HARDY AND RELLICH INEQUALITIES WITH REMAINDERS

W. D. EVANS AND ROGER T. LEWIS

Abstract

In this paper our primary concern is with the establishment of weighted Hardy inequalities in $L^{p}(\Omega)$ and Rellich inequalities in $L^{2}(\Omega)$ depending upon the distance to the boundary of domains $\Omega \subset \mathbb{R}^{n}$ with a finite diameter $D(\Omega)$. Improved constants are presented in most cases.

1. Introduction

Recently, considerable attention has been given to extensions of the multi-dimensional Hardy inequality of the form
$\int_{\Omega}|\nabla u(\mathbf{x})|^{2} d \mathbf{x} \geq \mu(\Omega) \int_{\Omega} \frac{|u(\mathbf{x})|^{2}}{\delta(\mathbf{x})^{2}} d \mathbf{x}+\lambda(\Omega) \int_{\Omega}|u(\mathbf{x})|^{2} d \mathbf{x}, \quad u \in H_{0}^{1}(\Omega)$,
where Ω is an open connected subset of \mathbb{R}^{n} and

$$
\delta(\mathbf{x}):=\operatorname{dist}(\mathbf{x}, \partial \Omega)
$$

It is known that for $\mu(\Omega)=\frac{1}{4}$ there are smooth domains for which $\lambda(\Omega) \leq 0$, and for $\lambda(\Omega)=0$, there are smooth domains for which $\mu(\Omega)<\frac{1}{4}$ - see M. Marcus, V.J. Mizel, and Y. Pinchover [8] and T. Matskewich and P.E. Sobolevskii [9]. In [2], H. Brezis and M. Marcus showed that for domains of class C^{2} inequality (1.1) holds for

$$
\mu(\Omega)=\frac{1}{4} \quad \text { and some } \quad \lambda(\Omega) \in(-\infty, \infty)
$$

and when Ω is convex

$$
\begin{equation*}
\lambda(\Omega) \geq \frac{1}{4 D(\Omega)^{2}} \tag{1.2}
\end{equation*}
$$

in which $D(\Omega)$ is the diameter of Ω.
M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and A. Laptev [6] answered a question posed by H. Brezis and M. Markus in [2] by establishing the improvement to (1.2) that (1.1) holds for a convex domain

Date: March 8, 2007.
1991 Mathematics Subject Classification. Primary 47A63; Secondary 46E35, 26D10.

Key words and phrases. Rellich inequality, Hardy inequality, Remainder terms.
Ω, with

$$
\begin{equation*}
\mu(\Omega)=\frac{1}{4}, \quad \lambda(\Omega) \geq \frac{K(n)}{4|\Omega|^{\frac{2}{n}}}, \quad \text { and } \quad K(n):=n\left[\frac{s_{n-1}}{n}\right]^{2 / n} \tag{1.3}
\end{equation*}
$$

in which $s_{n-1}:=\left|\mathbb{S}^{n-1}\right|$ and $|\Omega|$ is the volume of Ω.
For a convex domain Ω and $\mu(\Omega)=1 / 4$, a lower bound for $\lambda(\Omega)$ in (1.1) in terms of $|\Omega|$ was also obtained by S. Filippas, V. Maz'ya, and A. Tertikas in [5] as a special case of results on L^{p} Hardy inequalities. They prove that $\lambda(\Omega) \geq 3 D_{\text {int }}(\Omega)^{-2}$, where $D_{\text {int }}(\Omega)=2 \sup _{x \in \Omega} \delta(x)$, the internal diameter of Ω. Since $3 D_{\text {int }}(\Omega)^{-2} \geq \frac{3}{4 n} K(n) /|\Omega|^{2 / n}$, their result is an improvement of (1.3) for $n=2,3$, but the estimates don't compare for $n>3$.

In this paper we show that (1.1) holds for (1.3) replaced by

$$
\mu(\Omega)=\frac{1}{4} \quad \text { and } \quad \lambda(\Omega) \geq \frac{3 K(n)}{2|\Omega|^{\frac{2}{n}}}
$$

as well as proving weighted versions of the Hardy inequality in $L^{p}(\Omega)$ for $p>1$.

In the case $p=2$, the following are special cases of our results. If Ω is convex and $\sigma \in(0,1]$, then
$\int_{\Omega}|\nabla u(\mathbf{x})|^{2} d \mathbf{x} \geq \frac{2^{\sigma} n(1-\sigma)^{2}}{4 D(\Omega)^{\sigma}} \int_{\Omega}\left\{\frac{B(n, 2-\sigma)}{\delta(\mathbf{x})^{2-\sigma}}+3\left(\frac{s_{n-1}}{n|\Omega|}\right)^{\frac{2-\sigma}{n}}\right\}|u(\mathbf{x})|^{2} d \mathbf{x}$
for

$$
\begin{equation*}
B(n, p):=\frac{\Gamma\left(\frac{p+1}{2}\right) \cdot \Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \cdot \Gamma\left(\frac{n+p}{2}\right)} . \tag{1.4}
\end{equation*}
$$

If $\sigma \in\left[\frac{2-n}{2}, 0\right]$ and Ω is convex, then

$$
\begin{aligned}
\int_{\Omega} \delta(\mathbf{x})^{\sigma}|\nabla u(\mathbf{x})|^{2} d \mathbf{x} & \geq \frac{n(1-\sigma)^{2}}{4} B(n, 2-\sigma) \int_{\Omega} \delta(\mathbf{x})^{\sigma-2}|u(\mathbf{x})|^{2} d \mathbf{x} \\
& +\frac{C_{H}(n, \sigma)}{|\Omega|^{\frac{2(1-\sigma)}{n}}} \int_{\Omega} \delta(\mathbf{x})^{|\sigma|}|u(\mathbf{x})|^{2} d \mathbf{x}
\end{aligned}
$$

for $C_{H}(n, \sigma)$ given in (3.4). Similar results for weighted forms of the Hardy inequality in $L^{p}(\Omega)$ are given in section 4.

Finally, we show that our one-dimensional inequalities in $\S 2$ lead to improved constants for the Rellich inequality obtained by G. Barbatis in [1] for $n \geq 4$.

2. One-dimensional inequalities

As is the case in [6], our proofs are based on one-dimensional Hardytype inequalities coupled with the use of the mean-distance function introduced by Davies to extend to higher dimensions; see [4]. The basic one-dimensional inequality is as follows:

Lemma 1. Let $u \in C_{0}^{1}(0,2 b), \rho(t):=\min \{t, 2 b-t\}$ and let $f \in C^{1}[0, b]$ be monotonic on $[0, b]$. Then for $p>1$

$$
\begin{equation*}
\int_{0}^{2 b}\left|f^{\prime}(\rho(t))\right||u(t)|^{p} d t \leq p^{p} \int_{0}^{2 b} \frac{|f(\rho(t))-f(b)|^{p}}{\left|f^{\prime}(\rho(t))\right|^{p-1}}\left|u^{\prime}(t)\right|^{p} d t \tag{2.1}
\end{equation*}
$$

Proof. First let $u:=v \chi_{(0, b)}$, the restriction to $(0, b]$ of some $v \in C_{0}^{1}(0,2 b)$. For any constant c

$$
\begin{aligned}
-\int_{0}^{b}[f(t)-c]^{\prime}|u(t)|^{p} d t= & -\left.[f(t)-c]|u(t)|^{p}\right|_{0} ^{b} \\
& +\int_{0}^{b}[f(t)-c] \frac{p}{2}\left[|u(t)|^{2}\right]^{\frac{p}{2}-1}\left[|u(t)|^{2}\right]^{\prime} d t .
\end{aligned}
$$

By choosing $c=f(b)$, we have that

$$
\begin{equation*}
-\int_{0}^{b} f^{\prime}(t)|u(t)|^{p} d t=p \int_{0}^{b}[f(t)-f(b)]|u(t)|^{p-2} \mathfrak{R e}\left[\overline{u(t)} u^{\prime}(t)\right] d t . \tag{2.2}
\end{equation*}
$$

Similarly, for $u=v \chi_{[b, 2 b)}, v \in C_{0}^{1}(0,2 b)$, we have

$$
\begin{aligned}
-\int_{b}^{2 b} & f^{\prime}(2 b-s)|u(s)|^{p} d s \\
\quad & =p \int_{b}^{2 b}[f(2 b-s)-f(b)]|u(s)|^{p-2} \mathfrak{R e}\left[\overline{u(s)} u^{\prime}(s)\right] d s .
\end{aligned}
$$

Therefore, since f is monotonic, for any $u \in C_{0}^{1}(0,2 b)$

$$
\begin{aligned}
& \int_{0}^{2 b}\left|f^{\prime}(\rho(t))\right||u(t)|^{p} d t \\
& \quad=p \int_{0}^{2 b}|f(\rho(t))-f(b)||u(t)|^{p-2} \mathfrak{R e}\left[\overline{u(t)} u^{\prime}(t)\right] d t \\
& \quad \leq p \int_{0}^{b}\left|f^{\prime}(\rho(t))\right|^{\frac{p-1}{p}}|u(t)|^{p-1} \frac{|f(\rho(t))-f(b)|}{\left|f^{\prime}(\rho(t))\right|^{p-1}}\left|u^{\prime}(t)\right| d t \\
& \quad \leq p\left[\int_{0}^{b}\left|f^{\prime}(\rho(t))\right||u(t)|^{p} d t\right]^{\frac{p-1}{p}}\left[\int_{0}^{b} \frac{\mid f(\rho(t))-f(b) p^{p}}{\mid f^{\prime}\left(\rho \left(\rho(t)| |^{p-1}\right.\right.}\left|u^{\prime}(t)\right|^{p} d t\right]^{\frac{1}{p}}
\end{aligned}
$$

on applying Hölder's inequality. Inequality (2.1) now follows.

The next lemma provides the one-dimensional result needed to improve (1.3), which was proved in [6].

Lemma 2. Let $\sigma \leq 1$ and define $\mu(t):=2 b-\rho(t)$. For all $u \in C_{0}^{1}(0,2 b)$
$\int_{0}^{2 b} \rho(t)^{\sigma}\left|u^{\prime}(t)\right|^{2} d t \geq\left(\frac{1-\sigma}{2}\right)^{2} \int_{0}^{2 b} \rho(t)^{\sigma-2}\left[1+k(\sigma)\left(\frac{2 \rho(t)}{\mu(t)}\right)^{1-\sigma}\right]^{2}|u(t)|^{2} d t$,
for

$$
k(\sigma):=\left\{\begin{array}{cc}
{\left[1-2^{\frac{1}{\sigma}-1}\right]^{-\sigma},} & \sigma<0, \tag{2.3}\\
1, & \sigma \in[0,1] .
\end{array}\right.
$$

Proof. On setting $f(t)=t^{\sigma-1}$ in (2.1) we get
$|1-\sigma|^{p} \int_{0}^{2 b} \rho(t)^{\sigma-2}|u(t)|^{p} d t \leq p^{p} \int_{0}^{2 b} \rho(t)^{p+\sigma-2}\left|1-\left[\frac{\rho(t)}{b}\right]^{1-\sigma}\right|^{p}\left|u^{\prime}(t)\right|^{p} d t$.

With $u \in C_{0}^{1}(0,2 b)$, let $p=2$ and substitute $v(t)=\left[1-\left(\frac{\rho(t)}{b}\right)^{1-\sigma}\right] u(t)$ in (2.4). We claim that this gives

$$
\begin{equation*}
\int_{0}^{2 b} \rho^{\sigma}(t)\left|v^{\prime}(t)\right|^{2} d t \geq\left(\frac{1-\sigma}{2}\right)^{2} \int_{0}^{2 b} \rho(t)^{\sigma-2}\left[1-\left(\frac{\rho(t)}{b}\right)^{1-\sigma}\right]^{-2}|v(t)|^{2} d t \tag{2.5}
\end{equation*}
$$

for any real number σ. The substitution gives
$\rho(t)^{\sigma / 2} v^{\prime}(t)=-(1-\sigma) b^{\sigma-1} \rho(t)^{-\sigma / 2} \rho^{\prime}(t) u(t)+\rho(t)^{\sigma / 2}\left[1-\left(\frac{\rho(t)}{b}\right)^{1-\sigma}\right] u^{\prime}(t)$.
Consequently,

$$
\begin{aligned}
\rho(t)^{\sigma}\left|v^{\prime}(t)\right|^{2}= & (1-\sigma)^{2} b^{2 \sigma-2} \rho(t)^{-\sigma}|u(t)|^{2}+\rho(t)^{\sigma}\left[1-\left(\frac{\rho(t)}{b}\right)^{1-\sigma}\right]^{2}\left|u^{\prime}(t)\right|^{2} \\
& -(1-\sigma) b^{\sigma-1} \rho^{\prime}(t)\left[1-\left(\frac{\rho(t)}{b}\right)^{1-\sigma}\right]\left[|u|^{2}\right]^{\prime}
\end{aligned}
$$

which implies that

$$
\begin{align*}
\int_{0}^{2 b} \rho(t)^{\sigma}\left|v^{\prime}(t)\right|^{2} d t= & \int_{0}^{2 b} \rho(t)^{\sigma}\left[1-\left(\frac{\rho(t)}{b}\right)^{1-\sigma}\right]^{2}\left|u^{\prime}(t)\right|^{2} d t \\
& +\int_{0}^{2 b}(1-\sigma)^{2} b^{2 \sigma-2} \rho(t)^{-\sigma}|u(t)|^{2} d t \\
& +(1-\sigma) b^{\sigma-1} \int_{0}^{2 b} \frac{d}{d t}\left[\rho^{\prime}(t)\left[1-\left(\frac{\rho(t)}{b}\right)^{1-\sigma}\right]\right]|u|^{2} d t \\
= & \int_{0}^{2 b} \rho(t)^{\sigma}\left[1-\left(\frac{\rho(t)}{b}\right)^{1-\sigma}\right]^{2}\left|u^{\prime}(t)\right|^{2} d t \tag{2.6}
\end{align*}
$$

since $\rho^{\prime}(t)=1$ in $(0, b)$ and -1 in $(b, 2 b)$. Therefore, (2.5) follows from (2.4).

Since $2 b=\mu(t)+\rho(t)$

$$
\begin{align*}
{\left[1-\left(\frac{\rho(t)}{b}\right)^{1-\sigma}\right]^{-2} } & =\left[1+\frac{\rho(t)^{1-\sigma}}{b^{1-\sigma}-\rho(t) 1^{1-\sigma}}\right]^{2} \tag{2.7}\\
& =\left[1+2^{1-\sigma}\left(\frac{\rho(t)}{\mu(t)}\right)^{1-\sigma} k_{\sigma}\left(\frac{\rho(t)}{\mu(t)}\right)\right]^{2}
\end{align*}
$$

for

$$
k_{\sigma}(x):=\frac{1}{(1+x)^{1-\sigma}-(2 x)^{1-\sigma}}, \quad x \in[0,1), \quad \sigma \neq 1 .
$$

For $\sigma<1, k_{\sigma}(x)>0$ in $(0,1), k_{\sigma}(0)=1$ and $k_{\sigma}(x) \rightarrow \infty$ as $x \rightarrow 1^{-}$. By examining the derivative of $k_{\sigma}(x)$

$$
k_{\sigma}^{\prime}(x)=\frac{-(1-\sigma)\left((1+x)^{-\sigma}-2^{1-\sigma} x^{-\sigma}\right)}{\left[(1+x)^{1-\sigma}-(2 x)^{1-\sigma}\right]^{2}}
$$

we see that

$$
\lim _{x \rightarrow 0^{+}} k_{\sigma}^{\prime}(x)=\left\{\begin{array}{cc}
-(1-\sigma), & \sigma<0 \\
1, & \sigma=0, \\
\infty, & 0<\sigma<1
\end{array}\right.
$$

For $\sigma<0, k_{\sigma}(x)$ is minimized at

$$
x_{\sigma}:=1 /\left(2^{1-\frac{1}{\sigma}}-1\right)<1 .
$$

Calculations show that

$$
k_{\sigma}\left(x_{\sigma}\right)=\left[1-2^{\frac{1}{\sigma}-1}\right]^{-\sigma}=: k(\sigma) .
$$

For $\sigma \in[0,1), k_{\sigma}^{\prime}(x)$ is never zero in $(0,1)$ indicating that $k_{\sigma}(x)$ is minimized at $x=0$ for $\sigma \in[0,1)$ and $x \in[0,1)$. The inequality (2.3) now follows.

In order to treat the case in which $p \neq 2$, we make use of the methods of Tidblom [11] and prove a weighted version of Theorem 1.1 in [11].

Lemma 3. Let $u \in C_{0}^{1}(0,2 b), p \in(1, \infty)$, and $\sigma \leq p-1$. Then

$$
\int_{0}^{2 b} \rho(t)^{\sigma}\left|u^{\prime}(t)\right|^{p} d t \geq\left[\frac{p-\sigma-1}{p}\right]^{p} \int_{0}^{2 b}\left\{\rho(t)^{\sigma-p}+(p-1) b^{\sigma-p}\right\}|u(t)|^{p} d t .
$$

Proof. We may assume that $\sigma \neq p-1$ since otherwise the conclusion is trivial. According to (2.2) for a monotonic function f and a positive function g,

$$
\begin{aligned}
& \int_{0}^{b}\left|f^{\prime}(t)\right||u(t)|^{p} d t \leq \int_{0}^{b} p|f(t)-f(b)||u(t)|^{p-1}\left|u^{\prime}(t)\right| d t \\
& \quad \leq p\left[\int_{0}^{b} g(t)\left|u^{\prime}(t)\right|^{p} d t\right]^{1 / p}\left[\int_{0}^{b}\left(\frac{|f(t)-f(b)|^{p}}{g(t)}\right)^{1 /(p-1)}|u(t)|^{p} d t\right]^{1-1 / p} .
\end{aligned}
$$

Consequently,

$$
p^{p} \int_{0}^{b} g(t)\left|u^{\prime}(t)\right|^{p} d t \geq \frac{\left(\int_{0}^{b}\left|f^{\prime}(t)\right||u(t)|^{p} d t\right)^{p}}{\left(\int_{0}^{b}\left(\frac{|f(t)-f(b)|^{p}}{g(t)}\right)^{1 /(p-1)}|u(t)|^{p} d t\right)^{p-1}} .
$$

Now, as in [11], using a corollary to Young's inequality, namely

$$
A^{p} / B^{p-1} \geq p A-(p-1) B
$$

with $A=\int_{0}^{b}\left|f^{\prime}(t)\right||u(t)|^{p} d t, B=\int_{0}^{b}\left(\frac{|f(t)-f(b)|^{p}}{g(t)}\right)^{1 / p-1}|u(t)|^{p} d t$, it follows that

$$
\begin{aligned}
& p^{p} \int_{0}^{b} g(t)\left|u^{\prime}(t)\right|^{p} d t \\
& \quad \geq \int_{0}^{b}\left\{p\left|f^{\prime}(t)\right|-(p-1)\left(\frac{|f(t)-f(b)|^{p}}{g(t)}\right)^{1 /(p-1)}\right\}|u(t)|^{p} d t .
\end{aligned}
$$

Choose $f(t)=t^{\sigma-p+1}$ and $g(t)=(p-\sigma-1)^{-(p-1)} t^{\sigma}$. Then

$$
\begin{aligned}
\left(\frac{|f(t)-f(b)|^{p}}{g(t)}\right)^{1 /(p-1)} & =(p-\sigma-1)\left[\frac{\left|t^{\sigma-p+1}-b^{\sigma-p+1}\right|^{p}}{t^{\sigma}}\right]^{\frac{1}{p-1}} \\
& =(p-\sigma-1) t^{\sigma-p}\left[\left(1-\left(\frac{t}{b}\right)^{p-\sigma-1}\right)^{p}\right]^{\frac{1}{p-1}}
\end{aligned}
$$

Consequently, for $t \in(0, b)$

$$
\begin{aligned}
p \mid & f^{\prime}(t) \left\lvert\,-(p-1)\left(\frac{|f(t)-f(b)|^{p}}{g(t)}\right)^{1 /(p-1)}\right. \\
& =(p-\sigma-1)\left\{p t^{\sigma-p}-(p-1) t^{\sigma-p}\left[\left(1-\left(\frac{t}{b}\right)^{p-\sigma-1}\right)^{p}\right]^{\frac{1}{p-1}}\right\} \\
& =(p-\sigma-1) t^{\sigma-p}\left\{1+(p-1)\left(1-\left[1-\left(\frac{t}{b}\right)^{p-\sigma-1}\right]^{\frac{p}{p-1}}\right)\right\} \\
& \geq(p-\sigma-1) t^{\sigma-p}\left\{1+(p-1)\left(\frac{t}{b}\right)^{p-\sigma-1}\right\} \\
& \geq(p-\sigma-1)\left\{t^{\sigma-p}+(p-1)\left(\frac{1}{b}\right)\right\} .
\end{aligned}
$$

and the inequality follows. In the inequality above we have used the fact that

$$
\left[1-\left(\frac{t}{b}\right)^{p-\sigma-1}\right]^{\frac{p}{p-1}} \leq 1-\left(\frac{t}{b}\right)^{p-\sigma-1}
$$

The proof is completed by following the last part of the proof of Lemma 1.

For a certain range of values taken by $\sigma, \sigma \in\left[-c_{\sigma}, 1\right)$ with $c_{\sigma}>0$, the inequality in $L^{2}(\Omega)$ given by Lemma 2 gives a better bound than Lemma 3 with $p=2$. In fact for $\sigma<1$
$\rho(t)^{\sigma-2}\left[1+k(\sigma)\left(\frac{2 \rho(t)}{\mu(t)}\right)^{1-\sigma}\right]^{2}=\rho(t)^{\sigma-2}+\frac{2^{2-\sigma} k(\sigma)}{\rho(t) \mu(t)^{1-\sigma}}+\frac{2^{2-2 \sigma} k(\sigma)^{2}}{\rho(t)^{\sigma} \mu(t)^{2-2 \sigma}}$
with

$$
\begin{align*}
\frac{2^{2-\sigma} k(\sigma)}{\rho(t) \mu(t)^{1-\sigma}} & +\frac{2^{2-2 \sigma} k(\sigma)^{2}}{\rho(t)^{\sigma} \mu(t)^{2-2 \sigma}} \tag{2.8}\\
& \geq \begin{cases}{\left[2-\sigma+b^{\sigma} k(\sigma) \rho(t)^{\frac{5}{2 \sigma}} b^{\sigma-2}\right] k(\sigma) b^{\sigma-2},} & \sigma \in[0,1) \\
{[2}\end{cases}
\end{align*}
$$

Since $k(\sigma)$ decreases to 0 for $\sigma<0$ as $|\sigma| \rightarrow \infty$ and $k(-3) \approx 0.22$, then the left-hand side of (2.8) is greater than $b^{\sigma-2}$ for $\sigma \in[-3,1)$.

3. A Hardy inequality in $L^{2}(\Omega)$

We need the following notation (c.f.[6]). For each $\mathbf{x} \in \Omega$ and $\nu \in$ \mathbb{S}^{n-1},

$$
\begin{gathered}
\tau_{\nu}(\mathbf{x}):=\min \{s>0: \mathbf{x}+s \nu \notin \Omega\} \\
D_{\nu}(\mathbf{x}):=\tau_{\nu}(\mathbf{x})+\tau_{-\nu}(\mathbf{x}) \\
\rho_{\nu}(\mathbf{x}):=\min \left\{\tau_{\nu}(\mathbf{x}), \tau_{-\nu}(\mathbf{x})\right\} \\
\mu_{\nu}(\mathbf{x}):=\max \left\{\tau_{\nu}(\mathbf{x}), \tau_{-\nu}(\mathbf{x})\right\}=D_{\nu}(\mathbf{x})-\rho_{\nu}(\mathbf{x}) \\
D(\Omega):=\sup _{\mathbf{x} \in \Omega, \nu \in \mathbb{S}^{n-1}} D_{\nu}(\mathbf{x}) \\
\Omega_{\mathbf{x}}:=\{\mathbf{y} \in \Omega: \mathbf{x}+t(\mathbf{y}-\mathbf{x}) \in \Omega, \forall t \in[0,1]\}
\end{gathered}
$$

Note that $D(\Omega)$ is the diameter of Ω and $\Omega_{\mathbf{x}}$ is the part of Ω which can be "seen" from the point $\mathrm{x} \in \Omega$. The volume of Ω_{x} is denoted by $\left|\Omega_{\mathbf{x}}\right|$.

Let $d \omega(\nu)$ denote the normalized measure on \mathbb{S}^{n-1} (so that $1=$ $\left.\int_{\mathbb{S}^{n-1}} d \omega(\nu)\right)$ and define

$$
\begin{equation*}
\rho(\mathbf{x} ; s):=\int_{\mathbb{S}^{n}-1} \rho_{\nu}(\mathbf{x})^{s} d \omega(\nu) \tag{3.1}
\end{equation*}
$$

Hence $\rho^{-1 / 2}(\mathbf{x} ;-2)=\rho(\mathbf{x})$ the "mean-distance" function introduced by Davies in [4]. For

$$
\begin{equation*}
B(n, p):=\int_{\mathbb{S}^{n}-1}|\cos (\mathbf{e}, \nu)|^{p} d \omega(\nu)=\frac{\Gamma\left(\frac{p+1}{2}\right) \cdot \Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \cdot \Gamma\left(\frac{n+p}{2}\right)}, \quad \mathbf{e} \in \mathbb{R}^{n} \tag{3.2}
\end{equation*}
$$

it is known that

$$
\begin{equation*}
\rho(\mathbf{x} ;-p):=\int_{\mathbb{S}^{n-1}} \frac{1}{\rho_{\nu}(\mathbf{x})^{p}} d \omega(\nu) \geq \frac{B(n, p)}{\delta(\mathbf{x})^{p}} \tag{3.3}
\end{equation*}
$$

for convex domains Ω - see Exercise 5.7 in [4], [3], and [11]. Note that $B(n, 2)=n^{-1}$. This fact can be applied to most of the results below when Ω is convex.

For a Hardy inequality in $L^{2}(\Omega)$ with weights we will need to define

$$
\begin{equation*}
C_{H}(n, \sigma):=n\left(\frac{s_{n-1}}{n}\right)^{\frac{2(1-\sigma)}{n}} k(\sigma)\left[2^{|\sigma|}+2^{2|\sigma|-1} k(\sigma)\right](1-\sigma)^{2} \tag{3.4}
\end{equation*}
$$

for $\sigma \in\left[\frac{2-n}{2}, 0\right]$ and $n \geq 2$ where as given in Lemma 2

$$
k(\sigma):=\left\{\begin{array}{cc}
{\left[1-2^{\frac{1}{\sigma}-1}\right]^{-\sigma},} & \sigma<0 \\
1, & \sigma \in[0,1] .
\end{array}\right.
$$

Note that $C_{H}(n, 0)=\frac{3}{2} K(n)$ for $K(n)$ defined in (1.3).
Theorem 1. If $\frac{2-n}{2} \leq \sigma \leq 0$, then for any $u \in C_{0}^{1}(\Omega)$

$$
\begin{align*}
\int_{\Omega} \delta(\mathbf{x})^{\sigma}|\nabla u(\mathbf{x})|^{2} d \mathbf{x} & \geq \frac{n(1-\sigma)^{2}}{4} \int_{\Omega} \rho(\mathbf{x} ; \sigma-2)|u(\mathbf{x})|^{2} d \mathbf{x} \\
& +C_{H}(n, \sigma) \int_{\Omega} \frac{\delta(\mathbf{x})^{|\sigma|}}{\left|\Omega_{\mathbf{x}}\right|^{\frac{2(1-\sigma)}{n \mid}}}|u(\mathbf{x})|^{2} d \mathbf{x} . \tag{3.5}
\end{align*}
$$

$$
\begin{align*}
& \text { If } 0<\sigma \leq 1 \text {, then } \\
& \qquad \int_{\Omega}|\nabla u(\mathbf{x})|^{2} d \mathbf{x} \geq \tag{3.6}\\
& \quad \frac{2^{\sigma} n(1-\sigma)^{2}}{4 D(\Omega)^{\sigma}} \int_{\Omega}\left\{\rho(\mathbf{x} ; \sigma-2)+3\left(\frac{s_{n-1}}{n \mid \Omega_{\mathbf{x}}}\right)^{\frac{2-\sigma}{n}}\right\}|u(\mathbf{x})|^{2} d \mathbf{x} .
\end{align*}
$$

If Ω is convex, then for any $u \in C_{0}^{1}(\Omega)$

$$
\begin{aligned}
\int_{\Omega} \delta(\mathbf{x})^{\sigma}|\nabla u(\mathbf{x})|^{2} d \mathbf{x} & \geq \frac{n(1-\sigma)^{2}}{4} B(n, 2-\sigma) \int_{\Omega} \delta(\mathbf{x})^{\sigma-2}|u(\mathbf{x})|^{2} d \mathbf{x} \\
& +\frac{C_{H}(n, \sigma)}{|\Omega|^{\frac{2(1-\sigma)}{n}}} \int_{\Omega} \delta(\mathbf{x})^{|\sigma|}|u(\mathbf{x})|^{2} d \mathbf{x}
\end{aligned}
$$

when $\sigma \in\left[\frac{2-n}{2}, 0\right]$ and

$$
\begin{aligned}
& \int_{\Omega}|\nabla u(\mathbf{x})|^{2} d \mathbf{x} \geq \\
& \quad \frac{2^{\sigma} n(1-\sigma)^{2}}{4 D(\Omega)^{\sigma}} \int_{\Omega}\left\{B(n, 2-\sigma) \delta(\mathbf{x})^{\sigma-2}+3\left(\frac{s_{n-1}}{n|\Omega|}\right)^{\frac{2-\sigma}{n}}\right\}|u(\mathbf{x})|^{2} d \mathbf{x} .
\end{aligned}
$$

when $\sigma \in(0,1]$.
Proof. Let $\partial_{\nu} u, \nu \in \mathbb{S}^{n-1}$, denote the derivative of u in the direction of ν, i.e., $\partial_{\nu} u=\nu \cdot(\nabla u)$. It follows from Lemma 2 that for $\sigma \in(-\infty, 1]$

$$
\begin{align*}
& \int_{\Omega} \rho_{\nu}^{\sigma}(\mathbf{x})\left|\partial_{\nu} u\right|^{2} d \mathbf{x} \\
& \geq\left(\frac{1-\sigma}{2}\right)^{2} \int_{\Omega} \rho_{\nu}(\mathbf{x})^{\sigma-2}\left(1+k(\sigma)\left[\frac{2 \rho_{\nu}(\mathbf{x})}{\mu_{\nu}(\mathbf{x})}\right]^{(1-\sigma)}\right)^{2}|u(\mathbf{x})|^{2} d \mathbf{x} \tag{3.7}
\end{align*}
$$

Expanding the integrand in (3.7), we have

$$
\begin{align*}
& \rho_{\nu}(\mathbf{x})^{\sigma-2}\left(1+k(\sigma)\left[\frac{2 \rho_{\nu}(\mathbf{x})}{\mu_{\nu}(\mathbf{x})}\right]^{(1-\sigma)}\right)^{2} \\
& =\quad \rho_{\nu}(\mathbf{x})^{\sigma-2}+2^{2-\sigma} \frac{k(\sigma) \rho_{\nu}(\mathbf{x})^{-\sigma}}{\left(\tau_{\nu}(\mathbf{x}) \tau_{-\nu}(\mathbf{x})\right)^{1-\sigma}}+2^{2(1-\sigma)} k(\sigma)^{2} \frac{\rho_{\nu}(\mathbf{x})^{-\sigma}}{\mu_{\nu}(\mathbf{x})^{2(1-\sigma)}} . \tag{3.8}
\end{align*}
$$

If $\sigma \leq 0$

$$
\begin{align*}
& \rho_{\nu}(\mathbf{x})^{\sigma-2}\left[1+k(\sigma)\left(\frac{2 \rho_{\nu}(\mathbf{x})}{\mu_{\nu}(\mathbf{x})}\right)^{(1-\sigma)}\right]^{2} \\
& \quad \geq \rho_{\nu}(\mathbf{x})^{\sigma-2}+2^{2-\sigma} \frac{k(\sigma) \delta(\mathbf{x})^{\mid \sigma \sigma}}{\left(\tau_{\nu}(\boldsymbol{x}) \tau_{-\nu}(\mathbf{x})\right)^{1-\sigma}}+2^{2(1-\sigma)} k(\sigma)^{2} \frac{\delta\left(\left.\mathbf{x}\right|^{|\sigma|}\right.}{\tau_{\nu}(\mathbf{x})^{2(1-\sigma)+\tau_{-\nu}(\mathbf{x})^{2(1-\sigma)}}} \tag{3.9}
\end{align*}
$$

since $\rho_{\nu}(\mathbf{x})^{-\sigma} \geq \delta(\mathbf{x})^{|\sigma|}$ in this case. As in [6], we note that since

$$
\begin{aligned}
\int_{\mathbb{S}^{n-1}}\left(\tau_{\nu}(\mathbf{x}) \tau_{-\nu}(\mathbf{x})\right)^{1-\sigma} d \omega(\nu) & \leq \int_{\mathbb{S}^{n-1}}\left(\tau_{\nu}(\mathbf{x})\right)^{2(1-\sigma)} d \omega(\nu) \\
& \leq\left[\int_{\mathbb{S}^{n-1}}\left(\tau_{\nu}(\mathbf{x})\right)^{n} d \omega(\nu)\right]^{\frac{2(1-\sigma)}{n}} \\
& =\left[\frac{n}{s_{n-1}}\left|\Omega_{\mathbf{x}}\right|\right]^{\frac{2(1-\sigma)}{n}}
\end{aligned}
$$

for $\sigma \geq \frac{2-n}{2}$, then

$$
\begin{aligned}
\int_{\mathbb{S}^{n-1}} \frac{1}{\left(\tau_{\nu}(\mathbf{x}) \tau_{-\nu}(\mathbf{x})\right)^{1-\sigma}} d \omega(\nu) & \geq\left[\int_{\mathbb{S}^{n-1}}\left(\tau_{\nu}(\mathbf{x}) \tau_{-\nu}(\mathbf{x})\right)^{1-\sigma} d \omega(\nu)\right]^{-1} \\
& \geq\left[\frac{n}{s_{n-1}}\left|\Omega_{\mathbf{x}}\right|\right]^{-\frac{2(1-\sigma)}{n}} .
\end{aligned}
$$

For the third term in inequality (3.9)

$$
\int_{\mathbb{S}^{n-1}}\left(\tau_{\nu}(\mathbf{x})^{2(1-\sigma)}+\tau_{-\nu}(\mathbf{x})^{2(1-\sigma)}\right) d \omega(\nu)=2 \int_{\mathbb{S}^{n-1}} \tau_{\nu}(\mathbf{x})^{2(1-\sigma)} d \omega(\nu)
$$

implying that for $\sigma \geq \frac{2-n}{2}$

$$
\int_{\mathbb{S}^{n-1}}\left(\tau_{\nu}(\mathbf{x})^{2(1-\sigma)}+\tau_{-\nu}(\mathbf{x})^{2(1-\sigma)}\right)^{-1} d \omega(\nu) \geq \frac{1}{2}\left[\frac{n}{s_{n-1}}\left|\Omega_{\mathbf{x}}\right|\right]^{-\frac{2(1-\sigma)}{n}} .
$$

Consequently, for $\frac{2-n}{2} \leq \sigma \leq 0$ we have that

$$
\begin{align*}
& \int_{\mathbb{S}^{n-1}} \rho_{\nu}(\mathbf{x})^{\sigma-2}\left[1+k(\sigma)\left(\frac{2 \rho_{\nu}(\mathbf{x})}{\mu_{\nu}(\mathbf{x})}\right)^{(1-\sigma)}\right]^{2} d \omega(\nu) \tag{3.10}\\
& \geq \rho(\mathbf{x} ; \sigma-2)+C_{H}(n, \sigma) \delta(\mathbf{x})^{|\sigma|} /\left[n\left|\Omega_{\mathbf{x}}\right|^{\frac{2(1-\sigma)}{n}}\right] .
\end{align*}
$$

Upon combining this fact with (3.7) we have

$$
\begin{align*}
& \left(\frac{1-\sigma}{2}\right)^{2} \int_{\Omega}\left\{\rho(\mathbf{x} ; \sigma-2)+\frac{C_{H}(n, \sigma) \delta(\mathbf{x})|\sigma|}{n \mid \Omega_{\mathbf{x}}\left({ }^{2(1-\sigma) / n}\right.}\right\}|u(\mathbf{x})|^{2} d \mathbf{x} \\
& \leq \int_{\Omega} \int_{\mathbb{S}^{n-1}} \rho_{\nu}(\mathbf{x})^{\sigma}\left|\partial_{\nu} u(\mathbf{x})\right|^{2} d \omega(\nu) d \mathbf{x} \tag{3.11}\\
& =\int_{\Omega} \delta(\mathbf{x})^{\sigma} \int_{\mathbb{S}^{n-1}}|\cos (\nu, \nabla u(\mathbf{x}))|^{2} d \omega(\nu)|\nabla u(\mathbf{x})|^{2} d \mathbf{x}
\end{align*}
$$

for $\sigma \leq 0$. Since

$$
\begin{equation*}
\int_{\mathbb{S}^{n}-1}|\cos (\nu, \alpha)|^{2} d \omega(\nu)=\frac{1}{n} \tag{3.12}
\end{equation*}
$$

for any fixed $\alpha \in \mathbb{S}^{n-1}$ (see Tidblom [11], p.2270), inequality (3.5) follows.

For $0<\sigma \leq 1$, we consider first the third term on the right-hand side of (3.8). We have

$$
\begin{aligned}
& \int_{\mathbb{S}^{n-1}} \rho_{\nu}(\mathbf{x})^{\sigma} \mu_{\nu}(\mathbf{x})^{2(1-\sigma)} d \omega(\nu) \\
& \leq \int_{\mathbb{S}^{n-1}} 2^{-\sigma}\left(\tau_{\nu}(\mathbf{x})+\tau_{-\nu}(\mathbf{x})\right)^{\sigma}\left(\tau_{\nu}(\mathbf{x})+\tau_{-\nu}(\mathbf{x})\right)^{2(1-\sigma)} d \omega(\nu) \\
& =2^{-\sigma}\left\|\tau_{\nu}(\mathbf{x})+\tau_{-\nu}(\mathbf{x})\right\|_{L^{2-\sigma}-\sigma\left(\mathbb{S}^{n-1}\right)} \\
& \leq 2^{-\sigma}\left[\left\|\tau_{\nu}(\mathbf{x})\right\|_{L^{2-\sigma}\left(\mathbb{S}^{n-1}\right)}+\left\|\tau_{-\nu}(\mathbf{x})\right\|_{L^{2-\sigma}\left(\mathbb{S}^{n-1}\right)}\right]^{2-\sigma} \\
& =2^{2(1-\sigma)} \int_{\mathbb{S}^{n-1}} \tau_{\nu}(\mathbf{x})^{2-\sigma} d \omega(\nu) \\
& \leq 2^{2(1-\sigma)}\left[\int_{\mathbb{S}^{n-1}}\left(\tau_{\nu}(\mathbf{x})\right)^{n} d \omega(\nu)\right]^{\frac{2-\sigma}{n}} \\
& =2^{2(1-\sigma)}\left[\frac{n}{s_{n-1}}\left|\Omega_{\mathbf{x}}\right|\right]^{\frac{2-\sigma}{n}}
\end{aligned}
$$

for $n \geq 2$ by the Minkowski and Hölder inequalities. Therefore, the term

$$
\int_{\mathbb{S}^{n-1}} \frac{\rho_{\nu}(\mathbf{x})^{-\sigma} d \omega(\nu)}{\mu_{\nu}(\mathbf{x})^{2(1-\sigma)}} \geq 2^{2(\sigma-1)}\left(\frac{s_{n-1}}{n\left|\Omega_{\mathbf{x}}\right|}\right)^{\frac{2-\sigma}{n}}
$$

Similarly, in the second term of (3.8)

$$
\begin{aligned}
& \int_{\mathbb{S}^{n-1}} \rho_{\nu}(\mathbf{x}) \mu_{\nu}(\mathbf{x})^{1-\sigma} d \omega(\nu) \\
& \quad \leq \frac{1}{2} \int_{\mathbb{S}^{n-1}}\left(\tau_{\nu}(\mathbf{x})+\tau_{-\nu}(\mathbf{x})\right)\left(\tau_{\nu}(\mathbf{x})+\tau_{-\nu}(\mathbf{x})\right)^{1-\sigma} d \omega(\nu) \\
& \quad \leq 2^{1-\sigma}\left[\frac{n}{s_{n-1}}\left|\Omega_{\mathbf{x}}\right|\right]^{\frac{2-\sigma}{n}}
\end{aligned}
$$

as before implying that

$$
\int_{\mathbb{S}^{n-1}} \frac{d \omega(\nu)}{\rho_{\nu}(\mathbf{x}) \mu_{\nu}(\mathbf{x})^{1-\sigma}} \geq 2^{\sigma-1}\left(\frac{s_{n-1}}{n \mid \Omega_{\mathbf{x}}}\right)^{\frac{2-\sigma}{n}} .
$$

For $0<\sigma<1$ we now have that

$$
\begin{aligned}
& \int_{\mathbb{S}^{n-1}} \rho_{\nu}(\mathbf{x})^{\sigma-2}\left[1+k(\sigma)\left(\frac{2 \rho_{\nu}(\mathbf{x})}{\mu_{\mu}(\mathbf{x})}\right)^{(1-\sigma)}\right]^{2} d \omega(\nu) \\
& \geq \rho(\mathbf{x} ; \sigma-2)+3\left(\frac{s_{n-1}}{n\left|\Omega_{\mathbf{x}}\right|}\right)^{\frac{2}{n}}
\end{aligned}
$$

since $k(\sigma)=1$ in this case. Consequently,

$$
\begin{aligned}
& \int_{\Omega} \int_{\mathbb{S}^{n-1}} \rho_{\nu}(\mathbf{x})^{\sigma}|\cos (\nu, \nabla u(\mathbf{x}))|^{2} d \omega(\nu)|\nabla u(\mathbf{x})|^{2} d \mathbf{x} \\
& \geq\left(\frac{1-\sigma}{2}\right)^{2} \int_{\Omega}\left[\rho(\mathbf{x} ; \sigma-2)+3\left(\frac{s_{n-1}}{n \mid \Omega_{\mathbf{x}}}\right)^{\frac{2-\sigma}{n}}\right]|u(\mathbf{x})|^{2} d \mathbf{x} .
\end{aligned}
$$

According to (3.12) it follows that

$$
\int_{\mathbb{S}^{n-1}} \rho_{\nu}(\mathbf{x})^{\sigma}|\cos (\nu, \nabla u(\mathbf{x}))|^{2} d \omega(\nu) \leq \frac{D(\Omega)^{\sigma}}{2^{\sigma} n}
$$

Therefore, (3.6) holds.
The inequalities in the statement of the theorem for the case of a convex domain Ω follow from (3.3) and the fact that $\left|\Omega_{\mathbf{x}}\right|=|\Omega|$ for all $\mathrm{x} \in \Omega$.

4. An $L^{p}(\Omega)$ INEQUALITY

With the guidance of Tidblom's analysis for the Hardy inequality in [11], L^{p} versions of the weighted Hardy theorem in the last section can be proved by similar techniques. When $\sigma=0$, the next theorem reduces to Theorem 2.1 of [11].

Theorem 2. Let $u \in C_{0}^{1}(\Omega)$ and $p \in(1, \infty)$. If $\sigma \leq 0$, then for $B(n, p)$ defined in (3.2)

$$
\begin{array}{ll}
\int_{\Omega} & \delta(\mathbf{x})^{\sigma}|\nabla u(\mathbf{x})|^{p} d \mathbf{x} \geq \\
& \frac{[|p-\sigma-1| / \mid p]^{p}}{B(n, p)} \int_{\Omega}\left\{\rho(\mathbf{x} ; \sigma-p)+(p-1)\left[\frac{s_{n-1}}{n\left|\Omega_{\mathbf{x}}\right|}\right]^{\frac{p-\sigma}{n}}\right\}|u(\mathbf{x})|^{p} d \mathbf{x} \tag{4.1}
\end{array}
$$

and if $\sigma \in[0, p-1]$, then

$$
\begin{align*}
\int_{\Omega} & |\nabla u(\mathbf{x})|^{p} d \mathbf{x} \geq \\
& \frac{\left.2^{\sigma}| | p-\sigma-1 \mid / p\right]^{p}}{B(n, p) D(\Omega)^{\sigma}} \int_{\Omega}\left\{\rho(\mathbf{x} ; \sigma-p)+(p-1)\left[\frac{s_{n-1}}{n\left|\Omega_{\mathbf{x}}\right|}\right]^{\frac{p-\sigma}{n}}\right\}|u(\mathbf{x})|^{p} d \mathbf{x} . \tag{4.2}
\end{align*}
$$

If Ω is convex, $\rho(\mathbf{x}, \sigma-p)$ can be replaced in (4.1) and (4.2) by the term $B(n, p-\sigma) / \delta(\mathbf{x})^{p-\sigma}$ (in view of (3.3)) and $\left|\Omega_{x}\right|$ by $|\Omega|$.

Proof. From Lemma 3 we have that for $\sigma \leq p-1$, any $\nu \in \mathbb{S}^{n-1}$, and $u \in C_{0}^{1}(\Omega)$

$$
\begin{align*}
& \int_{\Omega} \rho_{\nu}(\mathbf{x})^{\sigma}\left|\partial_{\nu} u(\mathbf{x})\right|^{p} d \mathbf{x} \geq \\
& \quad\left[\frac{\mid p^{-\sigma-1}}{p}\right]^{p} \int_{\Omega}\left\{\rho_{\nu}(\mathbf{x})^{\sigma-p}+\frac{(p-1) 2^{p-\sigma}}{D_{\nu}(\mathbf{x})^{p-\sigma}}\right\}|u(\mathbf{x})|^{p} d \mathbf{x} . \tag{4.3}
\end{align*}
$$

If $\sigma \leq 0$ we bound $\rho_{\nu}(\mathbf{x})^{\sigma}$ for any $\nu \in \mathbb{S}^{n-1}$ by $\delta(\mathbf{x})^{\sigma}$ in the first integral above. If $\sigma>0$, we bound it by $D(\Omega)^{\sigma} / 2^{\sigma}$. As in [11] we may use the fact that

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}}\left|\partial_{\nu} u(\mathbf{x})\right|^{p} d \omega(\nu)=B(n, p)|\nabla u(\mathbf{x})|^{p} \tag{4.4}
\end{equation*}
$$

After bounding $\rho_{\nu}(\mathbf{x})^{\sigma}$ as described above, integrate in (4.3) over \mathbb{S}^{n-1} with respect to $d \omega(\nu)$. In order to evaluate the integral of $\left(2 / D_{\nu}(\mathbf{x})\right)^{p-\sigma}$, we proceed as in [11]. Since $\sigma \leq p-1$, then $f(t)=t^{\sigma-p}$ is convex for $t>0$ and we have that

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}}\left(\frac{2}{D_{\nu}(\mathbf{x})}\right)^{p-\sigma} d \omega(\nu) \geq\left(\int_{\mathbb{S}^{n-1}} \frac{D_{\nu}(\mathbf{x})}{2} d \omega(\nu)\right)^{\sigma-p} \geq\left(\frac{n\left|\Omega_{\mathbf{x}}\right|}{s_{n-1}}\right)^{-\frac{p-\sigma}{n}} \tag{4.5}
\end{equation*}
$$

by Jensen's inequality and Lemma 2.1 of [11]. The conclusion follows.

5. Rellich's inequality

The methods described above with Proposition 1 below can be used to prove a weighted Rellich inequality which, for $n \geq 4$ and without weights, improves the constant given in a Rellich inequality proved recently by Barbatis ([1], Theorem 1.2). A comparison is made below. The methods used by Barbatis depends upon the identity (5.2) first proved by M.P. Owen ([10], see the proof of Theorem 2.3). In order to incorporate weights, our proof requires the point-wise identity (5.1) which does not follow from the proof of Owen.
Proposition 1. Let Ω be a domain in \mathbb{R}^{n}. Then, for all $u \in C^{2}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\int_{\mathbb{S}^{n}-1}\left|\partial_{\nu}^{2} u(\mathbf{x})\right|^{2} d \omega(\nu)=\frac{1}{n(n+2)}\left[|\Delta u(\mathbf{x})|^{2}+2 \sum_{i, j=1}^{n}\left|\frac{\partial^{2} u(\mathbf{x})}{\partial x_{i} \partial x_{j}}\right|^{2}\right] \tag{5.1}
\end{equation*}
$$

and for all $u \in C_{0}^{2}(\Omega)$

$$
\begin{equation*}
\int_{\Omega} \int_{\mathbb{S}^{n}-1}\left|\partial_{\nu}^{2} u(\mathbf{x})\right|^{2} d \omega(\nu) d \mathbf{x}=\frac{3}{n(n+2)} \int_{\Omega}|\Delta u(\mathbf{x})|^{2} d \mathbf{x} \tag{5.2}
\end{equation*}
$$

Proof. For $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ we have

$$
\begin{aligned}
\partial_{\nu}^{2} u=(\nu \cdot \nabla)^{2} u & =\sum_{\ell m=1}^{n} \nu_{\ell} \nu_{m} u_{\ell m} \\
& =\sum_{\ell=1}^{n} \nu_{\ell}^{2} u_{\ell \ell}+2 \sum_{1 \leq \ell<m \leq n} \nu_{\ell} \nu_{m} u_{\ell m}
\end{aligned}
$$

in which $u_{p q}(\mathbf{x}):=\frac{\partial^{2} u(\mathbf{x})}{\partial x_{p} \partial x_{q}}$. Consequently,

$$
\begin{align*}
\int_{\mathbb{S}^{n-1}}\left|\partial_{\nu}^{2} u\right|^{2} d \omega(\nu)= & \sum_{\ell, m=1}^{n} u_{\ell \ell} \overline{u_{m m}} \int_{\mathbb{S}^{n-1}}\left(\nu_{\ell}\right)^{2}\left(\nu_{m}\right)^{2} d \omega(\nu) \\
& \left.+4 \sum_{m=1}^{n} \sum_{1 \leq p<q \leq n} \Re u_{m m} \overline{u_{p q}}\right) \int_{\mathbb{S}^{n-1}}\left(\nu_{m}\right)^{2} \nu_{p} \nu_{q} d \omega(\nu) \\
& +4 \sum_{1 \leq j<k \leq n} \sum_{1 \leq p<q \leq n} \Re \mathfrak{e}\left(u_{p q} \overline{u_{j k}}\right) \int_{\mathbb{S}^{n-1}} \nu_{p} \nu_{q} \nu_{j} \nu_{k} d \omega(\nu) . \tag{5.3}
\end{align*}
$$

Let $\theta_{j} \in[0, \pi]$ for $j=1, \ldots, n-2$, and $\theta_{n-1} \in[0,2 \pi]$. Using the convention that $\Pi_{j=q}^{p}=1$ for $p<q$ and $\theta_{n}=0$, we have

$$
\begin{align*}
\nu_{j} & =\Pi_{k=1}^{j-1} \sin \theta_{k} \cos \theta_{j}, \quad j=1, \ldots, n \\
d \omega(\nu) & :=\frac{(n-2)!!}{\gamma_{n}} \Pi_{k=1}^{n-2}\left(\sin \theta_{k}\right)^{n-1-k} d \theta_{k} d \theta_{n-1} \tag{5.4}
\end{align*}
$$

for $n!!:=n \cdot(n-2) \cdot(n-4) \cdots 1$ and

$$
\gamma_{n}= \begin{cases}2(2 \pi)^{(n-1) / 2} & \text { for } n \text { odd } \\ (2 \pi)^{n / 2} & \text { for } n \text { even }\end{cases}
$$

Calculations show that

$$
\int_{\mathbb{S}^{n-1}}\left(\nu_{m}\right)^{2} \nu_{p} \nu_{q} d \omega(\nu)=0, \quad m=1, \ldots, n, \quad 1 \leq p<q \leq n
$$

implying that the second term on the right-hand side of (5.3) vanishes.
A similar consideration for the third term on the right-hand side of (5.3) shows that

$$
\int_{\mathbb{S}^{n-1}} \nu_{p} \nu_{q} \nu_{j} \nu_{k} d \omega(\nu) \neq 0, \quad 1 \leq p<q \leq n, \quad 1 \leq j<k \leq n
$$

only if $j=p$ and $k=q$. Therefore, (5.3) reduces to

$$
\begin{align*}
\int_{\mathbb{S}^{n-1}}\left|\partial_{\nu}^{2} u(\mathbf{x})\right|^{2} d \omega(\nu)= & \sum_{\ell, m=1}^{n} u_{\ell \ell} \overline{u_{m m}} \int_{\mathbb{S}^{n-1}}\left(\nu_{\ell}\right)^{2}\left(\nu_{m}\right)^{2} d \omega(\nu) \tag{5.5}\\
& +4 \sum_{1 \leq p<q \leq n}\left|u_{p q}\right|^{2} \int_{\mathbb{S}^{n-1}}\left(\nu_{p}\right)^{2}\left(\nu_{q}\right)^{2} d \omega(\nu) .
\end{align*}
$$

However, further calculations show that

$$
\int_{\mathbb{S}^{n-1}} \nu_{p}^{2} \nu_{q}^{2} d \omega(\nu)= \begin{cases}\frac{1}{n(n+2)} & 1 \leq p<q \leq n \tag{5.6}\\ \frac{3}{n(n+2)} & p=q=1, \ldots, n\end{cases}
$$

implying that

$$
\begin{align*}
\int_{\mathbb{S}^{n-1}}\left|\partial_{\nu}^{2} u\right|^{2} d \omega(\nu)= & \frac{3}{n(n+2)} \sum_{m=1}^{n}\left|u_{m m}\right|^{2} \tag{5.7}\\
& +\frac{1}{n(n+2)} \sum_{1 \leq p<q \leq n}\left[4\left|u_{p q}\right|^{2}+2 \Re \mathfrak{e}\left(u_{p p} \overline{u_{q q}}\right)\right] \\
= & \frac{1}{n(n+2)}\left[|\Delta u(\mathbf{x})|^{2}+2 \sum_{i, j=1}^{n}\left|\frac{\partial^{2} u(\mathbf{x})}{\partial x_{i} \partial x_{j}}\right|^{2}\right]
\end{align*}
$$

which is (5.1). Equality (5.2) now follows since

$$
\sum_{i, j=1}^{n} \int_{\Omega}\left|\frac{\partial^{2} u(\mathbf{x})}{\partial x_{i} \partial x_{j}}\right|^{2} d \mathbf{x}=\int_{\Omega}|\Delta u(\mathbf{x})|^{2} d \mathbf{x} .
$$

Define

$$
\begin{gathered}
d(\mathbf{x} ; \sigma):= \begin{cases}\delta(\mathbf{x})^{\sigma}, & \sigma<0 \\
\left(\frac{D(\Omega)}{2}\right)^{\sigma}, & \sigma \in[0,1] ;\end{cases} \\
\beta(n, \sigma):=\frac{(1-\sigma)^{2}(3-\sigma)^{2} n(n+2)}{16}
\end{gathered}
$$

and

$$
\begin{equation*}
C_{R}(n, \sigma):=2^{4-\sigma} k(\sigma-2)\left[\frac{s_{n-1}}{n}\right]^{\frac{4-\sigma}{n}}\left(1+2^{2-\sigma} k(\sigma-2)\right) \tag{5.8}
\end{equation*}
$$

for $\sigma \leq 1$ and $k(\sigma)$ defined in Lemma 2.
Theorem 3. For $\sigma \leq 1$ and $u \in C_{0}^{2}(\Omega)$,

$$
\begin{align*}
& \int_{\Omega} d(\mathbf{x} ; \sigma)\left[|\Delta u(\mathbf{x})|^{2}+2 \sum_{i, j=1}^{n}\left|\frac{\partial^{2} u(\mathbf{x})}{\partial x_{i} \partial x_{j}}\right|^{2}\right] d \mathbf{x} \\
& \quad \geq \beta(n, \sigma)\left\{\int_{\Omega} \rho(\mathbf{x} ; \sigma-4)|u(\mathbf{x})|^{2} d \mathbf{x}\right. \tag{5.9}\\
& \left.\quad+2^{4-\sigma} k(\sigma-2)\left[\frac{s_{n-1}}{n}\right]^{\frac{4-\sigma}{n}} \int_{\Omega} \frac{|u(\mathbf{x})|^{2}}{\left|\Omega_{\mathbf{x}}\right|^{\frac{4-\sigma}{n}}} d \mathbf{x}\right\}
\end{align*}
$$

holds when $n \geq 4-\sigma$ and

$$
\begin{align*}
\int_{\Omega} d(\mathbf{x} ; \sigma) & {\left[|\Delta u(\mathbf{x})|^{2}+2 \sum_{i, j=1}^{n}\left|\frac{\partial^{2} u(\mathbf{x})}{\partial x_{i} \partial x_{j}}\right|^{2}\right] d \mathbf{x} } \\
\geq & \beta(n, \sigma)\left\{\int_{\Omega} \rho(\mathbf{x} ; \sigma-4)|u(\mathbf{x})|^{2} d \mathbf{x}\right. \\
& +2^{4-\sigma} k(\sigma-2)\left[\frac{s_{n-1}}{n}\right]^{\frac{4-\sigma}{n}} \int_{\Omega} \frac{|u(\mathbf{x})|^{2}}{\left|\Omega_{x}\right|^{\frac{1-\sigma}{n}}} d \mathbf{x} \tag{5.10}\\
& \left.+2^{2(3-\sigma)} k(\sigma-2)^{2}\left[\frac{s_{n-1}}{n}\right]^{\frac{4+t-\sigma}{n}} \int_{\Omega} \frac{\delta(\mathbf{x})|u(\mathbf{x})|^{2}}{\left|\Omega_{\mathbf{x}}\right|^{\frac{4+t-\sigma}{n}}} d \mathbf{x}\right\}
\end{align*}
$$

holds when $n \geq 4+t-\sigma$ and $t \geq 2-\sigma$.
Proof. For $\sigma \leq 1$, it follows that

$$
\begin{aligned}
\int_{0}^{2 b} \rho(t)^{\sigma}\left|u^{\prime \prime}(t)\right|^{2} d t & \geq \int_{0}^{2 b} \rho(t)^{\sigma}\left[1-\left(\frac{\rho(t)}{\mu(t)}\right)^{1-\sigma}\right]^{2}\left|u^{\prime \prime}(t)\right|^{2} d t \\
& \geq\left(\frac{1-\sigma}{2}\right)^{2} \int_{0}^{2 b} \rho(t)^{\sigma-2}\left|u^{\prime}(t)\right|^{2} d t
\end{aligned}
$$

by (2.4). Therefore, for $\sigma \leq 1$ and $u \in C_{0}^{2}(0,2 b)$,

$$
\begin{align*}
& \int_{0}^{2 b} \rho(t)^{\sigma}\left|u^{\prime \prime}(t)\right|^{2} d t \\
& \quad \geq\left(\frac{(1-\sigma)(3-\sigma)}{4}\right)^{2} \int_{0}^{2 b} \rho(t)^{\sigma-4}\left[1+k(\sigma-2)\left(\frac{2 \rho(t)}{\mu(t)}\right)^{3-\sigma}\right]^{2}|u(t)|^{2} d t \tag{5.11}
\end{align*}
$$

by (2.3).
From (5.11) we have for $u \in C_{0}^{2}(\Omega)$

$$
\begin{align*}
& \int_{\Omega} \rho_{\nu}(\mathbf{x})^{\sigma}\left|\partial_{\nu}^{2} u(\mathbf{x})\right|^{2} d \mathbf{x} \\
& \quad \geq\left(\frac{(1-\sigma)(3-\sigma)}{4}\right)^{2} \int_{\Omega} \rho_{\nu}(\mathbf{x})^{\sigma-4}\left\{1+k(\sigma-2)\left(\frac{2 \rho_{\nu}(\mathbf{x})}{\mu_{\nu}(\mathbf{x})}\right)^{3-\sigma}\right\}^{2}|u(\mathbf{x})|^{2} d \mathbf{x} \tag{5.12}
\end{align*}
$$

for $\sigma \leq 1$. As in (3.8) we write

$$
\begin{align*}
& \rho_{\nu}(\mathbf{x})^{\sigma-4}\left\{1+k(\sigma-2)\left(\frac{2 \rho_{\nu}(\mathbf{x})}{\mu_{\nu}(\mathbf{x})}\right)^{3-\sigma}\right\}^{2} \\
& \quad=\rho_{\nu}(\mathbf{x})^{\sigma-4}+2^{4-\sigma} k(\sigma-2) \frac{\rho_{\nu}^{-1}(\mathbf{x})}{\mu_{\nu}(\mathbf{x})^{3-\sigma}}+2^{2(3-\sigma)} k(\sigma-2)^{2} \frac{\rho_{\nu}^{-\sigma+2}(\mathbf{x})}{\mu_{\nu}(\mathbf{x})^{2(3-\sigma)}} . \tag{5.13}
\end{align*}
$$

Since $\rho_{\nu}(\mathbf{x}) \mu_{\nu}(\mathbf{x})=\tau_{\nu}(\mathbf{x}) \tau_{-\nu}(\mathbf{x})$, in the second term on the right-hand side of (5.13) we may write

$$
\frac{\rho_{\nu}^{-1}(\mathbf{x})}{\mu_{\nu}(\mathbf{x})^{3-\sigma}}=\frac{1}{\left[\tau_{\nu}(\mathbf{x}) \tau_{-\nu}(\mathbf{x})\right] \mu_{\nu}(\mathbf{x})^{2-\sigma}}=: I(\nu ; \mathbf{x})
$$

Thus

$$
\begin{aligned}
\int_{\mathbb{S}^{n-1}} I(\nu ; \mathbf{x}) d \omega(\nu)= & \int_{\tau_{\nu}(\mathbf{x}) \geq \tau_{-\nu}(\mathbf{x})} \tau_{\nu}(\mathbf{x})^{\sigma-3}(\mathbf{x}) \tau_{-\nu}(\mathbf{x})^{-1} d \omega(\nu) \\
& +\int_{\tau_{\nu}(\mathbf{x}) \leq \tau_{-\nu}(\mathbf{x})} \tau_{-\nu}(\mathbf{x})^{\sigma-3}(\mathbf{x}) \tau_{\nu}(\mathbf{x})^{-1} d \omega(\nu) \\
\geq & \int_{\tau_{\nu}(\mathbf{x}) \geq \tau_{-\nu}(\mathbf{x})} \tau_{\nu}(\mathbf{x})^{\sigma-4}(\mathbf{x}) d \omega(\nu) \\
& +\int_{\tau_{\nu}(x) \leq \tau_{-\nu}(\mathbf{x})} \tau_{-\nu}(\mathbf{x})^{\sigma-4}(\mathbf{x}) d \omega(\nu)
\end{aligned}
$$

and

$$
\begin{aligned}
\left\{\int_{\tau_{\nu}(\mathbf{x}) \geq \tau_{-\nu}(\mathbf{x})} \tau_{\nu}(\mathbf{x})^{\sigma-4} d \omega(\nu)\right\}^{-1} & \leq \int_{\tau_{\nu}(\mathbf{x}) \geq \tau_{-\nu}(\mathbf{x})} \tau_{\nu}(\mathbf{x})^{-\sigma+4} d \omega(\nu) \\
& \leq\left\{\int_{\mathbb{S}^{n-1}} \tau_{\nu}^{n}(\mathbf{x}) d \omega(\nu)\right\}^{(4-\sigma) / n} \\
& =\left(\frac{n}{s_{n-1}}\left|\Omega_{\mathbf{x}}\right|\right)^{(4-\sigma) / n}
\end{aligned}
$$

for $n \geq 4-\sigma$. Therefore for the second term on the right-hand side of (5.13), for $\sigma \leq 1$ and $n \geq 4-\sigma$, it follows that

$$
\begin{equation*}
\int_{\Omega} \int_{\mathbb{S}^{n-1}} \frac{\rho_{\nu}^{-1}(\mathbf{x}) d \omega(\nu)}{\mu_{\nu}(\mathbf{x})^{3-\sigma}}|u(\mathbf{x})|^{2} d \mathbf{x} \geq\left(\frac{s_{n-1}}{n}\right)^{\frac{4-\sigma}{n}} \int_{\Omega} \frac{|u(\mathbf{x})|^{2}}{\left|\Omega_{\mathbf{x}}\right|^{\frac{4-\sigma}{n}}} d \mathbf{x} \tag{5.14}
\end{equation*}
$$

For any $t \in(-\infty, \infty)$, we may write the third term in (5.13) as

$$
\frac{\rho_{\nu}^{-\sigma+2}(\mathbf{x})}{\mu_{\nu}(\mathbf{x})^{2(3-\sigma)}}=\rho_{\nu}(\mathbf{x})^{t}\left(\tau_{\nu}(\mathbf{x}) \tau_{-\nu}(\mathbf{x})\right)^{2-\sigma-t} \mu(\mathbf{x})^{-8+3 \sigma+t}=: \rho_{\nu}(\mathbf{x})^{t} J(\nu, \mathbf{x})
$$

If $t \geq 2-\sigma$

$$
\begin{aligned}
\int_{\mathbb{S}^{n-1}} J(\nu ; \mathbf{x}) d \omega(\nu) \geq & \int_{\tau_{\nu}(\mathbf{x}) \geq \tau_{-\nu}(\mathbf{x})} \tau_{\nu}(\mathbf{x})^{-4+\sigma-t} d \omega(\nu) \\
& +\int_{\tau_{\nu}(\mathbf{x}) \leq \tau_{-\nu}(\mathbf{x})} \tau_{-\nu}(\mathbf{x})^{-4+\sigma-t} d \omega(\nu)
\end{aligned}
$$

As before

$$
\begin{aligned}
\left\{\int_{\tau_{\nu}(\mathbf{x}) \geq \tau_{-\nu}(\mathbf{x})} \tau_{\nu}(\mathbf{x})^{-4+\sigma-t} d \omega(\nu)\right\}^{-1} & \leq \int_{\tau_{\nu}(\mathbf{x}) \geq \tau_{-\nu}(\mathbf{x})} \tau_{\nu}(\mathbf{x})^{4-\sigma+t} d \omega(\nu) \\
& \leq\left\{\int_{\mathbb{S}^{n}-1} \tau_{\nu}^{n}(\mathbf{x}) d \omega(\nu)\right\}^{(4-\sigma+t) / n} \\
& =\left(\frac{n}{s_{n-1}}\left|\Omega_{\mathbf{x}}\right|\right)^{(4-\sigma+t) / n}
\end{aligned}
$$

if $n \geq 4-\sigma+t$. Associated with the third term on the right-hand side of (5.13), we have for $\sigma \leq 1, t \geq 2-\sigma>0$, and $n \geq 4-\sigma+t$

$$
\begin{equation*}
\int_{\Omega} \int_{\mathbb{S}^{n-1}} \frac{\rho_{\nu}^{-\sigma+2}(\mathbf{x}) d \omega(\nu)}{\left.\mu_{\nu}(\mathbf{x})^{2(3-\sigma}\right)}|u(\mathbf{x})|^{2} d \mathbf{x} \geq\left(\frac{s_{n-1}}{n}\right)^{\frac{4+t-\sigma}{n}} \int_{\Omega} \frac{\delta(\mathbf{x})^{t}|u(\mathbf{x})|^{2}}{\left|\Omega_{\mathbf{x}}\right|^{\frac{4+t-\sigma}{n}}} d \mathbf{x} \tag{5.15}
\end{equation*}
$$

From (5.12) - (5.15) we obtain

$$
\begin{aligned}
& \int_{\Omega} \int_{\mathbb{S}^{n-1}} \rho_{\nu}(\mathbf{x})^{\sigma}\left|\partial_{\nu}^{2} u(\mathbf{x})\right|^{2} d \omega(\nu) d \mathbf{x} \geq \frac{(1-\sigma)^{2}(3-\sigma)^{2}}{16}\left\{\int_{\Omega} \rho(\mathbf{x} ; \sigma-4)|u(\mathbf{x})|^{2} d \mathbf{x}\right. \\
& +2^{4-\sigma} k(\sigma-2)\left[\frac{s_{n-1}}{n}\right]^{\frac{4-\sigma}{n}} \int_{\Omega} \frac{\mid u\left(\left.\mathbf{x}\right|^{2}\right.}{\left|\Omega_{x}\right| \frac{\mid-\sigma}{n}} d \mathbf{x} \\
& \left.+2^{2(3-\sigma)} k(\sigma-2)^{2}\left[\frac{s_{n-1}}{n}\right]^{\frac{4+t-\sigma}{n}} \int_{\Omega} \frac{\delta(\mathbf{x})^{t}|u(\mathbf{x})|^{2}}{\left|\Omega_{\mathbf{x}}\right|^{\frac{4+n-\sigma}{n}}} d \mathbf{x}\right\}
\end{aligned}
$$

provided $\sigma \leq 1, t \geq 2-\sigma$, and $n \geq 4+t-\sigma$.
Note, that we may simply choose zero as a lower bound for the third term on the right-hand side of (5.13) and conclude that

$$
\begin{aligned}
\int_{\Omega} \int_{\mathbb{S}^{n-1}} \rho_{\nu}(\mathbf{x})^{\sigma} & \left|\partial_{\nu}^{2} u(\mathbf{x})\right|^{2} d \omega(\nu) d \mathbf{x} \geq \frac{(1-\sigma)^{2}(3-\sigma)^{2}}{16}\left\{\int_{\Omega} \rho(\mathbf{x} ; \sigma-4)|u(\mathbf{x})|^{2} d \mathbf{x}\right. \\
& \left.+2^{4-\sigma} k(\sigma-2)\left[\frac{s_{n-1}}{n}\right]^{\frac{4-\sigma}{n}} \int_{\Omega} \frac{\mid u\left(\left.\mathbf{x}\right|^{2}\right.}{\left|\Omega_{\mathbf{x}}\right|^{\frac{1-\sigma}{n}}} d \mathbf{x}\right\}
\end{aligned}
$$

for $\sigma \leq 1$ and $n \geq 4-\sigma$.
Now, it follows from Proposition 1 that

$$
\begin{aligned}
& \int_{\Omega} \int_{\mathbb{S}^{n-1}} \rho_{\nu}(\mathbf{x})^{\sigma}\left|\partial_{\nu}^{2} u(\mathbf{x})\right|^{2} d \omega(\nu) d \mathbf{x} \\
& \quad \leq \frac{1}{n(n+2)} \int_{\Omega} d(\mathbf{x} ; \sigma)\left[|\Delta u(\mathbf{x})|^{2}+2 \sum_{i, j=1}^{n}\left|\frac{\partial^{2} u(\mathbf{x})}{\partial x_{i} \partial x_{j}}\right|^{2}\right] d \mathbf{x}
\end{aligned}
$$

Thus, (5.9) and (5.10) are proved.
It follows from Theorem 1.2 of Barbatis [1] that for a convex bounded domain Ω and all $u \in C_{0}^{\infty}(\Omega)$
$\int_{\Omega}|\Delta u(\mathbf{x})|^{2} d \mathbf{x} \geq \frac{9}{16} \int_{\Omega} \frac{|u(\mathbf{x})|^{2}}{\delta(\mathbf{x})^{4}} d \mathbf{x}+\frac{11}{48} n(n+2)\left[\frac{s_{n-1}}{n|\Omega|}\right]^{4 / n} \int_{\Omega}|u(\mathbf{x})|^{2} d \mathbf{x}$.
As in Theorem 2 , for a convex domain $\Omega \subset \mathbb{R}^{n}$, we may replace $\rho(\mathbf{x}, \sigma-$ 4) in Theorem 3 by $B(n, 4-\sigma) / \delta(\mathbf{x})^{4-\sigma}$ and $\left|\Omega_{x}\right|$ by $|\Omega|$ to conclude from (5.9) that for $n \geq 4$

$$
\begin{equation*}
\int_{\Omega}|\Delta u(\mathbf{x})|^{2} d \mathbf{x} \geq \frac{9}{16} \int_{\Omega} \frac{|u(\mathbf{x})|^{2}}{\delta(\mathbf{x})^{4}} d \mathbf{x}+c_{4} n(n+2)\left[\frac{s_{n-1}}{n|\Omega|}\right]^{4 / n} \int_{\Omega}|u(\mathbf{x})|^{2} d \mathbf{x} \tag{5.17}
\end{equation*}
$$

for all $u \in C_{0}^{\infty}(\Omega)$ in which $c_{4}=3 k(-2) \approx 1.25$. Therefore (5.17) improves the bound given by (5.16) for all $n \geq 4$.

References

[1] G. Barbatis, Improved Rellich inequalities for the polyharmonic operator, Indiana University Mathematics Journal 55(4) (2006), 1401-1422.
[2] H. Brezis and M. Marcus, Hardy's inequalities revisited, Dedicated to Ennio De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997, 1998), 217-237.
[3] E.B. Davies, "A Review of Hardy Inequalities. The Maz'ya Anniversary Collection, Vol. 2," Oper. Theory Adv. Appl., Vol. 110, pp. 55-67, Birkäuser, Basel, 1999.
[4] E.B. Davies, "Spectral Theory and Differential Operators," Cambridge Studies in Advanced Mathematics, Vol. 42, Cambridge Univ. Press, Cambridge, 1995.
[5] S. Filippas, V. Maz'ya, and A. Tertikas, On a question of Brezis and Marcus, Calc. Var. Partial Differential Equations 25(4) (2006), 491-501.
[6] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and A. Laptev, A geometrical version of Hardy's inequality, J. Funct. Anal., 189 (2002), 539-548.
[7] E.H. Lieb and M. Loss, "Analysis," Graduate Studies in Mathematics, vol. 14, 2nd edition, American Mathematical Society, Providence, R.I., 2001.
[8] M. Marcus, V.J. Mizel, and Y. Pinchover, On the best constant for Hardy's inequality in \mathbb{R}^{n}, Trans. Amer. Math. Soc. 350 (1998), 3237-3255.
[9] T. Matskewich and P.E. Sobolevskii, The best possible constant in a generalized Hardy's inequality for convex domains in \mathbb{R}^{n}, Nonlinear Analysis TMA, 28 (1997), 1601-1610.
[10] M.P. Owen, The Hardy-Rellich inequality for polyharmonic operators, Proc. Royal Society of Edinburgh, A 129 (1999), 825-839.
[11] J. Tidblom, A geometrical version of Hardy's inequality for $W_{0}^{1, p}(\Omega)$, Proc. A.M.S., 132(8) (2004), 2265-2271.

School of Mathematics, Cardiff University, 23 Senghennydd Road, Cardiff CF24 4AG, UK

E-mail address: EvansWD@cardiff.ac.uk
Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA

E-mail address: lewis@math.uab.edu

