞(x) dρE(x)

=

∫
ΦρE

(x) dν∞(x)

≤ log(C(E)−1) (2.19)
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by (A.23). Thus A−1 ≤ C(E)−1, so C(E) ≤ A. By Theorem 2.4 (or
Corollary 1.2), we see A = C(E), that is, µ is regular.

The reader may be concerned about this argument if A = 0. But in
that case, Theorem A.7 and (1.27) imply that q.e. on E, Φν(x) = ∞
which is inconsistent with Theorem A.11 (or with Corollary A.5). Thus
(1.27) implies A > 0.

(i) ⇒ (v). This is immediate from Theorem 2.4, the fact that equality

holds q.e. in (A.15) and in (A.23).

(ii) ⇒ (vi). Without loss, we can redefine Qn so ‖Qn‖L2(dµ) = 1. Then

Qn(z) =

n∑

j=0

cj,npj(z, dµ) (2.20)

where
n∑

j=0

|cj,n|2 = 1 ⇒ |cj,n| ≤ 1 (2.21)

Thus

|Qn(z)| ≤ n sup
0≤j≤n

|pj(z, dµ)| (2.22)

and (1.26) ⇒ (1.30). �

This completes the proof of Theorem 1.10 for OPRL and our pre-
sentation of the key properties of regular measures for OPRL. We turn
to relations between the support of dµ and regularity of the density of
zeros that will include Theorem 1.9.

Theorem 2.5. Let dµ be a measure of compact support, E, with Jacobi

parameters, {an, bn}∞n=1. Let n(j) be a subsequence so that dνn(j) has a

limit, dρE, the equilibrium measure for E. Then either

(a)

lim
j→∞

(a1 . . . an(j))
1/n(j) = C(E) (2.23)

or

(b) µ is carried by a set of capacity zero, that is, there is X ⊂ E of

capacity zero so µ(R \X) = 0.

Proof. Let A be a limit point of (a1 . . . an(j))
1/n. If A = 0, interpret

A−1 as ∞. By (2.16) and the upper envelope theorem (Theorem A.7),
we see for some subsubsequence ñ(j),

lim
j→∞

|pñ(j)(x)|1/ñ(j) = A−1 exp(−ΦρE
(x)) (2.24)
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for q.e. x. By Theorem A.10, ΦρE
(x) = log(C(E)−1) for q.e. x. So for

q.e. x ∈ E,

lim
j→∞

|pñ(j)(x)|1/ñ(j) = A−1C(E) (2.25)

On the other hand (see (4.14) below), for µ-a.e. x, we have

|pn(x)| ≤ C(x)(n + 1) (2.26)

so for such x,

lim sup|pn(x)|1/n ≤ 1 (2.27)

If A < C(E), then C(E)
A

> 1, so (2.27) can only hold on the set
of capacity zero where (2.25) fails, that is, either A = C(E) (since it
is always true that A ≤ C(E)) or µ is carried by a set of capacity
zero. �

Before leaving the subject of OPRL, we want to say something about
nonregular situations:

Theorem 2.6. Let µ be a fixed measure of compact support on R.

(a) The set of limit points of (a1 . . . an)1/n is always a closed interval.

(b) The set of limits of zero counting measures dνn is always a closed

compact set.

Remarks. 1. As quoted in [119], where the first proof of (a) appeared,
(a) is a theorem of Freud and Ziegler.

2. Part (b) was conjectured in Ullman [117] and is proven in Stahl–
Totik [105] (see Theorem 2.1.4 of [105]).

3. Stahl–Totik [105] also prove (their Theorem 2.2.1) that so long
as no carrier of µ has capacity zero, the existence of a limit for dνn(j)

implies the existence of a limit for (a1 . . . an(j))
1/n(j). However, as we

will see (Example 2.7), the converse is false.

Proof. We sketch the proof of (a); the proof of (b) can be found in
[105] and is similar in spirit. The set of limit points is a closed subset
of [0, C(E)]. If it is not connected, we can find limit points A < B and
c ∈ (A,B) which is not a limit point.

Thus, there are N and ε so for n > N ,

Γn ≡ (a1 . . . an)1/n /∈ (c− ε, c+ ε) (2.28)

Suppose Γn < c − ε and let D = 1
2
diam(cvh(supp(µ))) ≥ an by (2.2).

Then
Γn+1 = a

1/n+1
n+1 Γn/n+1

n ≤ D1/n+1(c− ε)n/n+1 (2.29)

Since RHS of (2.29) converges to c− ε, we can find N1 so

n ≥ N1 ⇒ RHS of (2.29) ≤ c (2.30)
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Thus n ≥ N , n ≥ N1, and Γn ≤ c− ε implies Γn+1 ≤ c− ε (by (2.28)).
It follows that Γn cannot have both A and B as limit points.

This contradiction proves the set of limit points is an interval. �

Example 2.7. This example shows that (a1 . . . an)1/n may have a limit
(necessarily strictly less than C(E)) but dνn does not. A more com-
plicated example appears as Example 2.2.7 in [105]. Let an ≡ 1 (so
(a1 . . . an)1/n → 1) and

bn =

{
1 N2ℓ ≤ n < N2ℓ+1

−1 N2ℓ+1 ≤ n < N2ℓ+2

where Nℓ = 23ℓ

. It is easy to see by looking at traces of powers of the
cutoff Jacobi matrix that dνN2

2ℓ
→ dρ[−1,3] and dνN2

2ℓ+1
→ dρ[−3,1]. �

There is another result about the set of limit points that should be
mentioned in connection with work of Ullman and collaborators. Define
cµ to be inf of the capacity of Borel sets, S, which are carriers of µ in
the sense that µ(R \ S) = 0. For example, if µ is a dense pure point
measure with support E = [−2, 2], µ is supported on a countable set,
so cµ = 0 even though C(E) = 1. Then, in general, Ullman shows that
any limit point of (a1 . . . an)1/n lies in [cµ, C(supp(dµ))], and Wyneken
[123] proved that given any µ and any [A,B] ⊂ [cµ, C(supp(dµ))], there
is η mutually equivalent to µ so the set of limit points of Γn(η) is [A,B]
(see also Theorem 5.4 below).

In particular, these results show that if cµ = C(supp(dµ)), then µ is
regular—a theorem of Ullman [114], although Widom [122] essentially
had the same theorem (this oversimplifies the relation between Widom
[122] and Ullman [114]; see [105, Ch. 4]). We have not discussed this
result in detail because the Stahl–Totik criterion of Theorem 1.13 es-
sentially subsumes these earlier works (at least for E a finite union of
closed intervals) and we will prove that in Section 5.

3. Regular Measures for OPUC

In this section, we will prove Theorem 1.10 for OPUC and an analog
of Theorem 1.7. Here one issue will be that if E = ∂D, the zero
density may not converge to a measure on ∂D. The key step concerns
Proposition 2.2, which essentially depended on the CD formula which
is only known for OPRL and OPUC, and where the OPUC version is
not obviously relevant. Instead, we will see, using operator theoretic
methods [101], that there is a kind of “half CD formula” that suffices.
We begin with an analog of Lemma 2.1:
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Lemma 3.1. (a) Let µ be a measure of compact support on C and H
the convex hull of the support of µ. Let Mz be multiplication by z
on L2(C, dµ). Then for any z0 ∈ C and ϕ ∈ L2(C, dµ), we have

|〈ϕ, (Mz − z0)ϕ〉| ≥ dist(z0, H)‖ϕ‖2 (3.1)

(b) Let D be defined by

D = min
w

[
max
z∈H

|z − w|
]

(3.2)

(which lies between 1
2
diam(H) and diam(H)). Then

‖Xn+1‖L2(dµ) ≤ D‖Xn‖L2(dµ) (3.3)

Proof. (a) Let ω ∈ ∂D. Then

|〈ϕ, (Mz − z0)ϕ〉| ≥
∫

Re((z − z0)ω̄)|ϕ(z)|2 dµ(z)

≥ min
z∈H

Re((z − z0)ω̄)‖ϕ‖2

Maximizing over ω yields (3.1).

(b) Since (z − w)Xn is a monic polynomial of degree n+ 1,

‖Xn+1‖ ≤ ‖(z − w)Xn‖ ≤ max
z∈H

|z − w|‖Xn‖

Minimizing over w yields (3.3). �

To get the analog of (2.7), we need

Proposition 3.2. Let dµ be a measure of compact support on C and

let Mz be multiplication by z on L2(C, dµ). Let K be the orthogonal

projection in L2(C, dµ) onto the n+1-dimensional subspace polynomials

of degree at most n. Then

[Mz , K]K =
‖Xn+1‖
‖Xn‖

[〈xn, · 〉xn+1] (3.4)

Remark. This is essentially “half” the CD formula; operator theoretic
approaches to the CD formula are discussed in [101].

Proof. For any ϕ,

[Mz, K]Kϕ = (1 −K)z(Kϕ) (3.5)

This clearly vanishes if Kϕ = 0 or if ϕ ∈ ranKn−1. Thus, it is a rank
one operator. Moreover, since (1 −K)zXn = Xn+1, we see

[Mz, K]KXn = Xn+1

Since Xn+1 = ‖Xn+1‖xn+1 and Xn = ‖Xn‖xn, we see that (3.4) holds.
�
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Proposition 3.3. Let dµ be a measure of compact support on C,

xn(z; dµ) the normalized OPs, and H the convex hull of the support

of dµ. For z0 /∈ H, let d(z0) = dist(z0, H) and let D be given by (3.2).
Then for such z0,

|xn(z0; dµ)|2 ≥
(
d

D

)2(
1 +

(
d

D

)2)n−1

(3.6)

In particular, xn(z0) 6= 0 for all n and

lim inf|xn(z0; dµ)|1/n ≥
(

1 +

(
d

D

)2)1/2

> 1 (3.7)

Remark. Again, it is well known (a theorem of Fejér) that zeros of xn

lie in H .

Proof. Define

ϕn(w) =

n∑

j=0

xj(z0)xj(w) (3.8)

We claim

〈ϕn, (Mz − z0)ϕn〉 = −‖Xn+1‖
‖Xn‖

xn(z0)xn+1(z0) (3.9)

This is precisely an analog of (2.7). Given this and Lemma 3.1, the
proof is identical to that of Proposition 2.2.

To prove (3.9), we note the integral kernel of Kn is

Kn(s, t) =
n∑

j=0

pj(s) pj(t) (3.10)

and that (3.4) says
∫

(s− w)Kn(s, w)Kn(w, t) dµ(w) =
‖Xn+1‖
‖Xn‖

xn+1(s) xn(z0) (3.11)

(3.11) originally holds for a.e. s, t in supp(dµ), but since both sides are
polynomials in s and t̄, for all s, t. Setting s = t = z0, (3.11) is just
(3.9). �

Now we want to specialize to OPUC. The zeros in that case lie in D.
One defines the balayage of the zeros measure, dνn, on ∂D by

P(dν) = F (θ)
dθ

2π
(3.12)

where

F (θ) =

∫
1 − |z|2
|eiθ − z|2 dνn(z) (3.13)
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It is the unique measure on ∂D with
∫
zkP(dνn) =

∫
zk dνn(z) (3.14)

for k ≥ 0 (see [98, Prop. 8.2.2]).
Since |z| > 1 ≥ |w| implies

log|z − w|−1 = − log|z| + Re

( ∞∑

j=1

1

j

(
w

z

)j)
(3.15)

by (3.14), we have

|z| > 1 ⇒ Φνn
(z) = ΦP(dνn)(z) (3.16)

If dνn → dν∞, then P(dνn) → P(dν∞), and this equals dν∞ if dν∞ is
a measure on ∂D. If supp(dµ) $ ∂D, then it is known that the bulk of
the zeros goes to ∂D (Widom’s zero theorem; see [98, Thm. 8.1.8]), so
dν∞ is a measure on ∂D. It is also known (see [98, Thm. 8.2.7]) that the
zero counting measures for the paraorthogonal polynomials (POPUC)
have the same weak limits as P(dνn). The analogs of Theorems 2.3
and 2.4 are thus:

Theorem 3.4. Let dµ be a measure on ∂D, the unit circle. Let n(j)
be a subsequence with n(1) < n(2) < . . . so that (ρ1 . . . ρn(j))

1/n(j) has

a nonzero limit A and so that there is a measure dν∞ on ∂D which is

the weak limit of P(dνn(j)) (equivalently, of dνn(j) if supp(dµ) 6= ∂D;

equivalently, of the zero counting measures of POPUC). Then for any

|z| > 1 or z /∈ ∂D \ supp(dµ),

lim
j→∞

|ϕn(j)(z)|1/n(j) = A−1 exp(−Φν∞(z)) (3.17)

In particular,

exp(−Φν∞(z)) ≥ A (3.18)

It follows that if E = σess(dµ), then A ≤ C(E), and if µ is regular

(i.e., (ρ1 . . . ρn)1/n → C(E)), then every limit point of P(dνn(j)) is

the equilibrium measure dνE. So P(dνn) → dνE (and if E 6= ∂D,

dνn → dνE).

Proof. Given the above discussion and results, this is identical to the
proofs of Theorems 2.3 and 2.4. �

By mimicking the proof we give for Theorem 1.10 for OPRL, we
obtain the same result for OPUC.
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4. Van Assche’s Proof of Widom’s Theorem

In this section, we will prove Theorem 1.12 using part of Van Assche’s
approach [120]. The basic idea is simple: By a combination of Cheby-

shev’s inequality and the Borel–Cantelli lemma, if ‖Pn(j)‖1/n(j)
L2(dµ) → A,

then for dµ-a.e. x, we have lim supj→∞|Pn(j)(x)|1/n(j) ≤ A. By us-
ing some potential theory, we will find that the density of zeros mea-
sure, dν, supported on E obeys for q.e. x, Φν(x) ≥ log(A−1) a.e. dµ.
Since dρE is a.c. with respect to dµ, this will imply

∫
ΦρE

(x) dν(x) ≥
log(A−1). But by potential theory again, ΦρE

(x) ≤ log(C(E)−1), so we
will have A−1 ≤ C(E)−1, that is, C(E) ≤ A.

Lemma 4.1. Let dµ be a probability measure on a measure space X.

Let fn(j) be a sequence of functions indexed by integers 1 ≤ n(1) <
n(2) < . . . . Suppose for some 1 ≤ p <∞,

lim sup
j→∞

‖fn(j)‖1/n(j)
Lp = A (4.1)

Then for dµ-a.e. x,

lim sup|fn(j)(x)|1/n(j) ≤ A (4.2)

Proof. Fix B > A. Then

µ(Sj(B)) ≡ µ({x | |fn(j)(x)| > Bn(j)}) ≤ ‖fn(j)‖p
Lp

Bn(j)p
(4.3)

By (4.1) and B > A, we see
∑

j

µ(Sj(B)) <∞

so for µ-a.e. x, there is J(x) with x /∈ Sj for all j > J(x). Thus, for
µ-a.e. x,

lim sup|fn(j)(x)|1/n(j) ≤ B

Since B is arbitrary, we have (4.2). �

Proof of Theorem 1.12. Let A be a limit point of ‖Pn(j)‖1/n(j)

L2(dµ). By

passing to a subsequence, we can suppose the zero counting measure
dνn(j) has a limit dν∞ which, by Proposition 1.8, is supported on E.

By Lemma 4.1 for a.e. x(dµ),

lim sup|Pn(j)(x)|1/n(j) ≤ A (4.4)

By (1.4) for such x,

lim sup exp(−Φνn(j)
(x)) ≤ A (4.5)
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By the upper envelope theorem (Theorem A.7) for q.e. x ∈ C,

Φν∞(x) = lim inf Φνn(j)
(x) (4.6)

Thus, there exist sets S1 and S2 so that µ(S1) = 0 and C(S2) = 0, so
that for x ∈ C \ (S1 ∪ S2),

Φν∞(x) ≥ log(A−1) (4.7)

We can now repeat the argument that led to (2.19). By hypothesis,
dρE is dµ-a.c. So ρE(S1) = 0 and, of course, since E(ρE) <∞, ρE(S2) =
0. Thus, (4.7) holds a.e. dρE .

Therefore, by (A.2),

log(A−1) ≤
∫

Φν∞(x) dρE(x)

=

∫
ΦρE

(x) dν∞(x)

≤ log(C(E)−1)

by (A.23).
Thus, A−1 ≤ C(E)−1 or C(E) ≤ A. Thus, lim inf ‖Pn‖1/n ≥ C(E).

Since (see (1.15)), lim sup ‖Pn‖1/n ≤ C(E), we have regularity. �

The above proof is basically a part of Van Assche’s argument [120]
which can be simplified since he proves that dν∞ = dρE by a direct
argument using similar ideas, and we can avoid that because of the
general argument in Section 2.

This argument can also prove a related result—we will see examples
of this phenomenon at the end of the next section.

Theorem 4.2. Suppose µ is a measure of compact support on R so

E ⊂ supp(dµ) for an essentially perfect compact set E with C(E) > 0.
Suppose dρE is a.c. with respect to dµ, and for some n(1) < n(2) < . . . ,
we have

‖Pn(j)‖1/n(j)

L2(R,dµ) → C(E) (4.8)

for the monic Pn(x, dµ). Let dνn(j) be the corresponding zero counting

measure. Then dνn(j)
w−→ dρE.

Remarks. 1. We have in mind cases where E is a proper subset of
supp(dµ). There will be many subsets with the same capacity, but
there can only be one that has dρE a.e. with respect to dµ.

2. Since dµ ↾ E is regular (by Theorem 1.12) and
‖Pn(j)( · , µ)‖L2(dµ) ≥ ‖Pn(j)( · , µ ↾ E)‖L2(dµ↾E), we see that

lim inf ‖Pn‖1/n
L2(R,dµ) ≥ C(E)
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so (4.8) is equivalent to a lim sup assumption.

Proof. Let dν∞ be a limit point of dνn(j). As in the proof of Theo-
rem 1.12, there exist sets S1 with µ(S1) = 0 and S2 with C(S2) = 0, so
for x ∈ C \ (S1 ∪ S2), we have

Φν∞(x) ≥ log(C(E)−1) (4.9)

Since ρE(S1) = 0 by the assumption and ρE(S2) = 0 since C(E) > 0,
(4.9) holds for ρE-a.e. x. Moreover, since

ΦρE
(z) ≤ log(C(E)−1) (4.10)

for all z,

log(C(E)−1) ≤
∫

Φν∞(x) dρE(x)

=

∫
ΦρE

(x) dν∞(x)

≤ log(C(E)−1) (4.11)

Thus, using (4.10), we see

ΦρE
(x) = log(C(E)−1)

for ν∞-a.e. x. But ΦρE
(z) < log(C(E)−1) for all z /∈ E, so ν∞ is

supported on E. By (4.11) and (4.9), Φν∞(x) = log(C(E)−1) for dρE-
a.e. x. By Theorem A.14, ν∞ = ρE . �

There is an alternate way to prove (4.4) without Lemma 4.1 that
links it to ideas more familiar to spectral theorists. It is well known
that for elliptic PDEs, there are polynomially bounded eigenfunctions
for a.e. energy with respect to spectral measures. This is called the
BGK expansion in [94] after Berezanskĭı[14], Browder [20], G̊arding
[40], Gel’fand [41], and Kac [62]. The translation to OPRL is discussed
in Last–Simon [75]. Since

∫
|pn(x)|2 dµ = 1, we have

∞∑

n=0

(n+ 1)−2

∫
|pn(x)|2 dµ <∞ (4.12)

and thus, for dµ-a.e. x,
∞∑

n=0

(n+ 1)−2|pn(x)|2 <∞ (4.13)

so

|Pn(x)| ≤ C(x)(n+ 1)‖Pn‖L2 (4.14)

which implies (4.4).
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It is interesting to note that if E is such that it is regular and dρE

is purely absolutely continuous on E = supp(dρE), one can use these
ideas to provide an alternate proof (see Simon [100] for still another
alternate proof in this case). For in that case, the measure associated
to the second kind polynomials, qn(x), also has a.c. weight w̃(x) > 0
for a.e. x in E, and thus

|qn(x)| ≤ C(x)(n + 1) (4.15)

which, by constancy of the Wronskian, implies

|pn(x)|2 + |pn+1(x)|2 ≥ C̃(x)(n+ 1)−1 (4.16)

If dνn(j) → dν∞, so does dνn(j)+1 (by interlacing of zeros), and thus, by

(4.14) and (4.16), if lim(a1 . . . an(j))
1/n(j) → A, then

− log(A) +

∫
log(|x− y|−1) dν∞(y) = 0 (4.17)

for x ∈ E but with a set of Lebesgue measure zero and of capacity
zero removed. By Theorem A.14, we conclude that A = C(E) and
dν∞ = dρE .

Remark. We note that (4.17) holds a.e. on the a.c. spectrum and
by the above arguments, a.e. on that spectrum, 1

n
log ‖Tn(x)‖ → 0, a

deterministic analog of the Pastur–Ishii theorem.

5. The Stahl–Totik Criterion

In this section, we will present an exposition of Stahl–Totik’s proof
[105] of their result, our Theorem 1.13. As a warmup, we prove

Theorem 5.1. Let dµ be a measure on ∂D obeying

inf
θ0

µ({eiθ | |θ − θ0| ≤ 1
m
}) ≥ Cδe

−δm (5.1)

for all δ > 0. Then µ is regular.

Proof. We will use Bernstein’s inequality that for any polynomial, Pn,
of degree n,

sup
z∈D

|P ′
n(z)| ≤ n sup

z∈∂D

|Pn(z)| (5.2)

Szegő’s simple half-page proof of this can be found, for example, in
Theorem 2.2.5 of [98].

Applying this to the monic polynomials Φn(z; dµ), we see that if θn is
chosen with |Φn(eiθn ; dµ)| = ‖Φn‖∂D, the sup norm, and |θ − θn| ≤ 1

2n
,

then

|Φn(eiθ; dµ)| ≥ 1
2
‖Φn‖∂D (5.3)
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Thus, by (5.1) with m = 2n,

‖Φn( · ; dµ)‖2
L2(dµ) ≥ (1

4
‖Φn‖2

∂D)Cδe
−2δn (5.4)

Since Φn( · ; dµ) is monic,
∫

Φn(eiθ; dµ)e−inθ dθ

2π
= 1 (5.5)

so the sup norm obeys

‖Φn‖∂D ≥ 1 (5.6)

and so (5.4) implies

lim inf ‖Φn( · ; dµ)‖1/n

L2 ≥ e−2δ

Since δ is arbitrary, the lim inf is larger than or equal to 1. Since
C(E) = 1, µ is regular. �

There are two issues with just using these ideas to prove Theo-
rem 1.13. While (5.5) is special for ∂D, its consequence, (5.6), is really
only an expression of ‖Tn‖E ≥ C(E)n (see (B.8)), so it is not an issue.

However, (5.2) only holds because a circle has no ends. The analog
for, say, [−1, 1] is Bernstein’s inequality

|p′(x)| ≤ n√
1 − x2

‖p‖[−1,1] (5.7)

or (Markov’s inequality)

|p′(x)| ≤ n2‖p‖[−1,1] (5.8)

Either one can be used to obtain a theorem like Theorem 5.1 on [−1, 1]
but e−δm needs to be replaced by e−δ

√
m—interesting, but weaker than

Theorem 1.13.
The other difficulty is that (5.1) is global, requiring a result uniform

in θ0, and (1.33) needs only a result for most θ0. The problem with
using bounds on derivatives is that they only get information on a
single set of size O( 1

n
) at best. They get |pn(x)| ≥ 1

2
‖pn‖E there, but

that is overkill—we only need |pn(x)| ≥ e−δ′n‖pn‖E, and that actually
holds on a set of size O(1)! The key will thus be a variant of the Remez
inequality in the following form:

Proposition 5.2. Fix E a finite union of closed bounded intervals in

R. Then there is c(δ) > 0 with c(δ) → 0 as δ ↓ 0, so that for any

F ⊂ E with |E \ F | < δ, we have

‖Qn‖E ≤ ec(δ)n‖Qn‖F (5.9)

for any polynomial, Qn, of degree n.
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Remarks. 1. This is a variant of an inequality of Remez [89]; see the
proof for his precise result.

2. The relevance of Remez’s inequality to regularity appeared al-
ready in Erdös–Turán [34] and was the key to the proof in Freud [39]
of the Erdös–Turán theorem, Theorem 1.11. Its use here is due to
Stahl–Totik [105].

Proof. If E = I1 ∪ · · · ∪ Iℓ disjoint intervals and |E \ F | ≤ δ, then
|Ij \Ij ∩F | ≤ δ for all j, so it suffices to prove this result for each single
interval and then, by scaling, for E = [−1, 1].

In that case, Remez’s inequality (due to Remez [89]; see Borwein–
Erdélyi [15] for a proof and further discussion) says that if F ⊂ [−1, 1]
and |[−1, 1] \ F | ≤ δ, then with Tn the classical first kind Chebyshev
polynomials,

‖Qn‖E ≤ Tn

(
2 + δ

2 − δ

)
‖Qn‖F (5.10)

(This can be proven by showing the worst case occurs when F =
[−1, 1 − δ] and Qn(x) = Tn(2x+δ

2−δ
).)

Since

Tn(cosh(x)) = cosh(nx) ≤ enx (5.11)

and cosh(ε) = 1 + ε2

2
+O(ε4), we have

Tn

(
2 + δ

2 − δ

)
≤ exp

(
n[
√

2δ +O(δ3/2)]
)

(5.12)

so for E = [−1, 1], (5.9) holds with c(δ) =
√

2δ +O(δ3/2). �

Lemma 5.3. If Pn is a real polynomial of degree n, and a > 0, S ≡
{λ ∈ R | |Pn(x)| > a} is a union of most (n+ 1) intervals.

Proof. ∂S is the finite set of points where Pn(x) = ±a. If all the zeros
of Pn ± a are simple, these boundary points are distinct. Including
±∞ so each interval has two “endpoints,” these intervals have at most
2n+2 distinct endpoints (and exactly that number if all roots of Pn±a
are real). If some root of Pn ± a is double, two intervals can share an
endpoint but that endpoint counts twice in the zeros. �

Proof of Theorem 1.13. By Proposition B.3, if Pn(x) = Pn(x; dµ), then

sup
x∈E

|Pn(x)| ≥ c(E)n (5.13)

Fix δ1 and let

F = {x | |Pn(x)| ≤ c(E)ne−2c(δ1)n} (5.14)
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If |E\F | < δ1, then (5.9) would imply ‖Pn‖E ≤ c(E)ne−c(δ1)n, violating
(5.13). So

|E \ F | ≥ δ1 (5.15)

By Lemma 5.3, R \ F is a union of at most n + 1 intervals, so if E
is a union of ℓ intervals, E \ F consists of at most ℓ(n+ 1) intervals (a
very crude overestimate that suffices for us!).

Some of these intervals may have size less than δ1
4nℓ

, but the total size

of those is at most δ1
2
, so we can find disjoint intervals I

(n)
1 , . . . , I

(n)
k(n) in

E \ F , so

|I(n)
j | ≥ δ1

4nℓ

∣∣∣∣
k(n)⋃

j=1

I
(n)
j

∣∣∣∣ ≥
δ1
2

(5.16)

Let Ĩ
(n)
j be the interval of size 1

2
|I(n)

j | and the same center. Then

with L(n)(δ1) = ∪k(n)
j=1 Ĩ

(n)
j , we have

|L(n)(δ1)| ≥
δ1
4

(5.17)

|Pn(y)| ≥ c(E)ne−2c(δ1)n if dist(y, L(n)(δ1)) ≤
δ1

16nℓ
(5.18)

Now define for any δ2 > 0 and m,

J(m, δ2) = {x | µ(x− 1
m
, x+ 1

m
) ≥ e−δ2m}

By hypothesis, for any fixed δ2,

lim
m→∞

|E \ J(m, δ2)| = 0

and, in particular, for any fixed integer M, for all large n,

|E \ J(Mn, δ2)| <
δ1
4

(5.19)

so, in particular,

J(Mn, δ2) ∩ L(n)(δ1) 6= ∅ (5.20)

Given δ1, pick M so large that

M−1 ≤ δ1
16ℓ

(5.21)

If x lies in the set on the left side of (5.20), let I = {y | |x− y| ≤ 1
Mn

}.
Then since 1

Mn
≤ δ1

16nℓ
, for y ∈ I,

|Pn(y)| ≥ c(E)ne−2c(δ1)n (5.22)

since x ∈ L(n)(δ1) and (5.18) holds. By x ∈ J(Mn, δ2),

µ(I) ≥ e−Mδ2n (5.23)
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Thus,

‖Pn‖L2 ≥ c(E)ne−2c(δ1)ne−MNδ2/2 (5.24)

so

lim inf ‖Pn‖1/n

L2 ≥ c(E)e−2c(δ1)e−Mδ2/2 (5.25)

First pick δ1, then fix M by (5.21) (recall ℓ is fixed as the num-
ber of intervals in E) and let δ2 = δ1

M
. Then take δ1 ↓ 0 and get

lim inf ‖Pn‖1/n
L2 ≥ c(E), proving regularity. �

Here is a typical application of the Stahl–Totik criterion. It illus-
trates the limitations of regularity criteria like those of [114, 122] that
only depend on what sets are carriers for µ. This result is a special
case of a theorem of Wyneken [123].

Theorem 5.4. Let µ be a measure whose support is E, a finite union

of closed intervals. Then there exists a measure η equivalent to µ which

is regular.

Proof. For any n, define

µn =
∑

{j|µ(( j
n

, j+1
n

])>0}

µ

((
j

n
,
j + 1

n

])−1

µ ↾

(
j

n
,
j + 1

n

]
(5.26)

Then µn has total mass at most n(|E| + ℓ) where ℓ is the number of
intervals. Let

η =
∞∑

n=1

n−3µn (5.27)

which is easily seen to be equivalent to µ.
Notice that if dist(x,R \ E) > 1

n
, then [x − 1

n
, x + 1

n
] contains an

interval of the form ( j
2n
, j+1

2n
], so µ2n([x− 1

n
, x+ 1

n
]) ≥ 1. Thus

∣∣{x
∣∣ η([x− 1

n
, x+ 1

n
]) ≤ 8n−3

}∣∣ ≤ 2ℓ
n

(5.28)

and (1.33) holds. �

By using point measures, it is easy to construct nonregular measures,
including ones that illustrate how close (1.34) is to being ideal. The
key is

Theorem 5.5. Let {xj}∞j=1 be a bounded sequence in R and {aj}∞j=1

an ℓ1 sequence of positive numbers. Let

µ =

∞∑

j=1

ajδxj
(5.29)
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Let

d = max
j,k

|xj − xk| (5.30)

Then

‖Pn(x, dµ)‖L2(R,dµ) ≤ dn

( ∞∑

j=n+1

aj

)1/2

(5.31)

Proof. Let Qn(x) =
∏n

j=1(x− xj), which kills the contributions of the

pure points at {xj}n
j=1, so

‖Qn‖2 ≤
∞∑

j=n+1

d2naj (5.32)

by (5.30). Since ‖Pn‖ ≤ ‖Qn‖, (5.31) is immediate. �

Corollary 5.6. Let {xj}∞j=1 be an arbitrary bounded subset of R. Then

there exists a pure point measure dµ with precisely this set as its set of

pure points, so that ‖Pn‖1/n → 0. In particular, if E is any compact

set with C(E) > 0, there is a measure µ with supp(µ) = E and µ not

regular.

Proof. Pick aj = e−j2
so (

∑∞
j=n+1 aj)

1/2n → 0. �

Example 5.7. The following illuminates (1.33). For 2n ≤ k < 2n+1,
let xk = k−2n

2n and let 0 < y < 1. Define

dµ =
∞∑

k=1

ykδxk
(5.33)

The xk are not distinct, but that does not change the bound (5.31).
Thus

lim sup ‖Pn‖1/n ≤ y (5.34)

Since C([0, 1]) = 1
4
, the measure is not regular if y < 1

4
. On the other

hand, if 2n ≤ m ≤ 2n+1 and x0 ∈ [0, 1], there is an xk with |xk−x0| ≤ 1
m

and 2n ≤ k < 2n+1. Thus

µ([x0 − 1
m
, x0 + 1

m
]) ≥ yk ≥ y2n+1 ≥ y2m

so (1.33) holds for η = − log y2, that is, for some but not all η. This
shows the exponential rate in Theorem 1.13 cannot be improved. �

Example 5.8. We will give an example of a measure dµ on [−2, 2]
which is a.c. on [−2, 0] and so that among the limit points of the zero
counting measures, dνn are both dρ[−2,2] and dρ[−2,0], the equilibrium
measure for [−2, 2] and for [−2, 0]. This will answer a question asked
me by Yoram Last, in reaction to Remling [90], whether a.c. spectra
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force the existence of a density of states and also show that bounds on
limit points of dνn of Totik–Ullman [112] and Simon [100] cannot be
improved.

We define dµ by

dµ ↾ [−2, 0] = (−x(x+ 2))−1/2 dx (5.35)

picked so the OPRL for the restriction are multiples of the Chebyshev
polynomials for [−2, 0]

dµ ↾ [0, 2] =
∞∑

n=1

an dηn (5.36)

where dηn is concentrated uniformly at the dyadic rationals of the form
k/2n not previously “captured,” that is,

dηn =

2n−1∑

j=0

1

2n
δ(2j+1)/2n−1 (5.37)

The an’s are carefully picked as follows. Define Nj inductively by

N1 = 1 Nj+1 = 2N3
j (5.38)

and

an =

{
1
n2 N2k−1 < N ≤ N2k

2−n4
N2k < n ≤ N2k+1

Our goal will be to prove that

dν
2

N2
2k

→ dρ[−2,0] dν
2

N2
2k+1

→ dρ[−2,2] (5.39)

Intuitively, for m = 2N2
2k+1, the measures at level 1/m will be uniformly

spaced out (on an exponential scale), so by the Stahl–Totik theorem,
the zeros will want to look like the equilibrium measure for [−2, 2].

But for m = 2N2
2k , most intervals of size 1/m in [0, 2] will have tiny

measure, so the zeros will want to almost all lie on [−2, 0], where the
best strategy for these (to minimize

∫
P 2

m dµ) will be to approximate
the equilibrium measure for [−2, 0].

As a preliminary, we will show

lim sup ‖Pn‖1/n = 1 lim inf ‖Pn‖1/n = 1
2

(5.40)

lim
k→∞

‖P
2

N2
2k
‖1/2N2

2k = 1
2

lim
k→∞

‖P
2

N2
2k+1

‖
1/2

N2
2k+1

= 1 (5.41)

We begin with

lim sup ‖Pn‖1/n ≤ 1 lim inf ‖Pn‖1/n ≥ 1
2

(5.42)
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The first is immediate from (1.15) and C([−2, 2]) = 1; the second
from ‖Pn(x, dµ)‖ ≥ ‖Pn(x, dµ ↾ [−2, 0])‖ (by (1.12)), regularity of
dµ ↾ [−2, 0], and C([−2, 0]) = 1

2
.

Next, we turn to

lim sup
k→∞

‖P
2

N2
2k
‖1/2N2

2k ≤ 1
2

(5.43)

Let Tn(x; [−2, 0]) be the Chebyshev polynomials for [−2, 0] (which are
just affinely related to the classic Chebyshev polynomials of the first
kind) and let

Q
2

N2
2k

(x) = T
2

N2
2k

−N2k
(x; [−2, 0])

2N2k∏

ℓ=1

(
x− ℓ

2N2k−1

)
(5.44)

so by (1.12),

‖P
2

N2
2k
‖ ≤ ‖Q

2
N2

2k
‖ ≤ 1 + 2 (5.45)

where 1 is the contribution of the integral from [−2, 0] and 2 from
(0, 2).

Since cos ℓx = 2ℓ−1(cosx)ℓ+ lower order and the average of cos2 x is
1
2
, for any [a, b],

‖Tm(x; [a, b])‖ =
√

2C([a, b])m (5.46)

where the norm is over L2(R, dρ[a,b]). Since the product in (5.44) is

bounded by 42N2k on [−2, 2], we have

1 ≤
√

2 (1
2
)2N2

2k
−N2k

42N
2k (5.47)

On the other hand, there is a constant K so

‖Tm(x; [−2, 0])‖L∞([−2,2]) ≤ Km (5.48)

and the product in (5.44) kills all the pure points up to level N2k:

2 ≤ K2N2k

∞∑

n=N2k

an

≤ K2N2k [N2k+12
−N4

2k + (N2k+1)
−1]

is much smaller than the right side of (5.47) for k large. Thus, by
(5.47),

lim sup
(

1 + 2
)1/2N2

2k

≤ 1
2

(5.49)

proving (5.43).
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In verifying (5.40), we finally prove that

lim inf
k→∞

‖P
2

N2
2k+1

‖1/2
N2

2k+1 ≥ 1 (5.50)

By the fact that the Chebyshev polynomials for [−2, 2] obey

Tn(2 cosx; [−2, 2]) = 2 cosnx (5.51)

has ‖Tn‖L∞([−2,2]) = 2, we see

‖Pm‖L∞([−2,2]) ≥ 2 (5.52)

By Markov’s inequality (5.8), we have

‖P ′
m‖L∞([−2,2]) ≤ m2

2
‖Pm‖L∞([−2,2]) (5.53)

so there is an interval of size 4/m2 where Pm(x) ≥ 1, that is,

‖Pm(x)‖2
L2(dµ) ≥ inf

y∈[−2,2]
µ([y − 2

m2 , y + 2
m2 ]) (5.54)

which implies that

‖P
2

N2
2k+1

‖L2(µ) ≥ a
2

N2
2k+1

2−N2
2k+1 (5.55)

so it is bounded from below by a power of 2−N2
2k+1 . Since m−ℓ/m → 1

for any fixed ℓ, we obtain (5.50).
Clearly, (5.42), (5.43), and (5.50) imply (5.40) and (5.41). We now

only need to go from there to results on limits of dνn. By Theorem 2.4,
the second equality in (5.41) implies the second limit result in (5.39).
By Theorem 4.2, the first equality in (5.41) implies the first limit result
in (5.39). �

Example 5.9. Here is an example of a measure dµ on [0, 1] where the
density of zeros has a limit singular relative to the equilibrium measure
for [0, 1]. Such examples are discussed in [105] and go back to work
of Ullman. Let Σ be the classical Cantor set and dρΣ its equilibrium
measure. Let

dµ = dρΣ +

∞∑

n=1

2−n4

( 2n−1∑

j=0

1

2n
δ(2j+1)/2n

)
(5.56)

As in the above construction, one shows ‖Pn‖1/n → C(Σ) and then
Theorem 4.2 implies that dνn → dρΣ which is singular with respect to
Lebesgue measure, and so relative to dρ[0,1] ≡ dρsupp(dµ). �
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6. Structural Results

In this section, we will focus on the mutual regularity of related
measures. There are three main theorems, all from Stahl–Totik [105]:

Theorem 6.1. Let µ, η be two measures of compact support whose

supports are equal up to sets of capacity zero. If µ ≥ η and η is regular,

then so is µ.

Theorem 6.2. Let {En}∞n=1 and E∞ be compact subsets of C so that

E∞ and ∪∞
n=1En agree up to sets of capacity zero and C(E∞) > 0.

Let µ be a measure with supp(dµ) = E∞ so that each µ ↾ Ej which is

nonzero is regular. Then µ is regular.

Remark. By µ ↾ K, we mean the measure

(µ ↾ K)(S) = µ(K ∩ S) (6.1)

To understand why the next theorem is so restrictive compared to
Theorem 6.2, consider

Example 6.3. Let E be the standard Cantor set in [0, 1]. Let η be a
measure on E which is not regular (see Corollary 5.6) and let

dµ = dη + dx ↾ [0, 1] (6.2)

By Theorem 6.1, dµ is regular. But dµ ↾ E = dη is not regular. �

Theorem 6.4. Let I = [a, b] be a closed interval with I ⊂ E ⊂ R
and E compact. Let µ be a regular measure with support in E so

C(supp(µ ↾ I)) > 0. Then µ ↾ I is regular.

Remarks. 1. We do not require that supp(dµ) = E (nor that I ⊂
supp(dµ)) but only that supp(dµ) ⊂ E and that µ is regular in the

sense that C(supp(dµ)) > 0 and ‖Pn( · , dµ)‖1/n

L2(dµ) → C(supp(dµ)).

2. The analog of the sets I in [105] must have nonempty two-
dimensional interior. Our I obviously has empty two-dimensional inte-
rior, but if I = [a, b] ⊂ E ⊂ R and if D is the disk {z | |z− 1

2
(a+ b)| ≤

1
2
|b− a|}, then µ ↾ D = µ ↾ I.

The proofs of Theorems 6.1 and 6.2 will be easy, but Theorem 6.4
will be nontrivial. Here are some consequences of these results:

Corollary 6.5. Let µ, ν be two regular measures (with different sup-

ports allowed). Then their max, µ ∨ ν, and sum, µ+ ν, are regular.

Remark. See Doob [33] for the definition of µ ∨ ν.
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Proof. µ+ ν and µ∨ ν have the same support and µ+ ν ≥ µ∨ ν so, by
Theorem 6.1, we only need the result for µ ∨ ν. Let E1 = supp(µ) and
E2 = supp(ν), so supp(µ∨ν) = E1∪E2. By definition, (µ∨ν) ↾ E1 ≥ µ
and they have the same supports. So, by Theorem 6.1, µ ∨ ν ↾ E1 is
regular. Similarly, µ ∨ ν ↾ E2 is regular. By Theorem 6.2, µ ∨ ν is
regular. �

Corollary 6.6. Let E = I1∪· · ·∪Iℓ be a union of finitely many disjoint

closed intervals. Let µ be a measure on E. Then µ is regular if and

only if each µ ↾ Ij is regular.

Proof. Immediate from Theorems 6.2 and 6.4. �

Proof of Theorem 6.1. Since (1.12) holds,

‖Xn‖L2(dη) ≤ ‖Xn‖L2(dµ) (6.3)

Given (1.15), we have (with E = supp(dµ))

lim ‖Xn‖1/n

L2(dη) = C(E) ⇒ lim ‖Xn‖1/n

L2(dµ) = C(E) �

Proof of Theorem 6.2. Let µj = µ ↾ Ej and let xn(z) be the xn’s for
dµ. Then

‖xn‖L2(dµj) ≤ ‖xn‖L2(dµ) = 1 (6.4)

so

|xn(z)| ≤ |xn(z)|
‖xn‖L2(dµj )

(6.5)

By regularity and Theorem 1.10(vi), for q.e. z ∈ Ej (using GEj
(z) = 0

for q.e. z ∈ Ej by Theorem A.10(b) and (A.40)), we see for q.e. x ∈ Ej,

lim sup
n→∞

|xn(z)|1/n ≤ 1 (6.6)

Since ∪∞
j=1Ej is q.e. E, we have (6.6) q.e. on all of E. By (iii) ⇒ (i) in

Theorem 1.10, µ is regular. �

To prove Theorem 6.4, we first make a reduction:

Proposition 6.7. Suppose there is I = [a, b] ⊂ E ⊂ R (with a < b), µ
regular, C(supp(µ ↾ I)) > 0 but

lim inf ‖Pn( · , µ ↾ I)‖1/n

L2(µ↾I) < C(supp(µ ↾ I)) (6.7)

Then there exists a µ, perhaps distinct but also regular and supported

on E, so that (6.7) holds and

lim inf ‖Pn( · , µ ↾ I)‖1/n

L2(µ↾I) > 0 (6.8)
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Proof. If (6.8) holds for the initial µ, we can stop. Otherwise, we will
take

µ̃ = µ+ ρF (6.9)

where F = [x0 − δ, x0 + δ] ⊂ I with x0 = 1
2
(a + b) and δ sufficiently

small chosen later.
By Corollary 6.5, µ̃ is regular and, by (6.3),

‖Pn( · , µ̃ ↾ I)‖1/n
L2(µ̃↾I) ≥ ‖Pn( · , ρF )‖1/n

L2(ρF )

so (6.8) holds since

lim
n→∞

‖Pn( · , ρF )‖1/n

L2(ρF ) = C(F ) > 0

Thus, we need only prove that (6.7) holds for suitable δ. Since we
are supposing (6.8) fails for µ, pick n(j) → ∞ so

‖Pn(j)( · , µ ↾ I)‖1/n(j)

L2(µ↾I) → 0 (6.10)

Define

Q2n(j)(x) = Pn(j)(x, µ ↾ I)(x− x0)
n(j) (6.11)

Let d = diam(E) and note that on E, since x0 ∈ I ⊂ E,

|x− x0|n(j) ≤ dn(j) (6.12)

and since Pn(j) has all its zeros in cvh(E), for x ∈ E,

|Pn(j)(x)| ≤ dn(j) (6.13)

Thus,

‖Q2n(j)‖2
L2(µ̃↾I) = ‖Pn(j)(· − x0)

n(j)‖2
L2(µ↾I) + ‖Pn(j)(· − x0)

n(j)‖2
L2(dρE)

≤ d2n(j)‖Pn(j)‖2
L2(µ↾I) + d2n(j)δ2n(j) (6.14)

Using (6.10), we see

lim sup ‖Q2n(j)‖1/2n(j)
L2(µ̃↾I) ≤ d1/2δ1/2 < C(supp(µ ↾ I)) ≤ C(supp(µ̃ ↾ I))

if we take δ small. Since (1.12),

‖P2n(j)( · , µ̃ ↾ I)‖L2(µ̃↾I) ≤ ‖Q2n(j)‖L2(µ̃↾I) (6.15)

we see µ̃ ↾ I is not regular. �

Proof of Theorem 6.4. By Proposition 6.7, we can find µ so µ is regular,
µ ↾ I is not regular but for some a > 0 (with µI = µ ↾ I),

∫

I

|Pn(x, µI)|2 dµ ≥ an (6.16)
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Fix x0 ∈ Iint. Let d = diam(E) and for ℓ to be picked shortly, let

Qn(2ℓ+1)(x) = Pn(x, µI)

(
1 − (x− x0)

2

d2

)ℓn

(6.17)

Since P obeys (6.13), if we define

η = max
x∈E\I

(
1 − (x− x0)

2

d2

)
< 1 (6.18)

we have for x /∈ I,
|Qn(2ℓ+2)(x)| ≤ ηℓndn (6.19)

Choose ℓ so
(ηℓd)2 < a (6.20)

Then, by (6.17), (6.19), and (6.20),
∫

K

|Qn(2ℓ+1)(x)|2 dµ ≤ 2

∫
|Pn(x, µI)|2 dµ (6.21)

so

|pn(x0; dµI)|1/n ≤ 21/2n|Qn(2ℓ+1)(x0)|1/n

‖Qn(2ℓ+1)‖1/n

L2(K,dµ)

(6.22)

so, by (1.30) and regularity of µ, for µ-a.e. x0 in I int ∩ supp(dµ),

lim sup|pn(x0; dµI)|1/n ≤ 1

But then Theorem 1.10 implies dµI is regular. This contradiction
proves the theorem. �

7. Ergodic Jacobi Matrices and Potential Theory

In this section, we will explore regularity ideas for ergodic half- and
whole-line Jacobi operators and see this is connected to Kotani theory
(see [99, Sect. 10.11] and [27] as well as the original papers [69, 96, 42,
70]). A main goal is to prove Theorems 1.15 and 1.16.

Let (Ω, dσ) be a probability measure space. Let T : Ω → Ω be an

invertible ergodic transformation. Let Ã, B̃ be measurable functions
from Ω to R with B̃ bounded, Ã positive, and both Ã and Ã−1 bounded.
For ω ∈ Ω and n ∈ Z, define an(ω), bn(ω) by

an(ω) = Ã(T nω) bn(ω) = B̃(T nω) (7.1)

By J(ω), we mean the Jacobi matrix with parameters

{an(ω), bn(ω)}∞n=1. By J̃(ω), we mean the two-sided Jacobi matrix with
parameters {an(ω), bn(ω)}∞n=−∞. Occasionally we will use J+

k (ω) for the
one-sided matrix with parameters {ak+n(ω), bk+n(ω)}∞n=1 and J−

k (ω)
for the one-sided matrix with parameters {ak−n(ω), bk+1−n(ω)}∞n=1.
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Spectral measures for one-sided matrices (and vector δ1) are

dµω, dµ
±k
ω and for J̃(ω), we use dµ̃ω;k for vector δk.

For spectral theory, the transfer matrix is basic. Define for n ∈ Z,

An(x, ω) =
1

an+1(ω)

(
x− bn+1(ω) −1
an+1(ω)2 0

)
(7.2)

then

an+1un+1 + (bn+1 − x)un + anun−1 = 0 (7.3)

is equivalent to (
un+1

an+1un

)
= An

(
un

anun−1

)
(7.4)

We define for n < m,

T (m,n; x, ω) = Am(x, ω)Am−1(x, ω) . . .An+1(x, ω) (7.5)

and T (n, n; x, ω) = 1 and, for m < n, T (m,n; x, ω) = T (n,m; x, ω)−1.
Thus, solutions of (7.3) obey

(
um+1

am+1um

)
= T (m,n; x, ω)

(
un+1

an+1un

)
(7.6)

In particular, for n ≥ 1,
(
pn+1(x, ω)
an+1pn(x, ω)

)
= T (n,−1; x, ω)

(
1
0

)
(7.7)

The ergodic and subadditive ergodic theorems produce the following
well-known facts:

Theorem 7.1. There exists Ω0 ⊂ Ω of full σ measure so that for

ω ∈ Ω0,

(a) σ(J̃(ω)) = E, a fixed perfect subset of R independent of ω (in Ω0).
Moreover, for any ω ∈ Ω0, each J±

k obeys

σess(J
±
k (ω)) = E (7.8)

(b) There is a measure dν∞ with

supp(dν∞) = E (7.9)

If dνk,±,ω
n is the zero counting measure for J±

k (ω), then for any

ω ∈ Ω0, as n→ ∞,

dνk,±,ω
n

ω−→ dν∞ (7.10)

(c) Define the Lyapunov exponent γ(z) for z by

γ(z) = lim
n→∞

E( 1
n

log ‖T (n− 1,−1; z, ω)‖) (7.11)
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where

E(f) =

∫
f(ω) dσ(ω) (7.12)

and (7.11) includes that the limit exists. Moreover, for any k ∈ Z,

γ(z) = lim
n→∞

E( 1
n

log ‖T (n+ k, k; z, ω)‖) (7.13)

γ(z) = lim
n→∞

E( 1
n

log ‖T (k − n, k; z, ω)‖) (7.14)

(d) For any ω ∈ Ω0 and z /∈ E and k fixed,

lim
n→∞

1
n

log ‖T (n+ k, k; z, ω)‖ = γ(z) (7.15)

lim
n→∞

1
n

log ‖T (k − n, k; z, ω)‖ = γ(z) (7.16)

(e) For any z ∈ E and σ-a.e. ω ∈ Ω0, (7.15) and (7.16) hold.

(f) For ω ∈ Ω0, limn→∞(a1 . . . an)1/n = A exists and is ω-independent,

and one has the Thouless formula,

γ(z) = log(A−1) +

∫
log(|z − x|) dν∞(x) (7.17)

Moreover, for all z,
γ(z) ≥ 0 (7.18)

Remarks. 1. For proofs, see [21, 26, 87, 99]. (7.17) is due (in the
physics literature) to Herbert–Jones [51] and Thouless [110]. It is,
of course, just (1.4) for z /∈ cvh(Σ). Almost everything else here is
a simple consequence of the Birkhoff ergodic theorem/the Kingman
subadditive ergodic theorem and translation invariance which implies,
for example, that the expectation in (7.13) is k-independent for each
n.

2. There are two subtleties to OP readers. First, (7.14) comes from
‖A−1‖ = ‖A‖ for 2 × 2 matrices A with det(A) = 1. It implies that
the Lyapunov exponent is the same in both directions. det(T ) = 1 also
implies (7.18).

3. The second subtlety concerns equality in (7.17) for all z, including
those in Σ. This was first proven by Avron–Simon [12]; the simplest
proof is due to Craig–Simon [25] who were motivated by work of Her-
man [52]. The point is that, in general, lim sup 1

n
log ‖T (n+ k, k; z, ω)‖

(and lim sup 1
n

log|pn(z, ω)|) may not be upper semicontinuous but

E( 1
n

log ‖T (n+k, k; z, ω)‖) is because of translation invariance, Hölder’s
inequality, and

T (n+ ℓ+k, k; z, ω) = T (n+ ℓ+k, ℓ+k; z, T ℓω)T (ℓ+k, k; z, ω) (7.19)

This implies that the expectation is subadditive so the limit is an inf.
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Two main examples are the Anderson model and almost periodic
functions. For the former, (an(ω), bn(ω)) are independent (0,∞) × R-
valued (bounded with a−1

n also bounded) identically distributed ran-
dom variables. In the almost periodic case, Ω is a finite- or infinite-
dimensional torus with dσ Haar measure and Ã, B̃ continuous func-
tions. A key observation (of Avron–Simon [12]) is that in this almost
periodic case, the density of states exists for all, not only a.e., ω ∈ Ω
so we can then take Ω0 = Ω in Theorem 7.1.

Here is the first consequence of potential theory ideas in this setting:

Theorem 7.2. E has positive capacity; indeed,

C(E) ≥ A (7.20)

Moreover, E is always potentially perfect (as defined in Appendix A).
Each dµω (ω ∈ Ω0) is regular if and only if equality holds in (7.20).

Proof. Use γ ≥ 0 in (7.17), integrating dν∞, to see that

E(ν∞) ≤ log(A−1) (7.21)

so E(ν∞) <∞, implying C(E) > 0. By (7.21), we get (7.20).
By (7.21), ν∞ has finite energy and so, by Proposition A.6, ν∞ gives

zero weight to any set of capacity zero. It follows that if x ∈ supp(dν∞),
then C((x− δ, x+ δ)) > 0 for all δ. By (7.9), E is potentially perfect.

By definition of A, regularity for all ω ∈ Ω0 is equivalent to C(E) =
A. �

Proof of Theorem 1.15. We will prove that (1.37) holds. By (7.21),
ν∞ has finite Coulomb energy, so ν∞ gives zero weight to sets of zero
capacity. Since equality holds in (A.23), q.e. on E, we conclude that

log(C(E)−1) =

∫
dν∞(x) ΦρE

(x)

=

∫
dρE(x) Φν∞(x) (by (A.2))

=

∫
dρE(x) [log(A−1) − γ(x)] (by (7.17))

This is (1.37).
By (1.37), we have (1.35) ⇔

∫
γ(x) dρE(x) = 0 which, given that

γ(x) ≥ 0, holds if and only if γ(x) = 0 for ρE-a.e. x.
If (1.35) holds, then each dµω is regular, so by Theorem 1.7, dν∞ =

dρE. The converse part follows from Theorem 1.9. �

Note: Remling remarked to me that Theorem 1.15 has a determin-
istic analog with essentially the same proof.
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Kotani theory says something about when γ(x) = 0 but we have
not succeeded in making a tight connection, so we will postpone the
precise details until we discuss conjectures in the next section. As a
final topic, we want to prove Theorem 1.16 and a related result.

Proof of Theorem 1.16. By (4.14) for dµω-a.e. x, we have

lim sup|pn(x)|1/n ≤ 1 (7.22)

On the other hand, by the upper envelope theorem and (1.4) for q.e.
x,

lim |pn(x)|1/n = A−1 exp(−Φν∞(x)) (7.23)

= exp(γ(x)) (7.24)

by (7.17). Let Qω be the capacity zero set where (7.24) fails.
On S, exp(γ(x)) > 1, so since (7.22) holds for a.e. x, we have dµω(S\

Qω) = 0 as claimed. �

Remark. All we used was that dν∞ is the limit of dνn, so this holds
for all ω ∈ Ω0. In particular, in the almost periodic case, it holds for
all ω in the hull.

One is also interested in the whole-line operator.

Theorem 7.3. Let J̃(ω) be the whole-line Jacobi matrix associated

with {an(ω), bn(ω)}∞n=−∞ and dµω,k its spectral measures. Let S ⊂ R
be the Borel set of x with γ(x) > 0. Then for each ω ∈ Ω0, there exists

a set Q̃ω of capacity zero so that

µω,k(S \ Q̃ω) = 0 (7.25)

for all k.

Proof. By (7.7), the transfer matrix T (n,−1; x, ω) has matrix elements
given by pn+1, pn and the second kind polynomials qn+1, qn. As in the

last proof, there is a set Q̃
(1)
ω of capacity zero so for x /∈ Q

(1)
ω ,

lim |pn(x)|1/n = exp(γ(x)) (7.26)

and (zeros of pn and qn interlace, so the zero counting measure for qn
also converges to dν∞)

lim |qn(x)|1/n = exp(γ(x)) (7.27)

In particular, for x /∈ Q̃
(1)
ω , we have

lim
n→∞

1
n

log ‖T (n,−1; x, ω)‖ = γ(x) (7.28)
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By the Ruelle–Osceledec theorem (see, e.g., [99, Sect. 10.5]), for any
w 6= 0 ∈ C2, either

‖T (n,−1; x, ω)w‖1/n → eγ(x) (7.29)

or
‖T (n,−1; x, ω)w‖1/n → e−γ(x) (7.30)

Similarly, there is a set Q̃
(2)
ω of capacity zero with similar behavior as

n→ ∞.
This says that every solution of (7.3) for x /∈ Q̃

(1)
ω ∪ Q̃

(2)
ω either

grows exponentially at ±∞ or decays exponentially. Thus, polynomial

boundedness implies ℓ2 solutions. If Q̃
(3)
ω is the set of eigenvalues of

J̃(ω) which is countable and so of capacity zero, and if Q̃ω = Q̃
(1)
ω ∪

Q̃
(2)
ω ∪ Q̃(3)

ω , then

J̃(ω)u = xu with u polynomially bounded ⇒ x ∈ Q̃ω

By the BGK expansion discussed in Section 4, this implies the spectral
measures of J̃(ω) are supported on Q̃ω, that is, (7.25) holds. �

Remarks. 1. The reader will recognize this proof as a slight variant of
the Pastur–Ishii argument [86, 53] that proves absence of a.c. spectrum
on S.

2. As above, in the almost periodic case, this holds for all ω in the
hull.

3. This is the first result on zero Hausdorff dimension in this gen-
erality. But for suitable analytic quasi-periodic Jacobi matrices, the
result is known; see Jitomirskaya–Last [59] and Jitomirskaya [56].

8. Examples, Open Problems, and Conjectures

Here we consider a number of illustrative examples and raise some
open questions and conjectures. The conjectures are sometimes mere
guesses and could be wrong. Indeed, when I started writing this pa-
per, I had intended to make a conjecture for which a counterexample
appears below as Example 8.12. So the reader should regard the con-
jectures as an attempt to stimulate work with my own guesses. I will
try to explain my guesses, but they are not always compelling.

Example 8.1 (Random and Decaying Random OPRL). Let Ω =

×∞
n=1[(0,∞) × R] with dσ({an, bn}) = ⊗dη(an, bn), where η is a mea-

sure of compact support on (0,∞) × R. For each ω ∈ Ω, there is an
associated Jacobi matrix, and we want results on J(ω) that hold for σ-
a.e. ω. The traditional Anderson model is the case where an ≡ 1 and bn
is uniformly distributed on [α, β], that is, dη(a, b) = δa1

1
β−α

χ(α,β)(b) db.
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The decaying random model has two extra parameters, λ ∈ (0,∞)

and γ ∈ (0, 1), takes ãn(ω) ≡ 1, b̃n(ω) the Anderson model with
β = −α = 1, and takes

bn(ω) = λn−γ b̃n(ω) (8.1)

an(ω) = 1 (8.2)

The Anderson model is ergodic; the decaying random model is not.
The Anderson model goes back to his famous work [2] with the first
mathematical results by Kunz–Souillard [72] and the decaying model
to Simon [95] (see also [67]).

For the Anderson model, it is known for a.e. ω, σess(J(ω)) = [−2 +
α, 2+β], while for the decaying random model, σess(J(ω)) = [−2, 2] by
Weyl’s theorem (i.e., J(ω) is in Nevai class). Clearly, (a1 . . . an)1/n = 1.
For the Anderson model,

C(σess(J(ω))) = 1
4
(4 + (β − α)) > 1 (8.3)

while for the decaying Anderson model,

C(σess(J(ω))) = 1 (8.4)

so the former is not regular, while the latter is.
Of course, for the regular model, the density of zeros is the equilib-

rium measure where ρE(x) = dρ
dx

= 1
π
(4 − x2)−1/2 by (A.34). For the

Anderson model, on the other hand, dν
dx

is very different. It is C∞ even
at the endpoints (by [103]) and decays exponentially fast to zero at the
ends of the spectrum (Lifshitz tails; see [66]).

The Anderson model is known to have dense pure point spectrum
and so is the decaying model if γ < 1

2
. It is known for the Anderson

model (see [31]) that for some ω-dependent labeling of the eigenvalues,

dµω =
∑

wn(ω)δen(ω) (8.5)

where for some c > 0,

|wn(ω)| ≤ e−c|n| (8.6)

The same methods should allow one to prove for the decaying model
on each [−A,A] ⊂ (−2, 2) that there is a labeling so that

|wn(ω)| ≤ e−c|n|1−2γ

(8.7)

One expects that there are lower bounds of the same form and that
the labels are such that the en(ω) are quasi-uniformly distributed (i.e.,
for n ≫ m, the first n ej(ω) are at least within 1

m
of each point away

from the edge of the spectrum). If these expectations are met, this
example nicely illustrates Theorems 1.13 and 1.14.
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In the not regular Anderson case, one expects µω([ j
m
, j+1

m
]) ∼ e−cm

for fixed c, while in the regular decaying random model, one expects
µω([ j

m
, j+1

m
]) ∼ e−cm1−2γ

> Cηe
−ηm for any η. �

Example 8.2 (Generic Regular Measures). Fix an ≡ 1, 0 < γ < 1
2
,

and let B = {{bn} | limnγbn → 0} normed by |||b||| = supn|nγbn|. It
is known ([97]; see also [77, 22]) that for a dense Gδ in B, the associ-
ated Jacobi matrix has singular continuous measure. We believe there
is some suitable sense in which a generic regular measure is singular
continuous. �

Example 8.3 (Almost Mathieu Equation). Perhaps the most studied
model in spectral theory is the whole-line Jacobi matrix with an ≡ 1
and

bn = λ cos(nα + θ) (8.8)

where λ, α, θ are parameters with α
π

irrational. (See [56] for a review
on the state of knowledge.) We will use some of the most refined
results and comment on whether they are needed for the main potential
theoretic conclusions. We fix α, λ. θ ∈ Ω = [0, 2π) labels the hull of an
almost periodic family.

It is known since Avron–Simon [12] that for |λ| > 2, there is no a.c.
spectrum for almost all θ (and by Kotani [71] and Last–Simon [75], for
all θ) and by [12] for α which are Liouville numbers (irrational but very
well approximated by rationals) only singular continuous spectrum for
all θ. Jitomirskaya [55] proved that for α’s with good Diophantine
properties and |λ| > 2, there is dense pure point spectrum for a.e. θ
(and there is also singular continuous spectrum for a dense set of θ’s
[60]). On the other hand, Last [74] proved that for |λ| < 2 and all
irrational α that the spectrum is a.c. for almost all θ (now known for
all θ [71, 75]). It is now known the spectrum in this region is purely
a.c. (see [9, 8, 6]).

At the special point λ = 2, it is known that for all irrational α, the
spectrum has measure zero [74, 10], and therefore for all irrational α
and a.e. θ, the spectrum is purely singular continuous [49].

An important special feature for our purposes is Aubry duality
(found by Aubry [5]; proven by Avron–Simon [12]) that relates the
Lyapunov exponent γ(z) and integrated density of states, k(E) =∫ E

−∞ dν∞(x), for α fixed (they are θ-independent) at λ and 4
λ
. Making

the λ-dependence explicit,

k

(
E,

4

λ

)
= k

(
2E

λ
, λ

)
γ

(
z,

4

λ

)
= γ

(
2z

λ
, λ

)
+ log

(
λ

2

)
(8.9)
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Kotani theory implies in the a.c. region (i.e., λ < 2) that γ(E) = 0
for a.e. E ∈ spec(J), and Bourgain–Jitomirskaya [19] proved continuity
of γ. So using (8.9),

E ∈ spec(J) ⇒ γ(E) = max

(
0, log

(
λ

2

))
(8.10)

and, in particular, γ(E) = 0 on the spectrum if |λ| ≤ 2. �

We thus have:

Theorem 8.4. The density of zeros for the almost Mathieu equation

is the equilibrium measure for its spectrum. For λ ≤ 2, the measures

are regular (for all ω). For λ > 2, they are not regular since

lim(a1 . . . an)1/n = 1 < C(spec(J0(ω))) = log

(
λ

2

)
(8.11)

Proof. By Theorem 1.14, the measures are regular if λ ≤ 2 since γ(E) =
0 on the spectrum. That the measure is the equilibrium measure even
if λ > 2 follows from (8.9) as does (8.11). �

Remarks. 1. Thus we see an example where the density of zeros is
the equilibrium measure even though dµω is not regular. Consistently
with Theorem 2.5, dµω lives on a set of capacity 0 by Theorem 7.3.

2. If we knew a priori that dρσess(Jω) were absolutely continuous,
Kotani theory then would suffice for Theorem 8.4. But as it is, we
need the continuity result of [19].

3. It should be an exceptional situation that J(ω) has some singular
spectrum but the density of states is still dρE . In particular, if there
are separate regions in σ(J) of positive capacity where γ(x) = 0 and
where γ(x) > 0, the density of states cannot be dρE since, for it, γ(x)
is constant on supp(dρE). For examples with such coexistent spectrum
(some only worked for the continuum case), see [17, 18, 36, 37].

Example 8.5 (Rotation Invariant Anderson Model OPUC). Let dσ0

be a rotation invariant measure on the disk, D (i.e., on D with
σ0(∂D) = 0). Let σ on ×∞

j=0 D be ⊗∞
j=0dσ0(zj). The ergodic OPUC

with Verblunsky coefficients αj distributed by σ is called the rotation
invariant Anderson model, and it is discussed in [99, Sect. 12.6] and
earlier in Teplyaev [109] and Golinskii–Nevai [47].

If ∫
− log(1 − |z|) dσ0(z) <∞ (8.12)
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then

lim
n→∞

(ρ0 . . . ρn−1)
1/n = exp

(∫
log(1 − |z|2) dσ0(z)

)
> 0 (8.13)

If also ∫
− log|z| dσ0(z) <∞ (8.14)

then, by a use of the ergodic theorem,

lim
n→∞

|αn|1/n = 1

with probability 1. By a theorem of Mhaskar–Saff [82] (see [98,
Thm. 8.1.1]), any limit point of the zero counting measure lives on
∂D so, by the ergodic theorem, νn has a limit ν∞ on ∂D.

By the rotation invariance of σ0, the distribution of {αj} is invariant
under αj → ei(j+1)θαj. So the collection of measures is rotation invari-
ant and thus, by ergodicity, dν∞ is rotation invariant, that is, it is dθ

2π
.

By the Thouless formula and (8.13),

γ(eiθ) = −
∫

log(1 − |z|2) dσ0(z) > 0

so long as σ0 6= δz=0. This is constant on ∂D.
Thus, this family of measures is not regular, but the density of ze-

ros is the equilibrium measure for supp(dµω) = ∂D. This is the sim-
plest example of a nonregular measure for which the density of zeros is
the equilibrium measure. As is proven in Theorem 12.6.1 of [99], the
measure is a pure point measure, so dµw is for a.e. ω supported on a
countable set, so of zero capacity, consistent with Theorem 2.5. �

Example 8.6 (Subshifts). This is a rich class of ergodic Jacobi matri-
ces (with an ≡ 1), reviewed in [28] (see also [99, Sect. 12]). For many
of them, it is known that E ≡ σ(J) is a set of Lebesgue measure zero
on which γ(x) is everywhere 0. By Theorem 1.15, C(E) = 1 and a.e.
ω has regular dµω, so, in particular, dν∞ = dρE. �

Notice that, by Craig’s argument (see Theorem A.13), if dµ is any
probability measure whose support, E, has measure zero, then G(z) =∫ dµ(y)

y−z
has the form

G(z) = − 1√
(z − a)(z − b)

∞∏

j=1

(z − λj)√
(z − ℓj)(z − uj)

(8.15)

where the gaps in E are (ℓj , uj) and a = inf ℓj, b = sup µj. This is so
regular that we wildly make the following:
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Conjecture 8.7. Any ergodic matrix that has a spectrum of measure
zero has vanishing Lyapunov exponent on the spectrum; equivalently,
γ(x) > 0 for some x ∈ Σ implies |Σ| > 0. Such zero Lyapunov exponent
examples would thus be regular.

We note that for analytic functions on the circle with irrational ro-
tation, this result is known to be true [57], following from combining
results from Bourgain [16] and Bourgain–Jitomirskaya [19]. Of two ex-
perts I consulted, one thought it was false and the other, “likely true
but too little support to make it a conjecture.” Fools rush in where
experts fear to tread.

Open Question 8.8 (The Classical Cantor Set). Of course, one of the
simplest of measure zero sets is the classical Cantor set. It would be a
good first step to understand its “isospectral tori.” Which whole-line
Jacobi matrices have 〈δ0, (J0 − z)−1δ0〉 = (8.15)? Are they regular?
As suggested by Deift–Simon [30], are they mainly mutually singular?
Are any or all almost periodic?

Conjecture 8.9 (Last’s Conjecture). A little more afield from poten-
tial theory, but worth mentioning, is the conjecture of Last that any
ergodic Jacobi matrix (whole- or half-line) with some a.c. spectrum
is almost periodic. Does it help to consider the case where the spec-
trum is purely a.c.? We note that a result of Kotani [70] implies Last’s
conjecture if an, bn take only finitely many values.

And it links up to the next question:

Open Question 8.10 (Denisov–Rakhmanov Theorem). Let E be an
essentially perfect set, that is, for every x ∈ E and δ > 0, |(x −
δ, x + δ) ∩ E| > 0. In [29], E was called a DR set if any half-line
Jacobi matrix with σess(J) = Σac(J) = E has a set of right limit
points which is uniformly compact (and so the limits are all almost
periodic). A classical theorem of Rakhmanov, as extended by Denisov
(see [99, Ch. 9]), says that [−2, 2] is a DR set. Damanik–Killip–Simon
[29] proved a number of E’s, including those associated with periodic
problems, are DR sets. Remling [90] recently proved any finite union
of closed intervals is a DR set, and he remarks that it is possible to
combine his methods with those of Sodin–Yuditskii [104] to prove that
any homogeneous set in the sense of Carleson (see [104] for a definition)
is a DR set.

Following this section’s trend to make (foolhardy?) conjectures:

Conjecture 8.11. Any essentially perfect compact subset of R is a
DR set.
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A counterexample would also be very interesting. This is relevant
to this paper because, as we have explained, Widom’s theorem (Theo-
rem 1.12) is a kind of poor man’s DR condition.

Related to this: it would be interesting to find a proof of the al-
most periodicity of every reflectionless two-sided Jacobi matrix with
spectrum a finite union of intervals that did not rely on the theory of
meromorphic functions on a Riemann surface.

Example 8.12. Remling [90] has some interesting Jacobi matrices that
are regular on [−2, 2], not in Nevai class, and have Σac = [0, 2]. Related
examples for Schrödinger operators appeared earlier in Molchanov [83].

�

9. Continuum Schrödinger Operators

The theory presented earlier was developed by the OP community
dealing with discrete (i.e., difference) equations. The spectral theory
community knows there are usually close analogies between difference
and differential equations, so it is natural to ask about regularity ideas
for continuum Schrödinger operators—a subject that does not seem to
have been addressed before. We begin this exploration here. This is
more a description of a research project than a final report. We will be
discursive without proofs.

The first problem that one needs to address is that there is no natural
potential theory for infinite unbounded sets. log|x−y|−1 is unbounded
above and below so Coulomb energies can go to −∞. Moreover, the
natural measures are no longer probability measures. There is no rea-
sonable notion of capacity, even of renormalized capacity. But at least
sometimes there is a natural notion of equilibrium measure and equi-
librium potential.

Consider E = [0,∞). We may not know the precise right question
but we know the right answer: For V = 0, the solutions of −u′′ +V u =
λu with u(0) = 0 are u(x) = C sinh(x

√
−λ), and so

lim
x→∞

log|u(x)|
x

=
√
−λ (9.1)

which must be the correct analog of the potential theorist Green’s
function. And there is a huge literature on continuum density of states,
which for this case is

dρ(λ) = χ[0,∞)(λ)(λ)−1/2(2π)−1 dλ (9.2)

This comes from noting the eigenvalues on [0, 1] with u(0) = u(L) = 0
boundary conditions are (πn

L
)2, n = 1, 2, . . . . Here is a first attempt to

find the right question.
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It is the derivative of
∫

log|x−y|−1 dµ(x) that is a Herglotz function,
so we make

Definition. We say dν is an equilibrium measure associated to a set
E ⊂ [a,∞) for some a, if and only if there is a Herglotz function,
FE(z), on C so that
(i) ImF (λ+ i0) is supported on λ ∈ E.
(ii) ReF (λ+ i0) = 0 for a.e. λ ∈ E.
(iii) F (λ) → 0 as λ→ −∞.

(iv) π−1F (λ+ iε) dλ
w−→ dν(λ)

(v) For any bounded connected component (a, b) of R \ E, we have
∫ b

a

F (λ) dλ = 0 (9.3)

We will say dν is normalized if

F (λ) ∼ 1
2
(−λ)−1/2(1 + o(1)) (9.4)

near −∞.

The reason for choosing (9.3) and (9.4) will be made clear shortly.
Once we have F , we define the equilibrium potential of E by

ΦE(z) = Re

(∫ z

x0

F (ω) dω

)
(9.5)

where x0 ∈ E and the integral is in a path in C \ [a,∞) with a =
inf{y ∈ R | y ∈ E}. That ReF = 0 on E and that (9.3) holds show
ΦE is independent of x0. (9.3) also implies ΦE(z) = 0 on E. For this

reason, we need to take E = σess(− d2

dx2 + V ), not σ(− d2

dx2 + V ).
With (9.4), we have

ΦE(z) = Re(
√
−z )(1 + o(1)) (9.6)

near −∞. We can explain why we normalize as we do. For regular sit-
uations, we expect that the absolute value of the eigenfunction, ψz(x),
analogous to OPs (see below) are asymptotic to

exp(xΦE(z))

as x → ∞. This, in turn, is related to integrals of the negative of the
real part of

m(z, x) =
η′z(x)

ηz(x)
(9.7)

where η is the solution of L2 at infinity.
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It is a result of Atkinson [4] (see also [45]) that in great generality

that as |z| → ∞, − d2

dx2 + V is bounded from below in sectors about
(−∞, a) and, in general, in sectors |arg z| ∈ (c, π − ε),

m(z, λ) = −
√
−z + o(1) (9.8)

ψ should grow as the inverse of η, so Φ ∼ −m as z → −∞.
This is stronger than (9.6) (if one can interchange limits x→ ∞ and

z → ∞) since the error in (9.6) is o(1)
√−z, while in (9.7) it is o(1).

The lack of a constant term is an issue to be understood.
If we take E = [0,∞) since F ′ > 0 on (−∞, 0), we have F > 0 on

(−∞, 0), and so logF (x+ i0) has boundary values 0 on (−∞, 0) and 1
2

on (0,∞). This plus logF (z) = o(z) at −∞ uniquely determine logF ,
and so F , up to an overall constant which is fixed by the normalization
yielding

F (z) =
1

2
√−z (9.9)

so there is a unique “potential” for [0,∞) that gives the right Φ(z) =√−z.
Similarly, for a finite number of gaps removed from [0,∞), one gets

a unique F . Craig’s argument yields F up to positions of zeros in the
gap, which are then fixed by (9.1).

Open Project 9.1. Develop a formal theory of equilibrium measures
and equilibrium potentials for unbounded sets that are “close” to [0,∞)
(e.g., one might require that E \ [0,∞) has finite Lebesgue measure).
Can one understand the o(1) in (9.8) from this theory?

With potentials in hand, we can define regularity. We recall first
that given any V on [0,∞) which is locally in L1, one can define the
regular solution, ψ(x, z), obeying

−ψ′′(x, z) + V (x)ψ(x, z) = zψ(x, z) (9.10)

ψ(0, z) = 0 ψ′(0, z) = 1 (9.11)

Here ψ is C1 (and so, locally bounded), its second distributional deriva-
tive is L1, and obeys (9.10) as a distribution. For fixed x, ψ is an entire
function of x of order 1

2
. If ψ is not L2 at infinity for (one and hence all)

z ∈ C+, V is called limit point at infinity and then there is a unique

selfadjoint operator H which is formally − d2

dx2 + V (x) with u(0) = 0
boundary conditions. We only want to consider the case where H is
bounded below (which never happens if V is not limit point). ηz(x) is
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then the solution L2 at ∞ determined up to a constant, so

m(x, z) =
η′z(x)

ηz(x)
(9.12)

is determined by V.

Definition. Let E = σess(H). We say H is regular if and only if for all
z /∈ σ(H),

lim sup
x→∞

1

x
log|ψ(x, z)| = ΦE(z) (9.13)

Of course, for this to make sense, E has to be a set for which there
is a potential. This will eliminate a case like V (x) = x2 where σess(H)
is empty). We expect the following should be easy to prove:

Metatheorem 9.2. (a) If H is regular, for z /∈ σ(H), lim sup in

(9.13) can be replaced by lim.

(b) H is regular if and only if (9.13) holds q.e. on E (where ΦE(z) is

q.e. = 0).
(c) If H is regular, the density of states exists and equals the equilib-

rium measure for E.

(d) Conversely, if the density of states exists and equals the equilibrium

measure for E0, either H is regular or else the spectral measure

for H is supported on a set of capacity zero.

(e) If H is regular and

lim
n→∞

∫ n+1

n

|(δV )(x)| dx = 0

then H + δV is also regular.

Remarks. 1. Here capacity zero and q.e. are defined in the usual way,
that is, any probability measure of compact support contained in E
has infinite Coulomb energy.

2. By density of states, we mean the following (see [11, 13, 54, 61, 65,

84, 85]). Take HL to be the operator − d2

dx2 +V with u(0) = 0 boundary
conditions on L2([0, L], dx). This has infinite but discrete spectrum
E1,L < E2,L < E3,L < . . . (the solutions of ψ(L, z) = 0). Let dνL be
the infinite measure that gives weight 1

L
to each Ej,L. If w-lim dνL (as

functions on continuous functions of compact support) exist, we say
the density of states exists and the limit is called the density of states.

3. (e) should follow from a standard use of an iterated DuHamel’s
formula.

Open Project 9.3. Verify Metatheorem 9.2 and explore, in particular,
analogs of
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(a) Widom’s theorem, Theorem 1.12
(b) The Stahl–Totik criterion, Theorem 1.13
(c) For ergodic continuum Schrödinger operators, the analog of The-

orem 1.16.

Appendix A: A Child’s Garden of Potential Theory in

the Complex Plane

We summarize the elements of potential theory relevant to this pa-
per. For lucid accounts of the elementary parts of the theory, see the
appendix of Stahl–Totik [105], Martinez-Finkelshtein [81], and espe-
cially Ransford [88]. More comprehensive are Helms [50], Tsuji [113],
and especially Landkof [73]. We will try to sketch some of the most
important notions in remarks but refer to the texts, especially for the
more technical aspects.

The two-dimensional Coulomb potential is log|x−y|−1 which has two
lacks compared to the more familiar |x−y|−1 of three dimensions: It is
neither positive nor positive definite. We will deal with lack of positiv-
ity by only considering measures of compact support, and conditional
positive definitiveness can replace positive definitiveness in some situ-
ations.

If µ is a positive measure of compact support on C, its potential is
defined by

Φµ(x) =

∫
log|x− y|−1 dµ(y) (A.1)

Because µ has compact support, log|x − y|−1 is bounded below for
x fixed, so if we allow the value +∞, Φµ is always well defined and
Fubini’s theorem is applicable and implies that for another positive
measure, ν, also of compact support, we have

∫
Φµ(x) dν(x) =

∫
Φν(x) dµ(x) (A.2)

Sometimes it is useful to fix M > 0 and define the cutoff

ΦM
µ (x) =

∫
log[min(M, |x− y|−1)] dµ(y) (A.3)

ΦM
µ is continuous and ΦM

µ is an increasing sequence in M, so

Proposition A.1. Φµ(x) is harmonic on C \ supp(dµ), lower semi-

continuous on C, and superharmonic there.

One might naively think that Φµ(x) only fails to be continuous be-
cause it can go to infinity and that it is continuous in the extended
sense—but that is wrong!
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Example A.2. Let xn = −n−1 and let

dµ =

∞∑

n=1

n−2δxn
(A.4)

Then Φµ(xn) = ∞ and xn → 0, but

Φµ(0) =
∞∑

n=1

n−2 log n <∞ (A.5)

Notice that this is consistent with lower semicontinuity, that is,
Φµ(lim xn) ≤ lim inf Φµ(xn). Also notice, given Hydrogen atom spec-
tra, that this example is relevant to spectral theory.

Lest you think this kind of behavior is only consistent with un-
bounded Φµ, one can replace δxn

by a smeared out probability measure,
ηn (using equilibrium measures on a small interval, In, about xn), so
Φηn

= λn2 on In and have with µ =
∑
n−2ηn, then Φµ is bounded,

Φµ(xn) ≥ λ while Φµ(0) ≤ 2
∑∞

n=1 n
−2 log n. Hence one loses continu-

ity for λ large. �

The following is sometimes useful:

Proposition A.3. If Φµ(x) restricted to supp(µ) is continuous, then

Φµ is continuous on C.

Remarks. 1. The general case can be found in [73, Theorem 1.7].
Here we will sketch the case where supp(µ) ⊂ R which is most relevant
to OPRL.

2. By lower semicontinuity, if Φµ fails to be continuous on C, there
exists zn → z∞, so Φµ(zn) → a > Φµ(z∞). Continuity off supp(µ) is
easy, so we must have z∞ ∈ R (since we are supposing supp(µ) ⊂ R).

3. If w, x, y ∈ R, then |w − x− iy|−1 ≤ |w − x|−1, so

Φµ(x+ iy) ≤ Φµ(x)

and thus lim inf Φµ(Re zn) ≥ a > Φµ(Re z∞), so without loss, we can
suppose zn are real.

4. If (α, β) ⊂ R \ supp(µ) with α, β ∈ supp(µ), it is easy to see
that Φµ(x) is continuous when restricted to [α, β] (using monotone
convergence at the endpoints) and convex on [α, β] since log|x|−1 is
convex. Thus, max[α,β] Φµ(x) = max(Φµ(α),Φµ(β)). From this, it is
easy to see that if such a zn ∈ R exists, one can take zn ∈ supp(µ)
and so get a contradiction to the assumed continuity of Φµ restricted
to supp(µ).
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The energy or Coulomb energy of µ is defined by

E(µ) =

∫
Φµ(x) dµ(x) =

∫
log|x− y|−1 dµ(x) dµ(y) (A.6)

where, again, the value +∞ is allowed. If E ⊂ C is compact, we say
it has capacity zero if E(µ) = ∞ for all µ ∈ M+,1(E), the probability
measures on E. If E does not have capacity zero, then the capacity ,
C(E), of E is defined by

C(E) = exp(−min(E(ρ) | ρ ∈ M+,1(E))) (A.7)

One indication that this strange-looking definition is sensible is seen
by, as we will show below (see Example A.17),

C([a, b]) = 1
4
(b− a) (A.8)

It is useful to define the capacity of any Borel set. For bounded open
sets, U ,

C(U) = sup(C(K) | K ⊂ U, K compact) (A.9)

and then for arbitrary bounded Borel X,

C(X) = inf(C(U) | X ⊂ U, U open) (A.10)

It can then be proven (see [73, Thm. 2.8]) that

C(X) = sup(C(K) | K ⊂ X, K compact) (A.11)

for any Borel sets and that (A.10) holds for compact X. In particular,
C(X) = 0 if and only if E(µ) = ∞ for any measure µ with supp(µ) ⊂ X.

The key technical fact behind Theorem 1.16 is the following:

Proposition A.4. If C(X) > 0 for a Borel set X, there exists a

probability measure, µ, supported in X so that Φµ(x) is continuous on

C.

Remarks. 1. Let µ have finite energy so
∫

Φµ(x) dµ(x) < ∞. By
Lusin’s theorem (see, e.g., the remark after Theorem 6 of Appendix A
of Lax [76] for the truly simple proof), we can find compact sets K ⊂
supp(dµ) so µ(K) > 0 and Φµ ↾ K is continuous.

2. Let ν = µ ↾ K, that is, ν(S) = µ(S ∩K). Since µ(K) > 0, ν is
a nonzero measure. By general principles, both Φν and Φµ−ν are lower
semicontinuous on K, so since Φµ is continuous,

Φν = Φµ − Φµ−ν (A.12)

is upper semicontinuous on K. Thus, Φν is continuous on K (since
Φµ is continuous on K, it is bounded there, so Φν and Φµ−ν are both
bounded there, so there are no ∞–∞ cancellations in (A.12)).

3. By Proposition A.3, Φν is continuous on C.
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Now suppose µ is an arbitrary measure of compact support and that
C({x | Φµ(x) = ∞}) > 0. Then, by the above proposition, there is an
η supported on that set with Φη continuous and so bounded above on
supp(dµ). Thus, ∫

Φη(x) dµ(x) <∞ (A.13)

On the other hand, Φµ(x) = ∞ on supp(dη), so
∫

Φµ(x) dη(x) = ∞ (A.14)

This contradicts (A.2). We thus see that the last proposition implies:

Corollary A.5. For any measure of compact support, µ, {x | Φµ(x) =
∞} has capacity zero.

A main reason for defining capacity for any Borel set is that it lets
us single out sets of capacity zero (also called polar sets), which are
very thin sets (e.g., of Hausdorff dimension zero; see Theorem A.20).
We say an event (i.e., a Borel set) occurs quasi-everywhere (q.e.) if and
only if it fails on a set of capacity zero. “Nearly everywhere” is also
used. A countable union of capacity zero sets is capacity zero. Note
that if µ is any measure of compact support, with E(µ) < ∞, then
E(µ ↾ E) < ∞ for any compact E (because log|x − y|−1 is bounded
below) and thus, µ(E) = 0 if C(E) = 0. It follows (using (A.11)) that

Proposition A.6. If E(µ) < ∞, then µ(X) = 0 for any X with

C(X) = 0.

Here is an important result showing the importance of sets of zero
capacity. It is the key to Van Assche’s proof in Section 4 and the proof
of our new Theorem 1.16 in Section 7.

Theorem A.7. Let νn, ν be measures with supports contained in a fixed

compact set K and supn νn(K) <∞. If νn → ν weakly, then

lim inf
n→∞

Φνn
(x) ≥ Φν(x) (A.15)

for all x ∈ C and equality holds q.e.

Remarks. 1. (A.15) is called the “Principle of Descent” and the equal-
ity q.e. is the “Upper Envelope Theorem.”

2. Suppose νn has a point mass of weight 1
2n at { j

2n}2n−1
j=0 . Then

dνn → dx ≡ dν, Lebesgue measure. Φνn
( j

2n ) = ∞ so lim inf Φνn
(x) =

∞ at any dyadic rational, while Φν(x) <∞ for all x. This shows equal-
ity may not hold everywhere. This example is very relevant to spectral
theory. For the Anderson model, we expect lim sup|pn(x)|1/n = eγ(x)
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for almost all x and lim sup|pn(x)|1/n = e−γ(x) at the eigenvalues. Thus,
with νn the zero counting measure for pn, so Φνn

(x) = − log|pn(x)|1/n,
we have lim inf Φνn

(x) = −γ(x) for almost all x and γ(x) at the eigen-
value consistent with (A.15), and with (A.15) failing on a capacity zero
set, including the countable set of eigenvalues.

3. (A.15) is easy. For ΦM
ν is the convolution with a continuous

function so limn→∞ ΦM
νn

(x) = ΦM
ν (x). Since Φνn

(x) ≥ ΦM
νn

(x), we see
lim infn→∞ Φνn

(x) ≥ ΦM
ν (x). Taking M → ∞ yields (A.15).

4. Let X be the set of x for which the inequality in (A.15) is strict.
Suppose C(X) > 0. Then, by Proposition A.2, there is η supported on
X with Φη(x) continuous so

lim
n→∞

∫
Φη(x) dνn =

∫
Φη(x) dν (A.16)

By (A.2) and Fatou’s lemma (Φνn
(x) is uniformly bounded below),

lim
n→∞

∫
Φη(x) dνn = lim

∫
Φνn

(x) dη

≥
∫

lim inf Φνn
(x) dη

>

∫
Φν(x) dη (A.17)

=

∫
Φη(x) dν

where (A.17) comes from the assumptions supp(dη) ⊂ X and (A.15)
is strict on X. This contradiction to (A.16) shows C(X) = 0, that is,
equality holds in (A.15) q.e.

If EM(µ) =
∫

ΦM
µ dµ(x), then it is easy to prove EM is weakly con-

tinuous and conditionally positive definite in that

µ(C) = ν(C) ⇒ EM(µ− ν) ≥ 0 (A.18)

where boundedness of log(min(|x − y|−1,M)) implies EM makes sense
for any signed measure. By taking M to infinity, one obtains

Theorem A.8. The map µ 7→ E(µ) is weakly lower semicontinuous

on M+,1(E) for any compact E ⊂ C. Moreover, it is conditionally

positive definite in the sense that for µ, ν ∈ M+,1(E), E(µ) < ∞ and

E(ν) <∞ imply
∫

Φν(x) dµ(x) ≤ 1
2
E(µ) + 1

2
E(ν) (A.19)

with strict inequality if µ 6= ν.
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Remark. The strict inequality requires an extra argument. One can
prove that if µ, ν ∈ M+,1(E) with finite energy, then µ̂(k) − ν̂(k) is
analytic in k vanishing at k = 0 and

E(µ) + E(ν) − 2

∫
Φν(x) dµ(x) =

1

2π

∫ ∣∣∣∣
µ̂(k) − ν̂(k)

k

∣∣∣∣
2

d2k (A.20)

Since the inequality in (A.19) is strict and

E(1
2
µ+ 1

2
ν) = 1

4
E(µ) + 1

4
E(ν) + 1

2

∫
Φν(x) dµ(x) (A.21)

we see that E(µ) is strictly convex on M+,1(E), and thus

Theorem A.9. Let E be a compact subset of C with C(E) > 0. Then

there exists a unique probability measure, dρE, called the equilibrium

measure for E, that has

E(ρE) = log(C(E)−1) (A.22)

The properties of ρE are summarized in

Theorem A.10. Let E ⊂ C be compact. Let Ω be the unbounded

component of C \ E and Ω̃ = C \ (Ω ∪ E) the union of the bounded

components of C \ E. Suppose C(E) > 0 and dρE is its equilibrium

measure. Then

(a) For all x ∈ C,

ΦρE
(x) ≤ log(C(E)−1) (A.23)

(b) Equality holds in (A.23) q.e. on E and on Ω̃.

(c) Strict inequality holds in (A.23) on Ω.

(d) ρE is supported on ∂Ω, the boundary viewed as a set in C.

(e) ΦρE
is continuous on C if and only if it is continuous when re-

stricted to supp(dρE) if and only if equality holds in (A.23) on

supp(dρE).
(f) If I ⊂ E ⊂ R with I = (a, b), then dρE ↾ I is absolutely continuous

with respect to Lebesgue measure, dρE

dx
↾ I is real analytic, and

equality holds in (A.23) on I.

Remarks. 1. For example, if E = ∂D, Ω = C \ D and Ω̃ = D.
2. See [73, 88] for complete proofs.

3. (a)+(b) is called Frostman’s theorem.

4. Equality in (A.23) may not hold everywhere on E; for example,
if E = [−1, 1]∪ {2}, the equilibrium measure gives zero weight to {2},
so is the same as the equilibrium measure for [−1, 1] and that dρE has
inequality on C \ [−1, 1] by (c).
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5. If f is supported on supp(dρE) and f bounded and Borel, and∫
f dρE = 0, then (1+εf)dρE is a probability measure for ε small with

E((1+εf) dρE) <∞. Since d
dε
E((1+εf)dρE) = 2

∫
f(x)ΦρE

(x) dρE(x),
we see ΦρE

(x) is a constant for dρE-a.e. x. Since E(ρE) =
∫
dρE ΦρE

(x),
the constant must be E(ρE) = log(C(E)−1). By lower semicontinuity,
(A.23) holds on supp(dρE). Since ΦρE

is harmonic on C \ supp(dρE)
and goes to −∞ as |x| → ∞, (A.23) holds by the maximum principle.

6. Let η be a probability measure on E with E(η) <∞. Then

E((1−t)dρE +tdη) = E(dρE)+t

(∫
ΦρE

(x)[dη−dρE ]

)
+O(t2) (A.24)

Since
∫
dρEΦρE

(x) = E(dρE) = log(C(E)−1), if η is supported on a set
where strict inequality holds in (A.23), E((1−t)dρE+tdη) < E(dρE) for
small t, violating minimality. Thus the set where (A.23) has inequality
cannot support a measure of finite energy, that is, it has zero capacity,
proving (b).

7. Since ΦρE
is harmonic on Ω and goes to −∞ at ∞, the max-

imum principle implies ΦρE
(x) cannot take its maximum (which is

log(C(E)−1)) on Ω. (e) follows from Proposition A.3. (d) is left to
the references; see [73, 88].

8. If I ⊂ E ⊂ R, one first shows equality holds in (A.23) on I and
that Φ is continuous there. (This uses the theory of “barriers”; see
[73, 88]. One can also prove this using periodic Jacobi matrices and
approximations; see [102]). Then one can apply the reflection principle
to see that ΦρE

has a harmonic continuation across I. Indeed, ΦρE
is

then the real part of a function analytic on I with zero derivative there.
That derivative for Im z > 0 is the real part of

F (z) =

∫
dρE(x)

x− z
(A.25)

so, by the standard theory of boundary values of Herglotz functions
(see [98, Sect. 1.3]), we have that dρE ↾ I is absolutely continuous and

dρE

dx
=

1

π
ImF (x+ i0) (A.26)

proving real analyticity of this derivative.

9. The same argument as in Remark 8 applies if I is replaced by an
analytic arc with a neighborhood N obeying N ∩E = I. In particular,
if I is an “interval” in ∂D and I ⊂ E ⊂ ∂D, we have absolute continuity
and analyticity on I.

Here is an interesting consequence of (A.2):
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Theorem A.11. Let ν be a measure of compact support, E, so that

C(E) > 0. Then

Φν(x) <∞ for dρE a.e. x (A.27)

Remarks. 1. This can happen even if E(ν) = ∞ so
∫

Φν(x) dν(x) =
∞.

2. For (A.23) implies
∫

ΦρE
(x) dν ≤ log(C(E)−1)ν(E) <∞

so (A.2) implies ∫
Φν(x) dρE(x) <∞ (A.28)

The following illustrates the connection between potential theory and
polynomials:

Theorem A.12 (Bernstein–Walsh Lemma). Let E be a compact set

in C with C(E) > 0 and let Ω be the unbounded component of C \ E.

Let pn be a polynomial of degree n and let

‖pn‖E = sup
z∈E

|pn(z)| (A.29)

Then for all z ∈ Ω,

|pn(z)| ≤ C(E)−n‖pn‖E[exp(−nΦρE
(z))] (A.30)

Remarks. 1. This is named after Bernstein and Walsh [121], although
the result appears essentially in Szegő [107].

2. Let {zj}n
j=1 be the zeros of pn. Define

g(z) = log|pn(z)| + nΦρE
(z) + n log(C(E)) (A.31)

on Ω ∪ {∞} \ {zj}n
j=1 = Ω′. g is harmonic on Ω′ including at ∞ since

both log|pn(z)| and −nΦρE
(z) are n log|z| plus harmonic near ∞. Since

gn(z) → −∞ at the zj ∈ Ω, we see

sup
z∈Ω′

|g(z)| ≤ lim
δ↓0

[
sup

dist(w,E)=δ
w∈Ω

|g(w)|
]

(A.32)

But, by (A.23), g(z) ≤ log|pn(z)|, so

g(z) ≤ log ‖pn‖E

which is (A.30) on Ω′\{∞}. (A.30) holds trivially at the zj , completing
the proof.

Following ideas of Craig [24], one can say much more about dρE

dx
when

E contains an isolated closed interval:
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Theorem A.13. Let E ⊂ R be compact and a < c < d < b so

E ∩ (a, b) = [c, d]. Then there exists g real, real analytic, and strictly

positive on [c, d] so that

dρE ↾ [c, d] = g(x)[(d− x)(x− c)]−1/2 dx (A.33)

If E = ∪ℓ+1
j=1[aj , bj] with a1 < b1 < a2 < · · · < bℓ+1, there are xj ∈

(bj , aj+1) for j = 1, 2, . . . , ℓ so that

dρE(x) =
1

π

[ ℓ∏

j=1

x− xj√
(x− bj)(x− aj+1)

]
1√

(x− a1)(bℓ+1 − x)
dx

(A.34)

Remarks. 1. (A.34) is from Craig [24].

2. The idea behind the proof is simple. One lets F (z) =
∫ dρE(x)

x−z
. By

the arguments above, F is pure imaginary on [c, d] as the derivative of
ΦρE

(x). Thus, argF (x+ i0) is π
2

on [c, d], and by a simple argument, 0
on [c−δ, c) and π on (d, d+δ]. A Herglotz representation for logF (x+
i0) yields (A.33) and (A.34).

3. The xj ’s are uniquely determined by
∫ aj+1

bj

F (x) dx = 0 (A.35)

Recall a set S is called perfect if it is closed and has no isolated
points. A standard argument shows that any compact E has a unique
decomposition into disjoint sets, D ∪ S where D is a countable set
and S is perfect (similarly, any compact E ⊂ R can be written Z ∪ F
where Z has Lebesgue measure zero and F is essentially perfect, that
is, |F ∩ (x− δ, x+ δ)| > 0 for any x ∈ F and δ > 0).

Similarly, we call a set P potentially perfect (the terminology is new)
if P is closed and C(P ∩{x | |x−x0| < δ}) > 0 for all x0 ∈ P and δ > 0.
It is easy to see that any compact E ⊂ C can be uniquely written as a
disjoint union E = Q∪P where C(Q) = 0 and P is potentially perfect.

These notions are related to equilibrium measures. If cap(E) > 0
and E = Q ∪ P is this decomposition, then

P = supp(dρE) (A.36)

In particular, supp(dρE) = E if and only if E is potentially perfect.
Just as one writes σ(dµ) = σdisc(dµ) ∪ σess(dµ), we single out the

potentially perfect part of σ(dµ) and call it σcap(dµ).
Next, we want to state a kind of converse to Frostman’s theorem.
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Theorem A.14. Let E ⊂ C be compact. Suppose E is poten-

tially perfect. Let η ∈ M+,1(E) be a probability measure on E with

supp(dη) ⊆ E so that for some constant, α,

Φη(x) = α dρE-a.e. x (A.37)

Then η = ρE, the equilibrium measure, and α = log(C(E)−1).

Remark. By lower semicontinuity, Φη(x) ≤ α on supp(dρE) = E by
hypothesis. Thus,

E(η) =

∫
Φη(x) dη(x) ≤ α <∞ (A.38)

so η must give zero weight to zero capacity sets. Thus, ΦρE
(x) =

log(C(E)−1) for dη-a.e. x and thus,
∫

ΦρE
(x) dη(x) = log(C(E)−1) (A.39)

By (A.2) and (A.37),

LHS of (A.39) =

∫
Φη(x) dρE(x) = α

Thus, α = log(C(E)−1), and by (A.38) and uniqueness of minimizers,
η = ρE.

Next, we note that the Green’s function for a compact E ⊂ C is
defined by

GE(z) = −ΦρE
(z) + log(C(E)−1) (A.40)

It is harmonic on C \ E, GE(z) − log|z| is harmonic at infinity, and
GE(z) has zero boundary values q.e. on E. Notice that GE(z) ≥ 0 on
C. If

lim
z→E

GE(z) = 0 (A.41)

in the sense that

lim
δ↓0

sup
dist(z,E)<δ

GE(z) = 0 (A.42)

we say E is regular for the Dirichlet problem (just called regular). By
Theorem A.10(c), this is true if and only if ΦρE

(x) = log(C(E)−1) for
all x ∈ E. By Theorem A.13, this is true for finite unions of disjoint
closed intervals.

Notice that the Bernstein–Walsh lemma (A.30) can be rewritten

|pn(z)| ≤ ‖pn‖E exp(nGE(z)) (A.43)

Closely related are comparison theorems and limit theorems. We
will state them for subsets of R:
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Theorem A.15. Let E1 ⊂ E2 ⊂ R be compact sets. Then

(i) C(E1) ≤ C(E2)
(ii)

GE2(z) ≤ GE1(z) (A.44)

for all z ∈ C
(iii)

dρE2 ↾ E1 ≤ dρE1 (A.45)

(iv) If I = (a, b) ⊂ E1, then on I,

dρE2

dx
≤ dρE1

dx
(A.46)

for all x ∈ I.

Theorem A.16. Let E1 ⊃ E2 ⊃ . . . be compact subsets of R. Let

E∞ = ∩∞
j=1Ej. Then

(i)

lim
n→∞

C(En) = C(E∞) (A.47)

(ii) ρEn
→ ρE∞

weakly

(iii) For z ∈ C \ E∞,

lim
n→∞

GEn
(z) = GE∞

(z) (A.48)

and (A.48) holds q.e. on E∞.

(iv) If I = (a, b) ⊂ E∞, then uniformly on compact subsets of I,

lim
n→∞

dρEn

dx
=
dρE∞

dx
(A.49)

Remarks. 1. (A.45) has the pleasing physical interpretation that if
one conductor is connected to another, charge leaks out in a way that
there is less charge everywhere in the original conductor.

2. Part (i) of each theorem is easy. For Theorem A.15, it follows
from the minimum energy definition. For Theorem A.16(i), we note
that if U is open with E∞ ⊂ U , then eventually En ⊂ U , so (A.10)
implies (A.47).

3. One proves (ii)–(iv) of Theorem A.15 first for E, a finite union
of closed intervals, then proves Theorem A.16, and then for general
compact E∞ ⊂ R defines En = {x | dist(x,E∞) ≤ 1

n
} and proves

∩nEn = E∞ and each En is a finite union of closed intervals. Theo-
rem A.16 then yields Theorem A.15 for general E’s (see [102]).

4. For E1, E2 finite union of closed intervals and z /∈ E2, one gets
(A.44) by noting the difference GE1(z)−GE2(z) is harmonic on C\E2,
zero on E1, and positive on E2 \E1, where GE1 > 0 and GE2 = 0. The
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inequality for z ∈ E2 then follows from the fact that any subharmonic
function h obeys

h(z0) = lim
r↓0

1

2πr

∫ 2π

0

h(z0 + reiθ) dθ (A.50)

5. For this case, one gets (A.45)/(A.46) by noting that (A.26) can
be rewritten

dρE(x0)

dx
=

1

π
lim
ε↓0

ε−1GE(x0 + iε) (A.51)

for x0 ∈ E and using (A.44) for x ∈ E1.

6. If {En}∞n=1, E∞ are as in Theorem A.16 and dη is a weak limit
point of dρEn

, then η is supported on E∞, and by lower semicontinuity
of the Coulomb energy E ,

E(η) ≤ lim E(ρEn
)

= lim log(C(En)−1)

= log(C(E∞)−1)

by (A.47), so η = ρE∞
, that is, ρEn

→ ρE∞
weakly. (A.48) then follows

for z /∈ E∞ from (A.47) and continuity of Φν(z) in ν for z /∈ supp(dν).
(A.50) implies convergence for z ∈ E∞.

7. (A.49) follows from ρEn
→ ρE∞

and uniform bounds on derivatives
of dρ

dx
on I, which in turn follow from the proof of (A.33).

Example A.17. Harmonic functions are conformally invariant, which
means (since Green’s functions are normalized by GE(z) = log|z| +
O(1) near infinity and boundary values of 0 on E), if Q is an analytic
bijection of C\D∪{∞} to Ω∪{∞} with Q(z) = Cz+O(1) near infinity,
then, since log|z| is the Green’s function for E = ∂D, log|Q−1(z)| is
the Green’s function for E and C its capacity. In particular, with
Q(z) = z + 1

z
, we see

C([−2, 2]) = 1 (A.52)

and consistent with (A.34)

dρ[−2,2](x) =
1

π

dx√
4 − x2

(A.53)

Notice that, by scaling, if λ > 0 and λE = {λz | z ∈ E} and µ ∈
M+,1(E) is mapped to µλ in M+,1(λE) by scaling, then

E(µλ) = − log(λ) + E(µ) (A.54)

so

C(λE) = λC(E) (A.55)
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This plus translation invariance shows

C([a, b]) = 1
4
(b− a)

Now, let E ⊂ R, E− = E ∩ (−∞, 0), E+ = E \ E−, and for a > 0,
let E(a) = E−∪ (E+ +a). Let dρE be equilibrium measure for E. Since
log|x+ a− y|−1 < log|x− y|−1 for x > 0, y < 0, a > 0, we see

E(ρ ↾ E− + Ta(ρ ↾ E+)) < E(ρ) (A.56)

(where Taµ is the translate of µ). Thus

C(E(a)) ≥ C(E)

This is an expression of the repulsive nature of the Coulomb force!
Thus, by joining together all the pieces of E (via a limiting argument),
one sees that if |E| is the Lebesgue measure of E ⊂ R, then

C(E) ≥ 1
4
|E| (A.57)

and sets of capacity zero have Lebesgue measure zero. �

Example A.18. Let dµ be the conventional Cantor measure on [0, 1]

which can be thought of as writing x =
∑ an(x)

3n with an = 0, 1 or 2

and taking dµ as the infinite product of measures given weight 1
2

to

an = 0 or 2. Looking at a1, we get the usual two pieces of mass 1
2

with
minimum distance 1

3
between them. Look at a1, . . . , ak and we have

2k pieces of mass 2−k and minimum distance 3−k. Given x, y in the
Cantor set, dist|x− y| < 3−k if and only if they are in the same pieces,
that is,

µ({x | |x− y| < 3−k}) = 2−k

Thus
∫

log|x− y|−1 dµ(x) dµ(y) ≤
∑

k

(k + 1)(log 3)µ({x, y | |x− y| < 3−k})

=
∑

k

(k + 1)(log 3) 2−k <∞

This shows the Cantor set has positive capacity. Generalizing, we get
sets of any Hausdorff dimension α > 0 with positive capacity. In fact, as
we will see shortly, any set of positive Hausdorff dimension has positive
capacity. �

Example A.19. Fix a > 0 and let E = (−a
2
− ∆,−a

2
) ∪ (a

2
, a

2
+ ∆)

where ∆ = 4
a
. When a is very large, the equilibrium measure is very
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close to the average of the equilibrium measure for the two individual
intervals. This measure has energy approximately

2
1

4
log

(
4

∆

)
+ 2

1

4
log(a) = 0

so the asymptotic capacity is 1. This phenomenon of distant pieces of
individually small capacity having total capacity bounded away from
zero is a two-dimensional phenomenon. �

Sets of capacity zero not only have zero Lebesgue measure, but they
also have zero α-dimensional Hausdorff measure for any α > 0:

Theorem A.20. Any compact set E of capacity zero has zero Haus-

dorff dimension.

Remarks. 1. We will sketch a proof where E ⊂ R. What one needs to
do, for any α > 0, ε > 0, is to find a cover of E by intervals I1, . . . , In . . .
of length |Ij| so that ∑

|Ij|α < ε (A.58)

2. We begin by noting that there is a measure µ (not necessarily
supported by E) so that Φµ(x) = ∞ for all x ∈ E (we do not care that
E is exactly the set where Φµ = ∞ but note that by combining the
ideas here with Corollary A.5, one can show E is the set where some
potential is infinite if and only if E is a Gδ-set of zero capacity). Here
is how to construct µ. Let Em = {x ∈ R | dist(x,E) ≤ 1

m
}. Em is a

finite union of closed intervals and, by (A.10), C(Em) ↓ 0. Pass to a

subsequence Ẽm, so C(Ẽm) ≤ exp(− 1
m2 ) so Φρ

Ẽm
(x) ≥ m2 on Ẽm and

so on E. Let µ =
∑

mm
−2ρẼm

. µ is a finite measure with Φµ = ∞ on
E.

3. Let x ∈ E. Suppose for some α > 0 and c > 0, we have with
Ix
r = (x− r, x+ r),

µ(Ix
r ) ≤ c(2r)α (A.59)

Then picking r = 2−n, we see (with n0 large and negative so supp(dµ) ⊂
Ix
2−n)

∫
log|y − x|−1 dµ(y) ≤

∞∑

n=n0

[(n + 1) log 2]µ(Ix
2−n)

<∞
We thus conclude (A.59) always fails, that is, for any x ∈ E and any
α,

lim sup
r↓0

(2r)−αµ(Ix
r ) = ∞ (A.60)
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4. Given α > 0, δ > 0 fixed, by (A.60), we can find for each x ∈ E,
so Ix

rx
with

µ(Ix
rx

) ≥ δ−1(2rx)
α (A.61)

5. There is standard covering lemma used in the proof of the Hardy–
Littlewood maximal theorem (see [64], p. 74, the proof of the lemma)
that we can find a suitable sequence xj with

Ixj
rxj

∩ Ixk
rxk

= ∅ (A.62)

and
⋃

x

Ix
rx

⊂
∞⋃

j=1

I
xj

4rxj
(A.63)

6. Thus, {Ixj

4rxj
} cover E and, by (A.61),

∑

j

|Ixj

4rxj
|α ≤ 4α

∑

j

|Ixj
rxj

|α

≤ 4αδ
∑

j

µ(Ixj
rxj

)

≤ 4αδµ(R)

by (A.62). Since δ is arbitrary, we have the required covers to see
dim(E) = 0.

A final comparison result will be needed in Appendix B:

Theorem A.21. Let µ, ν be two probability measures on R so that for

all z near infinity,

Φµ(z) ≥ Φν(z) (A.64)

Then µ = ν. In particular, if either Φµ(z) ≥ ΦρE
(z) or Φµ(z) ≤ ΦρE

(z)
for all z near infinity, then µ = ρE.

Remark.

Φµ(z) + log|z| = −Re

∫
log(1 − w

z
) dµ(w)

= Re

[ ∞∑

n=1

z−n

∫
wn dµ(w)

]

Thus Φ̃µ(z) ≡ Φµ(z)+log|z| is harmonic near infinity with Φ̃µ(∞) = 0.

Thus, Φµ − Φν = Φ̃µ − Φ̃ν is harmonic and vanishing at ∞. The only
way it can have a definite sign near infinity is if it is identically 0. By
harmonicity off R, Φµ = Φν on C \R and then, by (A.50), on R. Thus,
Φµ = Φν as distributions. Since −∆Φµ = 2πµ, we see µ = ν.
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Appendix B: Chebyshev Polynomials, Fekete Sets, and

Capacity

For further discussion of the issues in this appendix, see Andrievskii–
Blatt [3], Goluzin [48], and Saff–Totik [91] whose discussion overlaps
ours here. Let E ⊂ C be compact and infinite. The Chebyshev polyno-
mials, Tn(x), are defined as those monic polynomials of degree n which
minimize

‖Tn‖E = sup
z∈E

|Tn(z)| (B.1)

By TR
n , the restricted Chebyshev polynomials, we mean the monic poly-

nomials, all of whose zeros lie in E, which minimize ‖·‖E among all such
polynomials. They can be distinct: for example, if E = ∂D, Tn(z) = zn

while TR
n (z) = 1 + zn (not unique). It can be proven (see [113, Thm.

III.23]) that Chebyshev (but not restricted Chebyshev) polynomials
are unique.

Clearly,
‖Tn‖E ≤ ‖TR

n ‖E (B.2)

and since TnTm is a monic polynomial of degree n+m,

‖Tn+m‖E ≤ ‖Tn‖E‖Tm‖E (B.3)

so limn→∞ ‖Tn‖1/n
E exists, and similarly, so does limn→∞ ‖TR

n ‖1/n
E .

An n point Fekete set is a set {zj}n
j=1 ⊂ E that maximizes

qn(z1, . . . , zn) =
∏

i6=j

|zi − zj | (B.4)

There are n(n − 1) terms in the product and the Fekete constant is
defined by

ζn(E) = qn(z1, . . . , zn)1/n(n−1) (B.5)

for the maximizing set. The set may not be unique: for example, if
E = ∂D and ωn is an nth root of unity, {zk = z0ω

k
n} is a minimizer for

any z0 ∈ ∂D.
Let z1, . . . , zn+1 be an n + 1-point Fekete set. For each j,

∏

k,ℓ 6=j
ℓ 6=k

|zk − zℓ| ≤ ζn(n−1)
n (B.6)

Thus, taking the product over the n + 1 values of j and noting that
each zk − zℓ occurs n− 1 times,

[ζ
(n+1)n
n+1 ]n−1 ≤ [ζn(n−1)

n ]n+1 (B.7)

so ζn is monotone decreasing. Thus ζn has a limit, called the transfinite

diameter. The main theorem relating these notions and capacity is
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Theorem B.1. For any compact set E ⊂ C, we have

C(E) ≤ ‖Tn‖1/n
E ≤ ‖TR

n ‖1/n
E ≤ ζn+1(E) (B.8)

Moreover,

lim
n→∞

ζn(E) ≤ C(E) (B.9)

(so all limits equal C(E)). Finally, if C(E) > 0,
(i) The normalized density of Fekete sets converges to dρE, the equi-

librium measure for E.

(ii) If E ⊂ R, the normalized zero counting measure for Tn and for

TR
n converges to dρE.

Remarks. 1. Normalized densities and zero counting measure are the
point measures that give weight k/n to a point in the set of multiplicity
k (for Fekete sets, k = 1, but for polynomials there can be zeros of
multiplicity k > 1).

2. If E = ∂D, Tn(z) = zn, so (ii) fails for Tn. If E = D, TR
n (z) = zn

and (ii) fails for TR
n also. It can be shown that if E ⊂ ∂D, E 6= ∂D,

(ii) also holds.

3. Fekete sets have the interpretation of sets minimizing the point
Coulomb energy

∑
j 6=k log|zj − zk|−1. Parts of this theorem can be in-

terpreted as saying the point minimizer and associated energy without
self-energies converge to the minimizing continuum distribution and
energy, which is physically pleasing!

4. The equality of lim ζn and lim ‖Tn‖1/n is due to Fekete [38]. The
rest is due to Szegő [107], whose proof we partly follow.

5. Stieltjes [106] considered what we call Fekete sets for E = [−1, 1],
proving that, in that case, the set is unique and consists of 1, −1, and
the n−2 zeros of a suitable Jacobi polynomial (see [108]). The general
set up is due to Fekete [38].

6. When E ⊂ ∂D, there are two other sets of polynomials related to
minimizing ‖Pn‖∞,E. We can restrict to either
(a) “Quasi-real” monic polynomials, that is, degree n polynomials, so

for some ϕ, e−iϕe−inθ/2Pn(e
iθ) is real for θ real (these are exactly

polynomials for which P ∗
n(z) = e−2iϕPn(z) where ∗ is the Szegő

dual). Equivalently, zeros are symmetric about ∂D.
(b) Monic Pn all of whose zeros lie on ∂D. These Chebyshev-like

polynomials are used in [100].
Since there are classes of polynomials between all monic and monic

with zeros on E, the nth roots of the norms also converge to C(E).

‖Tn‖1/n
E ≤ ‖TR

n ‖1/n
E is (B.2). Here is the last inequality in (B.8):
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Proposition B.2.

‖TR
n ‖E ≤ ζn+1(E)n (B.10)

Proof. Let {zj}n+1
j=1 be an (n+ 1)-Fekete set. Let

Pk(z) =
∏

j 6=k

(z − zj) (B.11)

called a Fekete polynomial. (Note: There is a different set of polyno-
mials occurring in a different context also called Fekete polynomials.)
By the maximizing property of Fekete sets,

‖Pk‖E =
∏

j 6=k

|zk − zj | (B.12)

since if z′j = zj (j 6= k), z′k = z, then
∏

ℓ 6=k|z′ℓ − z′k| ≤
∏

ℓ 6=k|zℓ − zk|.
Since ‖TR

n ‖E ≤ ‖Pk‖E (by the minimizing property of ‖TR
n ‖E), taking

the n+ 1 choices of k,

‖TR
n ‖n+1

E ≤
n+1∏

k=1

‖Pk‖E =
∏

all j 6=k

|zk − zj| = ζ
n(n+1)
n+1

which is (B.10). �

The following completes the proof of (B.8):

Proposition B.3. For any monic polynomial Pn(z),

‖Pn‖E ≥ C(E)n (B.13)

Proof. There is nothing to prove if C(E) = 0, so suppose C(E) > 0.
By the Bernstein–Walsh lemma (A.30),

|Pn(z)| ≤ ‖Pn‖EC(E)−n exp(−nΦρE
(z)) (B.14)

Divide by |z|n and take z → ∞. The left side of (B.14) goes to 1. Since
ΦρE

(z) = − log|z| + o(1), the right side goes to ‖Pn‖EC(E)−n. �

Next we turn to the convergence of Fekete set counting measures to
dρE.

Proposition B.4. Let dνn be finite point probability measures sup-

ported at {z(n)
j }Nn

j=1 with weight νn,j = ν({z(n)
j }). Suppose dνn → dη

weakly for some measure η. Suppose there is a compact K ⊂ C con-

taining all the {z(n)
j } and that as n→ ∞,

∑

j

ν2
n,j → 0 (B.15)
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Then

lim sup
n→∞

∏

j 6=k

|z(n)
j − z

(n)
k |νn,jνn,k ≤ exp

(∫
dη(z)dη(w) log|z−w|

)
(B.16)

Remark. Since
∑

j νn,j = 1,

(max
j
νn,j)

2 ≤
∑

j

ν2
n,j ≤ max νn,j (B.17)

(B.15) is equivalent to
max

j
νn,j → 0

Proof. Fix m ≥ 0 and let

gm(z, w) ≡ log(max(m, |z − w|)) (B.18)

Then

m
P

j ν2
n,j

∏

j 6=k

|z(n)
j − z

(n)
k |νn,jνn,k ≤ exp

(∫
dνn(z)dνn(w)gm(z, w)

)

(B.19)

Now take n → ∞. By (B.15), m
P

ν2
n,j → 1, and by continuity of

gm(z, w) and the weak convergence,
∫
dνn(z)dνn(w)gm(z, w) →

∫
dη(z)dη(w)gm(z, w) (B.20)

we have

LHS of (B.16) ≤ exp

(∫
dη(x)dη(y)gm(z, w)

)
(B.21)

Now take m→ 0 using monotone convergence to get (B.16). �

Lemma B.5. Let E ⊂ R. Let (a, b) ∩E = ∅. Then Tn(z) has at most

one zero in (a, b) which is simple. If (a, b) ∩ cvh(E) = ∅, Tn has no

zero in (a, b) (where cvh(E) is the convex hull of E). In particular, if

dη is a limit point of the normalized zero counting measure for Tn, then

supp(dη) ⊂ E.

Proof. Suppose x1, x2 are two zeros in (a, b) with x1 < x2. Then

(z − (x1 − δ))(z − (x2 + δ)) = (z − x1)(z − x2) − δ(x2 − x1) − δ2

so uniformly on E where (z − x1)(z − x2) > 0,

|(z − (x1 − δ))(z − (x2 + δ))| < |(z − x1)(z − x2)|
for δ small. Thus, ‖Tn(z)‖E is decreased by changing those two zeros.
Similarly, if x is a zero below cvh(E), Tn is decreased by moving the
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zero up slightly. If xj is a complex zero, ‖Tn(z)‖E is decreased by
replacing xj by Rexj .

The final statement is immediate if we note that if f is a continuous
function supported in (a, b), then

∫
f dη = 0. �

Proof of Theorem B.1. We have already proved (B.8). The Fekete
points are distinct, so νn,j = 1/n, in the language of Proposition B.4.
So if we pass to a subsequence for which dνn(j) has a weak limit η, we
see (using lim ζn exists)

lim ζn = lim
j→∞

ζ
(n(j)−1)/n(j)
n(j) ≤ exp(−E(dη))

≤ exp
(
− inf

all dρ
E(dρ)

)
(B.22)

= C(E)

By (B.8), lim ζn ≥ C(E), so we have equality in (B.22) and dη = dρE.
Thus, any limit point is dρE . By compactness, we have (i).

That leaves the proof of (ii). By the Berstein–Walsh lemma (A.30),
for z ∈ C \ E,

1

n
log|Tn(z)| ≤ log

(‖Tn‖1/n
E

C(E)

)
− ΦρE

(z) (B.23)

and similarly for TR
n .

Now let dη be a limit point of the normalized density of zeros of Tn(z).

By the last lemma, dη is supported on E, so (B.23) plus lim ‖Tn‖1/n
∞ =

C(E) implies
Φη(z) ≥ ΦρE

(z) (B.24)

for z ∈ C \ E. By Theorem A.21, this implies dη = dρE. Thus, dρE is
the only limit point of the zeros, and so the limit is dρE. �

Note added in proof. Since completion of this manuscript, I have
found a result (to appear in “Regularity and the Cesàro–Nevai class”,
in prep.) relevant to the subject of the current review. In the simplest
case, it states that if a measure has [−2, 2] as its essential support and
is regular, then (1.25) holds.
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[92] J. C. Santos-León, A Szegő quadrature formula for a trigonometric polynomial
modification of the Lebesgue measure, Rev. Acad. Canaria Cienc. 11 (1999),
183–191.
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