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Abstract

We study the reduced Bogoliubov-Dirac-Fock (BDF) energy which al-
lows to describe relativistic electrons interacting with the Dirac sea, in
an external electrostatic potential. The model can be seen as a mean-
field approximation of Quantum Electrodynamics (QED) where photons
and the so-called exchange term are neglected. A state of the system is
described by its one-body density matrix, an infinite rank self-adjoint op-
erator which is a compact perturbation of the negative spectral projector
of the free Dirac operator (the Dirac sea).

We study the minimization of the reduced BDF energy under a charge
constraint. We prove the existence of minimizers for a large range of values
of the charge, and any positive value of the coupling constant α. Our
result covers neutral and positively charged molecules, provided that the
positive charge is not large enough to create electron-positron pairs. We
also prove that the density of any minimizer is an L1 function and compute
the effective charge of the system, recovering the usual renormalization of
charge: the physical coupling constant is related to α by the formula
αphys ≃ α(1 + 2α/(3π) log Λ)−1, where Λ is the ultraviolet cut-off. We
eventually prove an estimate on the highest number of electrons which
can be bound by a nucleus of charge Z. In the nonrelativistic limit, we
obtain that this number is ≤ 2Z, recovering a result of Lieb.

This work is based on a series of papers by Hainzl, Lewin, Séré and
Solovej on the mean-field approximation of no-photon QED.

1 Introduction

In this paper, we study a model of Quantum Electrodynamics (QED) allowing to
describe the behavior of relativistic electrons in an external field and interacting
with the virtual electrons of the Dirac sea, in a mean-field type theory. This work
should be seen as the continuation of previous papers by Hainzl, Lewin, Séré and
Solovej [12]—[16], in which a more complicated model called Bogoliubov-Dirac-
Fock (BDF) is considered. This project was mainly inspired of an important
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physical paper by Chaix and Iracane [6, 5] in which a model of the same kind
was first proposed. We start by summarizing the physical motivation before
defining the model properly.

Dirac introduced his operator in 1928 [7] with the purpose to describe the
behavior of relativistic electrons. It is defined as

D0 = −i
3∑

k=1

αk∂k + β := −iα · ∇ + β (1)

where α = (α1, α2, α3) and β are the 4×4 Dirac matrices [27]. The operator D0

acts on L2(R3,C4). Contrary to the non-relativistic Hamiltonian −∆/2, the op-
erator D0 is unbounded from below: σ(D0) = (−∞,−1]∪ [1,∞). This property
is known to be the basic explanation of various peculiar physical phenomena
like the possible creation of electron-positron pairs or the polarization of the
vacuum. The model that we shall study is a rough approximation of Quantum
Electrodynamics but it is able to reproduce many of these physical phenomena.
We refer to [12]—[16] for more details.

In QED, one can write a formal Hamiltonian acting on the usual fermionic
Fock space, in Coulomb gauge and neglecting photons [15, Eq. (1)]. The mean-
field approximation then consists in restricting formally this Hamiltonian to a
special subclass of states in the Fock space, called the Hartree-Fock states. Any
of these states is uniquely determined by its one-body density matrix which is a
self-adjoint operator 0 ≤ P ≤ 1 acting on L2(R3,C4). Often P is an orthogonal
projector. The QED energy then becomes a nonlinear functional in the variable
P , which can be formally written as follows

Eν
QED(P ) = tr(D0(P − 1/2))− α

∫∫

R3×R3

ν(x)ρ[P−1/2](y)

|x− y| dx dy

+
α

2

∫∫

R3×R3

ρ[P−1/2](x)ρ[P−1/2](y)

|x− y| dx dy−α
2

∫∫

R3×R3

|(P − 1/2)(x, y)|2
|x− y| dx dy,

(2)

where for any operator Q acting on L2(R3,C4) with kernel Q(x, y), ρQ is for-
mally defined as ρQ(x) = trC4(Q(x, x)). Recall Q(x, y) acts on 4-spinors, i.e. is
a 4× 4 complex hermitian matrix. The first term of (2) is the kinetic energy of
the particles, whereas the second term describes the interaction with an external
electrostatic field created by a smooth distribution of charge ν (describing for
instance a system of classical nuclei). The last two terms account for the inter-
action between the particles themselves. We have chosen a system of units such
that ~ = c = 1, and also such that the mass me of the electron is normalized to
1. The constant α = e2 (where e is the bare charge of an electron) is a small
number called the Sommerfeld fine-structure constant.

Expression (2) is purely formal: when P is an orthogonal projector on
L2(R3,C4), P − 1/2 is never compact and none of the terms above makes sense
a priori. However, it is possible to give a meaning to (2) by restricting the
system to a box and imposing an ultraviolet cut-off. One can then study the
thermodynamic limit, i.e. the behavior of the energy and of the minimizers
when the size of the box goes to infinity (but the ultraviolet cut-off is fixed).
This approach was the main purpose of [15].
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The last two terms of (2) are respectively called the direct term and the
exchange term. In theoretical studies of the Hartree-Fock model, the exchange
term is sometimes neglected [26]. The above energy then becomes (formally)
convex, a very interesting simplification both from a theoretical and numerical
point of view. Refined models exist: in relativistic density functional theory
for instance, the exchange term is approximated by a function of the density
ρ[P−1/2] and its derivatives only, see, e.g., the review [11]. Neglecting the last
term, one is led to consider the following reduced formal functional

Eν
r-QED(P ) = tr(D0(P − 1/2)) − α

∫∫

R3×R3

ν(x)ρ[P−1/2](y)

|x− y| dx dy

+
α

2

∫∫

R3×R3

ρ[P−1/2](x)ρ[P−1/2](y)

|x− y| dx dy. (3)

As usual, one is interested in finding states having lowest energy, possibly in
a specific subclass. In QED, a global minimizer in the Fock space is interpreted
as being the vacuum, whereas other states (containing a finite number q of real
electrons for example) are obtained by assuming a charge constraint. When
the external field vanishes (ν ≡ 0) and for any values of the coupling constant
α ≥ 0, one easily proves that E0

r-QED has a unique global minimizer which is the
negative spectral projector of the free Dirac operator:

P 0
− := χ(−∞,0](D

0).

The precise mathematical statement is that when the system is restricted to a
box of size L with an ultraviolet cut-off Λ, the above energy is well-defined; it
has a unique minimizer

PL = χ(−∞,0](D
0
L)

where D0
L is the Dirac operator acting on the box with periodic boundary con-

ditions. The sequence P 0
L converges (in a weak sense) to P 0

− which is thus
interpreted as the unique global minimizer of P 7→ E0

r-QED(P ). If the exchange
term is not neglected, the situation is more complicated and we refer to [15]
where the thermodynamic limit was carried out.

The fact that P 0
− is found to be the global minimizer of our formal energy is

not physically surprising. This corresponds to the usual Dirac picture [7, 8, 9, 10]
which consists in assuming that the vacuum should be seen as an infinite system
of virtual particles occupying all the negative energy states of the free Dirac
operator. Notice however that when the exchange term is taken into account,
this picture is no longer valid: P 0

− does not describe the free vacuum which is
instead solution of a complicated translation-invariant nonlinear equation, see
[15].

We want to emphasize the importance of the subtraction of half the identity
in all the terms of the above energy (3). Indeed, the kernel of the translation-
invariant operator P 0

− − 1/2 is

(P 0
− − 1/2)(x, y) = (2π)−3/2f(x− y) where f̂(k) = − D0(k)

2|D0(k)| .

If we assume that there is a cut-off Λ in the Fourier domain, i.e. supp(f̂) ⊆
B(0,Λ), it is then possible to compute the density

ρ[P 0
−−1/2] = (2π)−3/2 trC4(f(0)) = (2π)−3

∫

B(0,Λ)

trC4(f̂(k))dk ≡ 0, (4)
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the Dirac matrices being trace-less. We therefore obtain that the free vacuum
has no density of charge, which is comforting physically.

When the external field does not vanish, the main idea is then to subtract
the (infinite) energy of the free vacuum E0

r-QED(P 0
−) to (3), in order to obtain a

finite quantity. This yields the so-called (formal) reduced-Bogoliubov-Dirac-Fock
energy (rBDF) which was already studied in [13] and is more easily expressed
in terms of the difference Q = P − P 0

−,

Eν
r (P − P 0

−) = “Eν
r-QED(P ) − E0

r-QED(P 0
−)”

= tr(D0(P − P 0
−)) − α

∫∫

R6

ν(x)ρ[P−P 0
− ](y)

|x− y| dx dy

+
α

2

∫∫

R6

ρ[P−P 0
−](x)ρ[P−P 0

−](y)

|x− y| dx dy. (5)

Note that we have used (4). What we have gained is that Q = P −P 0
− can now

be a compact operator (it will indeed be Hilbert-Schmidt). We recall that P is
the density matrix of our Hartree-Fock state, hence it satisfies 0 ≤ P ≤ 1 which
translates on Q as −P 0

− ≤ Q ≤ 1 − P 0
− := P 0

+.
A (formal) global minimizer Q of Eν

r is interpreted as the polarized vacuum
in the presence of the external density ν. Formally, it solves the self-consistent
equation {

Q = χ(−∞,0)(DQ) − P 0
−

DQ = D0 + α(ρQ − ν) ∗ | · |−1.
(6)

In order to describe a physical system containing a finite number q of real
electrons, it is necessary to minimize the above energy not on the full class of
states, but rather in a chosen charge sector, i.e. over states satisfying the formal
charge constraint “ tr(Q) = tr(P − P 0

−) = q”. Then a minimizer will satisfy the
following equation

{
Q = χ(−∞,µ)(DQ) − P 0

− + δ
DQ = D0 + α(ρQ − ν) ∗ | · |−1 (7)

where µ is a Lagrange multiplier due to the charge constraint and interpreted
as a chemical potential. The operator δ is a finite rank operator satisfying
0 ≤ δ ≤ 1 and Ran(δ) ⊂ ker(DQ − µ). Notice the number q does not need to
be an integer as one may want to describe mixed states (in which case δ 6= 0).

We see that in both cases (minimization with or without a charge constraint),
a minimizer always corresponds to filling energies of an effective Dirac operator
up to some Fermi level µ. This corresponds to original ideas of Dirac. For the
general BDF theory, the idea that one can have a bounded below functional
whose minimizer satisfies this kind of equation was first proposed by Chaix and
Iracane [6, 5].

In this paper, we shall prove that the range of q’s such that minimizers exist
is an interval [qm, qM ] ⊂ R which contains both the charge of the polarized
vacuum (the global minimizer of the energy, solution of (6)) denoted by q0, and
Z =

∫
R3 ν. This proves the existence of neutral molecules and of positively

charged molecules the charge of which is not too big, because in this case one
has q0 = 0. This extends previous results proved for the BDF theory with
the exchange term in [14]: sufficient conditions were given for the existence of
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minimizers, but these conditions could only be checked in the nonrelativistic or
the weak coupling limits. In the present paper, we shall also give interesting
properties of a minimizer when it exists, and provide a bound on the maximal
number of electrons which can be bound by a nucleus of charge Z, following
ideas of Lieb [20].

The mathematical formulation and the proofs of the above statements are
not straightforward.

The first (and main) difficulty is that we do not expect that a solution Q
of Equations (6) or (7) is a trace-class operator. Indeed our results below will
imply that in most cases it cannot be trace-class. This is a big problem as in the
energy (3) the first term is expressed as a trace, as well as the total charge of
the system which we formally wrote “tr(Q)” in the previous paragraphs. This
issue was solved in [12] where it was proposed to generalize the trace functional
and to define the trace counted relatively to the free vacuum P 0

− as

trP 0
−
(Q) := tr(P 0

+QP
0
+) + tr(P 0

−QP
0
−).

As we shall see, any minimizer Q will have a finite so-defined P 0
−-trace, which

does not mean that Q is trace-class.
If we do not expectQ to be trace-class, there is a problem in defining the den-

sity of charge ρQ. Indeed it is known that in QED there are several divergences
which need to be removed by means of an ultraviolet cut-off. In previous works
[12]—[16], a sharp cut-off Λ was imposed: the space L2(R3,C4) was replaced by
its subspace consisting of functions that have a Fourier transform with support
in the ball of radius Λ. This allowed to give a solid mathematical meaning to
the energy (5). In [12, 13], it was proved that the energy has a global minimizer
Q, solution of (6). In [14], sufficient conditions were given on q to ensure the
existence of a ground state in the charge sector q with the exchange term. They
could only be checked in the nonrelativistic or the weak coupling limit.

In this paper, we propose other kinds of cut-offs which seem better for ob-
taining decay properties of the density of charge1. Essentially, they consist in
replacing the Dirac operator D0 by Dζ(p) = (α · p+ β)(1 + ζ(|p|2/Λ2)) where
ζ is a smooth function growing fast enough at infinity. We call these cut-offs
smooth in contrast to the previous sharp cut-off. But many of our results will
also be valid in the sharp cut-off case.

Even with an ultraviolet cut-off, a minimizer Q will in general not be trace-
class. But we shall be able to prove that anyway its density of charge is an L1

function: ρQ ∈ L1(R3). This information can then be used to prove the existence
of all atoms and molecules which are either neutral or positively charged and
do not have a too strong positive nuclear density. Also we shall prove a formula
which relates the integral of ρQ and q = trP 0

−
(Q) of the form

∫

R3

ρQ − Z ≃ q − Z

1 + 2/(3π)α log Λ
(8)

(see Theorem 4 for a precise statement depending on the chosen cut-off Λ).
When q 6= Z, this proves that

∫
R3 ρQ 6= q = trP 0

−
(Q), hence Q cannot be

trace-class.

1A similar remark was made in [21] in the context of non-relativistic QED.
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The fact that a minimizer is not trace-class but its density is anyway an L1

function can first be thought of as being a technical issue. But Equation (8)
has a relevant physical interpretation. It means that the total observed charge∫

R3 ρQ − Z is different from the real charge q − Z of the system. Hence the
mathematical property that a minimizer is not trace-class is well interpreted
physically in terms of charge renormalization. We even recover a standard
charge renormalization formula in QED, see [19, Eq. (8)] and [17, Eq. (7.18)],
although we use a simple model without photons and within the Hartree-Fock
approximation with the exchange term removed.

As announced before, we shall prove in this paper that minimizers exist if
and only if q ∈ [qm, qM ], an interval which contains both Z and the charge q0
of the polarized vacuum. We shall also derive some bounds on qm and qM ,
assuming that the nuclear charge distribution is not too strong. Essentially we
prove that qm < 0 is very small and that

Z ≤ qM ≤ 2Z + o
α→0

(1).

In the nonrelativistic limit we recover the usual bound of the reduced Hartree-
Fock model which can be obtained by a method of Lieb [20].

In the next section, we define the reduced BDF energy (5) properly and state
our main results. Proofs are given in Section 3.

Acknowledgment. M.L. and E.S. acknowledge support from the ANR project
“ACCQUAREL” of the French ministry of research.

2 Model and main results

In the whole paper, we denote by Sp(H) the usual Schatten class of operators
Q acting on a Hilbert space H and such that tr(|Q|p) <∞. We use the notation
Qǫǫ′ := P 0

ǫ QP
0
ǫ′ for any ǫ, ǫ′ ∈ {±}. A self-adjoint operator Q acting on H is

said to be P 0
−-trace class [12] if Q ∈ S2(H) and Q++, Q−− ∈ S1(H). We then

define its P 0
−-trace as

trP 0
−
(Q) = tr(Q−−) + tr(Q++).

The space of P 0
−-trace class operators on H will be denoted by S

P 0
−

1 (H). We refer
to [12] where important properties of this generalization of the trace functional
are provided.

2.1 Ultraviolet regularization

It is well-known that in Quantum Electrodynamics a cut-off is mandatory [3, 17].
There are two sources of divergence in the Bogoliubov-Dirac-Fock model. The
first is the negative continuous spectrum of the Dirac operator, which is cured
by the subtraction of the (infinite) energy of the Dirac sea, as explained above.
The second source of divergence is the rather slow growth of the Dirac operator
for large momenta: D0 only behaves linearly in p at infinity2.

2Notice a model similar to the reduced-BDF theory was recently studied for non-relativistic
crystals in the presence of defects [4], in which case a cut-off is not necessary because of the
presence of the Laplacian instead of D0.
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This can be cured by imposing a sharp cut-off on the space, i.e. by replacing
L2(R3,C4) by its subspace

HΛ :=
{
f ∈ L2(R3,C4) | supp(f̂) ⊆ B(0,Λ)

}
. (9)

Notice D0HΛ ⊂ HΛ. This simple approach was chosen in previous works [12]—
[16].

However, when looking at decay properties of the electronic density, it might
be more adapted to instead increase the growth of the Dirac operator at infinity.
This means we replace D0 by the operator

Dζ(p) := (α · p+ β)

(
1 + ζ

( |p|2
Λ2

))
(10)

where ζ : [0,∞) 7→ [0,∞) grows fast enough at infinity. The operator Dζ is
self-adjoint on H = L2(R3,C4) with domain

D(Dζ) :=

{
f ∈ L2(R3,C4) |

(
1 + |p|ζ

( |p|2
Λ2

))1/2

f̂(p) ∈ L2(R3,C4)

}
.

We remark that the case of the sharp cut-off (9) formally corresponds to

ζ(x) =

{
0 if |x| ≤ 1;
+∞ otherwise.

(11)

In this work, we shall consider both cases (9) and (10). We assume through-
out the whole paper that

• either H = HΛ and ζ ≡ 0 (or equivalently ζ given by (11));

• or H = L2(R3,C4) and ζ satisfies the following properties:

ζ ∈ C3([0,∞)) is non-decreasing and ζ(0) = 0, (12)

ζ(x) ≥ εxε/2
1(x ≥ 1) for some ε > 0, (13)

(1 + |x|p)
∣∣∣ζ(p)(x)

∣∣∣ ≤ C(1 + ζ(x)) for p = 1, 2, 3. (14)

Many of our results will be true under weaker assumptions on ζ but we shall
restrict ourselves to (12)–(14) for simplicity. We notice that under these as-
sumptions, the spectrum of Dζ is the same as the one of D0:

σ(Dζ) = (−∞;−1] ∪ [1;∞).

Also the negative spectral projector of Dζ is the same as the one of D0:

P 0
− = χ(−∞,0](D

0) = χ(−∞,0](D
ζ).

In the whole paper, we shall consider perturbations of Dζ of the form Dζ +
ρ ∗ | · |−1 where ρ belongs to the so-called Coulomb space

C := {ρ ∈ S′(R3) | D(ρ, ρ) <∞} (15)
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where

D(f, g) = 4π

∫

R3

|k|−2f̂(k)ĝ(k)dk. (16)

Notice the dual space of C is the Beppo-Levi space

C′ :=
{
V ∈ L6(R3) | ∇V ∈ L2(R3)

}
.

Lemma 1. We assume that H = HΛ and ζ = 0, or that H = L2(R3,C4) and ζ
satisfies (12)–(14). For any ρ ∈ C, the operator Dζ + ρ ∗ | · |−1 defined on the
same domain as Dζ is self-adjoint and satisfies:

σess(D
ζ + ρ ∗ | · |−1) = σess(D

ζ) = (−∞,−1] ∪ [1,∞).

Proof. We denote V := ρ ∗ | · |−1. We have V |Dζ |−1 is in S6(H), hence is
compact. This is because we can use the Kato-Seiler-Simon inequality (see [24]
and [25, Thm 4.1])

∀p ≥ 2, ||f(−i∇)g(x)||
Sp

≤ (2π)−3/p ||g||Lp(R3) ||f ||Lp(R3) (17)

and obtain

∣∣∣∣V |Dζ |−1
∣∣∣∣

S6(H)
≤ C ||V ||L6(R3)

∣∣∣∣|Dζ(·)|−1
∣∣∣∣

L6(R3)
≤ C ||∇V ||L2 = C ||ρ||C . (18)

Lemma 1 is then an application of a criterion by Weyl [23, Sec. XIII.4].

2.2 Definition of the reduced-BDF energy

We recall that H = L2(R3,C4) or H = HΛ depending on the chosen cut-off. We
need to provide a correct setting for the rBDF energy. When H = HΛ, this was
done in [12]—[16]. When H = L2(R3,C4), this is done similarly to the crystal
case studied in [4]. We introduce the following Banach space:

Q :=

{
Q ∈ S2(H) | Q∗ = Q, |Dζ |1/2Q ∈ S2(H),

|Dζ |1/2Q++|Dζ |1/2 ∈ S1(H), |Dζ |1/2Q−−|Dζ |1/2 ∈ S1(H)

}
(19)

with associated norm

||Q||Q :=
∣∣∣
∣∣∣|Dζ |1/2Q

∣∣∣
∣∣∣
S2(H)

+
∣∣∣
∣∣∣|Dζ |1/2Q++|Dζ |1/2

∣∣∣
∣∣∣
S1(H)

+
∣∣∣
∣∣∣|Dζ |1/2Q−−|Dζ |1/2

∣∣∣
∣∣∣
S1(H)

. (20)

We notice that when H = HΛ and ζ = 0, one has Q = S
P 0

−

1 (HΛ) as chosen

in [12]—[15]. In the general case, we only have Q ⊂ S
P 0

−

1 (H). We recall that
S1(H) is the dual of the space of compact operators acting on H. Hence S1(H)
can be endowed with the associated weak-∗ topology where An ⇀ A in S1(H)
means that tr(AnK) → tr(AK) for any compact operator K. Together with
the fact that S2(H) is a Hilbert space, this defines a weak topology on Q.
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We also introduce the following convex subset of Q:

K :=
{
Q ∈ Q | − P 0

− ≤ Q ≤ P 0
+

}
(21)

which is the closed convex hull of states of the form Q = P − P 0
− ∈ Q where P

is an orthogonal projector acting on H. It is clear that K is closed both for the
strong and the weak-∗ topology of Q. As we shall see, the reduced BDF energy
will be coercive and weakly lower semi-continuous on K.

Besides, the number trP 0
−
(Q) can be interpreted as the charge of the system

measured with respect to that of the unperturbed Dirac sea P 0
−, see [12]—[16].

Note that the constraint −P 0
− ≤ Q ≤ P 0

+ in (21) is indeed equivalent [1, 12] to
the inequality

0 ≤ Q2 ≤ Q++ −Q−− (22)

and implies in particular that Q++ ≥ 0 and Q−− ≤ 0 for any Q ∈ K.
We need to define the density ρQ of any state Q ∈ Q. When H = HΛ,

this is easy as any Q ∈ Q has a smooth kernel Q(x, y) (this is because the

Fourier transform Q̂(p, q) ∈ L2(B(0,Λ)2)). This property was used in [12]–[15]
to properly define the density of charge. In the case where H = L2(R3,C4) and
ζ 6= 0, this is a bit more involved. The following is similar to [14, Lemma 1] and
[4, Prop. 1] (we recall that C was defined above in (15)):

Proposition 2 (Definition of the density ρQ for Q ∈ Q). We assume that
H = HΛ and ζ = 0, or that H = L2(R3,C4) and ζ satisfies (12)–(14).

Let Q ∈ Q. Then QV ∈ S
P 0

−

1 (H) for any V ∈ C′. Moreover there exists a
constant C (independent of Q and V ) such that

| trP 0
−
(QV )| ≤ C ||Q||Q ||V ||C′ .

Hence, there exists a continuous linear form Q ∈ Q 7→ ρQ ∈ C which satisfies

trP 0
−
(QV ) = C′〈V, ρQ〉C

for any V ∈ C′ and any Q ∈ Q. Eventually when Q ∈ Q ∩ S1(H), then
ρQ(x) = trC4 Q(x, x) where Q(x, y) is the integral kernel of Q.

The proof of Proposition 2 is given in Section 3.1 below.
Let us now define the reduced Bogoliubov-Dirac-Fock (rBDF) energy. In the

whole paper, we use the notation, for any Q ∈ Q,

trP 0
−
(DζQ) := tr

(
|Dζ |1/2(Q++ −Q−−)|Dζ |1/2

)
. (23)

When DζQ ∈ S
P 0

−

1 (H), this coincides with the definition of the generalized trace
introduced above. The rBDF energy reads:

Eν
r (Q) = trP 0

−
(DζQ) − αD(ν, ρQ) +

α

2
D(ρQ, ρQ) (24)

where we recall that D(·, ·) was defined in (16). In (24), ν is an external density
which will be assumed to belong to L1(R3)∩C. We use the notation

∫
R3 ν = Z.

The energy Eν
r is well-defined [12, 14] on the convex set K. By (22), we have

trP 0
−
(DζQ) =

∣∣∣
∣∣∣|Dζ |1/2Q++|Dζ |1/2

∣∣∣
∣∣∣
S1(H)

+
∣∣∣
∣∣∣|Dζ |1/2Q−−|Dζ |1/2

∣∣∣
∣∣∣
S1(H)

≥
∣∣∣∣|Dζ |Q

∣∣∣∣2
S2(H)

. (25)
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Together with

−αD(ν, ρQ) +
α

2
D(ρQ, ρQ) ≥ −α

2
D(ν, ν),

this proves both that Eν
r is bounded from below on K,

∀Q ∈ K, Eν
r (Q) ≥ −α

2
D(ν, ν),

and that it is coercive for the topology of Q.
Since Eν

r is convex on K and weakly lower semi-continuous, it has a global
minimizer Q̄vac, interpreted as the polarized vacuum in the presence of the
external field created by the density ν. This was remarked in [13, Theorem 3].
Assuming that ker(DQ̄vac

) = {0} where

DQ̄vac
= Dζ + α(ρQ̄vac

− ν) ∗ | · |−1

is the mean field operator, then one can adapt the proof of [13, Theorem 3]
to get that Q̄vac is unique and is a solution of the nonlinear equation Q̄vac =
χ(−∞,0](DQ̄vac

) − P 0
−. The charge of the polarized vacuum is −eq0 where

q0 = trP 0
−
(Q̄vac).

When αD(ν, ν)1/2 is not too large [13, Eq. (15)], it was proved that q0 = 0.
However in general electron-positron pairs can appear, giving rise to a charged
vacuum. When ker(DQ̄vac

) 6= {0}, then Eν
r does not have a unique global mini-

mizer on K, but it will be proved that q0 is anyway a uniquely defined quantity.

2.3 Existence of minimizers with a charge constraint

We are interested in the following minimization problem

Eν
r (q) = inf

Q∈Q(q)
Eν
r (Q) (26)

where the sector of charge −eq is by definition

Q(q) := {Q ∈ Q, trP 0
−
(Q) = q}

and q is any real number. Of course in Physics q ∈ Z but it is convenient to
allow any real value. It will be proved below that q → Eν

r (q) is a Lipschitz
and convex function. Notice that if Q̄ is a global minimizer of Eν

r on Q, then
q0 = trP 0

−
(Q̄) minimizes q → Eν

r (q).

The existence of minimizers to (26) is not obvious: although Eν
r is convex

and weakly lower semi-continuous, and Q(q) is itself a convex set, the linear
form Q 7→ trP 0

−
(Q) is not weakly continuous. Hence Q(q) is not closed for the

weak topology. Our main result is the following theorem, whose proof is given
in Section 3.2 below.

Theorem 1 (Existence of atoms and molecules in the reduced BDF model).
We assume that H = HΛ and ζ = 0, or that H = L2(R3,C4) and ζ satisfies
(12)–(14). Let be α ≥ 0, ν ∈ L1(R3)∩ C and denote Z =

∫
R3 ν ∈ R. Then there

exists qm ∈ [−∞,∞) and qM ∈ [qm,∞] such that

10



(i) [qm, qM ] is the largest interval on which q → Eν
r (q) is strictly convex. If

qM < ∞, then Eν
r (q) = Eν

r (qM ) + q − qM for any q > qM . If qM > −∞, then
Eν

r (q) = Eν
r (qm) + qm − q for any q < qm;

(ii) the interval [qm, qM ] contains both Z and the unique minimizer q0 of q →
Eν

r (q);

(iii) if q /∈ [qm, qM ], then Eν
r has no minimizer in the charge sector Q(q);

(iv) if q ∈ [qm, qM ], then Eν
r has a minimizer Q in the charge sector Q(q).

This minimizer is not a priori unique but its associated density ρQ is uniquely
determined. It is radially symmetric if ν is radially symmetric. The operator Q
satisfies the self-consistent equation

{
Q+ P 0

− = χ(−∞,µ) (DQ) + δ,

DQ = Dζ + α(ρQ − ν) ∗ | · |−1,
(27)

where µ ∈ [−1, 1] is a Lagrange multiplier associated with the charge constraint
and interpreted as a chemical potential, and δ satisfies 0 ≤ δ ≤ 1 and Ran(δ) ⊆
ker(DQ − µ). If µ ∈ (−1, 1), then δ has a finite rank. If µ ∈ {−1, 1}, then δ is
trace-class.

Moreover, ρQ belongs to L1(R3) and satisfies

∫

R3

ρQ − Z =
q − Z

1 + αBζ
Λ(0)

(28)

where

Bζ
Λ(0) =

1

π

∫ 1

0

z2 − z4/3

(1 − z2)
(
1 + ζ

(
z2

Λ2(1−z2)

))dz =
2

3π
log Λ +O(1)

if H = L2(R3,C4) and ζ 6= 0, and

B0
Λ(0) =

1

π

∫ Λ√
1+Λ2

0

z2 − z4/3

1 − z2
dz =

2

3π
log Λ − 5

9π
+

2 log 2

3π
+O(1/Λ2)

if H = HΛ and ζ = 0.

The constant Bζ
Λ(0) is the value at zero of some real function Bζ

Λ which will
be defined later, see (48) and (49).

Equation (28) has an important physical interpretation. Consider for in-
stance a nucleus of charge eZ in the vacuum, and assume that Z and its
distribution of charge ν are chosen to ensure that there is no pair creation
from the vacuum, trP 0

−
(Q̄) = q0 = 0. A sufficient condition is for instance

απ1/6211/6D(ν, ν)1/2 < 1, see [13] and Lemma 11. By (28), the electrostatic
potential which will be observed very far away from the nucleus is αphysZ/|x|
where

αphys =
α

1 + αBζ
Λ(0)

. (29)

This leads to a new definition of the physical coupling constant called charge
renormalization (recall that α = e2). The above value of the physical charge

11



-

qm q0 Z qM
q

Eν
r (q)

no minimizer ∃ a minimizer

Figure 1: Schematic representation of the result.

(29) is very well-known in QED, see e.g. [19, Eq. (8)] and [17, Eq. (7.18)]. This
was already used and interpreted in [13], in particular in connection with the
large cut-off limit Λ → ∞, in the case H = HΛ.

The renormalized charge is only observed far away from the nucleus. Close to
it, one will observe a different behavior like the oscillations of the polarization of
the vacuum ρQ̄. See [16] for an interpretation in terms of the Uehling potential.

Equation (28) implies that a minimizer Q in the charge sector q 6= Z is never
trace-class, as this would imply trP 0

−
Q =

∫
R3 ρQ and contradict (28). This shows

that the generalization of the reduced BDF energy Eν
r to the Banach space Q

is mandatory, as no minimizer exists in the trace class. The mathematical
difficulty that a minimizer is not trace-class is well interpreted physically in
terms of charge renormalization.

When q = Z, it is in principle possible that a minimizer Q for Eν(q) is
trace-class. We shall not investigate this question in this article.

2.4 Ionization: an estimate on qm and qM

In the previous section, we have proved the existence of an interval [qm, qM ] for
q in which minimizers always exist. We now want to provide an estimate on qm
and qM . We do that with a specific choice for the cut-off function ζ, namely
ζ(t) = t, which obviously satisfies our assumptions (12)–(14). We give this result
as an illustration: we believe that a same kind of estimate can be derived for
other cut-offs. The advantage of this choice is that Dζ = (−iα ·∇+β)

(
1 − ∆

Λ2

)

is local. Notice in this particular case

Bζ
Λ(0) =

2

3π
log Λ − 5

9π
+

2 log 2

3π
+O

(
log Λ

Λ2

)
.

Theorem 2 (Estimates on qm and qM when Z > 0). We assume that H =
L2(R3,C4) and ζ(t) = t. There exists universal constants 0 < θ0 < 1, α0 > 0
and C > 0 such that the following holds. For any 0 ≤ α ≤ α0, for any radial
function ν ≥ 0 in L1(R3)∩C such that Z =

∫
ν > 0 and αD(ν, ν) ≤ θ0 < 1 and

12



any cut-off Λ ≥ 4 such that α log Λ < 1/C, the following estimate holds true:

−CZα log Λ + 1/Λ + αD(ν, ν)

1 − Cα log Λ
≤ qm ≤ 0 = q0, (30)

Z ≤ qM ≤ 2Z + C(Zα log Λ + 1/Λ + αD(ν, ν))

1 − Cα log Λ
. (31)

In a nonrelativistic limit in which one takes α → 0, Λ → ∞ such that
α log Λ → 0 and ν fixed, one obtains the usual estimate of [20]

0 = qm = q0 < Z ≤ qM ≤ 2Z.

The proof of Theorem 2 is given in Section 3.3. An estimate more precise than
(30) and (31) is contained in our proof but we do not state it here.

3 Proofs

3.1 Proof of Proposition 2

When H = HΛ and ζ = 0, Proposition 2 is contained in [14, Lemma 1]. Hence we
only treat the case H = L2(R3,C4). Consider some Q ∈ Q and V ∈ C′∩L∞(R3).
We have (QV )++ = Q++V P 0

+ + Q+−[V, P 0
+]P 0

+ and (QV )−− = Q−−V P 0
− +

Q−+[V, P 0
−]P 0

−. We first give an estimate on the commutator [V, P 0
−].

Lemma 3. We assume that H = HΛ and ζ = 0 or H = L2(R3,C4) and ζ
satisfies (12)–(14). We have for all τ ≥ 1/2 and all p ≥ 2

∀V,
∣∣∣∣|Dζ |−τ [V, P 0

−]
∣∣∣∣

Sp(H)
≤ C ||∇V ||Lp(R3)

where the constant C is independent of ζ (hence of Λ) if τ > 1/2 or p > 2.

Proof of Lemma 3. Using Cauchy’s formula, we infer

[V, P 0
−] =

1

2π

∫ ∞

−∞

(
1

D0 + iη
V − V

1

D0 + iη

)
dη

=
1

2π

∫ ∞

−∞

1

D0 + iη
[V,D0 + iη]

1

D0 + iη
dη

= − i

2π

∫ ∞

−∞

1

D0 + iη
α · (∇V )

1

D0 + iη
dη

(recall P 0
− does not depend on ζ). Hence, by means of

∣∣∣∣
∣∣∣∣

1

D0 + iη

∣∣∣∣
∣∣∣∣ ≤

1√
1 + η2

we obtain

∣∣∣∣|Dζ |−τ [V, P 0
−]
∣∣∣∣

Sp(H)
≤ 1

2π

∫ ∞

−∞

∣∣∣∣
∣∣∣∣

1

|Dζ |τ (D0 + iη)
α · (∇V )

∣∣∣∣
∣∣∣∣
Sp(H)

dη√
1 + η2

.
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Next we use the Kato-Seiler-Simon inequality (17) and obtain by (13)

∣∣∣∣|Dζ |−τ [V, P 0
−]
∣∣∣∣

Sp(H)
≤ C ||∇V ||Lp(R3) ×

×
∫ ∞

−∞

∣∣∣∣∣

∣∣∣∣∣
1

(1 + | · |)τ (1 + ǫ| · |ǫ/Λǫ)τ
√

1 + | · |2 + η2

∣∣∣∣∣

∣∣∣∣∣
Lp(R3)

dη√
1 + η2

(32)

which allows to conclude.

We consider first for (QV )++ and use Lemma 3 with p = 2 and τ = 1/2,

∣∣∣∣Q+−[V, P 0
+]P 0

+

∣∣∣∣
S1(H)

≤ C
∣∣∣
∣∣∣Q+−|Dζ |1/2

∣∣∣
∣∣∣
S2(H)

||∇V ||L2(R3)

≤ C
∣∣∣
∣∣∣Q|Dζ |1/2

∣∣∣
∣∣∣
S2(H)

||V ||C′ .

Similarly we have

∣∣∣∣Q++V P 0
+

∣∣∣∣
S1(H)

≤
∣∣∣
∣∣∣Q++|Dζ |1/2

∣∣∣
∣∣∣
S1(H)

∣∣∣
∣∣∣|Dζ |−1/2V

∣∣∣
∣∣∣
S∞(H)

.

On the other hand, we have by the Kato-Seiler-Simon inequality (17)

∣∣∣
∣∣∣|Dζ |−1/2V

∣∣∣
∣∣∣
S∞(H)

≤
∣∣∣
∣∣∣|Dζ |−1/2V

∣∣∣
∣∣∣
S6(H)

≤ C ||V ||L6

∣∣∣∣|Dζ(·)|−1
∣∣∣∣2

L3(R3)
≤ C ||V ||L6 .

where we have used Assumption (13) on ζ and
∣∣∣∣|Dζ(·)|−1

∣∣∣∣
L3(R3)

<∞. Hence

∣∣∣
∣∣∣|Dζ |−1/2V

∣∣∣
∣∣∣
S∞(H)

≤ C ||∇V ||L2R3) = C ||V ||C′

by the critical Sobolev embedding H1(R3) →֒ L6(R3). As a conclusion,

∣∣tr(QV )++
∣∣ ≤

∣∣∣∣(QV )++
∣∣∣∣

S1(H)
≤ C ||V ||C′ ||Q||Q .

The proof is the same for (QV )−−.

3.2 Proof of Theorem 1

Step 1: Existence of a minimizer if some HVZ conditions hold.

Let us start with the analogue of [14, Lemma 3].

Lemma 4. We assume that H = HΛ and ζ = 0, or that H = L2(R3,C4) and
ζ satisfies (12)–(14). Let be α ≥ 0, Λ > 0 and ν ∈ L1(R3) ∩ C. We have the
following estimate

|q| − α

2
D(ν, ν) ≤ Eν

r (q) ≤ |q|. (33)

In particular we get for ν = 0 and for any q ∈ R,

E0
r (q) = |q|.

Proof. It suffices to follow the proof of [14, Lemma 3].

Next we state a result analogous to [14, Theorem 3].
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Theorem 3 (A dissociation criterion). We assume that H = HΛ and ζ = 0,
or that H = L2(R3,C4) and ζ satisfies (12)–(14). Let be α ≥ 0, Λ > 0 and
ν ∈ L1(R3) ∩ C. The following two conditions are equivalent

(H1) Eν
r (q) < Eν

r (q′) + |q − q′| for any q′ 6= q;

(H2) each minimizing sequence (Qn)n≥1 for Eν
r (q) is precompact in Q and

converges, up to a subsequence, to a minimizer Q of Eν
r (q).

When it exists, such a minimizer Q satisfies the self-consistent equation

{
Q+ P 0

− = χ(−∞,µ) (DQ) + δ,

DQ = Dζ + α(ρQ − ν) ∗ | · |−1,
(34)

where µ ∈ [−1, 1] is a Lagrange multiplier associated with the charge constraint
and interpreted as a chemical potential, and δ is a self-adjoint operator satisfying
0 ≤ δ ≤ 1 and Ran(δ) ⊆ ker(DQ−µ). The operator δ is finite rank if µ ∈ (−1, 1)
and trace-class if µ ∈ {−1, 1}.

Remark 1. Like in [14, Prop. 8], it can be proved that

∀q, q′ ∈ R, Eν
r (q) ≤ Eν

r (q′) + |q − q′|. (35)

In particular this implies that q 7→ Eν
r (q) is Lipschitz.

Proof. The proof of Theorem 3 is an adaptation of previous works and it will
not be detailed here. In the case of the sharp cut-off H = HΛ and ζ = 0,
this is contained in the proof of [14, Theorem 3]. In the smooth cut-off case
H = L2(R3,C4) with ζ 6= 0, it suffices to follow the proof given in the crystal
case in [4]. Notice many commutator estimates proved in [4] (like [4, Lemma
11]) are derived using the regularity of ζ and the fact that its derivatives grow
at most algebraically as expressed by our assumptions (12)–(14).

The proof that a minimizer Q satisfies Equation (34) is the same as in [13,
Theorem 3] and [14, Proposition 2]. Finally, δ is finite-rank if µ < 1 because the
essential spectrum of DQ is the same as that of D0 by Lemma 1. If µ = 1, let us
recall [12, 13] that Qvac := χ(−∞,0)(DQ)−P 0

− ∈ S2(H) (see Lemma 6). By [12,

Lemma 2], we have Qvac ∈ S
P 0

−

1 (H). Hence we deduce Q−Qvac ∈ S
P 0

−

1 (H) which
tells us that Q−Qvac and δ are trace-class because they are nonnegative.

Proposition 5. Minimizers of Eν
r (q) are not necessarily unique, but the density

ρQ is itself uniquely defined. If ν is radially symmetric, then so does ρQ.

Proof. Note Q ∈ Q → Eν
r (Q) is convex but not strictly convex. The term f →

D(f, f) is strictly convex but the map Q→ ρQ is not one-to-one. This, however,
implies that the density ρQ of a minimizer is uniquely determined, meaning that
if Q1 and Q2 are two minimizers of Eν

r (q), then necessarily ρQ1 = ρQ2 .
Next we recall that any unitary matrix U ∈ SU2 can be written U = e−iθn·σ

where θ ∈ [0, 2π) and n is a unit vector in R3. There is an onto morphism which
to any such U associates the rotation Rθ,n in R3 of angle θ around the axis n.
The group SU2 acts on 4-spinors in L2(R3,C4) as follows:

(U · ψ)(x) :=

(
U 0
0 U

)
ψ(R−1

θ,nx).
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It is well-known [27] that the Dirac operator D0 is invariant under this action.
As Dζ is equal to D0 multiplied by a radial function in the Fourier domain, Dζ is
also invariant. When ν is a radial function, we hence have Eν

r (Q) = Eν
r (UQU−1)

and trP 0
−
(Q) = trP 0

−
(UQU−1) for anyQ ∈ K and any U ∈ SU2. This means that

if Q is a minimizer for Eν
r (q), then UQU−1 is also a minimizer. As ρUQU−1 (x) =

ρQ(R−1
θ,nx), we deduce by uniqueness that ρQ is a radial function.

Step 2: The density of a solution is in L1.

We prove the important

Theorem 4 (The density of a solution is in L1). We assume that H = HΛ

and ζ = 0, or that H = L2(R3,C4) and ζ satisfies (12)–(14). Let be α ≥ 0,
Λ > 0, ν ∈ L1(R3) ∩ C and denote Z =

∫
R3 ν ∈ R. If Q ∈ Q(q) satisfies the

self-consistent equation (27), then ρQ ∈ L1(R3) and

∫

R3

ρQ − Z =
q − Z

1 + αBζ
Λ(0)

. (36)

Proof. We shall do more than proving that ρQ ∈ L1(R3). Namely, we shall
provide a precise estimate on ||ρQvac ||L1(R3) needed for the proof of Theorem 2.

Let Q ∈ Q(q) satisfying the self-consistent equation Q = χ(−∞,µ)(DQ) −
P 0
− + δ where δ is a trace-class self-adjoint operator with Ran(δ) ⊆ ker(DQ−µ),

and DQ is the mean-field operator:

DQ = Dζ + α(ρQ − ν) ∗ | · |−1.

Recall that by Lemma 1, σess(DQ) = σess(D
ζ) = (−∞,−1] ∪ [1,∞), i.e. that

σ(DQ)∩(−1, 1) contains eigenvalues of finite multiplicity, possibly accumulating
at −1 or 1. For the sake of simplicity, we shall assume that 0 /∈ σ(DQ). The
following proof can be adapted if 0 ∈ σ(DQ) by integrating on a line ǫ + iη
instead of iη in the integrals below. We introduce the notation

Qvac := χ(−∞,0](DQ) − P 0
−, γ = Q−Qvac.

Notice γ ∈ S1(H). We recall that Q++
vac = P 0

+QvacP
0
+, Q−−

vac = P 0
−QvacP

0
− ∈

S1(HΛ). Hence we have to prove that ρQ+−
vac +Q−+

vac
belongs to L1(R3), which we

will do by a bootstrap argument on the self-consistent equation.
We can use Cauchy’s formula as in [12]

Qvac = − 1

2π

∫ ∞

−∞

(
1

DQ + iη
− 1

Dζ + iη

)
dη =

3∑

k=1

αkQk + α4Q′
4 (37)

with

Qk = (−1)k+1 1

2π

∫ ∞

−∞

1

Dζ + iη

(
ϕ′

Q

1

Dζ + iη

)k

dη, (38)

Q′
4 = − 1

2π

∫ ∞

−∞

(
1

Dζ + iη
ϕ′

Q

)2
1

DQ + iη

(
ϕ′

Q

1

Dζ + iη

)2

dη

and where we have used the notation ϕ′
Q = (ρQ−ν)∗|·|−1. By Furry’s Theorem,

it is known that ρQ2 = 0, see [12, page 547].
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Lemma 6. Let be 0 ≤ τ < 1/2. There exists a universal constant C such that
the following hold: ∣∣∣∣|Dζ |τQ1

∣∣∣∣
S2(H)

≤ C ||ρQ − ν||C ,
∣∣∣
∣∣∣|Dζ |1/2+τQ2

∣∣∣
∣∣∣
S3/2(H)

≤ C ||ρQ − ν||2C ,
∣∣∣∣|Dζ |Q3

∣∣∣∣
S6/5(H)

≤ C ||ρQ − ν||3C ,

∣∣∣∣|Dζ |τQ′
4|Dζ |τ

∣∣∣∣
S1(H)

≤ C

(
||ρQ − ν||4C + α ||ρQ − ν||5C + α2 ||ρQ − ν||6C

dist(σ(DQ), 0)

)
.

Proof. By the residuum formula, we have Q++
1 = Q−−

1 = 0. On the other hand,

Q+−
1 =

1

2π

∫ ∞

−∞

P 0
+

Dζ + iη
ϕ′

Q

P 0
−

Dζ + iη
dη =

1

2π

∫ ∞

−∞

P 0
+

Dζ + iη
[ϕ′

Q, P
0
−]

P 0
−

Dζ + iη
dη.

Hence using
∣∣∣∣
∣∣∣∣

1

Dζ + iη

∣∣∣∣
∣∣∣∣ ≤

1

E(η)
,

∣∣∣∣
∣∣∣∣
|Dζ |1/2+τ

Dζ + iη

∣∣∣∣
∣∣∣∣ ≤

1

E(η)1/2−τ

where E(η) :=
√

1 + η2, and using also Lemma 3, we obtain

∣∣∣∣|Dζ |τQ+−∣∣∣∣
S2(H)

≤ C
∣∣∣∣∇ϕ′

Q

∣∣∣∣
L2(R3)

∫ ∞

−∞

dη

E(η)3/2−τ
= C ||ρQ − ν||C

since
∣∣∣∣∇ϕ′

Q

∣∣∣∣
L2(R3)

= ||ρQ − ν||C .

We then turn to Q2, inserting 1 = P 0
− + P 0

+ in (38). We first notice that by
the residuum formula,

∫ ∞

−∞

P 0
+

Dζ + iη

(
ϕ′

Q

P 0
+

Dζ + iη

)2

dη =

∫ ∞

−∞

P 0
−

Dζ + iη

(
ϕ′

Q

P 0
−

Dζ + iη

)2

dη = 0.

For the other terms, we write for instance

∫ ∞

−∞

P 0
+

Dζ + iη
ϕ′

Q

P 0
−

Dζ + iη
ϕ′

Q

P 0
−

Dζ + iη
dη

=

∫ ∞

−∞

P 0
+

Dζ + iη
[ϕ′

Q, P
0
−]

P 0
−

Dζ + iη
ϕ′

Q

P 0
−

Dζ + iη
dη (39)

as we did before. We recall that ϕ′
Q ∈ L6(R3) by the Sobolev inequality. Hence,

by (17) ∣∣∣∣
∣∣∣∣ϕ′

Q

1

Dζ + iη

∣∣∣∣
∣∣∣∣
S6(H)

≤ C

E(η)1/2

∣∣∣∣∇ϕ′
Q

∣∣∣∣
L2(R3)

. (40)

Using again Lemma 3, we obtain
∣∣∣∣
∣∣∣∣|Dζ |1/2+τ

∫ ∞

−∞

P 0
+

Dζ + iη
ϕ′

Q

P 0
−

Dζ + iη
ϕ′

Q

P 0
−

Dζ + iη
dη

∣∣∣∣
∣∣∣∣
S3/2(H)

≤
∣∣∣
∣∣∣[ϕ′

Q, P
0
−]|Dζ |τ/2−3/4

∣∣∣
∣∣∣
S2(H)

∫ ∞

−∞

∣∣∣∣
∣∣∣∣ϕ′

Q

1

Dζ + iη

∣∣∣∣
∣∣∣∣
S6(H)

dη

E(η)3/4−τ/2

≤ C ||ρQ − ν||2C
∫ ∞

−∞

dη

E(η)5/4−τ/2
.
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The proof is the same for all the other terms.
The same method can be applied to Q3. Let us treat for instance

A := |Dζ |
∫ ∞

−∞

P 0
+

Dζ + iη
ϕ′

Q

P 0
−

Dζ + iη

(
ϕ′

Q

P 0
−

Dζ + iη

)2

dη

=

∫ ∞

−∞

P 0
+|Dζ |

Dζ + iη
[ϕ′

Q, P
0
−]

P 0
−

Dζ + iη

(
ϕ′

Q

P 0
−

Dζ + iη

)2

dη. (41)

Applying the above method with

∣∣∣
∣∣∣[ϕ′

Q, P
0
−] |Dζ |−3/4

∣∣∣
∣∣∣
S2(H)

≤ C
∣∣∣∣∇ϕ′

Q

∣∣∣∣
L2(R3)

by Lemma 3, we obtain

||A||
S6/5(H) ≤ C ||ρQ − ν||3C

∫ ∞

−∞

dη

(1 + η2)5/8
. (42)

The argument is of course the same for all the other terms.
Finally, we expand further Q′

4 to the 6th order: Q′
4 = Q4 +Q5 +Q′

6 where
Q4 and Q5 are given by (38) and

Q′
6 = − 1

2π

∫ ∞

−∞

(
1

Dζ + iη
ϕ′

Q

)3
1

DQ + iη

(
ϕ′

Q

1

Dζ + iη

)3

dη.

On the one hand, we know that |DQ + iη| ≥ dist(σ(DQ), 0)), and therefore,

∣∣∣∣(DQ + iη)−1
∣∣∣∣ ≤ dist(σ(DQ), 0)−1.

On the other hand, we can use (40) and

∣∣∣∣
∣∣∣∣
|Dζ |τ
Dζ + iη

ϕ′
Q

∣∣∣∣
∣∣∣∣
S6(H)

≤ C
∣∣∣∣|D0(·)|τ−1

∣∣∣∣
L6(R3)

∣∣∣∣ϕ′
Q

∣∣∣∣
L6(R3)

to estimate |Dζ |τQ′
6|Dζ |τ . The terms Q4 and Q5 are treated like Q2 and Q3.

Lemma 7. Let be 0 ≤ τ < 1/2. There exists a universal constant C such that

∣∣∣∣|Dζ |τQ±±
2 |Dζ |τ

∣∣∣∣
S1(H)

≤ C
(
||ρQ − ν||2C + α2 ||ρQ − ν||4C

)
, (43)

∣∣∣∣|Dζ |τQ±±
3 |Dζ |τ

∣∣∣∣
S1(H)

≤ C
(
||ρQ − ν||3C + α2 ||ρQ − ν||5C

)
. (44)

Proof. Consider the operator

D(t) := Dζ + t
(ρQ − ν) ∗ | · |−1

||ρQ − ν||C
.

Since ρQ−ν ∈ C, we can use (18) to deduce that there exists a universal constant
t0 > 0 such that |D(t)| ≥ 1/2 for all t ∈ [−t0, t0]. Next we introduce

Q(t) := χ(−∞;0](D(t)) − P 0
−.
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We can write as before

Q(t) =

3∑

k=1

tk

||ρQ − ν||kC
Qk +

t4

||ρQ − ν||4C
Q′

4(t)

where Qk are defined as above and with this time

Q′
4(t) = − 1

2π

∫ ∞

−∞

(
1

Dζ + iη
ϕ′

Q

)2
1

D(t) + iη

(
ϕ′

Q

1

Dζ + iη

)2

dη.

Following the method of Lemma 6 and using |D(t)| ≥ 1/2, we can prove that

∣∣∣∣|Dζ |τQ′
4(t)|Dζ |τ

∣∣∣∣
S2(H)

≤ C ||ρQ − ν||4C ,

∣∣∣∣|Dζ |τQ′
4(t)|Dζ |τ

∣∣∣∣
S1(H)

≤ C
(
||ρQ − ν||4C + α2 ||ρQ − ν||6C

)
.

Next, the estimates of Lemma 6 imply that

∣∣∣∣|Dζ |τQ(t)
∣∣∣∣

S2(H)
≤ C

for all t ∈ [−t0, t0]. But as Q(t) is a difference of two projectors, we have
Q(t)2 = Q(t)++ −Q(t)−− ∈ S1(H). Thus

∣∣∣∣|Dζ |τQ(t)++|Dζ |τ
∣∣∣∣

S1(H)
+
∣∣∣∣|Dζ |τQ(t)−−|Dζ |τ

∣∣∣∣
S1(H)

≤ C.

Finally

t2

||ρQ − ν||2C
Q++

2 +
t3

||ρQ − ν||3C
Q++

3 = Q(t)++ − t4

||ρQ − ν||4C
Q′

4(t)
++

which gives the result when applied to t = t0 and −t0.

Lemma 8. Let be 2 ≤ p ≤ 6. There exists a universal constant C such that

∣∣∣∣ρ(Q3)+− ∗ | · |−1
∣∣∣∣

Lp(R3)
+
∣∣∣∣ρ(Q3)−+ ∗ | · |−1

∣∣∣∣
Lp(R3)

≤ C ||ρQ − ν||3C .

Proof. By Lemma 6, Q3|Dζ | ∈ S6/5(H), hence Q3|Dζ | ∈ Sq(H) for all q ≥ 6/5
and ∣∣∣∣Q+−

3 |Dζ |
∣∣∣∣

Sq(H)
≤
∣∣∣∣Q3|Dζ |

∣∣∣∣
Sq(H)

≤ C ||ρQ − ν||3C . (45)

Let us choose a test function V in the Schwartz class. We have

| tr((Q3)
+−V )| = | tr((Q3)

+−P 0
−V P

0
+)| = | tr

(
(Q3)

+−|Dζ | |Dζ |−1[P 0
−, V ]

)
|

≤
∣∣∣∣(Q3)

+−|Dζ |
∣∣∣∣

Sq(H)

∣∣∣∣|Dζ |−1[P 0
−, V ]

∣∣∣∣
Sq′ (H)

(46)

for all q ≥ 6/5 and q′ = q/(q − 1). Then we use Lemma 3 which tells us that

∣∣∣∣|Dζ |−1[P 0
−, V ]

∣∣∣∣
Sq′ (H)

≤ C ||∇V ||Lq′ (R3)

provided q′ ≥ 2. Finally by the Sobolev inequality and Riesz operator theory

||∇V ||Lq′ (R3) ≤ C
∣∣∣∣D2V

∣∣∣∣
Lp∗(R3)

≤ C′ ||∆V ||Lp∗(R3)
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for p∗ = 3q′/(3 + q′), 2 ≤ q′ ≤ 6. Summarizing, by (45) and (46),

| tr((Q3)
+−V )| ≤ C ||ρQ − ν||3C ||∆V ||Lp∗(R3)

for any 6/5 ≤ p∗ ≤ 2. By duality, this proves that for any 2 ≤ p ≤ 6

∣∣∣∣ρ(Q3)+− ∗ | · |−1
∣∣∣∣

Lp(R3)
≤ C ||ρQ − ν||3C .

Lemma 9. Let be 3 < p <∞. There exists a universal constant C such that

∣∣∣∣ρ(Q3)±± ∗ | · |−1
∣∣∣∣

Lp(R3)
≤ C

(
||ρQ − ν||3C + α2 ||ρQ − ν||5C

)
,

∣∣∣∣ρQ′
4
∗ | · |−1

∣∣∣∣
Lp(R3)

≤ C

(
||ρQ − ν||4C + α ||ρQ − ν||5C + α2 ||ρQ − ν||6C

dist(σ(DQ), 0)

)
.

Proof. We argue as above, taking some V in the Schwartz class. We have

| tr(Q++
3 V )| ≤

∣∣∣∣|Dζ |τQ++
3 |Dζ |τ

∣∣∣∣
S1(H)

∣∣∣∣|Dζ |−τV |Dζ |−τ
∣∣∣∣

Sq(H)

for any q ≥ 1 and τ < 1/2. Then by the Kato-Seiler-Simon inequality (17)

∣∣∣∣|Dζ |−τV |Dζ |−τ
∣∣∣∣

Sq(H)
≤ C

∣∣∣∣E(·)−2τ
∣∣∣∣

Lq(R3)
||V ||Lq(R3)

which makes sense as soon as q > 3 and 1/2 − τ is small enough. The rest
follows from the Sobolev embedding like in the proof of Lemma 8.

We now estimate ρQvac using the self-consistent equation. First we recall
that ρQ2 = 0 and that Q1 = (Q1)

+− + (Q1)
−+ can be explicitly computed [12]

yielding

ρ̂Qvac(k) = −αBζ
Λ(k)

(
ρ̂Qvac(k) + ρ̂γ(k) − ν̂(k)

)

+ α4ρ̂Q′
4
(k) + α3ρ̂Q++

3
(k) + α3ρ̂Q−−

3
(k) + α3ρ̂Q+−

3
(k) + α3ρ̂Q−+

3
(k) (47)

with

Bζ
Λ(k) = − 1

π2|k|2
∫

R3

(ℓ+ k/2) · (ℓ− k/2) + 1 − E(ℓ+ k/2)E(ℓ− k/2)

E(ℓ+ k/2)E(ℓ− k/2)
×

× 1

E(ℓ+ k/2)
(
1 + ζ

(
|ℓ+k/2|2

Λ2

))
+ E(ℓ− k/2)

(
1 + ζ

(
|ℓ−k/2|2

Λ2

))dℓ (48)

when H = L2(R3,C4) and ζ satisfies (12)–(14), and

B0
Λ(k) = − 1

π2|k|2
∫
|ℓ+k/2|≤Λ,
|ℓ−k/2|≤Λ

(ℓ+ k/2) · (ℓ− k/2) + 1 − E(ℓ+ k/2)E(ℓ− k/2)

E(ℓ+ k/2)E(ℓ− k/2)(E(ℓ+ k/2) + E(ℓ− k/2))
dℓ.

(49)

when H = HΛ and ζ = 0. Notice that in both cases Bζ
Λ is a radial function.

Also B0
Λ has its support in B(0, 2Λ).
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Remark 2. There is a small mistake in the domain of integration of the defi-
nition of B0

Λ in [12, Eq. (40)]. This does not change the analysis of [12] but is
important for the present study.

Many properties of Bζ
Λ and B0

Λ are given in Appendix. Let us define bζΛ by

b̂ζΛ(k) = (2π)3/2 αBζ
Λ(k)

1 + αBζ
Λ(k)

. (50)

In both cases H = HΛ with ζ = 0, and H = L2(R3,C4) with ζ satisfying (12)–

(14), we prove in Appendix that bζΛ is a smooth function belonging to L1(R3),
see Propositions 17 and 18. In the rest of the proof, we use the notation

IΛ :=

∫

R3

|bζΛ(x)| dx <∞. (51)

Equation (47) can be rewritten as

ρQvac = bζΛ ∗ (ν − ργ − ρ1) + ρ1 + ρ2 − bζΛ ∗ ρ2, (52)

ρ1 = α4ρQ′
4
+ α3ρQ++

3
+ α3ρQ−−

3
∈ L1(R3), ρ2 = α3ρQ+−

3
+ α3ρQ−+

3
.

By Lemma 8, Lemma 9 and (51)
∣∣∣
∣∣∣(ρ2 − bζΛ ∗ ρ2) ∗ | · |−1

∣∣∣
∣∣∣
L4(R3)

≤ C(1 + IΛ)α3 ||ρQ − ν||3C ,

∣∣∣
∣∣∣(ρ1 − bζΛ ∗ ρ1) ∗ | · |−1

∣∣∣
∣∣∣
L4(R3)

≤ C(1 + IΛ)

(
α3 ||ρQ − ν||3C + α5 ||ρQ − ν||5C + α6 ||ρQ − ν||6C

dist(σ(DQ), 0)

)

so that

∣∣∣∣ϕ′
Q

∣∣∣∣
L4(R3)

≤ C(1 + IΛ)

( ∣∣∣∣(ν − ργ) ∗ | · |−1
∣∣∣∣

L4(R3)
+

+ α3 ||ρQ − ν||3C + α5 ||ρQ − ν||5C + α6 ||ρQ − ν||6C
dist(σ(DQ), 0)

)
. (53)

As ργ , ν ∈ C ∩ L1(R3), we have
∣∣∣∣(ν − ργ) ∗ | · |−1

∣∣∣∣
L4(R3)

<∞

but we do not provide a precise estimate at this point. Now we can use the
information that ϕ′

Q ∈ L4(R3) to estimate (Q3)
+− and (Q3)

−+, using

∣∣∣∣
∣∣∣∣

1

Dζ + iη
ϕ′

Q

∣∣∣∣
∣∣∣∣
S4(HΛ)

≤ C

E(η)1/4

∣∣∣∣ϕ′
Q

∣∣∣∣
L4(R3)

.

For any fixed 0 ≤ τ < 1/2, this gives an estimate of the form

∣∣∣∣|Dζ |τQ+−
3 |Dζ |τ

∣∣∣∣
S1(H)

≤ C ||ρQ − ν||C
∣∣∣∣ϕ′

Q

∣∣∣∣2
L4(R3)

. (54)
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Inserting in (52), we are led to

||ρQvac ||L1(R3) ≤ IΛ ||ν − ργ ||L1(R3) + C(1 + IΛ) ||ρ1||L1(R3)

+ α3C(1 + IΛ) ||ρQ − ν||C
∣∣∣∣ϕ′

Q

∣∣∣∣2
L4(R3)

(55)

where C is independent of Λ. As a conclusion, ρQvac hence ρQ belong to L1(R3).
Let us turn to the proof of (36). We deduce from the previous analysis that

ρQ1 ∈ L1(R3) (whereas in general Q1 /∈ S1(HΛ)) and that

∫
ρQ =

∫
ρQ+++Q−− + α

∫
ρQ+−

1 +Q−+
1

= q + α

∫
ρQ+−

1 +Q−+
1

since we know that γ, Q3, Q5 and Q6 are all trace-class and that
∫
ρ(K)+− =

tr(P 0
+KP

0
−) = 0 for any trace-class operator K. Now

ρ̂Q1(0) = −Bζ
Λ(0)(ρ̂Q(0) − ν̂(0)) = −Bζ

Λ(0)(ρ̂Q(0) − ν̂(0))

which leads to

∫
ρQ1 = − Bζ

Λ(0)

1 + αBζ
Λ(0)

(q − Z) and

∫
(ρQ − ν) =

q − Z

1 + αBζ
Λ(0)

.

This ends the proof of Theorem 4.

Corollary 1. Let Q be a minimizer for Eν
r (q) as in Theorem 4. If q < Z (resp.

q > Z) then σ(DQ) contains an infinite sequence of eigenvalues converging to 1
(resp. to −1).

Proof. This is a simple adaptation of the proof of [2, Thm A.12].

Step 3: Properties of q → Eν
r (q) and definition of qm and qM .

As Q ∈ Q → Eν
r (Q) is convex, the map q → Eν

r (q) is also convex. We then
define I = {q ∈ R | (H1) holds}, where (H1) is defined in Theorem 3. Thus, for
any q ∈ I, there exists a Q ∈ Q(q) such that Eν

r (Q) = Eν
r (q), by Theorem 3. We

introduce the following convex real functions f−(q) := Eν
r (q) − q and f+(q) :=

Eν
r (q) + q. By (35) and (33), f− is nonincreasing and bounded from below,

f+ is nondecreasing and bounded from below. Notice limq→∞ f+(q) = ∞ and
limq→−∞ f−(q) = ∞. Define now qM such that f− is decreasing on (−∞, qM )
and constant on [qM ,∞) (let qM = ∞ if f− is decreasing), and qm such that
f+ is increasing on (qm,∞) and constant on [−∞, qm) (let qm = −∞ if f+ is
increasing). Remark qm ≤ qM . Next we have

q ∈ I ⇐⇒
{

∀q′ > q, Eν
r (q) < Eν

r (q′) + q′ − q
∀q′ < q, Eν

r (q) < Eν
r (q′) + q − q′

⇐⇒
{

∀q′ > q, f+(q) < f+(q′)
∀q′ < q, f−(q) < f−(q′)

⇐⇒
{
q ∈ [qm,∞)
q ∈ (−∞, qM ]

and therefore I = [qm, qM ].
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Step 4: The interval [qm, qM ] contains both q0 and Z.

Assume now that q0 satisfies Eν
r (q0) = minq∈R E

ν
r (q). Then

Eν
r (q0) ≤ Eν

r (q′) < Eν
r (q′) + |q0 − q′|

for any q′ 6= q0, ie. q0 satisfies (H1). Hence q0 ∈ I = [qm, qM ].
Let us now prove that Z =

∫
ν also belongs to I = [qm, qM ]. We use

classical ideas already used for the reduced Hartree-Fock theory [26]. Assume
first Z > qM . Since qM ∈ I, there exists a minimizer QM in the charge sector
Q(qM ). By Theorem 3, QM satisfies the self-consistent equation

QM + P 0
− = χ(−∞,µ) (DQM ) + δ

for some µ ∈ [−1, 1]. By Corollary 1, σ(DQM ) contains an infinite sequence
of eigenvalues converging to 1. Since trP 0

−
[χ(−∞,0) (DQM ) − P 0

−] is known to

be finite and δ is finite rank, we deduce that µ < 1. Hence there exists an
eigenvalue λ ∈ (µ, 1) of DQM with eigenfunction χ ∈ HΛ which is not filled.
Notice QM + t|χ〉〈χ| ∈ Q(qM + t) for t ∈ [0, 1]. Let us then compute,

Eν
r (qM + t) ≤ Eν

r (QM + t|χ〉〈χ|) = Eν
r (qM ) + t〈DQMχ, χ〉 +

αt2

2
D(|χ|2, |χ|2)

or equivalently

f−(qM + t) ≤ f−(qM ) + t(λ − 1) +O(t2)

which contradicts the definition of qM .
Assume now Z < qm and consider a minimizer Qm for Eν

r (qm). By the same
arguments, it satisfies the self-consistent equation

Qm + P 0
− = χ(−∞,µ′) (DQm) + δ

for some µ′ > −1 and the spectrum σ(DQm) contains an infinite sequence of
eigenvalues converging to -1. Thus there is an eigenvalue λ′ ∈ (−1, µ) which is
completely filled, with eigenfunction χ′ ∈ HΛ. Computing Eν

r (Qm − t|χ′〉〈χ′|)
and noticing Qm − t|χ′〉〈χ′| ∈ Q(qm − t) for any t ∈ [0, 1], we obtain

f+(qm − t) ≤ f+(qm) − t(λ′ + 1) +O(t2)

which contradicts the definition of qm.

Step 5: Characterization of [qm, qM ].

Lemma 10. Assume that q1 6= q2 are such that both Eν
r (q1) and Eν

r (q2) admit
a minimizer. Then

∀t ∈ (0, 1), Eν
r (tq1 + (1 − t)q2) < t Eν

r (q1) + (1 − t)Eν
r (q2). (56)

As a consequence,

1. [qm, qM ] is the largest interval on which q → Eν
r (q) is strictly convex;

2. q0 = argminIE
ν
r is uniquely defined;
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3. no minimizer exists for Eν
r (q) when q is outside [qm, qM ];

Proof. Assume that Q1 and Q2 are two minimizers of respectively Eν
r (q1) and

Eν
r (q2), with q1 6= q2. Then by (28),

∫
ρQ1 6=

∫
ρQ2 , hence ρQ1 6= ρQ2 . Hence,

for any t ∈ (0, 1),

Eν
r (tq1 + (1 − t)q2) ≤ Eν

r (tQ1 + (1 − t)Q2) < t Eν
r (Q1) + (1 − t)Eν

r (Q2)

= t Eν
r (q1) + (1 − t)Eν

r (q2)

where we have used the strict convexity of f 7→ D(f, f).
Inequality (56) shows that q → Eν

r (q) is strictly convex on I = [qm, qM ],
since minimizers are known to exist for any q ∈ I. But q → Eν

r (q) is linear
outside I and therefore I is the largest interval on which q → Eν

r (q) is strictly
convex. The global minimizer q0 of Eν

r on R thus on I is unique.
Eventually, we prove that no minimizer exist for Eν

r (q) when q /∈ [qm, qM ].
If q > qM provides a minimizer, then since a minimizer exists for Eν

r (qM ), (56)
applied for qM and q contradicts the fact that Eν

r (·) is linear on [qM ,∞).

3.3 Proof of Theorem 2

If we assume ζ(t) = t, the function bζΛ can be studied more carefully as explained
in Appendix. In this case, one can prove that

IΛ =
∣∣∣
∣∣∣bζΛ
∣∣∣
∣∣∣
L1(R3)

≤ αBζ
Λ(0)

1 − αBζ
Λ(0)

≤ 2/(3π)α log Λ

1 − 2/(3π)α log Λ
,

when Λ ≥ 4 and 2/(3π)α log Λ < 1, see Proposition 21. For the sake of simplic-
ity, we shall use the following notation in the whole proof

θ := απ1/6211/6D(ν, ν)1/2

and we will assume that θ < 1. Later on we shall also assume that α, I and θ
are small enough but we postpone this to the end of the proof and rather give
precise estimates before.

Step 1: A priori estimates.

Lemma 11. Assume that Q ∈ Q(q) is a minimizer for Eν
r (q), for some q ∈

[qm, qM ]. Then we have
||ρQ − ν||C ≤ ||ν||C . (57)

If moreover θ := απ1/6211/6D(ν, ν)1/2 < 1, then |DQ| ≥ 1−θ, hence 0 /∈ σ(DQ)
and, denoting Qvac = χ(−∞,0)(DQ) − P 0

− we have

trP 0
−

(Qvac) = 0. (58)

Proof of Lemma 11. We have by (33)

trP 0
−
(DζQ) +

α

2
D(ρQ − ν, ρQ − ν) ≤ α

2
D(ν, ν) + |q|.

Introducing q+ = trP 0
−
(Q++) ≥ 0 and q− = − trP 0

−
(Q−−) ≥ 0, we have

trP 0
−
(DζQ) = tr(|Dζ |1/2(Q++ −Q−−)|Dζ |1/2) ≥ q+ + q− ≥ |q|,
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hence (57) follows. Following [13, p. 4495], we have the operator inequality

|ϕ′
Q| =

∣∣∣∣(ρQ − ν) ∗ 1

| · |

∣∣∣∣ ≤ κ ||ν||C |D0| ≤ κ ||ν||C |Dζ |

with κ = π1/6211/6. Hence

|DQ| ≥ (1 − ακ ||ν||C) |Dζ | ≥ 1 − θ. (59)

The proof that trP 0
−
(Qvac) = 0 is the same as in [12, 13]: considering P (t) =

χ(−∞,0)(D
ζ+αt(ρQ−ν∗|·|−1)), we have by [12, Lemma 2] that trP 0

−
(P (t)−P 0

−) =

tr(P (t) − P 0
−)3 is for all t ∈ [0, 1] an integer which varies continuously with

respect to t, hence, it is equal to 0 for all t ∈ [0, 1].

For the rest of the proof, we work under the assumptions of Theorem 2,
namely we assume that ν is a radial and positive function in L1(R3) ∩ C such
that απ1/6211/6D(ν, ν)1/2 < 1 and Z =

∫
ν > 0. Let Q be a minimizer for

Eν
r (q), q ∈ [qm, qM ]. It solves the self-consistent equation

Q := Qvac + γ, Qvac = χ(−∞,0)(DQ) − P 0
−. (60)

By Lemma 11, γ is either ≥ 0 if q ≥ 0 or ≤ 0 if q ≤ 0. It satisfies ||γ||
S1(H) = |q|.

As ρQ is radial by Proposition 5, the operator DQ is invariant under the action
of SU2 introduced in the proof of Proposition 5. In particular, we deduce that
UQvacU

−1 = Qvac for any U ∈ SU2. Hence ρQvac is also a radial function.
Therefore ργ = ρQ − ρQvac is radially symmetric.

Lemma 12. Assume that Q ∈ Q(q) is a minimizer for Eν
r (q) for some q ∈

[qm, qM ], decomposed as in (60), and that θ := απ1/6211/6D(ν, ν)1/2 < 1. Let
be 0 ≤ τ < 1/2. There exists a constant C > 0 (depending only on τ) such that

∣∣∣∣|Dζ |τQvac

∣∣∣∣ ≤ Cθ

1 − log(1 − θ)
, (61)

|||x|Qvac|| ≤
C

1 − log(1 − θ)

(
α

∫

R3

|ρQ − ν| + θ

)
. (62)

Proof. We have

Qvac =
α

2π

∫ ∞

−∞

1

Dζ + iη
ϕ′

Q

1

DQ + iη
dη.

Hence

∣∣∣∣|Dζ |τQvac

∣∣∣∣
S6(H)

≤
∫ ∞

−∞

Cα dη√
(1 − θ)2 + η2

∣∣∣∣
∣∣∣∣

|Dζ(p)|τ
(|Dζ(p)|2 + η2)1/2

ϕ′
Q

∣∣∣∣
∣∣∣∣
S6(H)

≤ Cθ

∫ ∞

−∞

dη√
(1 − θ)2 + η2

∣∣∣∣
∣∣∣∣

|Dζ(p)|τ
(|Dζ(p)|2 + η2)1/2

∣∣∣∣
∣∣∣∣
L6(R3)

≤ Cθ

∫ ∞

−∞

dη

E(η)1/2−τ
√

(1 − θ)2 + η2
≤ Cθ

1 − log(1 − θ)

by (57), (59) and the Kato-Seiler-Simon inequality (17).
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Notice |x|Qvac = x
|x| · xQvac and x|x|−1 is bounded on H. Hence for (62) it

suffices to prove that xkQvac is a bounded operator for any k = 1..3. We write

xkQvac =
α

2π

∫ ∞

−∞

([
xk,

1

Dζ + iη

]
ϕ′

Q

1

DQ + iη
+

1

Dζ + iη
xkϕ

′
Q

1

DQ + iη

)
dη.

Notice
[
xk,

1

Dζ + iη

]
= − 1

Dζ + iη
[xk, D

ζ + iη]
1

Dζ + iη
= i

1

Dζ + iη

(
∂pk

Dζ
) 1

Dζ + iη
.

Clearly ∂pk
Dζ = αk(1 + |p|2/Λ2) + 2pk/Λ

2(α · p+ β), hence

∣∣∣∣
∣∣∣∣
(
∂pk

Dζ
) 1

1 + |p|2/Λ2

∣∣∣∣
∣∣∣∣ ≤ C.

and by (59), (40) and (57)

∣∣∣∣
∣∣∣∣
∫ ∞

−∞

[
xk,

1

Dζ + iη

]
ϕ′

Q

1

DQ + iη
dη

∣∣∣∣
∣∣∣∣ ≤

∫ ∞

−∞

dη

E(η)
√

(1 − θ)2 + η2

∣∣∣∣ϕ′
Q

∣∣∣∣
L6(R3)

≤ C

1 − log(1 − θ)
||ν||C .

Since ρQ and ν are radial, we have by Newton’s theorem

|xkϕ
′
Q(x)| ≤ |x||ϕ′

Q(x)| ≤ |x|
∫

R3

|ρQ − ν|(y)
|x− y| dy ≤

∫

R3

|ρQ − ν|,

hence
∣∣∣∣
∣∣∣∣
∫ ∞

−∞

1

Dζ + iη
xkϕ

′
Q

1

DQ + iη
dη

∣∣∣∣
∣∣∣∣ ≤

C

1 − log(1 − θ)

∫

R3

|ρQ − ν|.

This ends the proof of Lemma 12.

Lemma 13. We have ∣∣∣∣γDζ
∣∣∣∣

S1(H)
≤ |q|

1 − θ
. (63)

Proof. Assume for instance that q ≥ 0 and γ ≥ 0. By the self-consistent equa-
tion (60), we have γDQ ≥ 0 and tr(γDQ) ≤ tr(γ) = q. Hence ||γDQ||S1(H) ≤ q.

We then write
γDQ = γDζ

(
1 + αsgn(Dζ)|Dζ |−1ϕ′

Q

)
.

We now use that

∣∣∣∣|Dζ |−1ϕ′
Q

∣∣∣∣
S6(H)

≤ κ ||ρQ − ν||C ≤ κ ||ν||C ≤ θ

α

by [13, p. 4495] and (57), so that 1 + αsgn(Dζ)|Dζ |−1ϕ′
Q is invertible and

∣∣∣
∣∣∣
(
1 + αsgn(Dζ)|Dζ |−1ϕ′

Q

)−1
∣∣∣
∣∣∣ ≤ 1

1 − θ
.

This gives the result.

26



Lemma 14. There exists a universal constant C such that

(
1 − C(1 + IΛ)3αθ2

) ∫
|ρQvac |

≤ (IΛ + C(1 + IΛ)3αθ2)(Z + |q|) + C(1 + IΛ)

(
αθ2 +

θ4

1 − θ

)
. (64)

Proof. By (55), we have

||ρQvac ||L1(R3) ≤ IΛ(Z + |q|) + C(1 + IΛ)

(
αθ2 +

θ4

1 − θ

)

+ C(1 + IΛ)3α3
∣∣∣∣ϕ′

Q

∣∣∣∣2
L4(R3)

||ν||C . (65)

Notice for any ρ ∣∣∣∣ρ ∗ | · |−1
∣∣∣∣

L4(R3)
≤ C ||ρ||1/2

C ||ρ||1/2
L1(R3) (66)

which is proved by writing

∣∣∣∣ρ ∗ | · |−1
∣∣∣∣

L4(R3)
≤ C

∣∣∣∣ρ̂(k)|k|−2
∣∣∣∣

L4/3(R3)

≤ ||ρ||L1(R3)

∣∣∣∣|k|−2
∣∣∣∣

L4/3(B(0,r))
+ ||ρ||C

∣∣∣∣|k|−1
∣∣∣∣

L4(R3\B(0,r))

and optimizing in r. Using (66) for ρ = ρQ − ν and (57), we get

∣∣∣∣ϕ′
Q

∣∣∣∣2
L4(R3)

≤ C ||ν||C
∫

|ρQ| + ν ≤ C ||ν||C
(
Z + |q| +

∫
|ρQvac |

)
.

Inserting this in (65) yields the result.

Step 2: Lieb’s argument.

We now use ideas from Lieb [20] to obtain a bound on qM . We denote by Q
a minimizer for Eν(qM ) which exists by Theorem 1. As qM ≥ Z > 0, we can
decompose Q as in (60):

Q = χ(−∞,µ)(DQ) − P 0
− + δ = Qvac + γ (67)

with γ ≥ 0. Using that (DQ − 1)γ ≤ 0 due to (67), we infer

0 ≥ tr(|x|(DQ − 1)γ) = tr(|x|(Dζ − 1)γ) + α

∫

R3

|x|ϕ′
Q(x)ργ(x)dx. (68)

Lemma 15. There exists a universal constant C such that

tr(|x|(Dζ − 1)γ) ≥ −CqM
1 − θ

(
1

Λ
+
αqM + αZ + θ

1 − log(1 − θ)

)
. (69)

The proof of Lemma 15 will be given at the end of this section. Now we
assume that α, IΛ and θ are all small enough. Then (69) becomes

tr(|x|(Dζ − 1)γ) ≥ −CqM
(

1

Λ
+ αqM + αZ + θ

)
. (70)
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and (64) becomes
∫

|ρQvac | ≤ C(IΛ + αθ2)(Z + qM ) + C
(
αθ2 + θ4

)
. (71)

To estimate the second term in (68), we write

∫

R3

|x|ϕ′
Q(x)ργ(x)dx =

∫∫

R6

|x| + |y|
2|x− y|ργ(x)ργ(y)dx dy

+

∫∫

R6

|x|(ρQvac − ν)(y)ργ(x)

|x− y| dx dy

and notice ∫∫

R6

|x| + |y|
2|x− y|ργ(x)ργ(y)dx dy ≥ q2M

2
(72)

since ργ ≥ 0 and |x− y| ≤ |x| + |y|. Using Newton’s theorem we infer
∫∫

R6

|x|ν(y)ργ(x)

|x− y| dx dy ≤ ZqM , (73)

∫∫

R6

|ρQvac(y)| |x|ργ(x)

|x− y| dx dy ≤ C(IΛ+αθ2)q2M+CqM (IΛ+αθ2)Z+CqM
(
αθ2 + θ4

)

by (71) and since both ν, ργ and ρQvac are radial functions. Collecting estimates
and using that α, I and θ are small enough, we obtain the following estimate

(1 − Cα log Λ)qM ≤ 2(1 + Cα log Λ)Z +
C

Λ
+ Cθ. (74)

The proof for qm is the same, using that in this case γ ≤ 0 and instead of (73)

−
∫∫

R6

|x|ν(y)ργ(x)

|x− y| dx dy ≥ 0.

Proof of Lemma 15. For the second term of (68), we compute

tr(|x|(Dζ − 1)γ) = tr(|x|(|Dζ | − 1)γ) − 2 tr(|x|DζP 0
−γ) (75)

= tr(|x|(|Dζ | − 1)γ) + 2 tr(|x|DζQvacγ)

= tr(|x|(|Dζ | − 1)γ) + 2 tr([|x|, Dζ ]Qvacγ) + 2 tr(|x|QvacγD
ζ)

where we have used that χ(−∞,0](DQ)γ = 0 by (67). One computes

(|Dζ(p)| − 1)|x| + |x|(|Dζ(p)| − 1) = (E(p) − 1)|x| + |x|(E(p) − 1)

+

3∑

k=1

E(p)pk

Λ2
[pk, |x|] + [|x|, pk]

pkE(p)

Λ2
+

1

Λ2

3∑

k=1

pk(E(p)|x| + |x|E(p))pk.

Next we use a result of Lieb [20] which says that

(E(p) − 1)|x| + |x|(E(p) − 1) ≥ 0.

We obtain

(|Dζ(p)| − 1)|x| + |x|(|Dζ(p)| − 1) ≥ i

Λ2

3∑

k=1

[
xk

|x| , E(p)pk

]
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and

tr(|x|(|Dζ | − 1)γ) ≥ − 1

Λ2

3∑

k=1

∣∣∣∣
∣∣∣∣
E(p)pk

|Dζ(p)|

∣∣∣∣
∣∣∣∣
∣∣∣∣γ|Dζ|−1

∣∣∣∣
S1(H)

.

Notice
E(p)pk

|Dζ(p)| =
pk

1 + |p|2/Λ2
≤ Λ

2

hence, using (63), we obtain

tr(|x|(|Dζ | − 1)γ) ≥ − C

(1 − θ)Λ
qM . (76)

Let us now estimate the last term of the r.h.s. of (75). Using (62) and (63), we
obtain the following estimate:

∣∣tr(|x|QvacγD
ζ)
∣∣ ≤ C

(1 − θ)(1 − log(1 − θ))
(αqM + αZ + θ) qM . (77)

Eventually we estimate the second term of the r.h.s. of (75). We compute

[
Dζ , |x|

]
= [α · p, |x|] +

β

Λ2
[|p|2, |x|] +

3∑

k=1

αk

Λ2
[pk|p|2, |x|]

= −i
3∑

k=1

αk
xk

|x| +
β

Λ2
[|p|2, |x|] +

3∑

k=1

αk

Λ2
[pk|p|2, |x|],

[|p|2, |x|] =
2

|x| − 2ip · x|x| ,

[pk|p|2, |x|] =
2

|x|pk + 2pk
1

|x| − 2p · x xk

|x|3 + 2ipkp ·
x

|x| − i|p|2 xk

|x| .

Hence, using Hardy’s inequality which tell us that |p|−1|x|−1 is a bounded op-
erator on H, we easily deduce that

[
|x|, Dζ

]
= − 2

Λ2

1

|x|α · p+A

where A is an operator satisfying
∣∣∣∣|Dζ |−1A

∣∣∣∣ ≤ C for a universal constant C
independent of Λ. Next we write

tr([|x|, Dζ ]Qvacγ) = − 2

Λ2
tr

(
1

|p|
1

|x|α · pQvacγ|p|
)

+ tr
(
(Dζ)−1AQvacγD

ζ
)

≥ − C

Λ4/3

∣∣∣∣
∣∣∣∣
|p|

Λ2/3
Qvac

∣∣∣∣
∣∣∣∣
qM

1 − θ
− C ||Qvac||

qM
1 − θ

≥ −C qMθ

(1 − θ) log(1 − θ)
(78)

by Lemma 13 and Lemma 12 with τ = 0 and τ = 1/3. Inserting (76), (77) and
(78) in Formula (75), we obtain (69). This ends the proof of Lemma 15.
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A Study of the function b
ζ
Λ

This appendix is devoted to the decay properties of bζΛ, for the different cut-offs

chosen in this article. The function bζΛ plays an important role in the model as
it can be interpreted as the linear response of the vacuum in the presence of an
external field, as shown by Formula (52). We recall that

b̂ζΛ(k) = (2π)3/2 αBζ
Λ(k)

1 + αBζ
Λ(k)

. (79)

A.1 Study of b0
Λ when H = HΛ and ζ = 0

We start with the sharp cut-off case ζ = 0 and H = HΛ. In this case

B0
Λ(k) = − 1

π2|k|2
∫
|q+k/2|≤Λ,
|q−k/2|≤Λ

(q + k/2) · (q − k/2) + 1 − E(q + k/2)E(q − k/2)

E(q + k/2)E(q − k/2)(E(q + k/2) + E(q − k/2))
dq

(80)
is defined for |k| ≤ 2Λ. Following [22], for any q ∈ R3 we introduce as new
variables the azimuth angle ϕ around the axis parallel to k and

{
v = (E(q + k/2)− E(q − k/2))/2,
w = (E(q + k/2) + E(q − k/2))/2.

(81)

Then integrating over {q ∈ R3 | |q + k/2| ≤ Λ, |q − k/2| ≤ Λ} is easily shown
to be equivalent to integrate over the new variables (u, v, ϕ) ∈ R × R × [0, 2π)
with the three conditions

1 ≤ v + w ≤
√

1 + Λ2, 1 ≤ w − v ≤
√

1 + Λ2, (82)

√
1 + |k|2/4 ≤ w ≤

√
1 + Λ2, |v| ≤ |k|

2

√
w2 − |k|2/4 − 1

w2 − |k|2/4 . (83)

Eventually (82) and (83) are equivalent to
√

1 + |k|2/4 ≤ w ≤
√

1 + Λ2 (84)

|v| ≤ min

(
w − 1,

√
1 + Λ2 − w,

|k|
2

√
w2 − |k|2/4 − 1

w2 − |k|2/4

)
. (85)

An explicit computation shows that

min

(
w − 1,

√
1 + Λ2 − w,

|k|
2

√
w2 − |k|2/4 − 1

w2 − |k|2/4

)

=

{
|k|
2

√
w2−|k|2/4−1

w2−|k|2/4 when w ≤WΛ(|k|)√
1 + Λ2 − w when w ≥WΛ(|k|)

(86)

where WΛ(r) := (
√

1 + Λ2 +
√

1 + (Λ − r)2)/2 is the unique root of the fourth
order polynomial equation

√
1 + Λ2 − w =

|k|
2

√
w2 − |k|2/4 − 1

w2 − |k|2/4

30



in [
√

1 + |k|2/4,
√

1 + Λ2]. Inserting this in the definition of BΛ(k) and using
that dq = (2/|k|)E(q + k/2)E(q − k/2)dvdwdϕ, see [22, Eq. (12)], we find

B0
Λ(k) = − 8

π|k|3

(∫ WΛ(|k|)

√
1+|k|2/4

dw

∫ |k|
2

r

w2−|k|2/4−1

w2−|k|2/4

0

dv
v2 − |k|2/4

w

+

∫ √
1+Λ2

WΛ(|k|)
dw

∫ √
1+Λ2−w

0

dv
v2 − |k|2/4

w

)
. (87)

Letting z =
√

w2−|k|2/4−1
w2−|k|2/4 in the first integral and z = 2(

√
1 + Λ2 − w)/|k| in

the second, we obtain

B0
Λ(k) =

1

π

∫ ZΛ(|k|)

0

z2 − z4/3

(1 − z2)(1 + |k|2(1 − z2)/4)
dz

+
|k|
2π

∫ ZΛ(|k|)

0

z − z3/3√
1 + Λ2 − |k|z/2

dz (88)

where we have defined

ZΛ(r) =

√
WΛ(r)2 − r2/4 − 1

WΛ(r)2 − r2/4
=

√
1 + Λ2 −

√
1 + (Λ − r)2

r
.

The first term of (88) was already present in [22], whereas the second term was
ignored by Pauli and Rose. An explicit computation of the integrals in (88)
yields

B0
Λ(k) =

1

π|k|3

{
− 4rZΛ(r)

3
− 2

3
(r2 − 2)

√
4 + r2arctanh

(
rZΛ(r)√
4 + r2

)

+
r3

3
log

(
1 + ZΛ(r)

1 − ZΛ(r)

)
+

8E(Λ)3

3

(
1 − 3r2

4E(Λ)2

)
log

ZΛ(r)

E(Λ)
+

44

9
E(Λ)3

− 2E(Λ)r2 − 2
(
3E(Λ)2 + 1 + r2

)
ZΛ(r) + 3E(Λ)ZΛ(r)2 − 8

9
ZΛ(r)3

}
. (89)

To avoid any further notation, we now seeB0
Λ as a function of |k|. Using Formula

(89), one can prove the

Proposition 16 (Regularity of B0
Λ). Let be Λ > 0. The function r 7→ B0

Λ(r)
extends to a non-negative, C1 function on R+, which vanishes on [2Λ,+∞).
Moreover, it is of class C3 on [0, 2Λ]. Eventually, we have

B0
Λ(0) = B0

Λ =
2

3π
ln(Λ) +O(1),

dB0
Λ

dr
(0) = − 1

8πΛ
+ O

Λ→+∞

( 1

Λ3

)
,

d2B0
Λ

dr2
(0) = − 2

15π
+ O

Λ→+∞

( 1

Λ2

)
,

d3B0
Λ

dr3
(0) =

3

4πΛ
+ O

Λ→+∞

( 1

Λ2

)

B0
Λ(2Λ) =

dB0
Λ

dr
(2Λ) = 0,

d2B0
Λ

dr2
(2Λ) =

Λ

4πE(Λ)3
,

d3B0
Λ

dr3
(2Λ) =

5Λ2 − 1

8πE(Λ)5
.
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By Proposition 16, B0
Λ is a non-negative, continuous function with compact

support. Therefore, by (79), b0Λ is a smooth function which reads (using the
inverse Fourier formula for spherically symmetric functions),

∀x ∈ R3 \ {0}, b0Λ(x) =
2π

|x|

∫ 2Λ

0

αB0
Λ(r)

1 + αB0
Λ(r)

sin(r|x|)rdr. (90)

In particular we get the bound

|b0Λ(x)| ≤ 16πΛ3

3
, (91)

which shows that b0Λ ∈ L∞(R3). This becomes after three integrations by parts,

b0Λ(x) =
2π

|x|4

{
2αΛ(B0

Λ)′′(2Λ) cos(2Λ|x|) +
2α(B0

Λ)′(0)

(1 + αB0
Λ(0))2

−
∫ 2Λ

0

(
αr(B0

Λ)(3)(r)

(1 + αB0
Λ(r))2

− 6α2r(B0
Λ)′(r)(B0

Λ)′′(r)

(1 + αB0
Λ(r))3

+
6α3r(B0

Λ)′(r)3

(1 + αB0
Λ(r))4

+
3α(B0

Λ)′′(r)

(1 + αB0
Λ(r))2

− 6α2(B0
Λ)′(r)2

(1 + αB0
Λ(r))3

)
cos(r|x|)dr

}
, (92)

which yields by Proposition 16

|bΛ(x)| ≤ Cα,Λ

|x|4 , (93)

for some constant Cα,Λ depending on α and Λ. With (91), this proves the

Proposition 17. Assume H = HΛ and ζ = 0. Let be α ≥ 0 and Λ > 0. Then
b0Λ belongs to L1(R3).

Remark 3. It can be seen that B0
Λ(Λr) → B0

∞(r) where

B0
∞(r) =





4
πr3

[ (
2
3 − r2

2

)
log
(

r
2

)
− (r−1)3

36 + (r−1)2

6 +
(

r2

4 − 7
12

)
(r − 1)

− r2

4 + 4
9

]
when 1 ≤ r ≤ 2,

4
πr3

[ (
2
3 − r2

2

)
log
(

2−r
2

)
− (1−r)3

36 + (1−r)2

6 +
(

r2

4 − 7
12

)
(1 − r)

− r2

4 + 4
9 + r3

6 log
(

2−r
r

) ]
when 0 < r ≤ 1.

The convergence holds in C2([0, 2)). Notice the two terms appearing (88) sep-
arately converge to a function which is not differentiable at r = 1, but there
is some cancellation occurring. It can also be proved that

∣∣∣∣b0Λ
∣∣∣∣

L1(R3)
is indeed

uniformly bounded independently of the cut-off Λ, but we do not need that in
this article.

A.2 Study of b
ζ
Λ when H = L2(R3, C4) and ζ 6= 0

When H = L2(R3,C4) and ζ 6= 0 satisfies (12)–(14), the same changes of vari-
ables, followed by t =

√
1 − u2, lead to

Bζ
Λ(rk) = π−1

∫ 1

0

dt

t(1 + |k|2t2/4)

∫ √
1−t2

0

1 − u2

1 + Ψ(|k|, t, u)du, (94)
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where

Ψ(|k|, t, u) =
1

2
(η(w + v) + η(w − v)) +

v

2w
(η(w + v) − η(w − v)),

η(x) = ζ

(
x2 − 1

Λ2

)
, v =

|k|u
2

and w =

√
|k|2
4

+
1

t2
.

Proposition 18. Assume H = L2(R3,C4) and that ζ 6= 0 satisfies (12)–(14).

Let be α ≥ 0 and Λ > 0. The function bζΛ belongs to L1(R3).

Proof. As before, we consider Bζ
Λ as a function of |k| to simplify the notation.

We shall prove an estimate of the form

|Bζ
Λ(r)| ≤ CΛ

1 + r2ǫ
,

∣∣∣∣
d

dr
Bζ

Λ(r)

∣∣∣∣ ≤
CΛ

1 + r1+2ǫ
, (95)

∣∣∣∣
d2

dr2
Bζ

Λ(r)

∣∣∣∣ ≤
CΛ log(2 + r)

1 + r2+2ǫ
,

∣∣∣∣
d3

dr3
Bζ

Λ(r)

∣∣∣∣ ≤
CΛ

1 + r2+2ǫ
(96)

where ǫ > 0 is given by (13). The result will follow using a formula similar
to (92). We first notice that v ≤ w, so that η(w + v) − η(w − v) ≥ 0 as ζ is
nonincreasing. Hence, by (13),

1 + Ψ ≥ 1 +
η(w)

2
≥ c

∣∣∣∣
r2

4
+

1

t2

∣∣∣∣
ǫ

=
c
∣∣∣ r2t2

4 + 1
∣∣∣
ǫ

t2ǫ
. (97)

Inserting in (94), we obtain

|Bζ
Λ(r)| ≤ C

∫ 1

0

dt

t1−2ǫ
(

r2t2

4 + 1
)1+ǫ ≤ C

1 + r2ǫ
. (98)

For the three first derivatives of Bζ
Λ, we invoke the following

Lemma 19. We have for any p = 1, 2, 3
∣∣∣∣
∂p

∂rp

(
1

1 + Ψ(r, t, u)

)∣∣∣∣ ≤
C

(1 + Ψ(r, t, u)) (1 + (1 − u)prp)
. (99)

Assuming Lemma 19 holds, we can write

(Bζ
Λ)′(r) = −(2π)−1

∫ 1

0

rt dt

(1 + r2t2/4)2

∫ √
1−t2

0

1 − u2

1 + Ψ(r, t, u)
du

+ π−1

∫ 1

0

dt

t(1 + r2t2/4)

∫ √
1−t2

0

(1 − u2)
∂

∂r

(
1

1 + Ψ(r, t, u)

)
du,

hence

|(Bζ
Λ)′(r)| ≤ C

∫ 1

0

rt1+2ǫdt
(

r2t2

4 + 1
)2+ǫ + C

∫ 1

0

t2ǫ−1dt
(

r2t2

4 + 1
)1+ǫ

∫ 1

0

(1 − u)du

1 + (1 − u)r

≤ C

1 + r1+2ǫ
.

The proof of (96) is similar. Therefore, we omit it. Instead we turn to the
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Proof of Lemma 19. We have

∂

∂r

(
1

1 + Ψ(r, t, u)

)
= −

∂
∂r Ψ(r, t, u)

(1 + Ψ(r, t, u))2
,

so that we have to prove that
∣∣∣∣∣

∂
∂rΨ(r, t, u)

1 + Ψ(r, t, u)

∣∣∣∣∣ ≤
C

1 + (1 − u)r
.

Since Ψ(r, t, u) = 1
2 (η(w+ v) + η(w− v)) +w′u(η(w+ v)− η(w− v)), we obtain

∂

∂r
Ψ(r, t, u) =

1

2

{
(w′+v′)η′(w+v)+(w′−v′)η′(w−v)

}
+w′′u

{
η(w+v)−η(w−v)

}

+ w′u
{
(w′ + v′)η′(w + v) − (w′ − v′)η′(w − v)

}
. (100)

Next we remark that v′ = u ≤ 1, v′′ = 0, w′ ≤ 1/2, w′′ ≤ C(1 + r)−1 and
w′′′ ≤ C(1+r)−2. Using 1+Ψ(r, t, u) ≥ 1+η(w+v)+η(w−v), and Assumption
(14), we obtain an estimate of the form

∣∣ ∂
∂rΨ(r, t, u)

∣∣
1 + Ψ(r, t, u)

≤ C

(
1

1 + r
+

1

1 + |w + v| +
1

1 + |w − v|

)
.

Eventually, we use

|w + v| = w + v ≥ w ≥ r

2
, and |w − v| = w − v ≥ r

2
(1 − u).

The proof for the other derivatives is similar.

We end this section with

Proposition 20. Assume H = L2(R3,C4) and that ζ 6= 0 satisfies (12)–(14).
We have, as Λ → ∞,

Bζ
Λ(0) =

2

3π
log Λ +O(1).

Proof. Taking z =
√

1 − t2, we obtain

Bζ
Λ(0) =

1

π

∫ 1

0

z2 − z4/3

(1 − z2)
(
1 + ζ

(
z2

Λ2(1−z2)

))dz.

As ζ ≥ 0, we have

1

π

∫ Λ
E(Λ)

0

z2 − z4/3

(1 − z2)
(
1 + ζ

(
z2

Λ2(1−z2)

))dz ≤ 1

π

∫ Λ
E(Λ)

0

z2 − z4/3

1 − z2
dz = B0

Λ(0).

To get a lower bound, we use that ζ is smooth, and write that ζ(x) ≤ cx for
any 0 ≤ x ≤ 1 and some c > 0. We obtain

1

π

∫ Λ
E(Λ)

0

z2 − z4/3

(1 − z2)
(
1 + ζ

(
z2

Λ2(1−z2)

))dz ≥ 1

π

∫ Λ
E(Λ)

0

z2 − z4/3

(1 − z2)
(
1 + c z2

Λ2(1−z2)

)dz

≥ 1

π
√

1 − c/Λ2

∫ Λ
√

1−c/Λ2

E(Λ)

0

z2 − z4/3

1 − z2
dz = B0

Λ(Λ) − log(1 + c)

3π
+ o(1),
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as ζ(x) ≤ cx for any 0 ≤ x ≤ 1 and some c > 0. Finally, by (13),
∣∣∣∣∣∣

∫ 1

Λ
E(Λ)

(z2 − z4/3)dz

(1 − z2)
(
1 + ζ

(
z2

Λ2(1−z2)

))

∣∣∣∣∣∣
≤ CE(Λ)ǫ

∫ 1

Λ
E(Λ)

dz

(1 − z2)1−ǫ/2
= O(1).

This yields the result.

A.3 Study of b
ζ
Λ for ζ(t) = t

We finally turn to the special cut-off ζ(t) = t which was used in the study of
the ionization in Theorem 2. Formula (94) yields in this case

Bζ
Λ(k) = π−1

∫ 1

0

dt

t(1 + |k|2t2/4)

∫ √
1−t2

0

1 − u2

1 + 1
Λ2

(
|k|2
4 − 1 + 1

t2

)
+ 3|k|2

4Λ2 u2
du.

(101)

Notice that Bζ
Λ is nonnegative, when Λ > 1/

√
2, and

Bζ
Λ(0) = π−1

∫ 1

0

zdz

1 − z2

∫ z

0

1 − u2

1 + z2

Λ2(1−z2)

du = π−1

∫ 1

0

z2(1 − z2/3)dz

1 − Λ2−1
Λ2 z2

=
Λ2
(
3Λ(2Λ2 − 3)arctanh

(√
Λ2−1
Λ

)
+ (8 − 5Λ2)

√
Λ2 − 1

)

9
√

Λ2 − 1(Λ4 − 2Λ2 + 1)

=
2

3π
log Λ − 5

9π
+

2

3π
log 2 +O(Λ−2 log Λ).

Hence Bζ
Λ(0) = B0

Λ(0) + O(Λ−2 log Λ). Moreover, it can be seen that Bζ
Λ(0) ≤

2/(3π) logΛ when Λ ≥ 4. The main result of this section is

Proposition 21. Assume H = L2(R3,C4) and ζ(t) = t2. Let be α > 0 and

Λ > 1 such that αBζ
Λ(0) < 1. The function bζΛ satisfies

∣∣∣
∣∣∣bζΛ
∣∣∣
∣∣∣
L1(R3)

≤ αBζ
Λ(0)

1 − αBζ
Λ(0)

. (102)

Proof. It follows from (101) that

Bζ
Λ(k) =

∫ 1

0

8Λ2dt

πt3

∫ √
1−t2

0

(1 − u2)du

1 + 3u2

1

µ1(t)2 + |k|2 × 1

µ2(t, u)2 + |k|2

where µ1(t) = 2/t, and µ2(t, u) = 2Λ(1 − 1/Λ2 + 1/t2)1/2(1 + 3u2)−1/2. The
Fourier inverse of (µ2 + |k|2)−1 is the Yukawa potential e−µ|x|/(4π|x|) ≥ 0.

Therefore, the Fourier inverse fΛ = F−1(Bζ
Λ) is nonnegative, so that

∫
fΛ(x) dx =

∫
|fΛ(x)| dx = (2π)−3/2Bζ

Λ(0). (103)

In particular, the operator T : g ∈ L1(R3) 7→ F−1(αBζ
Λĝ) is bounded by ||T || ≤

αBζ
Λ(0). Hence, 1 + T is invertible when αBζ

Λ(0) < 1, and

∣∣∣∣(1 + T )−1
∣∣∣∣ ≤ 1

1 − αBζ
Λ(0)

.

Proposition 21 follows using that bζΛ = T (1 + T )−1.
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[9] P.A.M. Dirac. Théorie du positron. Solvay report (1934), 203–212.
Gauthier-Villars, Paris. XXV, 353 S.

[10] P.A.M. Dirac. Discussion of the infinite distribution of electrons in the
theory of the positron. Proc. Camb. Philos. Soc. 30 (1934), p. 150–163.

[11] E. Engel. Relativistic Density Functional Theory: Foundations and Ba-
sic Formalism. Chap. 10 in Relativistic Electronic Structure Theory, Part
1.Fundamentals, edited by P. Schwerdtfeger, Elsevier (Amsterdam), p.524–
624, 2002.
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