On distribution of energy and vorticity for solutions of 2D Navier-Stokes equations with small viscosity

Sergei B. Kuksin

Abstract

We study distributions of some functionals of space-periodic solutions for the randomly perturbed 2D Navier-Stokes equation, and of their limits when the viscosity goes to zero. The results obtained give explicit information on distribution of the velocity field of spaceperiodic turbulent 2D flows.

0 Introduction

s0

We consider the 2D Navier-Stokes equation (NSE) under periodic boundary conditions, perturbed by a random force:

$$v'_{\tau} - \varepsilon \Delta v + (v \cdot \nabla)v + \nabla \tilde{p} = \varepsilon^{a} \, \tilde{\eta}(\tau, x),$$

div $v = 0, \quad v = v(\tau, x) \in \mathbb{R}^{2}, \quad \tilde{p} = \tilde{p}(\tau, x), \quad x \in \mathbb{T}^{2} = \mathbb{R}^{2}/(2\pi\mathbb{Z}^{2}).$ (0.1) of

Here $0 < \varepsilon \ll 1$ and the scaling exponent *a* is a real number. We assume that $a < \frac{3}{2}$ since $a \ge \frac{3}{2}$ corresponds to non-interesting equations with small solutions (see [Kuk06a], Section 10.3). It is also assumed that $\int v \, dx \equiv \int \tilde{\eta} \, dx \equiv 0$ and that the force $\tilde{\eta}$ is a divergence-free Gaussian random field, white in time and smooth in *x*. Under mild non-degeneracy assumption on $\tilde{\eta}$ (see in Section 1) the Markov process which the equation defines in the function space \mathcal{H} ,

$$\mathcal{H} = \{ u(x) \in L^2(\mathbb{T}^2; \mathbb{R}^2) \mid \text{div} \, u = 0, \ \int_{\mathbb{T}^2} u \, dx = 0 \},$$

has a unique stationary measure. We are interested in asymptotic (as $\varepsilon \to 0$) properties of this measure and of the corresponding stationary solution. The substitution

$$v = \varepsilon^b u$$
, $\tau = \varepsilon^{-b} t$, $\nu = \varepsilon^{3/2-a}$,

where b = a - 1/2, reduces eq. (0.1) to

$$\dot{u} - \nu \Delta u + (u \cdot \nabla)u + \nabla p = \sqrt{\nu} \eta(t, x), \quad \text{div} \, u = 0, \tag{0.2}$$
 INSE

where $\dot{u} = u'_t$ and $\eta(t) = \varepsilon^{b/2} \tilde{\eta}(\varepsilon^{-b}t)$ is a new random field, distributed as $\tilde{\eta}$ (see [Kuk06a]). Below we study eq. (0.2).

Let μ_{ν} be the unique stationary measure for (0.2) and $u_{\nu}(t) \in \mathcal{H}$ be the corresponding stationary solution, i.e., $\mathcal{D}u_{\nu}(t) \equiv \mu_{\nu}$ (here and below \mathcal{D} signifies the distribution of a random variable). Comparing to other equations (0.1), the equation (0.2) has the special advantage: when $\nu \to 0$ along a subsequence $\{\nu_j\}$, stationary solution u_{ν_j} converges in distribution to a stationary process $U(t) \in \mathcal{H}$, formed by solutions of the Euler equation

$$\dot{u}(t,x) + (u \cdot \nabla)u + \nabla p = 0$$
, div $u = 0$. (0.3) E

Accordingly, $\mu_{\nu_j} \rightharpoonup \mu_0$, where $\mu_0 = \mathcal{D}U(0)$ is an invariant measure for ([0.3)) (see below Theorem [1.1]). The solution U is called the *Eulerian limit*. This is a random process of order one since $\mathbf{E}|\nabla_x U(t,\cdot)|^2_{\mathcal{H}}$ equals to an explicit nonzero constant. The goal of this paper is to study properties of the measure μ_0 since they are responsible for asymptotical properties of solutions for equation (0.1).

The first main difficulty in this study is to rule out the possibility that with a positive probability the energy $E(u_{\nu})$ of the process u_{ν} , equal to $\frac{1}{2} \int |u_{\nu}(t,x)|^2 dx$, becomes very small with ν (and that the energy of the Eulerian limit vanishes with a positive probability). In Section 2 we show that this is not the case and that

$$\mathbf{P}\{E(u_{\nu}) < \delta\} \le C\delta^{1/4}, \quad \forall \, \delta > 0, \tag{0.4}$$

for each ν . To prove the estimate we develop further some ideas, exploited in [KP06] in a similar situation. Namely, we construct a new process $\tilde{u}_{\nu} \in \mathcal{H}$, coupled to the process u_{ν} , such that $E(\tilde{u}_{\nu}(\tau)) = E(u_{\nu}(\tau\nu^{-1}))$ and \tilde{u}_{ν} satisfies an Ito equation, independent from ν . Next we use Krylov's result [Kry87] on distribution of Ito integrals to estimate $\mathcal{D}\tilde{u}_{\nu}(\tau)$ and recover (0.4).

In Section $\overset{\$3}{3}$ we use $(\overset{\texttt{est}}{0.4})$ to prove that the distribution of energy of the Eulerian limit U has a density against the Lebesgue measure, i.e.

$$\mathcal{D}E(U) = e(x) \, dx, \quad e \in L_1(\mathbb{R}_+).$$

The functionals $\Phi_f(u(\cdot)) = \int f(\operatorname{rot} u(x)) dx$ are integrals of motion for the Euler equation. An analogy with the averaging theory for finite-dimensional stochastic equations (e.g., see [FW03]) suggests that their distributions behave well when $\nu \to 0$. Accordingly, in Section 4 we study the distributions of vector-valued random variables

$$\Phi_{\mathbf{f}}(u_{\nu}(t)) = \left(\Phi_{f_1}(u_{\nu}(t), \dots, \Phi_{f_m}(u_{\nu}(t))) \in \mathbb{R}^m,\right)$$

and of $\Phi_{\mathbf{f}}(U(t))$. Assuming that the functions f_j are analytic, linearly independent and satisfy certain restriction on growth, we show that the distribution of $\Phi_{\mathbf{f}}(U(t))$ has a density against the Lebesgue measure:

$$\mathcal{D}(\Phi_{\mathbf{f}}U(t)) = p_{\mathbf{f}}(x) \, dx', \quad p_{\mathbf{f}} \in L_1(\mathbb{R}^m).$$

To prove this result we show that the measures $\mathcal{D}\Phi_{\mathbf{f}}u_{\nu}(t)$ are absolutely continuous with respect to the Lebesgue measure, uniformly in ν . The proof crucially uses (0.4) as well as obtained in [Kuk06b] uniform in ν bounds on exponential moments of the random variables $\operatorname{rot}(u_{\nu}(t, x))$.

Since *m* is arbitrary, then this result implies that the measure μ_0 is genuinely infinite dimensional in the sense that any compact set of finite Hausdorff dimension has zero μ_0 -measure.

Other equations. The results and the methods of this work apply to other PDE of the form

$$\langle \text{Hamiltonian equation} \rangle + \nu \langle \text{dissipation} \rangle = \sqrt{\nu} \langle \text{random force} \rangle, \quad (0.5) \mid \text{DampDr}$$

provided that the corresponding Hamiltonian PDE has at least two 'good' integrals of motion. In particular, they apply to the randomly forced complex Ginzburg-Landau equation

$$\dot{u} - (\nu + i)\Delta u + i|u|^2 u = \sqrt{\nu} \eta(t, x), \quad \dim x \le 4, \tag{0.6} \quad \fbox{CGL}$$

supplemented with the odd periodic boundary conditions. The corresponding Hamiltonian PDE is the NLS equation, having two 'good' integrals: the Hamiltonian H and the total number of particles $E = \frac{1}{2} \int |u|^2 dx$. Eq. (0.6) was considered in [KS04], where it was proved that for stationary in time solutions u_{ν} of (0.6) an inviscid limit V(t) (as $\nu \to 0$ along a subsequence) exists and possesses properties, similar to those, stated in Theorem 1.1. The methods of this work allow to prove that the random variable $E(u_{\nu}(t))$ satisfies (0.4) uniformly in $\nu > 0$, that $H(u_{\nu}(t))$ meets similar estimates and that V is distributed in such a way that $\mathcal{D}(H(V(t)))$ and $\mathcal{D}(E(V(t)))$ are absolutely continuous with respect to the Lebesgue measure.

If dim x = 1, then the NLS equation is integrable and the inviscid limit V may be analysed further, using the methods, developed in [KP06] to study the damped/driven KdV equation (which is another example of the system (0.5)).

Certainly our methods as well apply to some finite-dimensional systems of the form (0.5). In particular – to Galerkin approximations for the 3D NSE under periodic boundary conditions, perturbed by a random force, similar to (1.2). It is easy to establish for that system analogies of results in Sections 1-3. More interesting example is given by system (0.5), where the Hamiltonian equation is the Euler equation for a rotating solid body [Arn89]. This system can be cautiously regarded as a finite-dimensional model for (0.1); see Appendix.¹

1 Preliminaries

s1

Using the Leray projector $\Pi : L^2(\mathbb{T}^2; \mathbb{R}^2) \to \mathcal{H}$ we rewrite eq. (0.2) as the equation for $u(t) = u(t, \cdot) \in \mathcal{H}$:

$$\dot{u} + \nu A(u) + B(u) = \sqrt{\nu} \eta(t). \tag{1.1}$$

Here $A(u) = -\prod \Delta u$ and $B(u) = \prod (u \cdot \nabla) u$. We denote by $\|\cdot\|$ and by (\cdot, \cdot) the L_2 -norm and scalar product in \mathcal{H} . Let $(e_s, s \in \mathbb{Z}^2 \setminus \{0\})$ be the standard trigonometric basis of this space:

$$e_s(x) = \frac{\sin(s \cdot x)}{\sqrt{2\pi|s|}} \begin{bmatrix} -s_2\\ s_1 \end{bmatrix} \quad \text{or} \quad e_s(x) = \frac{\cos(s \cdot x)}{\sqrt{2\pi|s|}} \begin{bmatrix} -s_2\\ s_1 \end{bmatrix},$$

¹We are thankful to V. V. Kozlov and members of his seminar in MSU for drawing our attention to this equation.

depending whether $s_1 + s_2 \delta_{s_1,0} > 0$ or $s_1 + s_2 \delta_{s_1,0} < 0$. The force η is assumed to be a Gaussian random field, white in time and smooth in x:

$$\eta = \frac{d}{dt}\zeta(t,x), \quad \zeta = \sum_{s \in \mathbb{Z}^2 \setminus \{0\}} b_s \beta_s(t) e_s(x), \quad (1.2) \quad \text{force}$$

where $\{b_s\}$ is a set of real constants, satisfying

$$b_s = b_{-s} \neq 0 \quad \forall s, \qquad \sum |s|^2 b_s^2 < \infty,$$

and $\{\beta_s(t)\}\$ are standard independent Wiener processes.

This equation is known to have a unique stationary measure μ_{ν} .² This is a probability Borel measure in the space \mathcal{H} which attracts distributions of all solutions for (II.1). Let $u_{\nu}(t, x)$ be a corresponding stationary solution, i.e.

$$\mathcal{D}u_{\nu}(t) \equiv \mu_{\nu}$$

Apart from being stationary in t, this solution is known to be stationary (=homogeneous) in x.

For any $l \geq 0$ we denote by $\mathcal{H}^l, l \geq 0$, the Sobolev space $\mathcal{H} \cap H^l(\mathbb{T}^2; \mathbb{R}^2)$, given the norm

$$||u||_{l} = \left(\int \left((-\Delta)^{l/2}u(x)\right)^{2} dx\right)^{1/2}$$
(1.3) norm

(so $||u||_0 = ||u||$). A straightforward application of Ito's formula to $||u_{\nu}(t)||^2$ and $||u_{\nu}(t)||_1^2$ implies that

$$\mathbf{E} \|u_{\nu}(t)\|_{1}^{2} \equiv \frac{1}{2} B_{0}, \quad \mathbf{E} \|u_{\nu}(t)\|_{2}^{2} \equiv \frac{1}{2} B_{1}, \quad (1.4) \quad \text{ito}$$

where for $l \in \mathbb{R}$ we denote $B_l = \sum |s|^{2l} b_s^2$ (note that $B_0, B_1 < \infty$ by assumption); e.g. see in [Kuk06a].

The theorem below describes what happen to the stationary solutions $u_{\nu}(t,x)$ as $\nu \to 0$. For the theorem's proof see [Kuk06a].

²Due to results of the recent work [HM06], the stationary measure μ_{ν} is unique if $b_s \neq 0$ for $|s| \leq N$, where N is a ν -independent constant. Theorems 1.1 and 2.1 below remain true under this weaker assumption, but our arguments in Sections 3, 4 use essentially that all coefficients b_s are non-zero.

t1 Theorem 1.1. Any sequence $\tilde{\nu}_j \to 0$ contains a subsequence $\nu_j \to 0$ such that

$$\mathcal{D}u_{\nu_j}(\cdot) \rightharpoonup \mathcal{D}U(\cdot) \quad in \quad \mathcal{P}(C(0,\infty;\mathcal{H}^1)).$$
 (1.5) conv

The limiting process $U(t) \in \mathcal{H}^1$, U(t) = U(t, x), is stationary in t and in x. Moreover,

1)a) every its trajectory U(t, x) is such that

$$U(\cdot) \in L_{2loc}(0,\infty;\mathcal{H}^2), \quad \dot{U}(\cdot) \in L_{1loc}(0\infty;\mathcal{H}^1).$$

b) It satisfies the free Euler equation $(\overset{\mathbb{E}}{0}.3)$, so $\mu_0 = \mathcal{D}(U(0))$ is an invariant measure for $(\overset{\mathbb{E}}{0}.3)$,

c) $||U(t)||_0$ and $||U(t)||_1$ are time-independent quantities. If g is a bounded continuous function, then $\int_{\mathbb{T}^2} g(\operatorname{rot} U(t,x)) dx$ also is a time-independent quantity.

2) For each $t \ge 0$ we have $\mathbf{E} ||U(t)||_1^2 = \frac{1}{2}B_0$, $\mathbf{E} ||U(t)||_2^2 \le \frac{1}{2}B_1$ and $\mathbf{E} \exp \left(\sigma ||U(t)||_1^2\right) \le C$ for some $\sigma > 0, C \ge 1$.

Amplification. If $B_2 < \infty$, then the convergence $(\stackrel{\text{conv}}{1.5})$ holds in the space $\mathcal{P}(C(0,\infty;\mathcal{H}^{\varkappa}))$, for any $\varkappa < 2$.

See [Kuk06a], Remark 10.4.

Due to 1b), the measure $\mu_0 = \mathcal{D}U(0)$ is invariant for the Euler equation. By 2) it is supported by the space \mathcal{H}^2 and is not a δ -measure at the origin. The process U is called the *Eulerian limit* for the stationary solutions u_{ν} of (I.1). Note that apriori the process U and the measure μ_0 depend on the sequence ν_j .

Since $\|u\|_1^2 \leq \|u\|_0 \|u\|_2$ and $\mathbf{E} \|u\|_1^2 \leq (\mathbf{E} \|u\|_0^2)^{1/2} (\mathbf{E} \|u\|_1^2)^{1/2}$, then $(\stackrel{\text{ito}}{1.4})$ implies that

$$\frac{1}{2}B_0^2 B_1^{-1} \le \mathbf{E} \|u_\nu(t)\|_0^2 \le \frac{1}{2}B_1 \tag{1.6}$$

for all ν . That is, the characteristic size of the solution u_{ν} remains ~ 1 when $\nu \to 0$. Since the characteristic space-scale also is ~ 1, then the Reynolds number of u_{ν} grows as ν^{-1} when ν decays to zero. Hence, Theorem I.1 describes a transition to turbulence for space-periodic 2D flows, stationary in time. Recall that eq. (0.2) is the only 2D NSE (0.1), having a limit of order one as $\nu \to 0$ (cf. [Kuk06a], Section 10.3). Thus the various Eulerian limits as in Theorem I.1 with different coefficients $\{b_s\}$ (corresponding to different spectra of the applied random forces) describe all possible 2D space-periodic stationary turbulent flows.

Our goal is to study further properties of the Eulerian limit.

2 Estimate for energy of solutions

s2

ss2.2

2.1 The result

The energy $E_{\nu}(t) = \frac{1}{2} ||u_{\nu}(t)||_{0}^{2}$ of a stationary solution u_{ν} is a stationary process. It satisfies the relations

$$\frac{1}{4}B_0^2 B_1^{-1} \le \mathbf{E}E_\nu(t) = \frac{1}{4}B_0, \quad \mathbf{E}\exp(\sigma E_\nu(t)) \le C, \quad (2.1) \quad \boxed{2.1}$$

where $\sigma, C > 0$ are independent from ν (see ($\stackrel{\mathsf{es}}{\square.6}$) and $\stackrel{\mathsf{K3}}{[\mathsf{Kuk06a}]}$, Section 4.3). Let us arrange the numbers $|b_s|$ in the decreasing order: $|b_{s_1}| \ge |b_{s_2}| \ge \ldots$.

t2 Theorem 2.1. There exists a constant C > 0, depending only on B_1 and $|b_{s_2}|$, such that

$$\mathbf{P}\{E_{\nu}(t) < \delta\} \le C\delta^{1/4},\tag{2.2}$$

uniformly in $\nu \in (0, 1]$.

Due to the convergence $(1.5)^{\text{conv}}$, the energy $E_0(t) = \frac{1}{2} ||U(t)||^2$ of the Eulerian limit also satisfies (2.2).

Introducing the fast time $\tau = t\nu^{-1}$ we get for $u(\tau) = u(\tau, x)$ the equation

$$du(\tau) = (-Au - \nu^{-1}B(u))d\tau + \sum_{s} b_{s}e_{s} \, d\beta_{s}(\tau) \,, \qquad (2.3) \quad \boxed{2.3}$$

where $\{\beta_s(\tau) = \sqrt{\nu} \beta_s(\nu\tau), s \in \mathbb{Z}^2 \setminus 0\}$, are new standard independent Wiener processes.

2.2 Beginning of proof

The proof goes in five steps. We start with a geometrical lemma which is used below in the heart of the construction.

Let us denote by S the sphere $\{u \in \mathcal{H} \mid ||u||_0 = 1\}$. Let $\{e_j, j \ge 1\}$, be the basis $\{e_s, s \in \mathbb{Z}^2 \setminus \{0\}\}$, re-parameterised by the natural numbers in such a way that $e_j = e_{s(j)}$, where $|s(j)| \ge |s(i)|$ if $j \ge i$.

11 Lemma 2.2. There exists $\delta > 0$ with the following property. Let v_0 , \tilde{v}_0 be any two points in S. Then for $(v, \tilde{v}) \in S \times S$ such that

$$\|v - v_0\|_0 < \delta, \quad \|\tilde{v} - \tilde{v}_0\|_0 < \delta \tag{2.4}$$

there exists an unitary operator $U_{(v,\tilde{v})} = U_{(v,\tilde{v})}^{(v_0,\tilde{v}_0)}$ of the space \mathcal{H} , satisfying

i) U is an operator-valued Lipschitz function of v and \tilde{v} with a Lipschitz constant ≤ 2 ;

ii) $U_{(v,\tilde{v})}(\tilde{v}) = v;$

iii) there exists a unitary vector $\eta = \eta(v, \tilde{v})$ in the plane span $\{e_1, e_2\}$ such that the vector $U_{(v,\tilde{v})}(\eta)$ makes with this plane an angle $\leq \pi/4$. Accordingly,

$$\max_{i,j\in\{1,2\}} \left| \left(U_{(v,\tilde{v})}e_i, e_j \right) \right| \ge c_*, \tag{2.5}$$

where $c_* > 0$ is an absolute constant.

Proof. Let us start with the following observation:

There exists $\delta > 0$ such that for any $v_0 \in S$ and $v_1 \in \{v \in S \mid ||v - v_0||_0 < \delta\}$ there exists an unitary transformation W_{v_1,v_0} of the space \mathcal{H} with the following property: $W_{v_0,v_0} = id$, $W_{v_1,v_0}(v_0) = v_1$ and W is a Lipschitz function of v_1 and v_0 with a Lipschitz constant ≤ 2 .

To prove the assertion let us denote by \mathcal{A} the linear space of bounded anti self-adjoint operators in \mathcal{H} (given the operator norm), and consider the map

$$\mathcal{A} \times S \to S$$
, $(A, v) \mapsto e^A v$.

Note that the differential of this map in A, evaluated at $A = 0, v = v_0$, is the map $A' \mapsto A'v_0$, which sends A to the space $T_{v_0}S = \{v \in \mathcal{H} \mid (v, v_0) = 0\}$ and admits a right inverse operator of unit norm. So the assertion with $W = e^A$, where A satisfies the equation $e^A v_0 = v_1$, follows from the implicit function theorem.

To prove the lemma we choose unit vectors $\eta_0, \tilde{\eta}_0 \in \text{span} \{e_1, e_2\}$ such that $(v_0, \eta_0) = 0$ and $(\tilde{v}_0, \tilde{\eta}_0) = 0$. Next we choose an unitary transformation U, such that $U(\tilde{v}_0) = v_0$ and $U(\tilde{\eta}_0) = \eta_0$. For vectors v, \tilde{v} , satisfying (2.4), denote $U(\tilde{v}) = \tilde{\xi}$. Then $\|\tilde{\xi} - v_0\|_0 < \delta$. Let $W_{v,\tilde{\xi}}$ be the operator from the assertion above. We set $U_{v,\tilde{v}} = W_{v,\tilde{\xi}} \circ U$. This operator obviously satisfies i) and ii). Since $\|U_{v,\tilde{v}}(\tilde{\eta}_0) - \eta_0\|_0 \leq C\delta$, then choosing $\delta < C^{-1}2^{-1/2}$ we achieve iii) with $\eta = \tilde{\eta}_0$.

Remark. Let j_1 and j_2 be any two different natural numbers. The same arguments as above prove existence of an unitary operator U, satisfying i), ii) and such that $\max_{i \in \{1,2\}, j \in \{j_1, j_2\}} |(Ue_i, e_j)| \ge c_*$.

For any $(v_0, \tilde{v}_0) \in S \times S$ let $\mathcal{O}_{\delta}(v_0, \tilde{v}_0) \subset S \times S$ be the open domain, formed by all pairs (v, \tilde{v}) , satisfying (2.4). Let $\mathcal{O}^1, \mathcal{O}^2, \ldots$ be a countable

system of domains $\mathcal{O}_{\delta/2}(v_j, \tilde{v}_j) =: \mathcal{O}^j, \ j \ge 1$, which cover $S \times S$. We call (v_j, \tilde{v}_j) the *centre* of the domain \mathcal{O}^j .

Consider the mapping

ss2.3

$$S \times S \to \mathbb{N}, \quad (v, \tilde{v}) \mapsto n(v, \tilde{v}) = \min\{j \mid (v, \tilde{v}) \in \mathcal{O}^j\}.$$
 (2.6) [map]

It is measurable with respect to the Borel sigma-algebras. Finally, for j = 1, 2, ... and $(v, \tilde{v}) \in \mathcal{O}^j$ we define the operators

$$U_{v,\tilde{v}}^j = U_{v,\tilde{v}}^{(v_j,\tilde{v}_j)}.$$

2.3 Step 1: equation for $\tilde{u}(t)$

Till the end of Section $\overset{\mathbb{S}^2}{2}$ for any $u \in \mathcal{H}$ we will denote

$$v = u/||u||_0$$
 if $u \neq 0$ and $v = e_1$ if $u = 0$. (2.7) denote

Let us fix any $T_0 > 0$. We start to construct a process $\tilde{u}(\tau)$, $0 \leq \tau \leq T_0$, with continuous trajectories, satisfying $\|\tilde{u}(\tau)\|_0 \equiv \|u(\tau)\|_0$. The process will be constructed as a solution of a stochastic equation, in terms of some stopping times $0 = \tau_0 \leq \tau_1 < \tau_2 < \dots$

We set $\tau_0 = 0$ and define a random variable $n_0 = n(v(0), v(0)) \in \mathbb{N}$ (see (2.6)). Let us consider the following stochastic equation for $\mathbf{u}(\tau) = (u(\tau), \tilde{u}(\tau)) \in \mathcal{H} \times \mathcal{H}$:

$$du(\tau) = (-Au - \nu^{-1}B(u))d\tau + \sum_{s} b_{s}e_{s} \, d\beta_{s}(\tau), \qquad (2.8) \quad \text{e1}$$

$$d\tilde{u}(\tau) = -U_{\mathbf{u}}^* A u \, d\tau + \sum_s U_{\mathbf{u}}^* b_s e_s \, d\beta_s(\tau). \tag{2.9}$$

Here $U_{\mathbf{u}}^*$ is the adjoint to the unitary operator $U_{\mathbf{u}} = U_{v,\tilde{v}}^{n_0(\omega)}$ (where v = v(u) and $\tilde{v} = \tilde{v}(\tilde{u})$, see (2.7)). Let us fix any $\gamma \in (0, 1]$ and define the stopping times

$$T_{\gamma} = \inf\{\tau \in [0, T_0] \mid ||u(\tau)||_0 \land ||\tilde{u}(\tau)||_0 \le \gamma \text{ or } ||u(\tau)||_2 \ge \gamma^{-1}\},\$$

$$\tau_1 = \inf\{\tau \in [0, T_0] \mid \mathbf{u}(\tau) \notin \mathcal{O}_{\delta}(v_{n_0}, \tilde{v}_{n_0})\} \land T_{\gamma}.$$

Here and in similar situations below $\inf \emptyset = T_0$, and $(v_{n_0}, \tilde{v}_{n_0})$ is the centre of the domain \mathcal{O}^{n_0} .

For $0 \leq \tau \leq \tau_1$ the operator $U_{\mathbf{u}}$ is a Lipschitz function of \mathbf{u} since $||u||_0 \geq \gamma$ and $||\tilde{u}||_0 \geq \gamma$. As $||u(\tau)||_2 \leq \gamma^{-1}$ for $\tau \leq T_{\gamma}$, then it is not hard to see that the system (2.8),(2.9), supplemented with the initial condition

$$\mathbf{u}(0) = (u(0), u(0)) \tag{2.10}$$

has a unique strong solution $\mathbf{u}(\tau)$, $0 \leq \tau \leq \tau_1$, satisfying

$$\mathbf{E} \sup_{0 \le \tau \le \tau_1} \|\tilde{u}(\tau)\|_0^2 \le C(T_0, \nu, \gamma).$$
(2.11) 2.9

Next we set $n_1 = n(v(\tau_1), \tilde{v}(\tau_1))$ and for $\tau \ge \tau_1$ re-define the operator $U_{\mathbf{u}}$ in $(\overset{\mathsf{P2}}{2.9})$ as $U_{v,\tilde{v}}^{n_1(\omega)}$ (as before, $v = v(u(\tau))$ and $\tilde{v} = \tilde{v}(\tilde{u}(\tau))$). We set

$$\tau_2 = \inf\{\tau \in [\tau_1, T_0] \mid \mathbf{u}(\tau) \notin \mathcal{O}_{\delta}(v_{n_1}, \tilde{v}_{n_1})\} \land T_{\gamma},$$

where $(v_{n_1}, \tilde{v}_{n_1})$ is the centre of \mathcal{O}^{n_1} , and consider the system $(\stackrel{|e1}{2.8})$, $(\stackrel{|e2}{2.9})$ for $\tau_1 \leq \tau \leq \tau_2$ with the initial condition at τ_d , obtained by continuity. The system has a unique strong solution and $(\stackrel{|e1}{2.11})$ holds with τ_1 replaced by τ_2 . Iterating this construction we obtain stopping times $\tau_0 \leq \tau_1 \leq \tau_2 \leq \ldots$, the operator $U_{\mathbf{u}}(\tau)$, piecewise constant in τ and discontinuous at points $\tau = \tau_j$, as well as a strong solution $\mathbf{u}(\tau)$ of $(\stackrel{|e1}{2.8})$ - $(\stackrel{|e1}{2.10})$, defined for $0 \leq \tau < \lim_{j \to \infty} \tau_j \leq T_{\gamma}$, and satisfying $(\stackrel{|e1}{2.11})$ with τ_1 replaced by any τ_j . Clearly $\tau_j < \tau_{j+1}$, unless $\tau_j = \tau_{j+1} = T_{\gamma}$.

2.4 Step 2: growth of stopping times τ_j

For any $\tau \geq 0$ let us write $\tilde{u}(\tau \wedge T_{\gamma})$ as

$$\tilde{u}(\tau \wedge T_{\gamma}) = u(0) - \int_0^{\tau \wedge T_{\gamma}} U^* A(u) \, d\theta + \int_0^{\tau \wedge T_{\gamma}} \sum_s b_s U^* e_s \, d\beta_s =: (\tilde{u}_1 + \tilde{u}_2)(\tau) \, .$$

Since $||u||_2 \leq \gamma^{-1}$, then the process $\tilde{u}_1(\tau) \in \mathcal{H}$ is Lipschitz in τ . A straightforward application of the Kolmogorov criterion implies that the process $\tilde{u}_2(\tau) \in \mathcal{H}$ a.s. satisfies the Hölder condition with the exponent 1/3. So the process $\tilde{u}(\tau \wedge T_{\gamma})$ is a.s. Hölder. The process $u(\tau \wedge T_{\gamma})$ is Hölder as well, so

$$\|\mathbf{u}((\tau_j + \Delta) \wedge T_{\gamma}; \omega) - \mathbf{u}(\tau_j; \omega)\|_0 \le K(\omega) \Delta^{1/3}.$$

Since $\|\mathbf{u}(\tau_{j+1}) - \mathbf{u}(\tau_j)\|_0 \ge \frac{\delta}{2}$ unless $\tau_{j+1} = T_{\gamma}$, then $|\tau_{j+1} - \tau_j| \ge (\delta/2K(\omega))^3$ or $\tau_{j+1} = T_{\gamma}$. As $\tau_j \le T_{\gamma} \le T_0$, then

$$\tau_j = T_\gamma \quad \text{for} \quad j \ge j(\gamma; \omega) ,$$
 (2.12) 2.10

where $j(\gamma) < \infty$ a.s.

We have constructed a process $\mathbf{u}(\tau), \tau \in [0, T_{\gamma}]$, which satisfies (2.8)-(2.10), where the operator $U_{\mathbf{u}}$ is a piecewise constant function of τ .

Step 3: $\|\tilde{u}(\tau)\|_0 \equiv \|u(\tau)\|_0$ for $\tau \leq T_{\gamma}$ $\mathbf{2.5}$ ss2.5

For $j = 0, 1, \ldots$ we will prove the following assertion:

if
$$\|\tilde{u}(\tau_j)\|_0 = \| u(\tau_j)\|_0$$
 a.s., then
 $\|\tilde{u}(\tau)\|_0 = \| u(\tau)\|_0$ for $\tau_j \le \tau \le \tau_{j+1}$, a.s.
Since $\tilde{u}(\tau_0) = u(\tau_0)$, then $(\overset{2.10}{2.12})$ and $(\overset{2.11}{2.13})$ would imply that
 $\|\tilde{u}(\tau)\|_0 = \| u(\tau)\|_0 \quad \forall \ 0 \le \tau \le T_\gamma$, (2.14) 2.12

for any $\gamma > 0$. To prove (2.13) we consider (following Lemma 7.1 in [KP06]) the quantities $E(\tau) = \frac{1}{2} ||u(\tau)||_0^2$ and $\tilde{E}(\tau) = \frac{1}{2} ||\tilde{u}(\tau)||_0^2$. Due to Ito's formula we have

$$dE = (u, -Au) \, d\tau + \frac{1}{2} \, B_0 d\tau + (u, \sum_s b_s e_s \, d\beta_s(\tau))$$

and

$$\begin{split} d\tilde{E} = & (\tilde{u}, -U^*Au) \, d\tau + \frac{1}{2} \sum b_s^2 |U^*e_s|^2 d\tau + (\tilde{u}, \sum_s b_s(U^*e_s) \, d\beta_s(\tau)) \\ = & \frac{\|\tilde{u}\|_0}{\|u\|_0} \left(u, -Au \right) d\tau + \frac{1}{2} \, B_0 d\tau + \frac{\|\tilde{u}\|_0}{\|u\|_0} \left(u, \sum_s b_s e_s \, d\beta_s(\tau) \right). \end{split}$$

Therefore,

$$d(E - \tilde{E})^{2} = 2(E - \tilde{E}) \frac{\|u\|_{0} - \|\tilde{u}\|_{0}}{\|u\|_{0}} (u, -Au) d\tau$$
$$\left(\frac{\|u\|_{0} - \|\tilde{u}\|_{0}}{\|u\|_{0}}\right)^{2} \sum_{s} b_{s}^{2} (u, e_{s})^{2} d\tau + \mathcal{M}_{\tau} ,$$

where \mathcal{M}_{τ} stands for the corresponding stochastic integral.

For $0 \leq \tau \leq T_{\gamma}$ let us denote $J(\tau) = (E - \tilde{E})^2 ((\tau \vee \tau_i) \wedge \tau_{i+1})$. Then

$$\frac{d}{d\tau} \mathbf{E} J(\tau) = 2 \mathbf{E} \left((E - \tilde{E}) \frac{\|u\|_0 - \|\tilde{u}\|_0}{\|u\|_0} (u - Au) I_{\tau_i \le \tau \le \tau_{i+1}} \right) \\ + \mathbf{E} \left(\left(\frac{\|u\|_0 - \|\tilde{u}\|_0}{\|u\|_0} \right)^2 \sum b_s^2 (u, e_s)^2 I_{\tau_i \le \tau \le \tau_{i+1}} \right).$$

Since $||u||_0 - ||\tilde{u}||_0 = \frac{2(E-\tilde{E})}{||u||_0 + ||\tilde{u}||_0}$ and $|(u, -Au)| \le \gamma^{-2}$, $||u||_0, ||\tilde{u}||_0 \ge \gamma$, then $\frac{d}{d\tau} \mathbf{E} J(\tau) \le C_{\gamma} \mathbf{E} J(\tau)$. As J(0) = 0, then $\mathbf{E} J(\tau) \equiv 0$ and (2.13) is established. Accordingly (2.14) also is proved.

2.6 Step 4: limit $\gamma \rightarrow 0$

Since $B_2 < \infty$, then $u(\tau)$ satisfies the γ -independent estimate

$$\mathbf{E} \sup_{0 \le \tau \le T_0} \|u(\tau)\|_2 \le C(T_0, \nu)$$

(see Kuk06a], Section 4.3). Accordingly

$$\mathbf{P}\left\{\sup_{0 \le \tau \le T_0} \|u(\tau)\|_2 \le \gamma^{-1}\right\} \to 1 \text{ as } \gamma \to 0.$$
 (2.15) 2.20

Let us denote by $\hat{u}(\tau)$ the 4-vector $(u_1(\tau), \ldots, u_4(\tau))$, where $u(\tau) = \sum u_j(\tau)e_j$ (we recall that e_1, e_2, \ldots are the basis vectors e_s , re-parameterised by natural numbers). Then

$$\hat{u}_j(\tau) = u_j(0) + \int_0^{\tau} F_j ds + b_j \beta_j(s), \quad j = 1, \dots, 4,$$

where F_j is the *j*-th component of the drift in (2.3). Since \hat{u} is a stationary process, then $\mathbf{P}\{\hat{u}(0)=0\}=0$ (this follows, say, from Krylov's result, used in the next subsection). Setting $F_j^R = F_j \wedge R$, we denote by $\hat{u}^R(\tau) \in \mathbb{R}^4$ the process

$$\hat{u}_j^R(\tau) = u_j(0) + \int_0^\tau F_j^R ds + b_j \beta_j(s), \quad j = 1, \dots, 4.$$

By the Girsanov theorem, distribution of the process $\hat{u}^R(\tau), 0 \leq \tau \leq T_0$, is absolutely continuous with respect to the process $(b_1\beta_1, \ldots, b_4\beta_4) + \hat{u}(0)$. Therefore

$$\mathbf{P}\{\min_{0 \le \tau \le T_0} |\hat{u}^R(\tau)| = 0\} = 0, \qquad (2.16) \quad \boxed{2.21}$$

for any R. Since $\max_{0 \le \tau \le T_0} |\hat{u}^R(\tau) - \hat{u}(\tau)| \to 0$ as $R \to \infty$ in probability, then the process $\hat{u}(\tau)$ also satisfies (2.16). Jointly with (2.15) this implies that

$$\mathbf{P}\{T_{\gamma} = T_0\} \to 1 \quad \text{as} \quad \gamma \to 0 \,,$$

and we derive from $\binom{2.12}{2.14}$ the relation

$$\|\tilde{u}(\tau)\|_0 = \|u(\tau)\|_0 \quad \forall 0 \le \tau \le T_0, \text{ a.s.}$$

Step 5: end of proof 2.7

ss2.7

The advantage of the process \tilde{u} compare to u is that it satisfies the ν independent Ito equation $(\underline{2}.9)$. Let us consider the first two components of the process:

$$d\tilde{u}_{j} = -\left(U_{u,\tilde{u}}^{*}(\tau)A(u)\right)_{j}d\tau + \sum_{l=1}^{\infty} \left(U_{u,\tilde{u}}^{*}(\tau)\right)_{jl}b_{l}\,d\beta_{l}(\tau)\,,\qquad(2.17)\quad \boxed{2.23}$$

where j = 1, 2. Denoting $a_j(\tau) = \sum_{l=1}^{\infty} (U_{jl}^* b_l)^2 = \sum_{l=1}^{\infty} (U_{lj} b_l)^2$ and using (2.5) we find that a.s.

$$C \ge a_1(\tau) + a_2(\tau) \ge c > 0 \quad \forall \tau ,$$
 (2.18) 2.24

where $C = 2\sqrt{B_0}$ and c depends only on $|b_1| \wedge |b_2|$. Due to $(\stackrel{\text{ito}}{1.4})$ for each $\tau \ge 0$ we have $\mathbf{E}|U^*A(u(\tau))|_j \le \sqrt{B_1/2}$. This bound and the first estimate in $(\stackrel{\text{E}}{2.18})$ imply that Lemma 5.1 from [Kry86] applies to the Ito equation $(\underline{2.17})$ uniformly in ν if we choose the lemma's parameters as follows:

$$d = 1, \ \gamma = 1, \ A_s = s, \ r_s = 1, \ c_s = 1, \ y_t = t, \ \varphi_t = t.$$
 (2.19) kry

Taking in the lemma for f(t, x) the characteristic function of the segment $[-\delta, \delta]$, we get

$$\mathbf{E} \int_0^{\gamma_R} e^{-t} a_j(\tau)^{1/2} I_{\{|\tilde{u}_j(\tau)| \le \delta\}} \, d\tau \le C\sqrt{\delta} \,, \quad j = 1, 2,$$

where $\gamma_R \leq 1$ is the first exit time ≤ 1 of the process \tilde{u}_j from the segment [-R, R]. Sending R to ∞ we get that

$$\mathbf{E} \int_0^1 a_j(\tau)^{1/2} I_{\{|\tilde{u}_j(\tau)| \le \delta\}} d\tau \le C_1 \sqrt{\delta} \,, \quad j = 1, 2 \,, \tag{2.20}$$

uniformly in $\nu_{\frac{2.24}{16}}$ For c as in (2.18) let us consider the event $Q_1^{\tau} = \{a_1(\tau) \ge \frac{1}{2}c\}$ and denote by Q_2^{τ} its complement. Then

$$a_1(\tau) \ge \frac{1}{2}c \text{ on } Q_1^{\tau} \text{ and } a_2(\tau) \ge \frac{1}{2}c \text{ on } Q_2^{\tau}.$$
 (2.21) 2.26

Let us set

$$Q^{\tau} = \{ |\tilde{u}_1(\tau)| + |\tilde{u}_2(\tau)| \le \delta \}.$$

Then

$$\mathbf{P}(Q^{\tau}) = \mathbf{E}(I_{Q^{\tau}}I_{Q_{1}^{\tau}} + I_{Q^{\tau}}I_{Q_{2}^{\tau}}) \le \mathbf{E}(I_{\{|\tilde{u}_{1}(\tau)| \le \delta\}}I_{Q_{1}^{\tau}} + I_{\{|\tilde{u}_{2}(\tau)| \le \delta\}}I_{Q_{2}^{\tau}})$$

$$|2.26$$

By (2.21) the r.h.s. is bounded by

$$\sqrt{\frac{2}{c}} \mathbf{E} \left(I_{\{ |\tilde{u}_1(\tau)| \le \delta \}} \sqrt{a_1} + I_{\{ |\tilde{u}_2(\tau)| \le \delta \}} \sqrt{a_2} \right).$$

Jointly with $\binom{2.25}{2.20}$ the obtained inequality shows that

$$\int_0^1 \mathbf{P}(Q^\tau) \, d\tau \le C_2 \sqrt{\delta}.$$

Since

s3

$$\mathbf{P}\{\|u(\tau)\|_{0} \le \frac{\delta}{2}\} = \mathbf{P}\{\|\tilde{u}(\tau)\|_{0} \le \frac{\delta}{2}\} \le \mathbf{P}(Q^{\tau}),$$

where the l.h.s. is independent from τ , then

$$\mathbf{P}\{\|u(\tau)\|_0 \le \frac{\delta}{2}\} \le C_2 \sqrt{\delta}$$

for any $\delta > 0$. This relation implies (2.2).

The constant C in $(\stackrel{[2]}{2},\stackrel{[2]}{2})$, as well as all other constants in this section, depend only on B_1 and $|b_1| \wedge |b_2|$. Using the Remark in Section $\stackrel{[ss2.2]}{2.2}$ we may replace $|b_1| \wedge |b_2|$ by $|b_{j_1}| \wedge |b_{j_2}|$, where j_1 and j_2 correspond to s_1 and s_2 . This completes the theorem's proof.

3 Distribution of energy

Again, let $u_{\nu}(\tau)$ be a stationary solution of ([1.1), written in the form <math>([2.3), [2.3), [2.4], [2.5

[t3] Theorem 3.1. For any R > 0 let $Q \subset [-R, R]$ be a Borel set. Then

$$\mathbf{P}\{E_{\nu}(\tau) \in Q\} \le p_R(|Q|) \tag{3.1}$$

uniformly in $\nu \in (0,1]$, where $p_R(t) \to 0$ as $t \to 0$

In particular, the measures $\mathcal{D}(E_{\nu}(\tau))$ are absolutely continuous with respect to the Lebesgue measure. Since $\mathcal{D}(E_{\nu_j}) \rightharpoonup \mathcal{D}(E_0(\tau))$, then $E_0(\tau)$ satisfies (3.1) for any open set $Q \subset [-R, R]$. Accordingly, $\mathbf{P}\{E_0(\tau) \in Q\} = 0$ if |Q| = 0 since the Lebesgue measure is regular. We got

Corollary 3.2. The measure $\mathcal{D}(E_0(\tau))$ is absolutely continuous with respect to the Lebesgue measure.

Proof of the theorem. For any $\delta > 0$ let us consider the set

$$\mathcal{O} = \mathcal{O}(\delta) = \{ u \in \mathcal{H}^2 \mid ||u||_2 \le \delta^{-\frac{1}{4}}, ||u||_0 \ge \delta \}$$

Writing $u = u_{\nu}$ as $u = \sum u_s e_s$, we set $u^I = \sum_{|s| \le N} u_s e_s$ and $u^{II} = u - u^I$. For any $u \in \mathcal{O}$ we have $||u^{II}||_0^2 \le N^{-4} ||u^{II}||_2^2 \le \delta^{-\frac{1}{2}} N^{-2}$. So $||u^I||_0^2 \ge \delta^2 - \delta^{-\frac{1}{2}} N^{-4}$. Choosing $N = N(\delta) = [2^{1/4} \delta^{-5/8}]$ we achieve

$$\|u^I\|_0^2 \ge \frac{1}{2}\,\delta^2 \quad \forall \, u \in \mathcal{O}.$$

The stationary process $E(u_{\nu}(\tau))$ satisfies the Ito equation

$$dE = \left(-\|u(\tau)\|_{1}^{2} + \frac{1}{2}B_{0}\right)d\tau + \sum b_{s}u_{s}(\tau)\,d\beta_{s}(\tau)$$

(see in Section $(\overset{|ss2.5}{2.5})$). The diffusion coefficient $a(\tau)$ satisfies

$$a(\tau) = \sum b_s^2 |u_s(\tau)|^2 \ge \underline{b}_N^2 ||u^I(\tau)||_0^2,$$

where $\underline{b}_N = \min_{|s| \le N} |b_s| > 0$. So,

$$a(\tau) \ge \frac{1}{2} \underline{b}_N^2 \delta^2 \quad \text{if} \quad u(\tau) \in \mathcal{O}.$$
 (3.2) 3.2

Besides,

$$\mathbf{E}|a(\tau)| \le \frac{\max_s b_s^2}{2} B_0, \quad \mathbf{E}| - ||u(\tau)||_1^2 + \frac{1}{2} B_0| \le B_0$$

Let $Q \subset [-R, R]$ be a Borel set and f be its indicator function. Applying the Krylov lemma with the same choices of parameters as in (2.19), passing to the limit as $R \to \infty$ as in Section 2.7 and taking into account that $E(\tau)$ is a stationary process, we get that

$$\mathbf{E}(a(\tau)^{1/2}f(E(\tau))) \le C|Q|^{1/2}, \tag{3.3}$$

uniformly in $\nu > 0$. Due to $\begin{pmatrix} 1 & t_0 \\ 1 & 4 \end{pmatrix}$ and $\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$,

$$\mathbf{P}\{u(\tau) \notin \mathcal{O}\} \le \frac{1}{2}B_1\sqrt{\delta} + C\sqrt{\delta}.$$

Jointly with $\begin{pmatrix} 3.2\\ 3.2 \end{pmatrix}$ and $\begin{pmatrix} 3.3\\ 3.3 \end{pmatrix}$ this estimate implies that

$$\mathbf{P}(E_{\nu}(\tau) \in Q) = \mathbf{E}f(E(\tau)) \leq C(|Q|^{1/2}\underline{b}_{N}^{-1}\delta^{-1}) + C_{1}\sqrt{\delta} \quad \forall \ 0 < \delta \leq 1,$$

where $N = N(\delta)$. Now $(\underline{\beta}.\underline{1})$ follows.

s4

4 Distributions of functionals of vorticity

In his section we assume that $B_6 < \infty$. The vorticity $\zeta = \operatorname{rot} u(t, x)$ of a solution u for $(\Pi, 1)$, written in the fast time $\tau = \nu t$, satisfies the equation

$$\zeta'_{\tau} - \Delta \zeta + \nu^{-1} (u \cdot \nabla) \zeta = \xi(\tau, x).$$
(4.1) 4.1

Here $\xi = \frac{d}{dt} \sum_{s \in \mathbb{Z}^2 \setminus \{0\}} \beta_s(\tau) \varphi_s(x)$ and

$$\varphi_s = \frac{|s|}{\sqrt{2\pi}} \cos s \cdot x, \quad \varphi_{-s} = -\frac{|s|}{\sqrt{2\pi}} \sin s \cdot x,$$

for any s such that $s_1 + s_2 \delta_{s_{1,0}} > 0$. We will study eq. (4.1) in Sobolev spaces

$$H^l = \{ \zeta \in H^l(\mathbb{T}^2) \mid \int \zeta \, dx = 0 \}, \quad l \ge 0,$$

given the norms $\|\cdot\|_l$, defined as in (1.3).

Let us fix $m \in \mathbb{N}$ and choose any m analytic functions $f_1(\zeta), \ldots, f_m(\zeta)$, linear independent modulo constant functions.³ We assume that the functions $f_j(\zeta), \ldots, f_j'''(\zeta)$ have at most a polynomial growth as $|\zeta| \to \infty$ and that

$$f_j''(\zeta) \ge -C \quad \forall j, \quad \forall \zeta \tag{4.2}$$

(for example, each $f_j(\zeta)$ is a trigonometric polynomial, or a polynomial of an even degree with a positive leading coefficient). Consider the map

$$F: H^{l} \to \mathbb{R}^{m}, \ \zeta \mapsto (F_{1}(\zeta), \dots, F_{m}(\zeta)),$$
$$F_{j} = \int_{\mathbb{T}^{2}} f_{j}(\zeta(x)) \, dx,$$

³I.e., $C_1 f_1(\zeta) + \dots + C_m f_m(\zeta) \neq \text{const}$, unless $C_1 = \dots = C_m = 0$.

where 0 < l < 1. Since for any $P < \infty$ we have $H^l \subset L_P(\mathbb{T}^2)$ if l is sufficiently close to 1, then choosing a suitable l = l(F) we achieve that the map F is C^2 -smooth. Let us fix this l. We have

$$dF(\zeta)(\xi) = \left(\int f_1'(\zeta(x))\xi(x)\,dx,\ldots,\int f_m'(\zeta(x))\xi(x)\,dx\right)$$

12 Lemma 4.1. If $\zeta \neq 0$, then the rank of $dF(\zeta)$ is m.

Proof. Assume that the rank is < m. Then there exists number C_1, \ldots, C_m , not all equal to zero, such that

$$\int (C_1 f_1'(\zeta) + \dots + C_m f_m'(\zeta)) \xi \, dx = 0 \quad \forall \xi \in H^l.$$

$$(4.3) \quad \boxed{4.2}$$

Denote $P(\zeta) = C_{\pm} f'_{\underline{b}}(\zeta) + \cdots + C_m f'_m(\zeta)$. This is a non-constant analytic function. Due to $(\overline{4.3}), P(\zeta(x)) = \text{const.}$ Denote this constant C_* . Then the connected set $\zeta(\mathbb{T}^2)$ lies in the discrete set $P^{-1}(C_*)$. So $\zeta(\mathbb{T}^2)$ is a point, i.e. $\zeta(x) \equiv \text{const.}$ Since $\int \zeta \, dx = 0$, then $\zeta(x) \equiv 0$.

Now let $\zeta(t) = \operatorname{rot} u_{\nu}(t)$, where u_{ν} is a stationary solution of (\mathbb{I} .1). Applying Ito's formula to the process $F(\zeta(\tau)) \in \mathbb{R}^m$ and using that F_j is an integral of motion for the Euler equation, we get that

$$dF_j(\tau) = \left(\int f'_j(\zeta(\tau, x))\Delta\zeta(\tau, x)\,dx + \frac{1}{2}\sum_s b_s^2 \int f''_j(\zeta(\tau, x))\varphi_s^2(x)\,dx\right)d\tau$$
$$+ \sum_s b_s \left(\int f'_j(\zeta(\tau, x))\varphi_s(x)\,dx\right)d\beta_s(\tau).$$

Since $b_s \equiv b_{-s}$ and $\varphi_s^2 + \varphi_{-s}^2 \equiv |s|^2/2\pi^2$, then

$$dF_j(\tau) = \left(\int f''_j(\zeta)(-|\nabla_x \zeta|^2 + \frac{1}{4\pi}B_1) \, dx\right) d\tau$$
$$+ \sum_s b_s \left(\int f'_j(\zeta(\tau, x))\varphi_s(x) \, dx\right) d\beta_s(\tau)$$
$$:= H_j(\zeta(\tau)) \, d\tau + \sum_s h_{js}(\zeta(\tau)) \, d\beta_s(\tau) \, .$$

Ito's formula applies since under our assumptions all moments of the random variables $\zeta(\tau, x)$ and $|\nabla_x \zeta(\tau, x)|$ are finite (see Kuk06a], Section 4.3). Using

that $F_j(\tau)$ is a stationary process, we get from the last relation that $\mathbf{E}H_j = 0$, i.e.

$$\mathbf{E} \int f''_{j}(\zeta(\tau, x)) |\nabla_{x}\zeta(\tau, x)|^{2} dx = \frac{B_{1}}{4\pi} \mathbf{E} \int f''_{j}(\zeta(\tau, x)) dx.$$
(4.4) **bal**

Since $B_6 < \infty$ then all moments of random variables $|\zeta(\tau, x)|$ are bounded uniformly in $\nu \in (0, 1]$, see [Kuk06b] and (10.11) in [Kuk06a]. Jointly with $(\overline{4.3})$, $(\overline{4.4})$ and the equality

$$\mathbf{E} \int |\nabla_x \zeta(\tau, x)|^2 dx = \mathbf{E} ||u_\nu(\tau)||_2^2 = \frac{1}{2} B_1$$

this implies that

$$\mathbf{E}|H_j(\zeta(\tau))| \le C_j < \infty \tag{4.5}$$

uniformly in ν (and for all τ).

Let us consider the diffusion matrix $a(\zeta(\tau))$, $a_{jl}(\zeta) = \sum_{s} h_{js}(\zeta) h_{ls}(\zeta)$, and denote $D(\zeta) = |\det a_{il}(\zeta)|$. Clearly

$$\mathbf{E} tr(a_{jl})(\zeta(\tau)) \le C, \tag{4.6}$$

uniformly in ν . Noting that $h_{js}(\zeta) = b_s(dF(\zeta))_{js}$, we obtain from Lemma 4.1

Lemma 4.2. The function D is continuous on H^l and D > 0 outside the 13 origin.

Now we regard $\begin{pmatrix} 4.1\\ 4.1 \end{pmatrix}$ as an equation in H^1 and set

$$\mathcal{O}_{\delta} = \{ \zeta \in H^1 \mid \|\zeta\|_1 \le \delta^{-1}, \ \|\zeta\|_l \ge \delta \}.$$

Since $H^1 \subseteq H^l$ then $p \geq c(\delta) > 0$ everywhere in \mathcal{O}_{δ} . Estimates (4.5), (4.6) allow to apply Krylov's lemma with p = d = m to the stationary process $F(\zeta_{\nu}(\tau)) \in \mathbb{R}^m$, uniformly in ν . Choosing there for f the characteristic function of a Borel set $Q \subset \{|z| \leq R\}$, we find that

$$\mathbf{P}\{F(\zeta_{\nu}(\tau)) \in Q\} \le \mathbf{P}\{\zeta_{\nu}(\tau) \notin \mathcal{O}_{\delta}\} + c(\delta)^{-1/(m+1)}C_{R}|Q|^{1/(m+1)}$$
(4.7) 4.3

(cf. the arguments in Section $\underline{3}$). Since $\|\zeta\|_1 = \|u\|_2$ and $\|\zeta\|_l \ge \|\zeta\|_0 \ge \|\mu\|_0$ for $\zeta = \operatorname{rot} u$, then due to (1.4) and (2.2) the first term in the r.h.s. of (4.7) goes to zero with δ uniformly in ν , and we get that

$$\mathbf{P}\{F(\zeta_{\nu}(\tau)) \in Q\} \le p_R(|Q|), \quad p_R(t) \to 0 \text{ as } t \to 0,$$
(4.8) (4.4)

uniformly in ν . Evoking Amplification to Theorem [1,1], we derive from ([4,8)that the vorticity ζ_0 of the Eulerian limit U satisfies $(\overline{4.8})$, if Q is an open subset of B_R . We have got

Theorem 4.3. If $B_6 < \infty$, then the distribution of the stationary solution for the 2D NSE, written in terms of vorticity (4.1), satisfies (4.8) uniformly in ν . The vorticity ζ_0 of the Eulerian limit U is distributed in such a way that the law of $F(\zeta_0(\tau))$ is absolutely continuous with respect to the Lebesgue measure in \mathbb{R}^m .

Corollary 4.4. Let $X \in \mathcal{H} \cap C^1(\mathbb{T}^2; \mathbb{R}^2)$ be a compact set of finite Hausdorff dimension. Then $\mu_0(X) = 0$.

Proof. Denote the Hausdorff dimension of X by d and choose any m > d. Then $(F \circ \operatorname{rot})(X)$ is a subset of \mathbb{R}^m of positive codimension. So its measure with respect to $\mathcal{D}(f(\zeta_0(t)))$ equals zero. Since $\mathcal{D}(f(\zeta_0(t))) = (F \circ \operatorname{rot}) \circ \mu_0$, then $\mu_0(X) = 0$.

5 Appendix: rotation of solid body

The Euler equation for a freely rotating solid body, written in terms of its momentum $M \in \mathbb{R}^3$, is

$$\dot{M} + [M, A^{-1}M] = 0,$$
 (5.1) Eul

where A is the operator of inertia and $[\cdot, \cdot]$ is the vector product. The corresponding damped/driven equation (0.5) is

$$\dot{M} + [M, A^{-1}M] + \nu M = \sqrt{\nu} \eta(t),$$
 (5.2) PEu

where the random force is $\eta(t) = \frac{d}{dt} \sum_{j=1}^{3} b_j \beta_j(t) e_j$ with non-zero b_j 's, and $\{e_1, e_2, e_3\}$ is the eigenbasis of the operator A. Eq. (5.2) has a unique stationary measure μ_{ν} . Let $M_{\nu}(t)$ be a corresponding stationary solution. An inviscid limit, similar to that in Theorem 1.1, holds:

$$\mathcal{D}M_{\nu_j}(\cdot) \rightharpoonup \mathcal{D}M_0(\cdot) \quad \text{as} \ \nu_j \to 0,$$
 (5.3) 0

where $M_0(t) \in \mathbb{R}^3$ is a stationary process, formed by solutions of $(\stackrel{\text{Eul}}{5.1})$. The Euler equation has two quadratic integrals of motion: $H_1(M) = \frac{1}{2} |M|^2$ and $H_2(M) = \frac{1}{2} (A^{-1}M, M)$. Distributions of the random variables $H_1(M_{\nu}(t))$ and $H_2(\underbrace{M}_{\nu}(t)), 0 \leq \nu \leq 1$, satisfy direct analogies of the assertions in Sections 2, 3. To analyse further the processes M_{ν} with $\nu \ll 1$ and the inviscid limit M_0 , we note that a.e. level set of the vector-integral $H = (H_1, H_2)$ is formed by two periodic trajectories of (5.1) (see [Arn89]). Denote them $S_{(H_1,H_2)}^{\pm}$. It is easy to see that the conditional probabilities for $M_{\nu}(t)$ to belong to $S_{(H_1,H_2)}^+$ or to $S_{(H_1,H_2)}^-$ are equal. Since the dynamics, defined by (5.1) on each set $S_{(H_1,H_2)}^{\pm}$ obviously is ergodic with respect to a corresponding measure $\nu_{(H_1,H_2)}^{\pm}$, then the methods of [FW98, FW03, KP06] apply to the process $H(M_{\nu_j}(\tau)) \in \mathbb{R}^2$, $\tau = \nu_j t$, and allow to prove that a limiting process $H_0(\tau)$ exists and satisfies a SDE, obtained from the equation for $H(M(\tau))$ by the usual stochastic averaging with respect to the ergodic measures $\nu_{(H_1,H_2)}^{\pm}$ on the curves $S_{(H_1,H_2)}^{\pm}$. It is very plausible that the averaged equation has a unique stationary measure θ . If so, then

$$\mathcal{D}(H(M_0)) = \theta$$

and

$$\mathcal{D}(M_0) = \sum_{\alpha \in \{+,-\}} \int_{\mathbb{R}^2} \pi_{\alpha} \nu^{\alpha}_{(H_1,H_2)} \,\theta(dH_1 \, dH_2),$$

where $\pi_+ \equiv \pi_- = 1/2$. Cf. Theorem 6.6 in [KP06]. In particular, the convergence (5.3) holds as $\nu \to 0$ (i.e., the limit does not depend on a sequence $\nu_j \to 0$).

The representation above for the measure $\mathcal{D}(M_0)$ is called its *disintegra*tion with respect to the map $H : \mathbb{R}^3 \to \mathbb{R}^2$, and may be obtained independently from the arguments above (see references in [Kuk07]). The role of the arguments is to represent the measure θ in terms of the averaged equation. The measure $\mu_0 = \mathcal{D}U(0)$, corresponding to the Eulerian limit U(Theorem I.1) also admits a similar disintegration, see [Kuk07]. In that work we conjecture an averaging procedure to find the measures, involved in the disintegration of μ_0 .

References

A1 [Arn89] V. Arnold, *Mathematical Methods in Classical Mechanics*, 2nd ed., Springer-Verlag, Berlin, 1989.

⁴the density of the measure $\nu_{(H_1,H_2)}^{\pm}$ against the Lebesgue measure on the curve $S_{(H_1,H_2)}^{\pm}$ is inverse-proportional to velocity of the trajectory.

- **FW98** [FW98] M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems, 2nd ed., Springer-Verlag, New York, 1998.
- [WF03] [FW03] M. I. Freidlin and A. D. Wentzell, Averaging principle for stochastic perturbations of multifrequency systems, Stochastics and Dynamics 3 (2003), 393–408.
- [HM06] [HM06] M. Hairer and J. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Annals of Mathematics **164** (2006), no. 3.
- KP06[KP06]S. B. Kuksin and A. L. Piatnitski, Khasminskii Whitham aver-
aging for randomly perturbed KdV equation, Preprint (2006), see
at www.ma.hw.ac.uk/~kuksin/rfpdeLim.html.
- Kry86 [Kry87] N. V. Krylov, Estimates of the maximum of the solution of a parabolic equation and estimates of the distribution of a semimartingale, Math. USSR Sbornik, **58** (1987), 207–221.
- [KS04] [KS04] S. B. Kuksin and A. Shirikyan, Randomly forced CGL equation: stationary measures and the inviscid limit, J. Phys. A: Math. Gen. 37 (2004), 1–18.
 - **K3** [Kuk06a] S. B. Kuksin, Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions, Europear Mathematical Society Publishing House, 2006, also see mp_arc 06-178.
- K06J [Kuk06b] _____, Remarks on the balance relations for the two-dimensional Navier-Stokes equation with random forcing, J. Stat. Physics 122 (2006), 101-114.