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Abstract. A new globally convergent numerical method is developed for some
multidimensional Coefficient Inverse Problems for hyperbolic and parabolic PDEs
with applications in acoustics, electromagnetics and optical medical imaging. On
each iterative step the Dirichlet boundary value problem for a second order elliptic
equation is solved. The global convergence is rigorously proven and numerical
experiments are presented.

1. Introduction

We present a new globally convergent numerical method for multidimensional Co-
efficient Inverse Problems (CIPs) for some hyperbolic and parabolic Partial Differ-
ential Equations (PDEs) with the data resulting from a single measurement event.
The term “single measurement” means the boundary data obtained either from a
single position of the point source or a single direction of the initializing plane wave.
We describe this method, prove its convergence and present numerical results. In
our definition “globally convergence” entails: (1) a rigorous convergence analysis that
does not depend on the quality of the initial guess, and (2) numerical simulations
that confirm the advertised convergence property.

The fundamental and commonly known obstacle for the development of numer-
ical methods for CIPs is that residual least squares functionals are plagued by the
phenomenon of multiple local minima and ravines. Therefore, any gradient-like min-
imization method for such a functional will likely converge to a wrong solution rep-
resented by a local minimum or even to almost any solution, in the case of a ravine.
Furthermore, because of the ill-posedness, that functional might have many global
minima, and there is no guarantee that any of them is close to the correct solution.
Because of the above obstacle, conventional numerical methods for multidimen-
sional CIPs, like, e.g., Newton-like methods, are locally convergent ones, see, e.g.,
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[2, 3, 13, 27] and references cited there. This means that their convergence is rigor-
ously guaranteed only if the starting point is located in a small neighborhood of the
correct solution. However, in many applications a good initial guess is unknown. The
above means that solutions of multidimensional CIPs, provided by locally convergent
methods, are fundamentally unreliable, see, e.g., [10] for a similar statement.

The development of globally convergent numerical methods for multidimensional
CIPs has started recently from the so-called “convexification” algorithm [15, 17, 29].
The convexification is a globally convergent numerical method of the first generation.
It uses a stable layer stripping procedure with respect to a spatial variable z and
the projection method with respect to the rest of spatial variables. z-dependent
Carleman Weight Functions (CWFs) are involved in the convexification. Because
of this, the convexification can use boundary conditions only at one part of the
boundary, i.e. at a side of a rectangular prism, which is orthogonal to z.

In this paper we develop a globally convergent numerical method for multidi-
mensional CIPs of the second generation. It is radically different from the convex-
ificiation. Unlike the convexification, the current method is not using neither the
projection with respect to some spatial variables, nor the layer stripping with re-
spect to a spatial variable. We use the layer stripping procedure with respect to the
pseudo-frequency s > 0, where s the parameter of the Laplace transform of a hyper-
bolic/parabolic PDE. On each thin s-layer the Dirichlet boundary value problem for
a nonlinear second order elliptic PDE is solved. This enables one to use the Dirichlet
boundary condition at the entire boundary of the domain of interest. This condi-
tion in turn is the trace of the solution of the forward problem in a wider domain.
s-dependent CWFs are present in our numerical scheme, which is one of essentially
new elements here. This presence is important, because it enables one to weaken the
influence of the nonlinear term in each of those elliptic PDEs on each s-layer, thus
solving a linear problem on each iteration.

An important element of our method is a procedure of working with tails. We
refer to section 4 of [27] for a similar treatment of tails for a locally convergent
method. In [27] a layer stripping algorithm with respect to the source position x0

running along a straight line was developed for an inverse problem for the equation
∆u− a (x) u = −δ (x− x0) , x ∈ R3 with the unknown coefficient a (x) .

Beginning from the remarkable paper of T. Carleman [9], weight functions carrying
his name have been widely used for proofs of unique continuation and conditional sta-
bility results for ill-posed Cauchy problems for PDEs, as well as for multidimensional
CIPs with the single measurement data, see, e.g. [16, 17, 20]. In this capacity CWFs
were dependent on spatial variables, since they have provided weighted estimates
for differential operators. However, CWFs of the current paper are used for integral
Volterra-like operators, they are involved in the numerical scheme and depend on
the pseudo frequency s > 0, rather than on a spatial variable. Since the Dirichlet
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boundary value problem is solved for each s-layer by the Finite Element Method
(FEM), the method of this paper to rather general domains. We note that both the
convexification and the current method are only general frameworks of correspond-
ing specific algorithms. This means that each new specific CIP requires a major
time consuming effort of re-programming of each of these methods, although within
the same framework. Because of this, a straightforward numerical comparison of our
current method with the convexification is outside of the scope of this publication. In
our numerical experiments we image a medium with small inclusions in it, although
we do not assume that the surrounding of inclusions is known. We refer to [1] and
references cited there for another approach to imaging of small inclusions.

A substantially different layer stripping procedure with respect to the frequency
(rather than pseudo frequency) was previously developed in [10], in which conver-
gence theorem was not proven, however (remark 1.1 in [10]), and also CWFs were
not used. The work [10] is treating the Fourier transform of the hyperbolic equa-
tion c (x) utt = ∆u with the unknown coefficient c (x) . The iterative process of [10]
starts from a low value of the frequency. Unlike this, we start from a high value of
the pseudo frequency, because we can prove that by cutting off the high pseudo fre-
quency range, which is commonly done in physics and engineering, we introduce only
a small error. Unlike our technique, the method of [10] is not covering an important
application to medical optical imaging. In the latter case the governing equation is
cut = ∆u− a(x)u, where c = D−1, D is the diffusion coefficient (usually D ≡ const.)
and a(x) is proportional to the absorption coefficient. The coefficient a(x) is of the
main interest in this application, see, e.g., the review paper [2].

There are also some other numerical methods for multidimensional CIPs, which do
not require a good first guess. They are non-iterative ones, since they construct un-
known coefficients via a series of steps. Unlike the current paper, they work for some
CIPs with the data resulting from multiple measurements, rather than a single one.
Because of multiple measurements, the applicability of these techniques is mostly
limited to the over-determined CIPs, with the only exception of the 2-dimensional
elliptic equation with a fixed frequency, which is non-over-determined. In computa-
tions the over-determination introduces an extra dimension, which is more expensive.
We now cite only those methods, which are confirmed by published numerical results.
Methods of [23], [24] and [22] were developed for CIPs for some elliptic equations with
fixed frequency, and their numerical implementations in 2-D can be found respec-
tively in [8] and [21]. Methods of [6] and [14] were developed for over-determined
CIPs for some hyperbolic equations, and their numerical implementations can be
found respectively in [7] and [14].
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2. Statements of Forward and Inverse Problems

As forward problems, we consider Cauchy problems for some hyperbolic and par-
abolic PDEs. The case of a boundary value problem in a finite domain is not consid-
ered in our theoretical derivations only because an analogue of asymptotic behavior
(2.12) is not proved in this case, since (2.12) is actually derived from Theorem 4.1
of [25]. That theorem establishes a certain asymptotic behavior of the fundamental
solution of a hyperbolic equation near the characteristic cone. Consider the Cauchy
problem for a hyperbolic equation

(2.1) c (x) utt = ∆u− a(x)u in R3 × (0,∞) ,

(2.2) u (x, 0) = 0, ut (x, 0) = δ (x− x0) .

In parallel, consider the Cauchy problem for a parabolic equation

(2.3) c (x) ũt = ∆ũ− a(x)ũ in R3 × (0,∞) ,

(2.4) ũ (x, 0) = δ (x− x0) .

Equation (2.1) governs, e.g., propagation of acoustic and electromagnetic waves. In

the acoustical case 1/
√
c (x) is the sound speed. In the case of EM waves propagation

in a non-magnetic medium the dimensionless coefficient c (x) is c (x) = (µǫ) (x) ,
where µ and ǫ are respectively the magnetic permeability and the electric permittivity
of the medium. In the case of medical optical imaging, using propagation of the near
infra red light, one uses parabolic equation (2.3), in which c = D−1 = const > 0, D is
the diffusion coefficient (usually the diffusion coefficient changes slowly in biological
media) and a(x) = clµa(x), where cl = const. is the speed of light and µa(x) is the
absorption coefficient of the medium, whose image is of an interest in this application,
see, e.g., [2].

In principle, we can pose inverse problems for each of the equations (2.1) and (2.3)
in the time domain. However, since our numerical method works with the Laplace
transforms of these equations, it is more convenient to pose inverse problems for the
equation obtained by this transform. Statements in the time domain are similar. In
the case of a finite time interval, on which measurements are performed, one should
assume that this interval is large enough and thus, the t-integral of the Laplace
transform over this interval is approximately the same as one over (0,∞) . Consider
the Laplace transforms of each of functions u and ũ. We obtain

(2.5) w(x, s) =

∞∫

0

u(x, t)e−stdt =

∞∫

0

ũ(x, t)e−s2tdt, for s > s = const. > 0,

where s is a certain number. In principle, it is sufficient to choose s such that integrals
(2.5) would converge. However, we choose s experimentally in our numerical studies,
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because it is involved in our algorithm. We assume the positivity of the parameter
s, because we need to make sure that the function w(x, s) > 0 by the maximum
principle. We call this parameter pseudo frequency.

As to the coefficients of equations (2.1) and (2.3), we assume that

(2.6) c (x) ∈ (2d1, 2d2) , where d1, d2 = const. > 0.

(2.7) c (x) ∈ C2
(
R3
)
, c (x) = c0 = const. ≥ 2d1 for x ∈ R3�Ω,

(2.8) a(x) ∈ C2
(
R3
)
, a(x) ≥ 0, a(x) = a0 = const. ≥ 0 for x ∈ R3�Ω,

where Ω ⊂ R3 is a bounded domain. The equation for the function w is

(2.9) ∆w −
[
s2c (x) + a(x)

]
w = −δ (x− x0) , ∀s ≥ s = const. > 0.

Naturally, we impose the following condition at the infinity

(2.10) lim
|x|→∞

w(x, s) = 0, ∀s ≥ s = const. > 0.

Condition (2.10) can be easily justified as follows. Classic estimates for the funda-
mental solution of the parabolic equation (2.3) actually estimate the function ũ (x, t)
from the above via the solution of the same equation but with constant coefficients
[18], Chapter 4, §13. Next, the Laplace transform for the latter solution can be
calculated in a closed form and it satisfies (2.10). Using the classic technique for
elliptic equations, one can prove that for every s ≥ s there exists unique solution
w(x, s) ∈ C3 (R3� {|x− x0| < r}) , ∀r > 0 of the problem (2.9), (2.10). Furthermore,
by the maximum principle

(2.11) w(x, s) > 0, ∀s ≥ s.

To justify the asymptotic behavior of the function w(x, s) at s → ∞, we need to
formulate Lemma 2.1 [17].

Lemma 2.1. Let the function w(x, s) ∈ C3 (R3� {|x− x0| < ε}) , ∀ε > 0 be
the solution of the problem (2.9), (2.10). Suppose that conditions (2.6)-(2.8) are
satisfied. Assume that geodesic lines, generated by the eikonal equation corresponding
to the function c (x) are regular, i.e. any two points in R3 can be connected by a
single geodesic line (this is true, of course, if c ≡ const. > 0). Let l (x, x0) be the
length of the geodesic line connecting points x and x0. Then the following asymptotic
behavior of the function w and its derivatives takes place for |α| ≤ 2, γ = 0, 1, x 6= x0

(2.12) Dα
xD

γ
sw(x, s) = Dα

xD
γ
s

{
exp [−sl (x, x0)]

f (x, x0)

[
1 +O

(
1

s

)]}
, s→ ∞,

where f (x, x0) > 0 is a certain sufficiently smooth function for x 6= x0.
Note that a certain over-smoothness of coefficients is usually assumed for a CIP.

Actually, this is a certain consequence of the fundamental Tikhonov theorem [28].
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This theorem claims the continuity on a compact set of an operator, which is an
inverse to a one-to-one continuous operator. That compact set should be a priori
known, because of a priori knowledge of the range of parameters for a specific applied
inverse problem. In applications this compact set is often called the “set of admis-
sible parameters”. However, in our particular case, the C2−smoothness required by
Lemma 2.1 is also because of Theorem 4.1 of [25], which implies the asymptotic be-
havior (2.12). Note that Theorem 4.1 of [25] actually requires a higher smoothness
of coefficients. This is because it is concerned with many terms of the asymptotic
behavior of the fundamental solution of the hyperbolic equation near the character-
istic cone. However, since (2.12) is dealing only with the first term of this behavior,
then it follows from the proof of that theorem, that the C2−smoothness is sufficient
(also, see Acknowledgment). Still, we do not actually use the C2−smoothness as-
sumption in our computations. Instead we verify the asymptotic behavior (2.12)
computationally, see subsection 7.3.

We formulate the inverse problem for the elliptic equation (2.9) with the condition
(2.10).

Inverse Problem. Let Ω ⊂ R3 be a convex bounded domain. Suppose that one
of coefficients of the equation (2.9) is unknown in Ω, the other one is known, and
both coefficients have known constant values outside of Ω. Determine that unknown
coefficient for x ∈ Ω, assuming that the following function ϕ (x, s) is known for a
single source position x0 /∈ Ω

(2.13) w (x, s) = ϕ (x, s) , ∀ (x, s) ∈ ∂Ω × [s, s] ,

where s > s is a number, which should be chosen experimentally in numerical studies.
The question of uniqueness of this Inverse Problem is a well known long standing

open problem. However, in the case when the function δ (x− x0) above is replaced
with a “close” function f(x) 6= 0, ∀x ∈ Ω, it is addressed positively via the method
of Carleman estimates, see, e.g., [16, 17]. It seems that such a replacement of the
function δ (x− x0) should not affect significantly the quality of numerical results,
although we have not investigated this issue. It is an opinion of the authors that
because of applications, it makes sense to develop numerical methods, assuming that
the question of uniqueness of this problem is addressed positively. In addition, the
question of uniqueness of the transformed equation (3.8) with the Cauchy data (3.9)
was addressed positively, in Theorem 6.5.1 in [15] under the assumption that the
function V (x, s) is known.

3. Nonlinear Integral Differential Equation Without the Unknown

Coefficient

Following one of ideas of the convexification, which actually has roots in the above
mentioned method of Carleman estimates for CIPs [16, 15], we first transform our
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problem to the Cauchy problem for a nonlinear elliptic integral-differential equation,
in which the unknown coefficient is not present. Because of (2.11), we can consider
the function v = lnw. Then (2.9) and (2.13) lead to

(3.1) ∆v + |∇v|2 = s2c (x) + a(x) in Ω,

(3.2) v (x, s) = ϕ1 (x, s) , ∀ (x, s) ∈ ∂Ω × [s, s] ,

where ϕ1 = lnϕ. Consider, for example the case when the coefficient c(x) is unknown.
The idea is to eliminate c (x) from equation (3.1) via the differentiation with respect
to s, since ∂sc (x) = 0. Introduce a new function ṽ by

(3.3) ṽ =
v

s2
.

Assuming that conditions of Lemma 2.1 hold, we obtain

(3.4) Dα
x (ṽ) = O

(
1

s

)
, Dα

xDs(ṽ) = O

(
1

s2

)
, s→ ∞.

By (3.1)

(3.5) ∆ṽ + s2 (∇ṽ)2 = c (x) + s−2a(x).

Denote

(3.6) q (x, s) = ∂sṽ (x, s) .

By (3.4) and (3.6)

ṽ (x, s) = −
∞∫

s

q (x, τ) dτ.

We truncate this integral as

(3.7) ṽ (x, s) ≈ −
s∫

s

q (x, τ) dτ + V (x, s) ,

where s > s0 is a large number which should be chosen in numerical experiments, see
subsection 6.3 for some discussion. We call the function V (x, s) in (3.7) the “tail”,
and this function is unknown. By (3.4) the tail is small for the large values of s. In
principle, therefore, one can set V (x, s) := 0. However, our numerical experience, as
well as section 4 of [27], show that it would be better to somehow approximate the
tail function via updating it in an iterative procedure, and we describe this procedure
in section 5. We call this procedure “iterations with respect to tails”.
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Below we set a (x) := 0 for brevity. We note that in the case when the coefficient
a (x) is unknown, rather than c (x) , one should replace functions v and q above with

v̂ = v + sl (x, x0) , q̂ (x, s) = ∂sv + l (x, x0) ,

which will guarantee a direct analogue of the proper asymptotic behavior (3.4). The
rest of the method of this article will remain almost the same with a few insignificant
changes.

Thus, we obtain from (3.5)-(3.7) the following (approximate) integral nonlinear
differential equation

(3.8) ∆q − 2s2∇q ·
s∫

s

∇q (x, τ) dτ + 2s




s∫

s

∇q (x, τ) dτ




2

+2s2∇q∇V − 2s∇V ·
s∫

s

∇q (x, τ) dτ + 2s (∇V )2 = 0

In addition, (3.2), (3.3) and (3.6) imply that the following Dirichlet boundary con-
dition is given for the function q

(3.9) q (x, s) = ψ (x, s) , ∀ (x, s) ∈ ∂Ω × [s, s] ,

where

ψ (x, s) =
1

s2ϕ
· ∂ϕ
∂s

− 2 lnϕ

s3
.

Suppose for a moment that the function q is approximated together with its deriva-
tives Dα

xq, |α| ≤ 2. Then a corresponding approximation for the target coefficient can
be found via (3.4) as

(3.10) c (x) = ∆ṽ + s2 (∇ṽ)2 ,

where the function ṽ is found from (3.4). Although any value of the pseudo frequency
s ∈ [s, s] can be used in (3.10), but we found in our numerical experiments that the
best value is s := s. An equation, similar with (3.8), was previously derived in the
convexification method [15], although with both Dirichlet and Neumann data given
only at a part of ∂Ω. Regardless on the difference in the data setting, the major
difference between the current method and the convexification is in the procedure
of solving equation (3.8). Indeed, (3.8) is a nonlinear elliptic integral differential
equation, in which the integration is carried out with respect to a parameter, which
is not involved in the differential operator. If integrals would be absent and the
tail function would be known, then this would be a simple Dirichlet boundary value
problem for the Poisson equation. However, the presence of integrals implies the



A GLOBALLY CONVERGENT METHOD 9

nonlinearity, which is the main difficulty here. Thus, below we are mostly concerned
with the following question: How to solve numerically the problem (3.8), (3.9)?

4. Layer Stripping With Respect to the Pseudo Frequency

We approximate the function q (x, s) as a piecewise constant function with respect
to the pseudo frequency s. That is, we assume that there exists a partition

s = sN < sN−1 < ... < s1 < s0 = s, si−1 − si = h

of the interval [s, s] with sufficiently small grid step size h such that

q (x, s) = qn (x) for s ∈ (sn, sn−1] .

Hence

(4.1)

s∫

s

∇q (x, τ) dτ = (sn−1 − s)∇qn (x) + h

n−1∑

j=1

∇qj (x) , s ∈ (sn, sn−1] .

We approximate the boundary condition (3.9) as a piecewise constant function,

(4.2) qn (x) = ψn (x) , x ∈ ∂Ω,

where

(4.3) ψn (x) =
1

h

sn−1∫

sn

ψ (x, s) ds.

Hence, equation (3.8) can be rewritten as

L̃n (qn) := ∆qn − 2
(
s2 − 2s (sn−1 − s)

)
(
h

n−1∑

j=1

∇qj (x)

)
· ∇qn

+2
(
s2 − 2s (sn−1 − s)

)
∇qn · ∇V (x, s)

(4.4) = 2 (sn−1 − s)
[
s2 − s (sn−1 − s)

]
(∇qn)2 − 2sh2

(
n−1∑

j=1

∇qj (x)

)2

+4s∇V (x, s) ·
(
h

n−1∑

j=1

∇qj (x)

)
− 2s [∇V (x, s)]2 , s ∈ (sn−1, sn]

Equation (4.4) is nonlinear and it depends on the parameter s, whereas the function
qn (x) is independent on s. This discrepancy is due to the approximation of the
function q (x, s) by a piecewise constant function. Although it seems that equation
(4.4) is over-determined because the function qn (x) is not changing withe the change
of s, but variations of s-dependent coefficients of (4.4) are small over s ∈ [sn, sn−1) ,
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because this interval is small. This discrepancy is helpful for the method, because
it enables us to “mitigate” the influence of the nonlinear term (∇qn)2 in (4.4) via
introducing the s-dependent CWF.

In addition, we add the term −εqn to the left hand side of equation (4.4), where
ε > 0 is a small parameter. We are doing this because, by the maximum principle,
if a function p(x, s) is the classical solution of the Dirichlet boundary value problem

L̃n (p) − εp = f(x, s) in Ω, p |∂Ω= pb(x, s),

then [19] (Chapter 3, §1)

(4.5) max
Ω

|p| ≤ max

[
max

∂Ω
|pb| , ε−1 max

Ω
|f |
]
, ∀s ∈ (sn−1, sn] .

On the other hand, if ε = 0, then the analogous estimate would be worse because
of the involvement of some constants depending on maxΩ |∇qj | . Therefore, it is
anticipated that the introduction of the term −εqn should provide a better stability
of our process, and we indeed observe this in our computations (subsection 7.3).

Introduce the s-dependent Carleman Weight Function Cnλ (s) by

(4.6) Cnµ (s) = exp [−λ |s− sn−1|] , s ∈ (sn, sn−1] ,

where λ >> 1 is a parameter. In real computations this parameter should be chosen
experimentally (subsection 7.3). Theorem 6.1 establishes that it is possible to choose
an appropriate value of λ, and the proof of this theorem provides a recipe for such
a choice. Multiply both sides of (4.4) by this CWF and integrate with respect to s
over the interval [sn, sn−1] . We obtain

Ln (qn) := ∆qn − A1,n

(
h

n−1∑

i=1

∇qi
)

· ∇qn + A1n∇qn · ∇V − εqn

(4.7) = 2
I1,n

I0
(∇qn)2 −A2,nh

2

(
n−1∑

i=1

∇qi (x)
)2

+2A1,n∇V ·
(
h

n−1∑

i=1

∇qi
)

− A2,n (∇V )2 ,

where

I0 := I0 (λ, h) =

sn∫

sn−1

Cnλ (s) ds =
1 − e−λh

λ
,
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I1,n := I1,n (λ, h) =

sn∫

sn−1

(sn−1 − s)
[
s2 − s (sn−1 − s)

]
Cnλ (s) ds,

A1,n := A1,n (λ, h) =
2

I0

sn∫

sn−1

(
s2 − 2s (sn−1 − s)

)
Cnλ (s) ds,

A2,n := A2,n (λ, h) =
2

I0

sn∫

sn−1

sCnλ (s) ds.

An important observation is that

(4.8)
|I1,n (λ, h)|
I0 (λ, h)

≤ C

λ
, for λh ≥ 1,

where C > 0 is an absolute constant independent on λ, h, n. Therefore, by taking
λ >> 1, we mitigate the influence of the nonlinear term with (∇qn)2 in (4.6), and
we use this in our iterative algorithm via solving a linear problem on each iterative
step.

Remark 4.1. In computations the above integrals with the CWF should be cal-
culated in closed forms. This is because for large λ the function Cnλ (s) is changing
rapidly and, therefore, the integration step size should be taken too small. In prin-
ciple, one can decrease the step size h in the s-direction instead of using the CWF.
However, the introduction of the CWF provides more flexibility for the choice of
parameters for computations, since parameters h and λ are independent, as long as
λh ≥ 1. In addition, taking h too small would increase of the computational time,
because one would need to compute sequentially too many functions qn. Finally, our
computational experience shows that one should choose different parameters λ := λn

for different values of n, see subsection 7.3. Hence, the absence of CWFs would
mean the choice of a variable step size h, which would only introduce additional
complications in the algorithm.

5. The Algorithm

The above considerations lead to the algorithm described in this section. Below
Ck+α

(
Ω
)

are Hőlder spaces, where k ≥ 0 is an integer and α ∈ (0, 1) [19]. In
particular, we describe here an important procedure for updating tails, which we call
“iterations with respect to tails”. In our numerical experiments the starting value for
tails V1,1 := 0, which corresponds well with the asymptotic behavior (3.4) and also
reflects the fact that we do not have a good first guess about the solution. In the
convergence theorem we assume that ‖V1,1‖C2+α(Ω) is sufficiently small.
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Since in an applied scenario the boundary data for an inverse problem are given
from real measurements, then one does not need to solve the forward problem in this
cas to generate the data. In our case, however, we first need to generate the data
from the solution of the forward problem (2.1), (2.2) and to work with the boundary
data (4.2) then, pretending that we have “forgotten” about the coefficient c(x), as it
is always done in computational simulations for inverse problems. Hence, we assume
in this section that the forward problem is already solved and the data (4.2) are
generated. We assume in this and next sections that Ω ⊂ R3 is a convex bounded
domain and ∂Ω ∈ C3.

Remark 5.1. Note that we need R3 rather than R2 in our derivations only to
justify the asymptotic behavior (3.4), because of Lemma 2.1. However, if assuming
that such a behavior holds, then we can consider both R3 and R2. In our numerical
experiments, which are in 2-D, we verify this asymptotic behavior computationally.

Remark 5.2. In our algorithm we reconstruct iterative approximations cn,k (x) ∈
Cα
(
Ω
)

only inside the domain Ω. On the other hand, to iterate with respect to
tails, we need to solve the forward problem (2.9), (2.10) in the entire space R3 with
c(x) := cn,k (x) and a (x) = 0. To do so, we need to extend each function cn,k (x)
outside of the domain Ω in such a way that the resulting function ĉn,k ∈ Cα (R3)
and ĉn,k = 2d1 outside of Ω. This can be done in a standard way via considering
a bigger “transitional” convex bounded domain Ω′ ⊃ Ω and using such a function
χ (x) ∈ C1 (R3) that

χ (x) =






1 in Ω,
between 1 and 2d1 in Ω′�Ω,

2d1 outside of Ω′.




 .

The existence of such functions χ (x) is well known from the Real Analysis course.
The resulting function in this case is χ (x) cn,k (x) := ĉn,k (x) ∈ Cα (R3) and ĉn,k (x) =
const. = 2d1 outside of Ω′. So, everywhere below we assume without further men-
tioning that this procedure is applied to each function cn,k (x) . In our numerical
experiments we simply extend each function cn,k (x) outside of our specific domain Ω
as ĉn,k (x) = 1. This is because our correct target function equals 1 near the boundary
of Ω.

Step 11. Choose an initial tail function V1,1 (x, s) ∈ C2+α
(
Ω
)
. Choose a large

parameter λ >> 1 and a small parameter ε ∈ (0, 1) . To compute the first approx-
imation q1,1 for the function q1 for this tail, solve the following Dirichlet boundary
value problem

(5.1) ∆q1,1 + A1,1∇q1,1 · ∇V1,1 − εq1,1 = −A2,1 (∇V1,1)
2 ,

(5.2) q1,1 = ψ1 (x) , x ∈ ∂Ω,
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By the Schauder’s theorem (see beginning of subsection 6.2) the problem (5.1), (5.2)
has unique solution q1,1 ∈ C2+α

(
Ω
)
. Reconstruct an approximation c1,1 (x) ∈ Cα

(
Ω
)

for the unknown coefficient c (x) using the function q1,1 (x) and formulas (3.7), (3.10)
with V (x, s) := V1,1 (x, s) , s := s1.

Step 1k, k ≥ 2. Solve the forward problem (2.9), (2.10), in which c(x) := c1,k−1 (x),
a(x) = 0, s = s. We obtain the function w1,k(x, s) this way. Update the tail function
as

(5.3) V1,k (x, s) =
1

s2 lnw1,k(x, s) ∈ C2+α
(
Ω
)
.

Next, solve the boundary value problem for equation

(5.4) ∆q1,k + A1,1∇q1,k · ∇V1,k − εq1,k = 2
I1,1

I0
(∇q1,k−1)

2 − A2,1 (∇V1,k)
2

with the boundary condition (4.2) (at n = 1). We obtain the function q1,k ∈
C2+α

(
Ω
)
. Reconstruct a new approximation c1,k ∈ Cα

(
Ω
)

for the unknown co-
efficient using the function q1,k (x) and formulas (3.7), (3.10) with
V (x, s) := V1,k (x, s) , s := s1. Make several steps 11, 12, .., 1m1. As a result, we

obtain functions q1 ∈ C2+α
(
Ω
)
, c1 ∈ Cα

(
Ω
)
, where

(5.5) q1(x) := q1,m1
(x) , c1(x) := c1,m1

(x) .

Step n1. Having functions q1, ..., qn−1 ∈ C2+α
(
Ω
)

and the tail function

Vn−1,mn−1
(x, s) ∈ C2+α

(
Ω
)
, set

(5.6) Vn,1 (x, s) := Vn−1,mn−1
(x, s) ,

(5.7) qn,0 := qn−1.

Solve the following elliptic boundary value problem for the function qn,1

∆qn,1 − A1n

(
h

n−1∑

j=1

∇qj
)

· ∇qn,1 − εqn,1 + A1,n∇qn,k · ∇Vn,1 =

(5.8) 2
I1,n

I0
(∇qn,0)

2 − A2,nh
2

(
n−1∑

j=1

∇qj (x)

)2

+2A2,n∇Vn,1 ·
(
h

n−1∑

j=1

∇qj (x)

)
−A2,n (∇Vn,1)

2 ,

(5.9) qn,1 (x) = ψn (x) , x ∈ ∂Ω.
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Hence, we obtain the function qn,1 ∈ C2+α
(
Ω
)
. Reconstruct an approximation

cn,1 (x) ∈ Cα
(
Ω
)

for the unknown c (x) using the function qn,1 (x) , as well as func-
tions q1, ..., qn−1 and formulas (3.7), (3.10), where V (x, s) := Vn,1 (x, s) , s := sn.

Step nk, k ≥ 2. Solve the forward problem (2.9), (2.10), in which c(x) := cn,k−1 (x),
a(x) = 0, s = s. We obtain the function wn,k(x, s) this way. Update the tail function
as

(5.10) Vn,k (x, s) =
1

s2 lnwn,k(x, s) ∈ C2+α
(
Ω
)
.

Next, solve the boundary value problem

∆qn,k − A1,n

(
h

n−1∑

j=1

∇qj
)

· ∇qn,k − εqn,k + A1,n∇qn,k · ∇Vn,k

(5.11) = 2
I1n

I0
(∇qn,k−1)

2 − A2,nh
2

(
n−1∑

j=1

∇qj (x)

)2

+2A2,n∇Vn,k ·
(
h

n−1∑

j=1

∇qj (x)

)
−A2,n (∇Vn,k)

2 ,

(5.12) qn,k (x) = ψn (x) , x ∈ ∂Ω

Reconstruct a new approximation cn,k (x) for the unknown coefficient, using (3.7)
and (3.10) with V (x, s) := Vn,k (x, s) , s := sn. Make several steps n1, n2, .., nmn . As
a result, we obtain the following functions

(5.13) qn := qn,mn
∈ C2+α

(
Ω
)
, cn := cn,mn

∈ Cα
(
Ω
)
.

If the functions cn(x) did not yet converge, then proceed with Step (n+ 1)1 , provided
that n < N . However, if either functions cn(x) converged, or n = N, then stop.

6. Global Convergence Theorem

Below we follow the concept of Tikhonov for ill-posed problems [28], which is one
of backbones of this theory. By this concept, one should assume first that there
exists an “ideal” exact solution of the problem with the exact data. Next, one should
assume the presence of an error in the data of the level ζ, where ζ > 0 is a small
parameter. Suppose that an approximate solution is constructed for each sufficiently
small ζ . This solution is called a “regularized solution”, if the ζ−dependent family
of these solutions tends to the exact solution as ζ tends to zero. Hence, one should
prove this convergence (Theorem 6.1).



A GLOBALLY CONVERGENT METHOD 15

6.1. Exact solution. First, we introduce the definition of the exact solution. We
assume that there exists an exact coefficient function c∗ (x) ∈ Cα

(
Ω
)
, α = const. ∈

(0, 1) , which is a solution of our Inverse Problem. Let the function

w∗ (x, s) ∈ C2+α
(
R3� {|x− x0| < η}

)
, ∀η > 0, ∀s > s

be the solution of the problem (2.9), (2.10) with c (x) := c∗ (x). Also, let

ṽ∗ (x, s) =
ln [w∗ (x, s)]

s2
, q∗ (x, s) =

∂ṽ∗ (x, s)

∂s
, V ∗ (x, s) = ṽ∗ (x, s) .

By (3.10)

(6.1) c∗ (x) = ∆ṽ∗ + s2 (∇ṽ∗)2 .

Also, the function q∗ satisfies the following analogue of equation (3.8)

(6.2) ∆q∗ − 2s2∇q∗ ·
s∫

s

∇q∗ (x, τ) dτ + 2s




s∫

s

∇q∗ (x, τ) dτ




2

+2s2∇q∗∇V ∗ − 2s∇V ∗ ·
s∫

s

∇q∗ (x, τ) dτ + 2s (∇V ∗)2 = 0, (x, s) ∈ Ω × [s, s] ,

with the boundary condition (see (3.9))

(6.3) q∗ (x, s) = ψ∗ (x, s) , (x, s) ∈ ∂Ω × [s, s] ,

where by (2.13)

ψ∗ (x, s) =
1

ϕ∗s2
· ∂ϕ

∗

∂s
− 2 lnϕ∗

s3
,

where ϕ∗ (x, s) = w∗ (x, s) |x∈∂Ω .
Definition. We call the function q∗ (x, s) the exact solution of the problem (3.8),

(3.9) with the exact boundary condition ψ∗ (x, s). Naturally, the function c∗ (x) from
(6.1) is called the exact solution of our Inverse Problem.

Therefore,

(6.4) q∗ (x, s) ∈ C2+α
(
Ω
)
× C∞ [s, s] .

We now approximate the function q∗ (x, s) via a piecewise constant function with
respect to s ∈ [s, s] . Let

q∗n (x) =
1

h

sn−1∫

sn

q∗ (x, s) ds, ψ∗
n (x) =

1

h

sn−1∫

sn

ψ∗ (x, s) ds
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Then

(6.5) q∗ (x, s) = q∗n (x) +Qn (x, s) , ψ∗ (x, s) = ψ∗
n (x) + Ψn (x, s) , s ∈ [sn, sn−1] ,

where by (6.4) functions Qn,Ψn are such that for s ∈ [sn, sn−1]

(6.6) ‖Qn (x, s)‖C2+α(Ω) ≤ C∗h, ‖Ψn (x, s)‖C2+α(Ω) ≤ C∗h, n = 1, ..., N,

where the constant C∗ > 0 depends only on C2+α
(
Ω
)
× C1 [s, s] and

C2+α (∂Ω) × C1 [s, s] norms of functions q∗ and ψ∗ respectively. Hence,

(6.7) q∗n (x) = ψ
∗

n (x) , x ∈ ∂Ω

and the following analogue of equation (4.7) holds

∆q∗n − A1,n

(
h

n−1∑

i=1

∇q∗i (x)

)
· ∇q∗n + A1,n∇q∗n · ∇V ∗ (x, s)

(6.8) = 2
I1,n

I0
(∇q∗n)2 − A2,nh

2

(
n−1∑

i=1

∇q∗i (x)

)2

+2A2,nh∇V ∗ (x, s) ·
(
h

n−1∑

i=1

∇q∗i (x)

)
− A2,n [∇V ∗ (x, s)]2 + Fn (x, h, λ) ,

where the function Fn (x, h, λ) ∈ Cα
(
Ω
)

and

(6.9) max
µh≥1

‖Fn (x, h, λ)‖Cα(Ω) ≤ C∗h.

We also assume that the data ϕ (x, s) in (2.13) are given with an error. This
naturally produces an error in the function ψ (x, s) in (3.9). An additional error is
introduced due to the averaging in (4.3). Hence, it is reasonable to assume that

(6.10)
∥∥∥ψ∗

n (x) − ψn (x)
∥∥∥

C2+α(∂Ω)
≤ C1 (σ + h) ,

where σ > 0 is a small parameter characterizing the level of the error in the data
ψ (x, s) , and the constant C1 > 0 is independent on numbers σ, h and n.

Remark 6.1. It should be noted that usually the data ϕ (x, s) in (2.13) are given
with a random noise and the differentiation of the noisy data is an ill-posed problem,
see section 7 for our way of handling it.
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6.2. Convergence theorem. First, we reformulate the Schauder’s theorem in a
way, which is convenient for our case, see [26], and Chapter 3, §1 in [19] for this
theorem. Denote

B = max
1≤n≤N

[
2,max

λh≥1
(A1,n (λ, h) , A2,n (λ, h))

]
.

Introduce the positive constant M∗ by

M∗ = B

{[
max

1≤n≤N

(
‖q∗n‖C1+α(Ω)

)
+ ‖V ∗‖C1+α(Ω) + 1

]
, 2C,C∗, C1

}
,

where C and C∗ are constants from (4.8), (6.9) and (6.10) respectively. Since the
constant B depends on s and s, then

M∗ = M∗

(
max

1≤n≤N
‖q∗n‖C1+α(Ω) , ‖V

∗‖C1+α(Ω) , s, s

)
.

Consider the Dirichlet boundary value problem

∆u+
3∑

j=1

bj(x)uxj
− d(x)u = f (x) , x ∈ Ω,

u |∂Ω= g (x) ∈ C2+α (∂Ω) ,

where functions

bj , d, f ∈ Cα
(
Ω
)
, d (x) ≥ 0; max

(
‖bj‖Cα(Ω) , ‖d‖Cα(Ω)

)
≤M∗.

By the Schauder theorem there exists unique solution u ∈ C2+α
(
Ω
)

of this problem
and with a constant K = K (M∗,Ω) > 0 the following estimate holds

‖u‖C2+α(Ω) ≤ K
[
‖g‖C2+α(∂Ω) + ‖f‖Cα(Ω)

]
.

Theorem 6.1. Let Ω ⊂ R3 be a convex bounded domain with the boundary ∂Ω ∈
C3. Let the exact coefficient c∗ ∈ C2 (R3) , c∗ ∈ (2d1, 2d2) and c∗(x) = const. ≥ 2d1

for x ∈ R3�Ω. For any function c (x) ∈ Cα (R3) such that c (x) ≥ d1, c (x) = 2d1

for x ∈ R3�Ω consider the solution wc (x, s) ∈ C3 (R3� {|x− x0| < r}) , ∀r > 0
of the problem (2.9), (2.10) with a (x) = 0. Let Vc = s−2 lnwc (x, s) ∈ C2+α

(
Ω
)

be the corresponding tail function. Suppose that the cut-off pseudo frequency s is so
large that for any such function c (x) satisfying the inequality ‖c− c∗‖Cα(Ω) ≤ d1 the

following estimates hold

(6.11) ‖V ∗‖C2+α(Ω) ≤ ξ, ‖Vc‖C2+α(Ω) ≤ ξ,
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where ξ ∈ (0, 1) is a sufficiently small number. Let V1,1 (x, s) ∈ C2+α
(
Ω
)

be the
initial tail function and let

(6.12) ‖V1,1‖C2+α(Ω) ≤ ξ.

Denote η = h+ σ+ ξ + ε. Let N ≤ N be the total number of functions qn calculated
by the above algorithm. Suppose that the number N = N (h) is connected with the
step size h via N (h) h = β, where the constant β > 0 is independent on h. Let β
be so small that

(6.13) β ≤ min

(
1

2M∗
,

1

16KM∗

)
.

Then there exists a sufficiently small number η0 = η0 (K (M∗,Ω) ,M∗, s, s, d1, d2) ∈
(0, 1) and a sufficiently large number λ = λ (K (M∗,Ω) ,M∗, η) > 1 such that for all
η ∈ (0, η0) and for every integer n ∈

[
1, N

]
the following estimates hold

(6.14) ‖qn − q∗n‖C2+α(Ω) ≤ 2KM∗

(
1√
λ

+ 3η

)
,

(6.15) ‖qn‖C2+α(Ω) ≤ 2M∗,

(6.16) ‖cn − c∗‖Cα(Ω) ≤ 10K (M∗)2 (1 + s2
)( 1√

λ
+ 3η

)
.

Remarks 6.2:
1. The parameter η characterizes the error both in the data and in our mathemat-

ical model. One should have η → 0. However, since in the reality it is off its limiting
value and we also have some other parameters, it is important to conduct numerical
experiments, which would verify this theorem.

2. Truncating integrals at a high pseudo frequency s is a natural thing to do,
because in physics and engineering one routinely truncates high frequencies. By
truncating integrals, we actually come up with a different, although a quite rea-
sonable mathematical model. Consider now the influence of this truncation on the
accuracy of the reconstruction. Let, for example h = ε = σ = ξ, and λ−1/2 = ξ. Then
estimates (6.14)-(6.16) imply that the error of our reconstruction is O (ξ) for ξ → 0.
In other words, one of claims of Theorem 6.1 is that the error of the reconstruction of
the unknown coefficient is mainly determined by the truncation error, which means
the error in our new mathematical model. This conclusion is going along well with
our numerical experiments, see subsection 7.4.

3. Conditions (6.11), (6.12) with a small number ξ are natural ones, because the
number s is supposed to be sufficiently large, and by (3.4) the function ṽ (x, s) tends
to zero together with its x-derivatives as s→ ∞. Therefore, the condition (6.12) does
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not imply the assumption of the closedness of the first guess to the correct solution.
For example, one can simply choose the initial tail function V1,1 = 0, which we do
numerically, and (6.12) would still hold for a large s.

4. One of basic ideas of the theory of ill-posed problems is that the number of
iterations can be chosen as a regularization parameter, see, e.g., page 157 of [11]. In
principle, therefore, we have a vector

(
N,m1, ..., mN

)
of regularization parameters.

However, we work in a simpler way in our computations: we take in our computations
m1 = m2 = ... = mn0

= 4 up to a certain number n0 and then we take mn0+1 =
mn0+2 = ... = mN = 7, see details in subsection 7.3. Setting N (h) h = β = const. >
0 is in an agreement with, e.g.„ Lemma 6.2 on page 156 of [11], since this lemma
shows a connection between the error in the data and the number of iterations (that
lemma is proven for a different algorithm). In our case h can be considered as a
part of the error in the data, since we have replaced a smooth s-dependent function
with a piecewise constant one. In our computations h = 0.05, N ≤ 12, and N = 15.
The fact that in some computations Nh = 0.6 indicates that the estimate (6.13) is
probably a more pessimistic one than it is actually required by computations, as it
is often the case in numerical methods for ill-posed problems.

5. It seems to be at the first glance that because of (6.16), one can stop the
iterative process at n = 1. However, our numerical experience shows that this way
one cannot obtain good images. Here is a qualitative explanation of this. Equation
(4.7) at n = 1 actually does not contain “a sufficient nonlinearity” if the parameter λ
is sufficiently large (see (4.8)). It is known, on the other hand, that linearized inverse
problems rarely image well high inclusions/background contrasts. The increase of n
brings more nonlinearity in the process, because of terms with ∇qi in (4.7). This
nonlinearity, in turn enables one to image those contrasts well.

6. In terms of Remark 5.1 one can replace in Theorem 6.1 R3 with R2 and the
proof will remain unchanged.

6.3. Proof of Theorem 6.1. This proof basically consists in estimating differences
between our constructed functions qn,k, Vn,k and functions q∗n, V

∗
n . We are doing this

using the Schauder theorem, (6.11) and (6.12). Since coefficients at lower order terms
of our elliptic equations (5.4), (5.8) and (5.11) are changing with iterations, we need
the condition (6.13) in order to have bounds for those coefficients for n ≤ N. First,
we estimate the differences between functions q1,k and q∗1, k = 1, ..., m1. Denote

q̃n,k = qn,k − q∗n, Ṽn,k = Vn,k − V ∗, ψ̃n = ψn − ψ
∗

n.

By (6.11) and (6.12)

(6.15)
∥∥∥Ṽ1,1

∥∥∥
C2+α(Ω)

≤ 2ξ ≤M∗.
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Substituting n = 1 in (6.8) and subtracting it from (5.1) and also subtracting (6.7)
from (5.2), we obtain

(6.16) ∆q̃1,1 − εq̃1,1 − A1,1∇V1,1∇q̃1,1 = −2
I1,1

I0
(∇q∗1)2

−A1,1∇Ṽ1,1 · ∇q∗1 − A2,1∇Ṽ1,1 (∇V1,1 + ∇V ∗) − εq∗ − F1,

(6.17) q̃1,1 (x) = ψ̃1 (x) , x ∈ ∂Ω.

Hence, combining Schauder theorem with (4.8), (6.9), (6.10) and (6.15)-(6.17), we
obtain

(6.18) ‖q̃1,1‖C2+α(Ω) ≤
KM∗

λ
‖∇q∗1‖2

Cα(Ω) + 3KM∗η.

First, let k = 1. Since ‖∇q∗1‖Cα(Ω) ≤ M∗, then (6.18) implies that

‖q̃1,1‖C2+α(Ω) ≤ KM∗

[
(M∗)2

λ
+ 3η

]
.

Choose λ so large that

(6.19)
(M∗)2

√
λ

≤ 1.

Hence,

(6.20) ‖q̃1,1‖C2+α(Ω) ≤ KM∗

(
1√
λ

+ 3η

)
,

(6.21) ‖q1,1 + q∗1‖C2+α(Ω) ≤ ‖q̃1,1‖C2+α(Ω) + 2 ‖q∗‖C2+α(Ω)

≤ KM∗

(
1√
λ

+ 3η

)
+ 2M∗ ≤ 3M∗.

Using (3.10) and updating the tail as in Step 11 (section 5), we obtain from (6.20)
and (6.21) that if η0 = η0 (K (M∗,Ω) ,M∗, s, s, d1) ∈ (0, 1) is sufficiently small and
η ∈ (0, η0) , then the estimate (6.16) holds for the function c1,1,

‖c1,1 − c∗‖Cα(Ω) ≤ 10K (M∗)2 (1 + s2
)( 1√

λ
+ 3η

)
.

Since η is small and c∗ ≥ 2d1, then c1,1 ≥ d1 in R3 (see Remark 5.2). Therefore by

(6.11) and (5.3)
∥∥∥Ṽ1,2

∥∥∥
C2+α(Ω)

≤ 2ξ.
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Estimate now ‖q̃1,2‖C2+α(Ω) . Substituting k = 2 in (5.4) and n = 1 in (6.8),

subtracting (6.8) from (5.4), as well as (6.7) from (5.2) and using (5.3), we obtain

∆q̃1,2 − A1,1∇V1,2∇q̃1,2 − εq̃1,2

= −2
I1,1

I0
(∇q̃1,1) (∇q1,1 + ∇q∗1)

−A1,1∇Ṽ1,2∇q∗1 − A2,1∇Ṽ1,2 (∇V1,2 + ∇V ∗) − εq∗1 − F1.

Hence, (6.20) and (6.21) imply that

(6.22) ‖q̃1,2‖C2+α(Ω) ≤
3K (M∗)2

λ
KM∗

(
1√
λ

+ 3η

)
+ 3KM∗η.

Choose µ such that in addition to (6.19)

(6.23)
6K (M∗)2

λ
< 1.

Then (6.22) leads to

(6.24) ‖q̃1,2‖C2+α(Ω) ≤ 2KM∗

(
1√
λ

+ 3η

)
,

and similarly with (6.21)

(6.25) ‖q1,2 + q∗1‖C2+α(Ω) ≤ 3M∗.

Hence, similarly with the above, (6.16) holds for the function c1,2 and, therefore,∥∥∥Ṽ1,3

∥∥∥
C2+α(Ω)

≤ 2ξ.

Consider now q̃1,3. Using (6.23) and (6.24), we obtain similarly with (6.22)

(6.26) ‖q̃1,3‖C2+α(Ω) ≤
6K (M∗)2

λ
KM∗

(
1√
λ

+ 3η

)
+ 3KM∗η

≤ 2KM∗

(
1√
λ

+ 3η

)
.

Hence, similarly with (6.25)

(6.27) ‖q1,3 + q∗1‖C2+α(Ω) ≤ 3M∗.

Since the right hand sides of estimates (6.26) and (6.27) coincide with the right hand
sides of estimates (6.24) and (6.25) respectively, then repeating this process m1 times,
we obtain using (5.5)

‖q1,m1
− q∗1‖C2+α(Ω) = ‖q1 − q∗1‖C2+α(Ω) = ‖q̃1‖C2+α(Ω) ≤ 2KM∗

(
1√
λ

+ 3η

)
,
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‖q1,m1
‖C2+α(Ω) = ‖q1‖C2+α(Ω) ≤ 2M∗,

‖c1 − c∗‖Cα(Ω) ≤ 10K (M∗)2 (1 + s2
)( 1√

λ
+ 3η

)
.

Suppose that for j = 1, ..., n − 1 and for n < N the estimates (6.14)-(6.16) hold,
i.e.,

(6.28)
∥∥qj − q∗j

∥∥
C2+α(Ω)

= ‖q̃j‖C2+α(Ω) ≤ 2KM∗

(
1√
λ

+ 3η

)
,

(6.29) ‖qj‖C2+α(Ω) ≤ 2M∗,

(6.30) ‖cj − c∗‖Cα(Ω) ≤ 10K (M∗)2 (1 + s2
)( 1√

λ
+ 3η

)
.

We now prove that the same estimates are valid for j := n. Consider the function
qn,1. Subtracting (6.8) from (5.11) and (6.7) from (5.12), we obtain

∆q̃n,1 − A1,n

(
h

n−1∑

j=1

∇qj (x)

)
· ∇q̃n,1 + A1,n∇Vn,1 · ∇q̃n,1 − εq̃n,1

= 2
I1,n

I0
[∇q̃n,0 (∇qn0 + ∇q∗n)]

(6.31) +

[
A1,n∇q∗n − A2,nh

n−1∑

j=1

(
∇qj + ∇q∗j

)
+ 2A2,n∇Vn,1

](
h

n−1∑

j=1

∇q̃j
)

+

[
2A2,nh

n−1∑

j=1

∇q∗j −A1,n∇q∗n −A2,n (∇Vn,1 + ∇V ∗)

]
∇Ṽn,1,

(6.32) q̃n,1 |∂Ω= ψ̃n(x).

Estimate the second and third terms in the right hand side of (6.31). Using the
definition of the number M∗, as well as (6.29), we obtain for the first part of the
second term∣∣∣∣∣A1,n∇q∗n −A2,nh

n−1∑

j=1

(
∇qj + ∇q∗j

)
+ 2A2,n∇Vn,1

∣∣∣∣∣ ≤M∗+3M∗β+M∗ = 2M∗

(
1 +

3

2
β

)
.

On the other hand, by (6.28)

h

n−1∑

j=1

|∇q̃j| ≤ 2KM∗

(
1√
µ

+ 3η

)
Nh = 2KM∗

(
1√
λ

+ 3η

)
β.
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Hence,

(6.33)

∣∣∣∣∣A1,n∇q∗n −A2,nh
n−1∑

j=1

(
∇qj + ∇q∗j

)
+ 2A2,n∇Vn,1

∣∣∣∣∣

∣∣∣∣∣h
n−1∑

j=1

∇q̃j (x)

∣∣∣∣∣

≤ 4K (M∗)2

(
1 +

3

2
M∗β

)(
1√
λ

+ 3η

)
β.

Estimate now the third term in the right hand side of (6.31). Similarly with the
above we obtain using (6.11)

∣∣∣∣∣

[
2A2,nh

n−1∑

j=1

∇q∗j −A1,n∇q∗n −A2,n (∇Vn,1 + ∇V ∗)

]
∇Ṽn,1

∣∣∣∣∣ ≤M∗ (1 + β) η.

Combining this with (6.33), we obtain
∣∣∣∣∣A1,n∇q∗n − A2,nh

n−1∑

j=1

(
∇qj + ∇q∗j

)
+ 2A2,n∇Vn,1

∣∣∣∣∣

∣∣∣∣∣h
n−1∑

j=1

∇q̃j (x)

∣∣∣∣∣

(6.34) +

∣∣∣∣∣

[
2A2,nh

n−1∑

j=1

∇q∗j − A1,n∇q∗n − A2,n (∇Vn,1 + ∇V ∗)

]
∇Ṽn,1

∣∣∣∣∣

≤ 4KM∗

(
1 +

3

2
M∗β

)
βM∗

(
1√
λ

+ 3η

)
+M∗ (1 + β) η.

Choose λ such that in addition to (6.19) and (6.23)

(6.35)
1√
λ
≤ η.

Then using (6.13), we obtain

4KM∗

(
1 +

3

2
M∗β

)
βM∗

(
1√
λ

+ 3η

)
≤ 16KM∗

(
1 +

3

2
M∗β

)
βM∗η ≤ 3

2
M∗η.

Also, M∗ (1 + β) η ≤ 3/2M∗η. Hence, we obtain from (6.34) and (6.35)
∣∣∣∣∣A1,n∇q∗n − A2,nh

n−1∑

j=1

(
∇qj + ∇q∗j

)
+ 2A2,n∇Vn,1

∣∣∣∣∣

∣∣∣∣∣h
n−1∑

j=1

∇q̃j (x)

∣∣∣∣∣

(6.36) +

∣∣∣∣∣

[
2A2,nh

n−1∑

j=1

∇q∗j −A1,n∇q∗n −A2,n (∇Vn,1 + ∇V ∗)

]
∇Ṽn,1

∣∣∣∣∣ ≤ 3M∗η.

Recall that Vn,1 = Vn−1,mn−1
. Hence, by (6.11), (6.13) and (6.28)-(6.30) coefficients

at q̃n,1 in equation (6.31) do not exceed M∗. Hence, applying Schauder theorem to
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(a) GF DM (b) G = GF EM ∪ GF DM (c) GF EM

Figure 1. The hybrid mesh (b) is a combinations of a structured
mesh (a), where FDM is applied, and a mesh (c), where we use FEM,
with a thin overlapping of structured elements.

the Dirichlet boundary value problem (6.31), (6.32) and using (6.10) and (6.36), we
obtain

(6.37) ‖q̃n,1‖C2+α(Ω) ≤
KM∗

λ
‖q̃n,0‖Cα(Ω)

(
‖qn‖Cα(Ω) +M∗

)
+ 3KM∗η.

Since by (5.7) qn,0 = qn−1, then (6.28)-(6.30), (6.37) and (6.23) lead to

(6.38) ‖q̃n,1‖C2+α(Ω) ≤
6K (M∗)2

λ
KM∗

(
1√
λ

+ 3η

)
+ 3KM∗η

≤ 2KM∗

(
1√
λ

+ 3η

)
.

Hence,

(6.39) ‖qn,1 + q∗n‖C2+α(Ω) ≤ 3M∗.

Since the right hand sides of estimates (6.38) and (6.39) are the same as ones of
estimates (6.26) and (6.27), from which estimates for functions q1, q̃1 and c1−c∗ were
derived, we obtain that estimates (6.28)-(6.30) are valid at j = n. This establishes
estimates (6.14)-(6.16). To finish the proof, we note that only three conditions (6.19),
(6.23) and (6.35) were imposed on the parameter λ. �

7. Numerical Study

We test our algorithm for the problem in two dimensions.
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7.1. The Forward Problem. We now consider the above inverse problem for the
time-dependent scalar wave equation modeling either acoustic or electric wave prop-
agation (section 2) in a square G ⊂ R2 with the boundary ∂G = ∂G1 ∪ ∂G2 ∪ ∂G3

(Figure 1). Here ∂G1 and ∂G2 are respectively top and bottom sides of the largest
square of Figure 1 and ∂G3 is the union of left and right sides of this square. The
forward problem is

c (x)
∂2u

∂t2
−△u = 0, in G× (0, T ),

u(·, 0) = 0,
∂u

∂t
(·, 0) = 0, in G,

∂nu
∣∣
∂G1

= f (t) , on ∂G1 × (0, t1],

∂nu
∣∣
∂G1

= ∂tu, on ∂G1 × (t1, T ),

∂nu
∣∣
∂G2

= ∂tu, on ∂G2 × (0, T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0, T ),

(7.1)

where T is the final time. When calculating the Laplace transform (2.5) of the
boundary data, we integrate for t ∈ (0, T ), thus calculating an approximation of this
transform. The plane wave f is initialized at the top boundary ∂G1 of the compu-
tational domain G, propagates during the time period (0, t1] into G, is absorbed at
the bottom boundary ∂G2 for all times t ∈ (0, T ) and it is also absorbed at the top
boundary ∂G1 for times t ∈ (t1, T ). Here

(7.2) f(t)
∣∣
Γ1

=
(sin (st−π/2) + 1)

10
, 0 ≤ t ≤ 2π

s
,

We are interested in the reconstruction of the coefficient c(x), which is the wave

speed 1/
√
c(x) in the case of acoustics and the product (µǫ) (x) = c(x) of magnetic

permeability and electric permittivity in the EM case. The asymptotic behavior
(2.12) will be verified computationally.

The computational domain in all our tests G = GFEM ∪ GFDM is set as G =
[−4.0, 4.0] × [−5.0, 5.0]. This domain is split into a finite element domain GFEM =
[−3.0, 3.0] × [−3.0, 3.0] and a surrounding domain GFDM , see Figure 1. The space
mesh in ΩFEM consists of triangles and in ΩFDM of squares, with mesh size in
the overlapping regions h̃ = 0.125. We apply the hybrid finite element/difference
method presented in [5] where finite elements are used in GFEM and finite differences
in GFDM . At the top and bottom boundaries of G we use first-order absorbing
boundary conditions [12] which are exact in this particular case. At the lateral
boundaries, mirror boundary conditions allow us to assume an infinite space domain
in the lateral direction.
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(a) GF EM1
(b) GF EM2

(c) GF EM3

Figure 2. Computational domains

In real applications the data are generated by emitting waves on the surface of the
investigated object and are then recorded on parts of the surface of the object. In
this paper, we work with the computationally simulated data. That is, the data are
generated by computing the forward problem (7.1) with the given function c(x). The
corresponding solution is recorded at the entire boundary then. Next, the coefficient
c(x) is “forgotten”, and the goal is to reconstruct this coefficient from the Dirichlet
boundary data given at the boundary of the subdomain GFEM ⊂ G, which are
computed along with the solution of the forward problem. We assume that c = 1 in
ΩFDM . Thus, we need to reconstruct the coefficient c (x) only in GFEM .

7.2. A hybrid finite element/difference method for the forward problem
(7.1). To solve the forward problem (7.1), we use the hybrid FEM/FDM method
described in [4] and [5]. This method uses continuous space-time piecewise linear
finite elements on a partially structured mesh in space. The computational domain
G is decomposed into a finite element domain ΩFEM (the same as GFEM above)
with an unstructured mesh and a finite difference domain ΩFDM (the same as GFEM

above) with a structured mesh, see Figure 1. In ΩFDM we use quadrilateral elements
in R2 and hexahedra in R3. In ΩFEM we use a finite element mesh Kh = {K} with
elements K consisting of triangles in R2 and tetrahedra in R3. We associate with

Kh a mesh function h̃ = h̃(x) representing the diameter of the element K containing
x. For the time discretization we let Jk = {J} be a partition of the time interval
I = (0, T ) into time intervals J = (tk−1, tk] of uniform length τ = tk − tk−1.

7.3. Results of reconstruction. In this subsection we present results of our recon-
structions. We have used solution of the forward problem (7.1) in the domain G to
generate the data at the boundary of the square Ω := ΩFEM . We have performed nu-
merical experiments to reconstruct the medium, which is homogeneous with c (x) = 1
except of either two small squares or a single square, see Figure 2. But we have not
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assumed a priori knowledge of neither the structure of this medium nor of the back-
ground constant c (x) = 1 outside of those squares. To produce updates for tails, we
have solved on each iterative step the forward problem (7.1) instead of solving the
problem (2.9), (2.10). Next, we have calculated the Laplace transform (2.5) of the
solution to obtain the function w (x, s) .

In all our numerical experiments we have chosen the step size with respect to the
pseudo frequency h = 0.05, the s-interval [s, s]=[6.7, 7.45]. Hence, N = 15 in our
case. We have chosen two sequences of regularization parameters λ := λn and ε = εn

for n = 1, ..., N . Both the formulation and the proof of Theorem 6.1 remain almost
unchanged for this case. The reason of choosing different values of λn and εn is that
values of functions q1 and q2 and their gradients are very small. Hence, in order not
to eliminate totally the influence of the nonlinear term (∇qn,k−1)

2 , n = 1, 2 in (5.4),
(5.8) and (5.11), the values of λ1 and λ2 should not be too large. Next, the values
of nonlinear terms start to grow, and we balance them via taking a larger value of
λn for n = 3, 4, 5. For n > 5 the values of nonlinear terms become even bigger,
and we balance them via taking increasing again the value of λn. This once again
points towards the importance of the introduction of CWFs in the numerical scheme,
as compared with the decrease of the step size h. The considerations for choosing
different values of εn are similar. In all Tests 1-4 the values of the parameters λn

and εn were:

λn = 20, n = 1, 2;λn = 200, n = 3, 4, 5;λn = 2000, n ≥ 6;

εn = 0, n = 1, 2; εn = 0.001, n = 3, 4, 5; εn = 0.01, n = 6, 7,

εn = 0.1, n ≥ 8.
(7.3)

Once the function qn,k is calculated, we update the function c := cn,k using formulas
(3.7), (3.10). To find second derivatives in (3.10), we use the standard finite difference
approximations of both the Laplacian and the gradient on a structured Cartesian
mesh. More precisely, in two dimensions we use following approximation to find c(x)
at point (i, j):

ci,j =
ṽi+1,j − 2ṽi,j + ṽi−1,j

dx2
+
ṽi,j+1 − 2ṽi,j + ṽi,j−1

dy2

+ s2

((
ṽi+1,j − ṽi,j

dx

)2

+

(
ṽi,j+1 − ṽi,j

dy

)2
)
,

(7.4)

where dx and dy are grid step sizes of the discrete finite difference mesh in the
directions x and y respectively. We enforce that the parameter c(x) belongs to the
set of the admissible parameters CM = {c ∈ C

(
Ω
)
| 0.5 ≤ c(x) ≤ 7} as follows:

if cn,k(x0) < 0.5 for a certain point x0 ∈ Ω and a certain pair (n, k), then we set
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cn,k(x0) := 1 by putting the box constrains on the computed parameters. We also
use the smoothness indicator in update values of c(x) by local averaging over the
neighboring elements.

Thus, the resulting computed function is c (x) := cN(x). Recall that the number of
iterations is the vectorial regularization parameter in our case (see Remarks 6.2). One
of the backbones of the theory of ill-posed problems is that regularization parameters
depend on the range of parameters for a specific problem one considers. Thus,
our choice of regularization parameters is in an agreement with this concept. For
the above values of h, s, s and the range of the target coefficient c (x) ∈ [1, 4] we
have used mn = 4 iterations with respect to tails for n ≤ n0 and mn = 7 for
n = n0 + 1, ..., N , where numbers n0 and N are chosen on the basis of an objective
stopping rule described below. Hence, while the pairs

(
n0, N

)
differ in our tests, the

rule of their choice (i.e., the stopping rule) remains the same. As it is always the
case in ill-posed problems, the choice of proper regularization parameters and of a
proper stopping rule was time consuming. However, we point out that our stopping
rule, as well as regularization parameters λn, εn, mn, once chosen, remained the same
for all our numerical experiments described in Tests 1-4 below. Hence, results were
not “conveniently adjusted” for each specific test in order to obtain the best possible
image for that test.

The Dirichlet boundary value problems in the square ΩFEM for functions qn,k were
solved by the FEM, in which the same finite elements were used as ones in the forward
problem (7.1) in the domain ΩFEM. The “inverse crime” was avoided because the
forward problem was solved for the hyperbolic equation, whereas we solve an elliptic
equation on each step of the reconstruction algorithm. In addition, we have added
a random noise to the boundary data. The FEM cannot guarantee that resulting
functions qn,k ∈ C2+α

(
Ω
)
, as it is required by Theorem 6.1. And also the above

“adjustment” of computed values cn,k(x0) by box constraint does not guarantee that
the resulting function cn,k ∈ Cα

(
Ω
)
. Such discrepancies quite often take place in

computations and are, therefore acceptable in numerical studies. Nevertheless, an
analogue of Theorem 6.1 can be proved for the discrete case when the FEM analogues
of equations for functions qn,k are used, and also the domain Ω with ∂Ω ∈ C3 is
replaced respectively with either a rectangular prism in R3 or a rectangle in R2,
as in our numerical examples. To prove this analogue, one needs to use the weak
formulations of these equations and the Lax-Milgram theorem instead of the Schauder
theorem. Next, because of the equivalency of norms in finite dimensional spaces,
the rest of the proof of Theorem 6.1 remains almost the same. However, the latter
development is outside of the scope of this publication and might be considered in our
future works. Another interesting question here is about the change of reconstructed
images due to the increase of the number of finite elements, because that equivalency
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of norms “worsens” with the increase of the dimension of the space. This question
might also be addressed in future publications.

In all our tests we compute multiplicative random noise in the boundary data, uσ,
by adding relative error to computed data uobs using expression

(7.4) uσ

(
xi, tj

)
= uobs

(
xi, tj

) [
1 +

αj(umax − umin)σ

100

]
.

Here, uobs (xi, tj) = u (xi, tj) , xi ∈ ∂ΩFEM is a mesh point at the boundary ∂ΩFEM, t
j ∈

(0, T ) is the mesh point in time, αj is a random number in the interval [−1; 1], umax

and umin are maximal and minimal values of the computed data uobs, respectively,
and σ is the noise level in percents. Next, we make the Laplace transform (2.5)
of the data, which helps to both “smooth out” and decrease the noise, due to the
integration. Because of that, we have successfully used the following formula for the
s−derivative of the boundary data ϕ (x, s) in (2.13) to obtain the function ψ (x, sn)
in (3.9)

ψ (x, sn) ≈ ϕ (x, sn−1) − ϕ (x, sn)

h
, h = 0.05.

In all our tests 1-4 we have verified numerically the asymptotic behavior (3.4). To
do this, we have considered functions g1 (s) and g2 (s) , for s ∈ [6.5, 7.5] ⊃ [s, s] =
[6.7, 7.45] , where

g1 (s) = s ‖∇ṽ (x, s)‖L2(ΩF EM) , g2 (s) = s ‖∇q (x, s)‖L2(ΩF EM) ,

where functions ṽ (x, s) and q (x, s) are taken from the solution of the forward prob-
lem. Their graphs (not shown) have shown that these functions are very close to
constants for s ∈ [6.5, 7.5] , which corresponds well with (3.4). We have also verified
numerically in all our examples 1-4 that the function w (x, s) > 0, which justifies the
introduction of the function ṽ (x, s) = lnw (x, s) /s2.

Test 1. We test our numerical method on the reconstruction of the structure
given on Figure 2-c). We take c = 4 in the left small square of Figure 2-c), c = 3
in the right square and c = 1 everywhere else. We take the starting value for the
tail V1,1 (x, s) ≡ 0. We introduce σ = 10% of the multiplicative random noise in the
boundary data uobs by the formula (7.4).

Figure 3 displays isosurfaces of resulting images for qn,k, n = 1, 2, 6, 8, 9, 12; k =
1, ..., 4. Figure 4 presents the one-dimensional cross-sections of the image of the
computed functions cn,k along the vertical line passing through the middle of the left
small square. Comparison of images of functions cn,k for different values n and k
shows that the inclusion/background contrasts grow with the grow of n and k. In
particular, these contrasts are very low for n = k = 1 and do not exceed 1.006/1.
On the last three images of Figure 4 the computed functions cn,k for n = 10, 11, 12
are superimposed with the correct one.
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q1,1 q1,2 q1,3 q1,4

q2,1 q2,2 q2,3 q2,4

q6,1 q6,2 q6,3 q6,4

q8,1 q8,2 q8,3 q8,4

q9,1 q9,2 q9,3 q9,4

q12,2 q12,3 q12,4 q12,7

Figure 3. Test 1: spatial distribution of ch after computing qn,i;n =
1, 2, 6, 8, 9, 12,, where n is number of the computed function q.
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Figure 4. Test 1: the one-dimensional cross-sections of the image
of the function ccomp along the vertical line connecting the points
(−1.5,−3) and (−1.5, 3) computed for corresponding functions qn, n =
1, ..., 12.
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Figure 5. Test 1: the one-dimensional cross-sections of the image
of the function ccomp along the vertical line connecting the points
(−2.5,−3) and (−2.5, 3) computed for corresponding functions qn, n =
1, ..., 12.
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Figure 6. Test 1: Computed relative L2-norms: a) of the
||∇Vn,k−∇Vn,k−1||

||∇Vn,k||
; b) of the

||cn,k−cn,k−1||

||cn,k||

Figure 5 displays the one-dimensional cross-sections of the image of the functions
cn,k along the vertical line passing through the middle of the right small square
superimposed with the correct one. One can see that the 4 : 1 contrast in the left
square is imaged accurately. As to the right square, we got the 3.5 : 1 contrast. The
function c(x) = 1 outside of these squares is also imaged accurately. Locations of
imaged inclusions are somewhat shifted upwards.

We now explain our stopping criterion. Figure 6-a) shows computed relative L2-
norms of gradients of tails

(7.5)
||∇Vn,k −∇Vn,k−1||

||∇Vn,k||
and Figure 6-b) - shows relative L2-norms of the target coefficient

(7.6)
||cn,k − cn,k−1||

||cn,k||
.

We use these norms as the stopping rule for computation in our iterative algorithm.
We stop our iterative algorithm for computing of the new function qn when both
relative norms (7.5) and (7.6) are stabilized. Here is how we do this. First, we
observe on Figure 6-a) that relative L2-norms (7.5) of the computed gradients of
tails grow until n = 10. For n ≥ 10 norms (7.5) change slowly. Thus, we conclude
that at q9 tails are stabilized. However, norms (7.6) still grow for n > n0 = 9,
see Figure 6-b). We repeat our iterative procedure for n = 10, 11, 12, 13. And for
n ≥ 10 we also increase the number of iterations with respect to tails: we now take 7
iterations instead of 4. We observe that at n = 12 both relative norms (7.5) and (7.6)
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are stabilized. Thus, we set N = 12 and we take c12,7(x) as our final reconstructed
image. On the Figure 6 we also present results for n = 13, as a confirmation that
norms (7.5) and (7.6) are stabilized.

Remark 7.1. At the same time, we have observed that for n = 14, 15 norms
(7.6) abruptly grow, which was reflected in an abrupt move of positions of imaged
inclusions upwards (not shown). This confirms that our choice of N, which is one of
regularization parameters here (see item 4 in Remarks 6.2) was correct one. A similar
behavior was observed in Tests 2 and 3. We use exactly the same stopping criterion
in Tests 2,3,4. However, the number N is different for each of these examples, so as
the number n0 at which relative norms (7.5) of gradients tails are stabilized. The
fact that these two numbers change from one example to another one points towards
robustness of our stopping rule.

Test 2. We now test our numerical method on the reconstruction of the structure
given on Figure 2-b). We take the starting value for the tail V1,1 (x, s) ≡ 0. We
compute σ = 5% of the multiplicative random noise in the boundary data uobs by
the formula (7.4). We take c = 4 for both small squares of Figure 2-b) and c = 1
outside of these squares. Hence, the inclusion/background contrast is 4 : 1, which is
quite high in inverse problems. Figures 7 - 8 present isosurfaces of resulting images
of the functions cn,k after computing functions qn,k, n = 1, 2, ..., 12. Figure 9 presents
the one-dimensional cross-section of the image of the function cn,k along the vertical
line passing through the middle of the left small square. The imaged function c(x)
is superimposed with the correct one. One can see that the value of the function
c (x) both inside and outside of the inclusion is imaged correctly (including the 4 : 1
contrast), although the location of the inclusion is somewhat shifted to the top.

We have used the same stopping rule as above and thus discovered that n0 = 9
and N = 12. The behavior of norms (7.5) and (7.6) (not shown) was similar with
one on Figure 6. The last image on Figure 8 represents the final c12,7 image of the
target coefficient c(x).

Test 3. We now consider only a single small square of Figure 2-a), the left one,
with c = 3 in it, leaving all other parameters the same as above. Again we take
the starting value for the tail V1,1 (x, s) ≡ 0. Now we perform computations with
σ = 5, 15% of the multiplicative random noise in the boundary data uobs.

Figure 10 displays isosurfaces of images for qn,k, n = 2, 5, 7, 8, 10 with 5% noise
in the boundary data. Figure 11 displays isosurfaces of images for q10,k with 15%
noise in the boundary data. Figure 12 presents one-dimensional cross-sections of the
image of functions cn,k computed with q9, q10 and q11 along the vertical line passing
through the center of this square. The imaged function c(x) is superimposed with
the correct one. We observe that we obtain the 3.2 : 1 contrast of the reconstructed
function c(x) := c10,7 (x) , which is quite accurate, since the correct contrast is 3 : 1.
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q1,1 q1,2 q1,3 q1,4

q2,1 q2,2 q2,3 q2,4
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q4,1 q4,2 q4,3 q4,4

q5,1 q5,2 q5,3 q5,4

Figure 7. Test 2: spatial distribution of ch after computing qn,i;n =
1, ...5,, where n is number of the computed function q.
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q12,1 q12,2 q12,3 q12,7

Figure 8. Test 2: spatial distribution of ch after computing qn,i;n =
6, 7, 8, 9, 12, where n is number of the computed function q.
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Figure 9. Test 2: the one-dimensional cross-sections of the image
of the function ccomp along the vertical line connecting the points
(−1.5,−3) and (−1.5, 3).

Figure 13 shows computed relative L2-norms (7.5) and (7.6) with noise level σ =
5% in data. As in previous examples, we use these norms as the stopping rule in
our iterative algorithm. Using Figure 13, we analyze results of the reconstruction.
On Figure 13-a) we observe that relative L2-norms (7.5) of the computed gradients
of tails grow until computing the function q7. After that tails change slowly, which
means that n0 = 7. However, norms (7.6) are not yet stabilized. Hence, we now
want to stabilize norms (7.6). We repeat our iterative procedure for n = 8, 9, 10, 11
and with 7 iterations with respect to tails for these values of n instead of previous 4.
On Figure 13-b) we observe that at q9 both norms (7.5) and (7.6) are stabilized, and
at q10, q11 these norms almost do not change, although the norm for q11,7 starts to
grow. Thus, we conclude, that we achieve solution of our problem at q10 = q10,7 with
N = 10. We have observed a similar behavior of our solution with the relative noise
level σ = 15%. Similarly with Tests 1 and 2 we have observed that norms (7.5) and
(7.6) abruptly increase at q12. Thus we can conclude that our choice of the iteration
number N = 10 as a regularization parameter is correct one.

Test 4. The goal of this experiment is to confirm that the error in the recon-
structed images is mainly determined by the truncation error, as it follows from
Theorem 6.1, see the second remark after Theorem 6.1. We now consider the same
parameters, as ones in previous tests, except that we take the exact initial tail
V1,1 (x, s) = V ∗ (x, s) and the noise level σ = 5%. We use the same iterative al-
gorithm and the same regularization parameters as in all previous tests. We stop
our iterative algorithm for computation of the new function qn after computing the

function q1, since relative L2-norms
||c1,k−c1,k−1||

||c1,k||
= 0 and

||∇V1,k−∇V1,k−1||

||∇V1,k||
= 0 for all

k > 1.
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q2,1 q2,2 q2,3 q2,4

q5,1 q5,2 q5,3 q5,4

q7,1 q7,2 q7,3 q7,4

q8,1 q8,2 q8,3 q8,4

q10,1 q10,2 q10,3 q10,7

Figure 10. Test 3: Reconstruction with 5 % relative noise in
data. We present spatial distribution of ch after computing qn,i;n =
2, 5, 7, 8, 10, where n is number of the computed function q.
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q10,1 q10,2 q10,3 q10,7

Figure 11. Test 3: Reconstruction with 15 % relative noise in data.
We present spatial distribution of ch after computing q12,i.
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Figure 12. Test 3: the one-dimensional cross-sections of the im-
age of the function ccomp along the vertical line connecting the points
(−1.5,−3) and (−1.5, 3).

On Figure 14-a) c = 4 in the left small square and c = 3 in the right small square
(as in Test 1). On Figure 14-b) c = 4 in both small squares (as in Test 2), and c = 3
in the one small square on Figure 14-c) (as in Test 3). One can observe that the
reconstruction is almost an ideal one, and even shapes of inclusions resemble well
the correct ones. It is not fully ideal because of inevitable computational errors, the
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Figure 14. Test 4: spatial distribution of ch with exact tail.

approximation of the function q (x, s) by a piecewise constant function with respect
to s and the 5% noise in the data. The latter goes along well with Theorem 6.1: see
the parameter η in it.

Test 5. We now show that without a globally convergent algorithm the same
images deteriorate, if the good first guess for the solution is unknown. To do this,
we use the locally convergent reconstruction algorithm described in [4], where the
inverse problem is formulated as an optimal control problem. We find a stationary
point of a Lagrangian, using the forward wave equation (the state equation), the
backward wave equation (the adjoint equation), and an equation, which reflects the
fact that the gradient with respect to the parameters should vanish. A minimizer of
a corresponding least squares objective functional is found via an iterative procedure
via solving for the forward and backward wave equations for each iterative step and



A GLOBALLY CONVERGENT METHOD 41

a) b) c)

Figure 15. Test 5: spatial distribution of ch.

updating the material coefficients. We generate the data for the inverse problem using
the same computational mesh and the same parameters as ones in Test 2. We start
the optimization algorithm with different values of the first guess for the parameter
cguess = const. at all points of the computational domain ΩFEM . Figure 15 presents
the images of the computed function ccomp. for the following initial guesses: on a)
cguess = 1.0, on b) cguess = 1.5, and on c) cguess = 2.0. We observe that images
deteriorate if the good first guess for the solution is unknown. Most likely, local
minima are achieved in all these three cases.

7.4. Conclusions from numerical studies. We have tested our algorithm for
three different structures of the medium. In all cases we have not assumed any
advanced knowledge of the medium, including the background medium. Our regu-

larization parameters were: the sequences {λn}N
n=1 and {εn}N

n=1 , as well as iteration

numbers n0 and N , where n0 is the iteration number at which relative norms (7.5) of
gradients of tails are stabilized and N ∈ (n0, N) is the total number of functions qn we
have computed. The number N is such that the relative norms (7.6) of the unknown
coefficient are stabilized. We have used m1 = ... = mn0

= 4, mn0+1 = ... = mN = 7
for the number of iterations with respect to tails. Numbers n0 and N were cho-
sen on the basis of an objective stopping rule. So, although they were different for
different tests, but the stopping rule remained the same. On the other hand, for
n ∈

[
N + 2, N

]
norms (7.5) and (7.6) were abruptly growing. This indicates that

our choice of the number of iterations N as a regularization parameter was correct
one and was in a good agreement with the classic regularization theory, see p. 157
of [11].
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It is important that our numerical experiments have consistently demonstrated

good reconstruction results for the same sequences {λn}N
n=1 and {εn}N

n=1 of regular-
ization parameters, for the same objective stopping rule and for two different noise
levels of 5% and 15%. This points towards robustness of our numerical method.

An interesting conclusion can be drawn from the comparison of Figure 6a with
Figure 6b, and similarly from the comparison of Figure 12a with Figure 12b. One
can observe that the relative errors in final tails are about the same as those in
reconstructed coefficients. This provides a numerical confirmation of one of statement
of the second remark after Theorem 6.1: that the error of reconstruction is basically
O (ξ) , where ξ is the truncation error for tails. Results of Test 4 demonstrate this once
again. Results of Test 5 demonstrate that a conventional reconstruction technique
might not provide a good image, unless a good first guess for the solution is known.

8. Summary

We have presented a new globally convergent numerical method for a class of
multidimensional Coefficient Inverse Problems for some hyperbolic and parabolic
PDEs. These inverse problems arise in applications to acoustics, electromagnetics and
optical medical imaging. The two key new ideas are: (1) solution of the boundary
value problem (3.8), (3.9) for a nonlinear integral differential equation via a layer
stripping procedure with respect to the pseudo frequency s, and (2) weakening the

influence of the nonlinear term (∇qn)2 via the introduction of s−dependent Carleman
Weight Functions in the numerical scheme. Unlike this, in all previous works, both
theoretical and numerical ones, CWFs were dependent only on spatial variables and
were associated with the Carleman estimates for certain differential operators. We
have proven a global convergence result, conditions of which are in a good agreement
with the classic theory of ill-posed problems.

We have verified our convergence Theorem 6.1 on a number of numerical experi-
ments for an inverse problem of the determination of the coefficient in the principal
part of a hyperbolic operator, which means the determination of either the speed of
sound, in the case of acoustics, or of the product of the magnetic permeability and
electric permittivity coefficients in the case of electromagnetics. In particular, these
experiments have demonstrated robustness of our method, which provides good qual-
ity images with up to 15% relative random noise in the data. We have also verified
numerically the asymptotic behavior (3.4) in all our tests, as well as the positivity
of the function w.

We have observed that iterations with respect to tails are very important for the
image reconstruction, which was also observed in the previous publication [27] (see
section 4 in [27]). In all our numerical experiments the starting value for the tail
function was simply zero, which reflects the fact that we do not know a good first
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guess for the solution. Numerical results demonstrate both robustness of this method
and a good quality of reconstructed images, including good quality reconstructions of
high contrasts inside of inclusions. The latter is hard to achieve by locally convergent
methods. Shapes of inclusions are “smeared” due to three factors. First, the Laplace
transform actually leads to a diffusion-like equation for the function w. Second, the
ill-posed nature of the original inverse problem quite often causes smeared shapes
of reconstructed objects. Third and perhaps the most important one is that we do
not know tails. Finally, we have demonstrated numerically that a locally convergent
algorithm might result in significantly deteriorated images, unless a good first guess
about the solution is given.
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