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Abstract. In this paper our primary concern is with the estab-
lishment of weighted Hardy inequalities in Lp(Ω) and Rellich in-
equalities in L2(Ω) depending upon the distance to the boundary of
domains Ω ⊂ Rn with a finite diameter D(Ω). Improved constants
are presented in most cases.

1. Introduction

Recently, considerable attention has been given to extensions of the
multi-dimensional Hardy inequality of the form
∫

Ω

|∇u(x)|2dx ≥ µ(Ω)

∫

Ω

|u(x)|2
δ(x)2

dx + λ(Ω)

∫

Ω

|u(x)|2dx, u ∈ H1
0 (Ω),

(1.1)
where Ω is an open connected subset of Rn and

δ(x) := dist(x, ∂Ω).

It is known that for µ(Ω) = 1
4

there are smooth domains for which
λ(Ω) ≤ 0, and for λ(Ω) = 0, there are smooth domains for which
µ(Ω) < 1

4
- see M. Marcus, V.J. Mizel, and Y. Pinchover [8] and

T. Matskewich and P.E. Sobolevskii [9]. In [2], H. Brezis and M. Mar-
cus showed that for domains of class C2 inequality (1.1) holds for

µ(Ω) =
1

4
and some λ(Ω) ∈ (−∞,∞)

and when Ω is convex

λ(Ω) ≥ 1

4D(Ω)2
(1.2)

in which D(Ω) is the diameter of Ω.
M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and A. Laptev [6]

answered a question posed by H. Brezis and M. Markus in [2] by estab-
lishing the improvement to (1.2) that (1.1) holds for a convex domain
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Ω, with

µ(Ω) =
1

4
, λ(Ω) ≥ K(n)

4|Ω| 2n
, and K(n) := n

[sn−1

n

]2/n

(1.3)

in which sn−1 := |Sn−1| and |Ω| is the volume of Ω.
For a convex domain Ω and µ(Ω) = 1/4, a lower bound for λ(Ω) in

(1.1) in terms of |Ω| was also obtained by S. Filippas, V. Maz’ya, and
A. Tertikas in [5] as a special case of results on Lp Hardy inequalities.
They prove that λ(Ω) ≥ 3Dint(Ω)−2, where Dint(Ω) = 2 supx∈Ω δ(x),
the internal diameter of Ω. Since 3Dint(Ω)−2 ≥ 3

4n
K(n)/|Ω|2/n, their

result is an improvement of (1.3) for n = 2, 3, but the estimates don’t
compare for n > 3.

In this paper we show that (1.1) holds for (1.3) replaced by

µ(Ω) =
1

4
and λ(Ω) ≥ 3K(n)

2|Ω| 2n
as well as proving weighted versions of the Hardy inequality in Lp(Ω)
for p > 1.

In the case p = 2, the following are special cases of our results. If Ω
is convex and σ ∈ (0, 1], then
∫

Ω

∣∣∇u(x)
∣∣2dx ≥ 2σn(1− σ)2

4D(Ω)σ

∫

Ω

{B(n, 2− σ)

δ(x)2−σ
+3

(sn−1

n|Ω|
) 2−σ

n

}
|u(x)|2dx

(1.4)
for

B(n, p) :=
Γ(p+1

2
) · Γ(n

2
)√

π · Γ(n+p
2

)
. (1.5)

If σ ∈ [2−n
2

, 0] and Ω is convex, then
∫

Ω

δ(x)σ
∣∣∇u(x)

∣∣2dx ≥ n(1− σ)2

4
B(n, 2− σ)

∫

Ω

δ(x)σ−2|u(x)|2dx

+
CH(n, σ)

|Ω| 2(1−σ)
n

∫

Ω

δ(x)|σ||u(x)|2dx.

for CH(n, σ) given in (3.4). Similar results for weighted forms of the
Hardy inequality in Lp(Ω) are given in section 4.

Finally, we show that our one-dimensional inequalities in §2 lead to
improved constants for the Rellich inequality obtained by G. Barbatis
in [1] for n ≥ 4.

2. One-dimensional inequalities

As is the case in [6], our proofs are based on one-dimensional Hardy-
type inequalities coupled with the use of the mean-distance function
introduced by Davies to extend to higher dimensions; see [4]. The basic
one-dimensional inequality is as follows:
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Lemma 1. Let u ∈ C1
0(0, 2b), ρ(t) := min{t, 2b−t} and let f ∈ C1[0, b]

be monotonic on [0, b]. Then for p > 1
∫ 2b

0

|f ′(ρ(t))||u(t)|pdt ≤ pp

∫ 2b

0

|f(ρ(t))− f(b)|p
|f ′(ρ(t))|p−1

|u′(t)|pdt. (2.1)

Proof. First let u := vχ
(0,b]

, the restriction to (0, b] of some v ∈ C1
0(0, 2b).

For any constant c

− ∫ b

0
[f(t)− c]′|u(t)|pdt = −[f(t)− c]|u(t)|p

∣∣∣
b

0

+
∫ b

0
[f(t)− c]p

2
[|u(t)|2] p

2
−1[|u(t)|2]′dt.

By choosing c = f(b), we have that

− ∫ b

0
f ′(t)|u(t)|pdt = p

∫ b

0
[f(t)− f(b)]|u(t)|p−2Re[u(t)u′(t)]dt.

(2.2)
Similarly, for u = vχ

[b,2b)
, v ∈ C1

0(0, 2b), we have

− ∫ 2b

b
f ′(2b− s)|u(s)|pds

= p
∫ 2b

b
[f(2b− s)− f(b)]|u(s)|p−2Re[u(s)u′(s)]ds.

Therefore, since f is monotonic, for any u ∈ C1
0(0, 2b)

∫ 2b

0
|f ′(ρ(t))||u(t)|pdt

= p
∫ 2b

0
|f(ρ(t))− f(b)||u(t)|p−2Re[u(t)u′(t)]dt

≤ p
∫ b

0
|f ′(ρ(t))| p−1

p |u(t)|p−1 |f(ρ(t))−f(b)|
|f ′(ρ(t))|

p−1
p
|u′(t)|dt

≤ p
[ ∫ b

0
|f ′(ρ(t))||u(t)|pdt

] p−1
p

[ ∫ b

0
|f(ρ(t))−f(b)|p
|f ′(ρ(t))|p−1 |u′(t)|pdt

] 1
p

on applying Hölder’s inequality. Inequality (2.1) now follows.
¤

The next lemma provides the one-dimensional result needed to im-
prove (1.3), which was proved in [6].

Lemma 2. Let σ ≤ 1 and define µ(t) := 2b−ρ(t). For all u ∈ C1
0(0, 2b)

∫ 2b

0

ρ(t)σ|u′(t)|2dt ≥
(1− σ

2

)2
∫ 2b

0

ρ(t)σ−2
[
1+k(σ)

(2ρ(t)

µ(t)

)1−σ]2

|u(t)|2dt,

(2.3)
for

k(σ) :=

{ [
1− 2

1
σ
−1

]−σ
, σ < 0,

1, σ ∈ [0, 1].

Proof. On setting f(t) = tσ−1 in (2.1) we get

|1−σ|p
∫ 2b

0

ρ(t)σ−2|u(t)|pdt ≤ pp

∫ 2b

0

ρ(t)p+σ−2
∣∣1−[ρ(t)

b

]1−σ∣∣p|u′(t)|pdt.

(2.4)
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With u ∈ C1
0(0, 2b), let p = 2 and substitute v(t) = [1 − (ρ(t)

b

)1−σ
]u(t)

in (2.4). We claim that this gives
∫ 2b

0

ρσ(t)|v′(t)|2dt ≥
(1− σ

2

)2
∫ 2b

0

ρ(t)σ−2
[
1−

(ρ(t)

b

)1−σ]−2

|v(t)|2dt

(2.5)
for any real number σ. The substitution gives

ρ(t)σ/2v′(t) = −(1−σ)bσ−1ρ(t)−σ/2ρ′(t)u(t)+ρ(t)σ/2
[
1−(ρ(t)

b

)1−σ]
u′(t).

Consequently,

ρ(t)σ|v′(t)|2 = (1− σ)2b2σ−2ρ(t)−σ|u(t)|2 + ρ(t)σ
[
1− (

ρ(t)
b

)1−σ]2|u′(t)|2
−(1− σ)bσ−1ρ′(t)

[
1− (ρ(t)

b

)1−σ]
[|u|2]′

which implies that
∫ 2b

0
ρ(t)σ|v′(t)|2dt =

∫ 2b

0
ρ(t)σ

[
1− (

ρ(t)
b

)1−σ]2|u′(t)|2dt

+
∫ 2b

0
(1− σ)2b2σ−2ρ(t)−σ|u(t)|2dt

+(1− σ)bσ−1
∫ 2b

0
d
dt

[
ρ′(t)

[
1− (ρ(t)

b

)1−σ]]|u|2dt

=
∫ 2b

0
ρ(t)σ

[
1− (ρ(t)

b

)1−σ]2|u′(t)|2dt
(2.6)

since ρ′(t) = 1 in (0, b) and −1 in (b, 2b). Therefore, (2.5) follows from
(2.4).

Since 2b = µ(t) + ρ(t)

[
1− (

ρ(t)
b

)1−σ]−2
=

[
1 + ρ(t)1−σ

b1−σ−ρ(t)1−σ

]2

=
[
1 + 21−σ

( ρ(t)
µ(t)

)1−σ
kσ( ρ(t)

µ(t)
)
]2 (2.7)

for

kσ(x) :=
1

(1 + x)1−σ − (2x)1−σ
, x ∈ [0, 1), σ 6= 1.

For σ < 1, kσ(x) > 0 in (0, 1), kσ(0) = 1 and kσ(x) →∞ as x → 1−.
By examining the derivative of kσ(x)

k′σ(x) =
−(1− σ)((1 + x)−σ − 21−σx−σ)

[(1 + x)1−σ − (2x)1−σ]2

we see that

lim
x→0+

k′σ(x) =

{ −(1− σ), σ < 0,
1, σ = 0,
∞, 0 < σ < 1.

For σ < 0, kσ(x) is minimized at

xσ := 1/(21− 1
σ − 1) < 1.

Calculations show that

kσ(xσ) =
[
1− 2

1
σ
−1

]−σ
=: k(σ).
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For σ ∈ [0, 1), k′σ(x) is never zero in (0, 1) indicating that kσ(x) is
minimized at x = 0 for σ ∈ [0, 1) and x ∈ [0, 1). The inequality (2.3)
now follows. ¤

In order to treat the case in which p 6= 2, we make use of the methods
of Tidblom [11] and prove a weighted version of Theorem 1.1 in [11].

Lemma 3. Let u ∈ C1
0(0, 2b), p ∈ (1,∞), and σ ≤ p− 1. Then

∫ 2b

0
ρ(t)σ|u′(t)|pdt ≥

[
p−σ−1

p

]p ∫ 2b

0
{ρ(t)σ−p + (p− 1)bσ−p} |u(t)|pdt.

Proof. We may assume that σ 6= p − 1 since otherwise the conclusion
is trivial. According to (2.2) for a monotonic function f and a positive
function g,

∫ b

0
|f ′(t)||u(t)|pdt ≤ ∫ b

0
p|f(t)− f(b)||u(t)|p−1|u′(t)|dt

≤ p
[∫ b

0
g(t)|u′(t)|pdt

]1/p
[∫ b

0

(
|f(t)−f(b)|p

g(t)

)1/(p−1)

|u(t)|pdt

]1−1/p

.

Consequently,

pp

∫ b

0

g(t)|u′(t)|pdt ≥

(∫ b

0
|f ′(t)||u(t)|pdt

)p

(∫ b

0

(
|f(t)−f(b)|p

g(t)

)1/(p−1)

|u(t)|pdt

)p−1 .

Now, as in [11], using a corollary to Young’s inequality, namely

Ap/Bp−1 ≥ pA− (p− 1)B,

with A =
∫ b

0
|f ′(t)||u(t)|pdt, B =

∫ b

0

(
|f(t)−f(b)|p

g(t)

)1/p−1

|u(t)|pdt, it fol-

lows that

pp
∫ b

0
g(t)|u′(t)|pdt

≥ ∫ b

0

{
p|f ′(t)| − (p− 1)

(
|f(t)−f(b)|p

g(t)

)1/(p−1)
}
|u(t)|pdt.

Choose f(t) = tσ−p+1 and g(t) = (p− σ − 1)−(p−1)tσ. Then

(
|f(t)−f(b)|p

g(t)

)1/(p−1)

= (p− σ − 1)

[
|tσ−p+1−bσ−p+1|p

tσ

] 1
p−1

= (p− σ − 1)tσ−p
[(

1− (
t
b

)p−σ−1
)p] 1

p−1

.
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Consequently, for t ∈ (0, b)

p|f ′(t)| − (p− 1)
(
|f(t)−f(b)|p

g(t)

)1/(p−1)

= (p− σ − 1)

{
ptσ−p − (p− 1)tσ−p

[(
1− (

t
b

)p−σ−1
)p] 1

p−1

}

= (p− σ − 1)tσ−p

{
1 + (p− 1)

(
1−

[
1− (

t
b

)p−σ−1
] p

p−1

)}

≥ (p− σ − 1)tσ−p
{

1 + (p− 1)
(

t
b

)p−σ−1
}

≥ (p− σ − 1)
{
tσ−p + (p− 1)

(
1

bp−σ

)}
.

and the inequality follows. In the inequality above we have used the
fact that [

1−
( t

b

)p−σ−1] p
p−1 ≤ 1−

( t

b

)p−σ−1

.

The proof is completed by following the last part of the proof of Lemma
1. ¤

For a certain range of values taken by σ, σ ∈ [−cσ, 1) with cσ > 0,
the inequality in L2(Ω) given by Lemma 2 gives a better bound than
Lemma 3 with p = 2. In fact for σ < 1

ρ(t)σ−2
[
1 + k(σ)

(2ρ(t)

µ(t)

)1−σ]2

= ρ(t)σ−2 +
22−σk(σ)

ρ(t)µ(t)1−σ
+

22−2σk(σ)2

ρ(t)σµ(t)2−2σ

with

22−σk(σ)

ρ(t)µ(t)1−σ
+

22−2σk(σ)2

ρ(t)σµ(t)2−2σ
(2.8)

≥
{

5
2σ bσ−2, σ ∈ [0, 1),[

2− σ + bσk(σ)ρ(t)|σ|
]
k(σ)bσ−2, σ < 0.

Since k(σ) decreases to 0 for σ < 0 as |σ| → ∞ and k(−3) ≈ 0.22, then
the left-hand side of (2.8) is greater than bσ−2 for σ ∈ [−3, 1).

3. A Hardy inequality in L2(Ω)

We need the following notation (c.f.[6]). For each x ∈ Ω and ν ∈
Sn−1,

τν(x) := min{s > 0 : x + sν 6∈ Ω};
Dν(x) := τν(x) + τ−ν(x);

ρν(x) := min{τν(x), τ−ν(x)};
µν(x) := max{τν(x), τ−ν(x)} = Dν(x)− ρν(x);

D(Ω) := sup
x∈Ω, ν∈Sn−1

Dν(x);

Ωx := {y ∈ Ω : x + t(y − x) ∈ Ω, ∀t ∈ [0, 1]}.
Note that D(Ω) is the diameter of Ω and Ωx is the part of Ω which can
be “seen” from the point x ∈ Ω. The volume of Ωx is denoted by |Ωx|.
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Let dω(ν) denote the normalized measure on Sn−1 (so that 1 =∫
Sn−1 dω(ν)) and define

ρ(x; s) :=

∫

Sn−1

ρν(x)sdω(ν). (3.1)

Hence ρ−1/2(x;−2) = ρ(x) the ”mean-distance” function introduced
by Davies in [4]. For

B(n, p) :=

∫

Sn−1

| cos(e, ν)|pdω(ν) =
Γ(p+1

2
) · Γ(n

2
)√

π · Γ(n+p
2

)
, e ∈ Rn, (3.2)

it is known that

ρ(x;−p) :=

∫

Sn−1

1

ρν(x)p
dω(ν) ≥ B(n, p)

δ(x)p
(3.3)

for convex domains Ω – see Exercise 5.7 in [4], [3], and [11]. Note that
B(n, 2) = n−1. This fact can be applied to most of the results below
when Ω is convex.

For a Hardy inequality in L2(Ω) with weights we will need to define

CH(n, σ) := n
(sn−1

n

) 2(1−σ)
n

k(σ)[2|σ| + 22|σ|−1k(σ)](1− σ)2 (3.4)

for σ ∈ [2−n
2

, 0] and n ≥ 2 where as given in Lemma 2

k(σ) :=

{ [
1− 2

1
σ
−1

]−σ
, σ < 0,

1, σ ∈ [0, 1].

Note that CH(n, 0) = 3
2
K(n) for K(n) defined in (1.3).

Theorem 1. If 2−n
2
≤ σ ≤ 0, then for any u ∈ C1

0(Ω)
∫

Ω

δ(x)σ
∣∣∇u(x)

∣∣2dx ≥ n(1− σ)2

4

∫

Ω

ρ(x; σ − 2)|u(x)|2dx

+ CH(n, σ)

∫

Ω

δ(x)|σ|

|Ωx|
2(1−σ)

n

|u(x)|2dx. (3.5)

If 0 < σ ≤ 1, then
∫
Ω

∣∣∇u(x)
∣∣2dx ≥

2σn(1−σ)2

4D(Ω)σ

∫
Ω

{
ρ(x; σ − 2) + 3

(
sn−1

n|Ωx|
) 2−σ

n

}
|u(x)|2dx.

(3.6)

If Ω is convex, then for any u ∈ C1
0(Ω)

∫

Ω

δ(x)σ
∣∣∇u(x)

∣∣2dx ≥ n(1− σ)2

4
B(n, 2− σ)

∫

Ω

δ(x)σ−2|u(x)|2dx

+
CH(n, σ)

|Ω| 2(1−σ)
n

∫

Ω

δ(x)|σ||u(x)|2dx.
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when σ ∈ [2−n
2

, 0] and

∫
Ω

∣∣∇u(x)
∣∣2dx ≥

2σn(1−σ)2

4D(Ω)σ

∫
Ω

{
B(n, 2− σ)δ(x)σ−2 + 3

(
sn−1

n|Ω|
) 2−σ

n

}
|u(x)|2dx.

when σ ∈ (0, 1].

Proof. Let ∂νu, ν ∈ Sn−1, denote the derivative of u in the direction of
ν, i.e., ∂νu = ν · (∇u). It follows from Lemma 2 that for σ ∈ (−∞, 1]

∫
Ω

ρσ
ν (x)

∣∣∂νu
∣∣2dx

≥ (
1−σ

2

)2 ∫
Ω

ρν(x)σ−2
(
1 + k(σ)

[
2ρν(x)
µν(x)

](1−σ))2|u(x)|2dx.
(3.7)

Expanding the integrand in (3.7), we have

ρν(x)σ−2
(
1 + k(σ)

[
2ρν(x)
µν(x)

](1−σ))2

= ρν(x)σ−2 + 22−σ k(σ)ρν(x)−σ

(τν(x)τ−ν(x))1−σ + 22(1−σ)k(σ)2 ρν(x)−σ

µν(x)2(1−σ) .
(3.8)

If σ ≤ 0

ρν(x)σ−2
[
1 + k(σ)

(2ρν(x)
µν(x)

)(1−σ)]2

≥ ρν(x)σ−2 + 22−σ k(σ)δ(x)|σ|
(τν(x)τ−ν(x))1−σ + 22(1−σ)k(σ)2 δ(x)|σ|

τν(x)2(1−σ)+τ−ν(x)2(1−σ)

(3.9)
since ρν(x)−σ ≥ δ(x)|σ| in this case. As in [6], we note that since

∫
Sn−1(τν(x)τ−ν(x))1−σdω(ν) ≤ ∫

Sn−1(τν(x))2(1−σ)dω(ν)

≤ [ ∫
Sn−1(τν(x))ndω(ν)

] 2(1−σ)
n

=
[

n
sn−1

|Ωx|
] 2(1−σ)

n

for σ ≥ 2−n
2

, then

∫
Sn−1

1
(τν(x)τ−ν(x))1−σ dω(ν) ≥ [ ∫

Sn−1(τν(x)τ−ν(x))1−σdω(ν)
]−1

≥ [
n

sn−1
|Ωx|

]− 2(1−σ)
n .

For the third term in inequality (3.9)
∫
Sn−1(τν(x)2(1−σ) + τ−ν(x)2(1−σ))dω(ν) = 2

∫
Sn−1 τν(x)2(1−σ)dω(ν)

implying that for σ ≥ 2−n
2

∫
Sn−1(τν(x)2(1−σ) + τ−ν(x)2(1−σ))−1dω(ν) ≥ 1

2

[
n

sn−1
|Ωx|

]− 2(1−σ)
n .

Consequently, for 2−n
2
≤ σ ≤ 0 we have that

∫
Sn−1 ρν(x)σ−2

[
1 + k(σ)

(2ρν(x)
µν(x)

)(1−σ)]2
dω(ν)

≥ ρ(x; σ − 2) + CH(n, σ)δ(x)|σ|/
[
n|Ωx|

2(1−σ)
n

]
.

(3.10)
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Upon combining this fact with (3.7) we have
(

1−σ
2

)2 ∫
Ω

{
ρ(x; σ − 2) + CH(n,σ)δ(x)|σ|

n|Ωx|2(1−σ)/n

}|u(x)|2dx
≤ ∫

Ω

∫
Sn−1 ρν(x)σ

∣∣∂νu(x)
∣∣2dω(ν)dx

=
∫
Ω

δ(x)σ
∫
Sn−1 | cos(ν,∇u(x))|2dω(ν)

∣∣∇u(x)
∣∣2dx

(3.11)

for σ ≤ 0. Since ∫

Sn−1

| cos(ν, α)|2dω(ν) =
1

n
(3.12)

for any fixed α ∈ Sn−1 (see Tidblom [11], p.2270), inequality (3.5)
follows.

For 0 < σ ≤ 1, we consider first the third term on the right-hand
side of (3.8). We have

∫
Sn−1 ρν(x)σµν(x)2(1−σ)dω(ν)
≤ ∫

Sn−1 2−σ(τν(x) + τ−ν(x))σ(τν(x) + τ−ν(x))2(1−σ)dω(ν)
= 2−σ‖τν(x) + τ−ν(x)‖2−σ

L2−σ(Sn−1)

≤ 2−σ
[‖τν(x)‖L2−σ(Sn−1) + ‖τ−ν(x)‖L2−σ(Sn−1)

]2−σ

= 22(1−σ)
∫
Sn−1 τν(x)2−σdω(ν)

≤ 22(1−σ)
[ ∫
Sn−1(τν(x))ndω(ν)

] 2−σ
n

= 22(1−σ)
[

n
sn−1

|Ωx|
] 2−σ

n

for n ≥ 2 by the Minkowski and Hölder inequalities. Therefore, the
term ∫

Sn−1

ρν(x)−σdω(ν)

µν(x)2(1−σ) ≥ 22(σ−1)
(

sn−1

n|Ωx|
) 2−σ

n .

Similarly, in the second term of (3.8)
∫
Sn−1 ρν(x)µν(x)1−σdω(ν)
≤ 1

2

∫
Sn−1(τν(x) + τ−ν(x))(τν(x) + τ−ν(x))1−σdω(ν)

≤ 21−σ
[

n
sn−1

|Ωx|
] 2−σ

n

as before implying that

∫
Sn−1

dω(ν)
ρν(x)µν(x)1−σ ≥ 2σ−1

(
sn−1

n|Ωx|
) 2−σ

n .

For 0 < σ < 1 we now have that
∫
Sn−1 ρν(x)σ−2

[
1 + k(σ)

(2ρν(x)
µν(x)

)(1−σ)]2
dω(ν)

≥ ρ(x; σ − 2) + 3
(

sn−1

n|Ωx|
) 2−σ

n

since k(σ) = 1 in this case. Consequently,
∫
Ω

∫
Sn−1 ρν(x)σ| cos(ν,∇u(x))|2dω(ν)

∣∣∇u(x)
∣∣2dx

≥
(

1−σ
2

)2 ∫
Ω

[
ρ(x; σ − 2) + 3

(
sn−1

n|Ωx|
) 2−σ

n
]|u(x)|2dx.
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According to (3.12) it follows that
∫

Sn−1

ρν(x)σ| cos(ν,∇u(x))|2dω(ν) ≤ D(Ω)σ

2σn
.

Therefore, (3.6) holds.
The inequalities in the statement of the theorem for the case of a

convex domain Ω follow from (3.3) and the fact that |Ωx| = |Ω| for all
x ∈ Ω. ¤

4. An Lp(Ω) inequality

With the guidance of Tidblom’s analysis for the Hardy inequality
in [11], Lp versions of the weighted Hardy theorem in the last section
can be proved by similar techniques. When σ = 0, the next theorem
reduces to Theorem 2.1 of [11].

Theorem 2. Let u ∈ C1
0(Ω) and p ∈ (1,∞). If σ ≤ 0, then for B(n, p)

defined in (3.2)∫
Ω

δ(x)σ|∇u(x)|pdx ≥
[|p−σ−1|/p]p

B(n,p)

∫
Ω

{
ρ(x; σ − p) + (p− 1)

[
sn−1

n|Ωx|

] p−σ
n

}
|u(x)|pdx (4.1)

and if σ ∈ [0, p− 1], then∫
Ω
|∇u(x)|pdx ≥
2σ[|p−σ−1|/p]p

B(n,p) D(Ω)σ

∫
Ω

{
ρ(x; σ − p) + (p− 1)

[
sn−1

n|Ωx|

] p−σ
n

}
|u(x)|pdx.

(4.2)
If Ω is convex, ρ(x, σ − p) can be replaced in (4.1) and (4.2) by the
term B(n, p− σ)/δ(x)p−σ (in view of (3.3)) and |Ωx| by |Ω|.
Proof. From Lemma 3 we have that for σ ≤ p − 1, any ν ∈ Sn−1, and
u ∈ C1

0(Ω)∫
Ω

ρν(x)σ|∂νu(x)|pdx ≥[ |p−σ−1|
p

]p ∫
Ω

{
ρν(x)σ−p + (p−1)2p−σ

Dν(x)p−σ

}|u(x)|pdx.
(4.3)

If σ ≤ 0 we bound ρν(x)σ for any ν ∈ Sn−1 by δ(x)σ in the first integral
above. If σ > 0, we bound it by D(Ω)σ/2σ. As in [11] we may use the
fact that ∫

Sn−1

|∂νu(x)|pdω(ν) = B(n, p)|∇u(x)|p. (4.4)

After bounding ρν(x)σ as described above, integrate in (4.3) over Sn−1

with respect to dω(ν). In order to evaluate the integral of (2/Dν(x))p−σ,
we proceed as in [11]. Since σ ≤ p − 1, then f(t) = tσ−p is convex for
t > 0 and we have that∫

Sn−1

( 2

Dν(x)

)p−σ

dω(ν) ≥
( ∫

Sn−1

Dν(x)

2
dω(ν)

)σ−p

≥
(n|Ωx|

sn−1

)− p−σ
n

(4.5)
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by Jensen’s inequality and Lemma 2.1 of [11]. The conclusion follows.
¤

5. Rellich’s inequality

The methods described above with Proposition 1 below can be used
to prove a weighted Rellich inequality which, for n ≥ 4 and without
weights, improves the constant given in a Rellich inequality proved
recently by Barbatis ([1], Theorem 1.2). A comparison is made below.
The methods used by Barbatis depends upon the identity (5.2) first
proved by M.P. Owen ([10], see the proof of Theorem 2.3). In order
to incorporate weights, our proof requires the point-wise identity (5.1)
which does not follow from the proof of Owen.

Proposition 1. Let Ω be a domain in Rn. Then, for all u ∈ C2(Rn)
∫

Sn−1

|∂2
νu(x)|2dω(ν) =

1

n(n + 2)

[
|∆u(x)|2 + 2

n∑
i,j=1

∣∣∣∂
2u(x)

∂xi∂xj

∣∣∣
2]

, (5.1)

and for all u ∈ C2
0(Ω)∫

Ω

∫

Sn−1

|∂2
νu(x)|2dω(ν)dx =

3

n(n + 2)

∫

Ω

|∆u(x)|2dx. (5.2)

Proof. For ν = (ν1, . . . , νn) we have

∂2
νu = (ν · ∇)2u =

∑n
`,m=1 ν`νmu`m

=
∑n

`=1 ν2
` u`` + 2

∑
1≤`<m≤n

ν`νmu`m

in which upq(x) := ∂2u(x)
∂xp∂xq

. Consequently,
∫
Sn−1 |∂2

νu|2dω(ν) =
∑n

`,m=1 u``umm

∫
Sn−1(ν`)

2(νm)2dω(ν)
+4

∑n
m=1

∑
1≤p<q≤n

<e(ummupq)
∫
Sn−1(νm)2νpνqdω(ν)

+4
∑

1≤j<k≤n

∑
1≤p<q≤n

<e(upqujk)
∫
Sn−1 νpνqνjνkdω(ν).

(5.3)
Let θj ∈ [0, π] for j = 1, . . . , n − 2, and θn−1 ∈ [0, 2π]. Using the
convention that Πp

j=q = 1 for p < q and θn = 0, we have

νj = Πj−1
k=1 sin θk cos θj, j = 1, . . . , n,

dω(ν) :=
(n− 2)!!

γn

Πn−2
k=1(sin θk)

n−1−kdθkdθn−1, (5.4)

for n!! := n · (n− 2) · (n− 4) · · · 1 and

γn =

{
2(2π)(n−1)/2 for n odd,
(2π)n/2 for n even.

Calculations show that∫

Sn−1

(νm)2νpνqdω(ν) = 0, m = 1, . . . , n, 1 ≤ p < q ≤ n
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implying that the second term on the right-hand side of (5.3) vanishes.
A similar consideration for the third term on the right-hand side of

(5.3) shows that∫

Sn−1

νpνqνjνkdω(ν) 6= 0, 1 ≤ p < q ≤ n, 1 ≤ j < k ≤ n,

only if j = p and k = q. Therefore, (5.3) reduces to∫
Sn−1 |∂2

νu(x)|2dω(ν) =
∑n

`,m=1 u``umm

∫
Sn−1(ν`)

2(νm)2dω(ν)
+4

∑
1≤p<q≤n

|upq|2
∫
Sn−1(νp)

2(νq)
2dω(ν). (5.5)

However, further calculations show that
∫

Sn−1

ν2
pν

2
q dω(ν) =

{
1

n(n+2)
1 ≤ p < q ≤ n,

3
n(n+2)

p = q = 1, . . . , n
(5.6)

implying that∫
Sn−1 |∂2

νu|2dω(ν) = 3
n(n+2)

∑n
m=1 |umm|2

+ 1
n(n+2)

∑
1≤p<q≤n

[4|upq|2 + 2<e(uppuqq)]

= 1
n(n+2)

[
|∆u(x)|2 + 2

∑n
i,j=1

∣∣∣ ∂2u(x)
∂xi∂xj

∣∣∣
2] (5.7)

which is (5.1). Equality (5.2) now follows since
n∑

i,j=1

∫

Ω

∣∣∣∂
2u(x)

∂xi∂xj

∣∣∣
2

dx =

∫

Ω

|∆u(x)|2dx.

¤
Define

d(x; σ) :=

{
δ(x)σ, σ < 0,(D(Ω)

2

)σ
, σ ∈ [0, 1];

β(n, σ) :=
(1− σ)2(3− σ)2n(n + 2)

16
;

and

CR(n, σ) := 24−σk(σ − 2)

[
sn−1

n

] 4−σ
n

(
1 + 22−σk(σ − 2)

)
(5.8)

for σ ≤ 1 and k(σ) defined in Lemma 2.

Theorem 3. For σ ≤ 1 and u ∈ C2
0(Ω),

∫
Ω

d(x; σ)
[
|∆u(x)|2 + 2

∑n
i,j=1

∣∣∣ ∂2u(x)
∂xi∂xj

∣∣∣
2]

dx

≥ β(n, σ)
{ ∫

Ω
ρ(x; σ − 4)|u(x)|2dx

+24−σk(σ − 2)
[

sn−1

n

] 4−σ
n

∫
Ω

|u(x)|2
|Ωx|

4−σ
n

dx
} (5.9)

holds when n ≥ 4− σ and
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∫
Ω

d(x; σ)
[
|∆u(x)|2 + 2

∑n
i,j=1

∣∣∣ ∂2u(x)
∂xi∂xj

∣∣∣
2]

dx

≥ β(n, σ)
{ ∫

Ω
ρ(x; σ − 4)|u(x)|2dx

+24−σk(σ − 2)
[

sn−1

n

] 4−σ
n

∫
Ω

|u(x)|2
|Ωx|

4−σ
n

dx

+22(3−σ)k(σ − 2)2
[

sn−1

n

] 4+t−σ
n

∫
Ω

δ(x)t|u(x)|2
|Ωx|

4+t−σ
n

dx
}

(5.10)

holds when n ≥ 4 + t− σ and t ≥ 2− σ.

Proof. For σ ≤ 1, it follows that

∫ 2b

0

ρ(t)σ|u′′(t)|2dt ≥
∫ 2b

0

ρ(t)σ
[
1− (ρ(t)

µ(t)

)1−σ]2|u′′(t)|2dt

≥
(1− σ

2

)2
∫ 2b

0

ρ(t)σ−2|u′(t)|2dt

by (2.4). Therefore, for σ ≤ 1 and u ∈ C2
0(0, 2b),

∫ 2b

0
ρ(t)σ|u′′(t)|2dt

≥ (
(1−σ)(3−σ)

4

)2 ∫ 2b

0
ρ(t)σ−4

[
1 + k(σ − 2)

(
2ρ(t)
µ(t)

)3−σ]2|u(t)|2dt

(5.11)
by (2.3).

From (5.11) we have for u ∈ C2
0(Ω)

∫
Ω

ρν(x)σ|∂2
νu(x)|2dx

≥
(

(1−σ)(3−σ)
4

)2 ∫
Ω

ρν(x)σ−4
{

1 + k(σ − 2)
(

2ρν(x)
µν(x)

)3−σ}2

|u(x)|2dx
(5.12)

for σ ≤ 1. As in (3.8) we write

ρν(x)σ−4
{

1 + k(σ − 2)
(

2ρν(x)
µν(x)

)3−σ }2

= ρν(x)σ−4 + 24−σk(σ − 2) ρ−1
ν (x)

µν(x)3−σ + 22(3−σ)k(σ − 2)2 ρ−σ+2
ν (x)

µν(x)2(3−σ) .

(5.13)
Since ρν(x)µν(x) = τν(x)τ−ν(x), in the second term on the right-hand
side of (5.13) we may write

ρ−1
ν (x)

µν(x)3−σ
=

1

[τν(x)τ−ν(x)]µν(x)2−σ
=: I(ν;x).
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Thus

∫
Sn−1 I(ν;x)dω(ν) =

∫
τν(x)≥τ−ν(x)

τν(x)σ−3(x)τ−ν(x)−1dω(ν)

+
∫

τν(x)≤τ−ν(x)
τ−ν(x)σ−3(x)τν(x)−1dω(ν)

≥ ∫
τν(x)≥τ−ν(x)

τν(x)σ−4(x)dω(ν)

+
∫

τν(x)≤τ−ν(x)
τ−ν(x)σ−4(x)dω(ν)

and
{ ∫

τν(x)≥τ−ν(x)

τν(x)σ−4dω(ν)
}−1

≤
∫

τν(x)≥τ−ν(x)

τν(x)−σ+4dω(ν)

≤
{ ∫

Sn−1

τn
ν (x)dω(ν)

}(4−σ)/n

=
( n

sn−1

|Ωx|
)(4−σ)/n

for n ≥ 4− σ. Therefore for the second term on the right-hand side of
(5.13), for σ ≤ 1 and n ≥ 4− σ, it follows that

∫

Ω

∫

Sn−1

ρ−1
ν (x)dω(ν)

µν(x)3−σ
|u(x)|2dx ≥

(sn−1

n

) 4−σ
n

∫

Ω

|u(x)|2
|Ωx| 4−σ

n

dx. (5.14)

For any t ∈ (−∞,∞), we may write the third term in (5.13) as

ρ−σ+2
ν (x)

µν(x)2(3−σ)
= ρν(x)t(τν(x)τ−ν(x))2−σ−tµ(x)−8+3σ+t =: ρν(x)tJ(ν,x).

If t ≥ 2− σ
∫
Sn−1 J(ν;x)dω(ν) ≥ ∫

τν(x)≥τ−ν(x)
τν(x)−4+σ−tdω(ν)

+
∫

τν(x)≤τ−ν(x)
τ−ν(x)−4+σ−tdω(ν).

As before
{ ∫

τν(x)≥τ−ν(x)

τν(x)−4+σ−tdω(ν)
}−1

≤
∫

τν(x)≥τ−ν(x)

τν(x)4−σ+tdω(ν)

≤
{ ∫

Sn−1

τn
ν (x)dω(ν)

}(4−σ+t)/n

=
( n

sn−1

|Ωx|
)(4−σ+t)/n

if n ≥ 4−σ + t. Associated with the third term on the right-hand side
of (5.13), we have for σ ≤ 1, t ≥ 2− σ > 0, and n ≥ 4− σ + t
∫

Ω

∫

Sn−1

ρ−σ+2
ν (x)dω(ν)

µν(x)2(3−σ)
|u(x)|2dx ≥

(sn−1

n

) 4+t−σ
n

∫

Ω

δ(x)t|u(x)|2
|Ωx| 4+t−σ

n

dx.

(5.15)
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From (5.12) – (5.15) we obtain
∫
Ω

∫
Sn−1 ρν(x)σ|∂2

νu(x)|2dω(ν)dx ≥ (1−σ)2(3−σ)2

16

{ ∫
Ω

ρ(x; σ − 4)|u(x)|2dx
+24−σk(σ − 2)

[
sn−1

n

] 4−σ
n

∫
Ω

|u(x)|2
|Ωx|

4−σ
n

dx

+22(3−σ)k(σ − 2)2
[

sn−1

n

] 4+t−σ
n

∫
Ω

δ(x)t|u(x)|2
|Ωx|

4+t−σ
n

dx
}

provided σ ≤ 1, t ≥ 2− σ, and n ≥ 4 + t− σ.
Note, that we may simply choose zero as a lower bound for the third

term on the right-hand side of (5.13) and conclude that
∫
Ω

∫
Sn−1 ρν(x)σ |∂2

νu(x)|2dω(ν)dx ≥ (1−σ)2(3−σ)2

16

{ ∫
Ω

ρ(x; σ − 4)|u(x)|2dx
+24−σk(σ − 2)

[
sn−1

n

] 4−σ
n

∫
Ω

|u(x)|2
|Ωx|

4−σ
n

dx
}

for σ ≤ 1 and n ≥ 4− σ.
Now, it follows from Proposition 1 that∫

Ω

∫
Sn−1 ρν(x)σ|∂2

νu(x)|2dω(ν)dx

≤ 1
n(n+2)

∫
Ω

d(x; σ)
[
|∆u(x)|2 + 2

∑n
i,j=1

∣∣∣ ∂2u(x)
∂xi∂xj

∣∣∣
2]

dx.

Thus, (5.9) and (5.10) are proved. ¤
It follows from Theorem 1.2 of Barbatis [1] that for a convex bounded

domain Ω and all u ∈ C∞
0 (Ω)

∫

Ω

|∆u(x)|2dx ≥ 9

16

∫

Ω

|u(x)|2
δ(x)4

dx +
11

48
n(n + 2)

[sn−1

n|Ω|
]4/n

∫

Ω

|u(x)|2dx.

(5.16)
As in Theorem 2, for a convex domain Ω ⊂ Rn, we may replace ρ(x, σ−
4) in Theorem 3 by B(n, 4 − σ)/δ(x)4−σ and |Ωx| by |Ω| to conclude
from (5.9) that for n ≥ 4
∫

Ω

|∆u(x)|2dx ≥ 9

16

∫

Ω

|u(x)|2
δ(x)4

dx + c4n(n + 2)
[sn−1

n|Ω|
]4/n

∫

Ω

|u(x)|2dx
(5.17)

for all u ∈ C∞
0 (Ω) in which c4 = 3k(−2) ≈ 1.25. Therefore (5.17)

improves the bound given by (5.16) for all n ≥ 4.
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Basel, 1999.

[4] E.B. Davies, “Spectral Theory and Differential Operators,” Cambridge Studies
in Advanced Mathematics, Vol. 42, Cambridge Univ. Press, Cambridge, 1995.



16 W. D. EVANS AND R. T. LEWIS

[5] S. Filippas, V. Maz’ya, and A. Tertikas, On a question of Brezis and Marcus,
Calc. Var. Partial Differential Equations 25(4) (2006), 491–501.

[6] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and A. Laptev, A geometrical
version of Hardy’s inequality, J. Funct. Anal., 189 (2002), 539-548.

[7] E.H. Lieb and M. Loss, “Analysis,” Graduate Studies in Mathematics, vol. 14,
2nd edition, American Mathematical Society, Providence, R.I., 2001.

[8] M. Marcus, V.J. Mizel, and Y. Pinchover, On the best constant for Hardy’s
inequality in Rn, Trans. Amer. Math. Soc. 350 (1998), 3237–3255.

[9] T. Matskewich and P.E. Sobolevskii, The best possible constant in a general-
ized Hardy’s inequality for convex domains in Rn, Nonlinear Analysis TMA,
28 (1997), 1601–1610.

[10] M.P. Owen, The Hardy-Rellich inequality for polyharmonic operators, Proc.
Royal Society of Edinburgh, A 129 (1999), 825–839.

[11] J. Tidblom, A geometrical version of Hardy’s inequality for W 1,p
0 (Ω), Proc.

A.M.S., 132(8) (2004), 2265–2271.

School of Mathematics, Cardiff University, 23 Senghennydd Road,
Cardiff CF24 4AG, UK

E-mail address: EvansWD@cardiff.ac.uk

Department of Mathematics, University of Alabama at Birmingham,
Birmingham, AL 35294-1170, USA

E-mail address: lewis@math.uab.edu


