On distribution of energy and vorticity for solutions of 2D Navier-Stokes equations with small viscosity

Sergei B. Kuksin

Abstract

We study distributions of some functionals of space-periodic solutions for the randomly perturbed 2D Navier-Stokes equation, and of their limits when the viscosity goes to zero. The results obtained give explicit information on distribution of the velocity field of spaceperiodic turbulent 2D flows.

0 Introduction

We consider the 2D Navier-Stokes equation (NSE) under periodic boundary conditions, perturbed by a random force:

$$
\begin{align*}
& v_{\tau}^{\prime}-\varepsilon \Delta v+(v \cdot \nabla) v+\nabla \tilde{p}=\varepsilon^{a} \tilde{\eta}(\tau, x), \\
& \operatorname{div} v=0, \quad v=v(\tau, x) \in \mathbb{R}^{2}, \quad \tilde{p}=\tilde{p}(\tau, x), \quad x \in \mathbb{T}^{2}=\mathbb{R}^{2} /\left(2 \pi \mathbb{Z}^{2}\right) . \tag{0.1}
\end{align*}
$$

Here $0<\varepsilon \ll 1$ and the scaling exponent a is a real number. We assume that $a<\frac{3}{2}$ since $_{3} a \geq \frac{3}{2}$ corresponds to non-interesting equations with small solutions (see KKuk06a], Section 10.3). It is also assumed that $\int v d x \equiv$ $\int \tilde{\eta} d x \equiv 0$ and that the force $\tilde{\eta}$ is a divergence-free Gaussian random field, white in time and smooth in x. Under mild non-degeneracy assumption on $\tilde{\eta}$ (see in Section 1) the Markov process which the equation defines in the function space \mathcal{H},

$$
\mathcal{H}=\left\{u(x) \in L^{2}\left(\mathbb{T}^{2} ; \mathbb{R}^{2}\right) \mid \operatorname{div} u=0, \quad \int_{\mathbb{T}^{2}} u d x=0\right\}
$$

has a unique stationary measure. We are interested in asymptotic (as $\varepsilon \rightarrow 0$) properties of this measure and of the corresponding stationary solution. The substitution

$$
v=\varepsilon^{b} u, \quad \tau=\varepsilon^{-b} t, \quad \nu=\varepsilon^{3 / 2-a}
$$

where $b=a-1 / 2$, reduces eq. (${ }_{0}^{00}$.1) to

$$
\begin{equation*}
\dot{u}-\nu \Delta u+(u \cdot \nabla) u+\nabla p=\sqrt{\nu} \eta(t, x), \quad \operatorname{div} u=0 \tag{0.2}
\end{equation*}
$$

where $\dot{u}=u_{t}^{\prime}$ and $\eta(t)=\varepsilon^{b / 2} \tilde{\eta}\left(\varepsilon^{-b} t\right)$ is $s_{\text {a }}{ }^{2}$ new random field, distributed as $\tilde{\eta}$ (see [Kuk06a]). Below we study eq. ((D.2).

Let μ_{ν} be the unique stationary measure for $(\mathbb{N S E})$ and $u_{\nu}(t) \in \mathcal{H}$ be the corresponding stationary solution, i.e., $\mathcal{D} u_{\nu}(t) \equiv \mu_{\nu}$ (here and below \mathcal{D} signifies the distribution of ${ }_{0}$ e random variable). Comparing to other equations ((0.1), the equation $\left(\frac{N S}{0.2}\right)$ has the special advantage: when $\nu \rightarrow 0$ along a subsequence $\left\{\nu_{j}\right\}$, stationary solution $u_{\nu_{j}}$ converges in distribution to a stationary process $U(t) \in \mathcal{H}$, formed by solutions of the Euler equation

$$
\begin{equation*}
\dot{u}(t, x)+(u \cdot \nabla) u+\nabla p=0, \quad \operatorname{div} u=0 . \tag{0.3}
\end{equation*}
$$

 (see below Theorem I.1). The solution U is called the Eulerian limit. This is a random process of order one since $\mathbf{E}\left|\nabla_{x} U(t, \cdot)\right|_{\mathcal{H}}^{2}$ equals to an explicit nonzero constant. The goal of this paper is to study properties of the measure μ_{0} since they are responsible for asymptotical properties of solutions for equation (0.1).

The first main difficulty in this study is to rule out the possibility that with a positive probability the energy $E\left(u_{\nu}\right)$ of the process u_{ν}, equal to $\frac{1}{2} \int\left|u_{\nu}(t, x)\right|^{2} d x$, becomes very small with ν (and that the energy of the Eulerian limit vanishes with a positive probability). In Section $\frac{\mathbb{N O}_{2} 2}{2}$ we show that this is not the case and that

$$
\begin{equation*}
\mathbf{P}\left\{E\left(u_{\nu}\right)<\delta\right\} \leq C \delta^{1 / 4}, \quad \forall \delta>0 \tag{0.4}
\end{equation*}
$$

$\mathrm{f}_{\mathrm{RP} \text { ree }}$ each ν. To prove the estimate we develop further some ideas, exploited in KRP06] in a similar situation. Namely, we construct a new process $\tilde{u}_{\nu} \in \mathcal{H}$, coupled to the process u_{ν}, such that $E\left(\tilde{u}_{\nu}(\tau)\right)=E\left(u_{\nu}\left(\tau \nu^{-1}\right)\right)$ and $\tilde{\chi}_{\mu^{\prime}}$ satisfies an Ito equation, independent from ν. Next we use Krylov's result [ixy88 Kr 8] on distribution of Ito integrals to estimate $\mathcal{D} \tilde{u}_{\nu}(\tau)$ and recover ($\binom{$ est }{0.4} .

In Section 3^{33} we use ($\left(\begin{array}{l}\text { est } \\ 0.4)\end{array}\right.$ to prove that the distribution of energy of the Eulerian limit U has a density against the Lebesgue measure, i.e.

$$
\mathcal{D} E(U)=e(x) d x, \quad e \in L_{1}\left(\mathbb{R}_{+}\right) .
$$

The functionals $\Phi_{f}(u(\cdot))=\int f(\operatorname{rot} u(x)) d x$ are integrals of motion for the Euler equation. An analogy with the averaging theory for finite-dimensional stochastic equations (e.g., see $[$ [FW03]) suggests that their distributions behave well when $\nu \rightarrow 0$. Accordingly, in Section ${ }^{4}$ we study the distributions of vector-valued random variables

$$
\Phi_{\mathbf{f}}\left(u_{\nu}(t)\right)=\left(\Phi _ { f _ { 1 } } \left(u_{\nu}(t), \ldots, \Phi_{f_{m}}\left(u_{\nu}(t)\right) \in \mathbb{R}^{m}\right.\right.
$$

and of $\Phi_{\mathbf{f}}(U(t))$. Assuming that the functions f_{j} are analytic, linearly independent and satisfy certain restriction on growth, we show that the distribution of $\Phi_{\mathbf{f}}(U(t))$ has a density against the Lebesgue measure:

$$
\mathcal{D}\left(\Phi_{\mathbf{f}} U(t)\right)=p_{\mathbf{f}}(x) d x^{\prime}, \quad p_{\mathbf{f}} \in L_{1}\left(\mathbb{R}^{m}\right)
$$

To prove this result we show that the measures $\mathcal{D} \Phi_{\mathbf{f}} u_{\nu}(t)$ are absolutely continuous with respect to the Lebesgue measure, uniformly in ν. The proof crucially uses (l0.4) as well as obtained in [Kuk06b] uniform in ν bounds on exponential moments of the random variables $\operatorname{rot}\left(u_{\nu}(t, x)\right)$.

Since m is arbitrary, then this result implies that the measure μ_{0} is genuinely infinite dimensional in the sense that any compact set of finite Hausdorff dimension has zero μ_{0}-measure.

Other equations. The results and the methods of this work apply to other PDE of the form

$$
\begin{equation*}
\langle\text { Hamiltonian equation }\rangle+\nu\langle\text { dissipation }\rangle=\sqrt{\nu}\langle\text { random force }\rangle, \tag{0.5}
\end{equation*}
$$

provided that the corresponding Hamiltonian PDE has at least two 'good' integrals of motion. In particular, they apply to the randomly forced complex Ginzburg-Landau equation

$$
\begin{equation*}
\dot{u}-(\nu+i) \Delta u+i|u|^{2} u=\sqrt{\nu} \eta(t, x), \quad \operatorname{dim} x \leq 4, \tag{0.6}
\end{equation*}
$$

supplemented with the odd periodic boundary conditions. The corresponding Hamiltonian PDE is the NLS equation, having two 'good' integrals: the

Hamiltonian H and ${ }^{\text {the }}$, total number of particles $E=\frac{1}{2} \int|u|^{2} d x$. Eq. (CGL was considered in $\mathrm{in}_{\mathrm{G}} \mathrm{KSOU4}$, where it was proved that for stationary in time solutions u_{ν} of (0.6) an inviscid limit $V(t)$ (as $\nu \rightarrow 0$ along a subsequence) exists and possesses properties, similar to those, stated in Theorem I.1. The methods of this work allow to prove that the random variable $E\left(u_{\nu}(t)\right)$ satisfies (0.4 .4$)$ uniformly in $\nu>0$, that $H\left(u_{\nu}(t)\right)$ meets similar estimates and that V is distributed in such a way that $\mathcal{D}(H(V(t)))$ and $\mathcal{D}(E(V(t)))$ are absolutely continuous with respect to the Lebesgue measure.

If $\operatorname{dim} x=1$, then the NLS equation is integrable and the inviscid limit V may be analysed further, using the methods, developed in [KP06] to study the damped/driven KdV equation (which is another example of the system DampDr
(0.5).

Certainly $\begin{aligned} & \text { our } \\ & \text { Damp } \mathrm{m}_{1} \text { methods as well apply to some finite-dimensional systems }\end{aligned}$ of the form (0.5). In particular - to Galerkin approximations for the 3D NSE under periodic boundary conditions, perturbed by a random force, similar to
 3. More interesting example is given by system (10.5). whe were the Hamiltonian equation is the Euler equation for a rotating solid body [Arn89]. This system can be cautiously regarded as a finite-dimensional model for (0.1); see Appendix. ${ }^{1}$

1 Preliminaries

Using the Leray projector $\Pi: L^{2}\left(\mathbb{T}^{2} ; \mathbb{R}^{2}\right) \rightarrow \mathcal{H}$ we rewrite eq. $\binom{$ NSE }{0.2} as the equation for $u(t)=u(t, \cdot) \in \mathcal{H}$:

$$
\begin{equation*}
\dot{u}+\nu A(u)+B(u)=\sqrt{\nu} \eta(t) . \tag{1.1}
\end{equation*}
$$

Here $A(u)=-\Pi \Delta u$ and $B(u)=\Pi(u \cdot \nabla) u$. We denote by $\|\cdot\|$ and by (\cdot, \cdot) the L_{2}-norm and scalar product in \mathcal{H}. Let $\left(e_{s}, s \in \mathbb{Z}^{2} \backslash\{0\}\right)$ be the standard trigonometric basis of this space:

$$
e_{s}(x)=\frac{\sin (s \cdot x)}{\sqrt{2} \pi|s|}\left[\begin{array}{c}
-s_{2} \\
s_{1}
\end{array}\right] \quad \text { or } \quad e_{s}(x)=\frac{\cos (s \cdot x)}{\sqrt{2} \pi|s|}\left[\begin{array}{c}
-s_{2} \\
s_{1}
\end{array}\right],
$$

[^0]depending whether $s_{1}+s_{2} \delta_{s_{1}, 0}>0$ or $s_{1}+s_{2} \delta_{s_{1}, 0}<0$. The force η is assumed to be a Gaussian random field, white in time and smooth in x :
\[

$$
\begin{equation*}
\eta=\frac{d}{d t} \zeta(t, x), \quad \zeta=\sum_{s \in \mathbb{Z}^{2} \backslash\{0\}} b_{s} \beta_{s}(t) e_{s}(x), \tag{1.2}
\end{equation*}
$$

\]

where $\left\{b_{s}\right\}$ is a set of real constants, satisfying

$$
b_{s}=b_{-s} \neq 0 \quad \forall s, \quad \sum|s|^{2} b_{s}^{2}<\infty
$$

and $\left\{\beta_{s}(t)\right\}$ are standard independent Wiener processes.
This equation is known to have a unique stationary measure $\mu_{\nu} .{ }^{2}$ This is a probability Borel measure in the space \mathcal{H} which attracts distributions of all solutions for (I.1). Let $u_{\nu}(t, x)$ be a corresponding stationary solution, i.e.

$$
\mathcal{D} u_{\nu}(t) \equiv \mu_{\nu} .
$$

Apart from being stationary in t, this solution is known to be stationary (=homogeneous) in x.

For any $l \geq 0$ we denote by $\mathcal{H}^{l}, l \geq 0$, the Sobolev space $\mathcal{H} \cap H^{l}\left(\mathbb{T}^{2} ; \mathbb{R}^{2}\right)$, given the norm

$$
\begin{equation*}
\|u\|_{l}=\left(\int\left((-\Delta)^{l / 2} u(x)\right)^{2} d x\right)^{1 / 2} \tag{1.3}
\end{equation*}
$$

(so $\|u\|_{0}=\|u\|$). A straightforward application of Ito's formula to $\left\|u_{\nu}(t)\right\|^{2}$ and $\left\|u_{\nu}(t)\right\|_{1}^{2}$ implies that

$$
\begin{equation*}
\mathbf{E}\left\|u_{\nu}(t)\right\|_{1}^{2} \equiv \frac{1}{2} B_{0}, \quad \mathbf{E}\left\|u_{\nu}(t)\right\|_{2}^{2} \equiv \frac{1}{2} B_{1} \tag{1.4}
\end{equation*}
$$

where for $l \in \mathbb{R}$ we denote $B_{l}=\sum|s|^{2 l} b_{s}^{2}$ (note that $B_{0}, B_{1}<\infty$ by assumption); e.g. see in [Kuk06a].

The theorem below describes what happen to the stationary solutions $u_{\nu}(t, x)$ as $\nu \rightarrow 0$. For the theorem's proof see $[\mathrm{Kuk} 06 \mathrm{a}]$.

[^1]t1 Theorem 1.1. Any sequence $\tilde{\nu}_{j} \rightarrow 0$ contains a subsequence $\nu_{j} \rightarrow 0$ such that
\[

$$
\begin{equation*}
\mathcal{D} u_{\nu_{j}}(\cdot) \rightharpoonup \mathcal{D} U(\cdot) \quad \text { in } \quad \mathcal{P}\left(C\left(0, \infty ; \mathcal{H}^{1}\right)\right) \tag{1.5}
\end{equation*}
$$

\]

The limiting process $U(t) \in \mathcal{H}^{1}, U(t)=U(t, x)$, is stationary in t and in x. Moreover,
1)a) every its trajectory $U(t, x)$ is such that

$$
U(\cdot) \in L_{2 l o c}\left(0, \infty ; \mathcal{H}^{2}\right), \quad \dot{U}(\cdot) \in L_{1 l o c}\left(0 \infty ; \mathcal{H}^{1}\right) .
$$

b) It satisfies the free Euler equation $\left(\underset{\text { 需.3) , so } \mu_{0}}{ }=\mathcal{D}(U(0))\right.$ is an invariant measure for (0.3),
c) $\|U(t)\|_{0}$ and $\|U(t)\|_{1}$ are time-independent quantities. If g is a bounded continuous function, then $\int_{\mathbb{T}^{2}} g(\operatorname{rot} U(t, x)) d x$ also is a time-independent quantity.
2) For each $t \geq 0$ we have $\mathbf{E}\|U(t)\|_{1}^{2}=\frac{1}{2} B_{0}, \mathbf{E}\|U(t)\|_{2}^{2} \leq \frac{1}{2} B_{1}$ and $\mathbf{E} \exp \left(\sigma\|U(t)\|_{1}^{2}\right) \leq C$ for some $\sigma>0, C \geq 1$.

Amplification. If $B_{2}<\infty$, then the convergence (lifonv ${ }^{(1.5)}$ holds in the space $\mathcal{P}\left(C\left(0, \infty ; \mathcal{H}^{\varkappa}\right)\right)$, for any $\varkappa<2$.

See [K3uk06a], Remark 10.4.
Due to 1 b), the measure $\mu_{0}=\mathcal{D} U(0)$ is invariant for the Euler equation. By 2) it is supported by the space \mathcal{H}^{2} and is not a δ-measure at the origin. The process U is called the Eulerian limit for the stationary solutions u_{ν} of (I.1). Note that apriori the process U and the measure μ_{0} depend on the sequence ν_{j}.

Since $\|u\|_{1}^{2} \leq\|u\|_{0}\|u\|_{2}$ and $\mathbf{E}\|u\|_{1}^{2} \leq\left(\mathbf{E}\|u\|_{0}^{2}\right)^{1 / 2}\left(\mathbf{E}\|u\|_{1}^{2}\right)^{1 / 2}$, then $\binom{$ ito }{1.4} implies that

$$
\begin{equation*}
\frac{1}{2} B_{0}^{2} B_{1}^{-1} \leq \mathbf{E}\left\|u_{\nu}(t)\right\|_{0}^{2} \leq \frac{1}{2} B_{1} \tag{1.6}
\end{equation*}
$$

for all ν. That is, the characteristic size of the solution u_{ν} remains ~ 1 when $\nu \rightarrow 0$. Since the characteristic space-scale also is ~ 1, then the Reynolds number of u_{ν} grows as ν^{-1} when ν decays to zero. Hence, Theorem ${ }_{1} 1.1$ describes a transition to ${ }_{\mathrm{NS}}$ terbulence for space-periodic 2D flows, stationary in time. Recall that eq. $\left(\frac{N D E}{(0.2)}\right.$) is the only 2D NSE ((0.1), having a limit of order one as $\nu \rightarrow 0$ (cf. as in Theorem $\mathbb{1} .1$ with different coefficients $\left\{b_{s}\right\}$ (corresponding to different spectra of the applied random forces) describe all possible 2D space-periodic stationary turbulent flows.

Our goal is to study further properties of the Eulerian limit.

2 Estimate for energy of solutions

2.1 The result

The energy $E_{\nu}(t)=\frac{1}{2}\left\|u_{\nu}(t)\right\|_{0}^{2}$ of a stationary solution u_{ν} is a stationary process. It satisfies the relations

$$
\begin{equation*}
\frac{1}{4} B_{0}^{2} B_{1}^{-1} \leq \mathbf{E} E_{\nu}(t)=\frac{1}{4} B_{0}, \quad \mathbf{E} \exp \left(\sigma E_{\nu}(t)\right) \leq C \tag{2.1}
\end{equation*}
$$

 Let us arrange the numbers $\left|b_{s}\right|$ in the decreasing order: $\left|b_{s_{1}}\right| \geq\left|b_{s_{2}}\right| \geq \ldots$.
t2 Theorem 2.1. There exists a constant $C>0$, depending only on B_{1} and $\left|b_{s_{2}}\right|$, such that

$$
\begin{equation*}
\mathbf{P}\left\{E_{\nu}(t)<\delta\right\} \leq C \delta^{1 / 4} \tag{2.2}
\end{equation*}
$$

uniformly in $\nu \in(0,1]$.
Due to the convergence ((1.5), the energy $E_{0}(t)=\frac{1}{2}\|U(t)\|^{2}$ of the Eulerian limit also satisfies (2.2).

Introducing the fast time $\tau=t \nu^{-1}$ we get for $u(\tau)=u(\tau, x)$ the equation

$$
\begin{equation*}
d u(\tau)=\left(-A u-\nu^{-1} B(u)\right) d \tau+\sum_{s} b_{s} e_{s} d \beta_{s}(\tau), \tag{2.3}
\end{equation*}
$$

where $\left\{\beta_{s}(\tau)=\sqrt{\nu} \beta_{s}(\nu \tau), s \in \mathbb{Z}^{2} \backslash 0\right\}$, are new standard independent Wiener processes.

2.2 Beginning of proof

The proof goes in five steps. We start with a geometrical lemma which is used below in the heart of the construction.

Let us denote by S the sphere $\left\{u \in \mathcal{H} \mid\|u\|_{0}=1\right\}$. Let $\left\{e_{j}, j \geq 1\right\}$, be the basis $\left\{e_{s}, s \in \mathbb{Z}^{2} \backslash\{0\}\right\}$, re-parameterised by the natural numbers in such a way that $e_{j}=e_{s(j)}$, where $|s(j)| \geq|s(i)|$ if $j \geq i$.

11 Lemma 2.2. There exists $\delta>0$ with the following property. Let v_{0}, \tilde{v}_{0} be any two points in S. Then for $(v, \tilde{v}) \in S \times S$ such that

$$
\begin{equation*}
\left\|v-v_{0}\right\|_{0}<\delta, \quad\left\|\tilde{v}-\tilde{v}_{0}\right\|_{0}<\delta \tag{2.4}
\end{equation*}
$$

there exists an unitary operator $U_{(v, \tilde{v})}=U_{(v, \tilde{v})}^{\left(v_{0}, \tilde{v}_{0}\right)}$ of the space \mathcal{H}, satisfying
i) U is an operator-valued Lipschitz function of v and \tilde{v} with a Lipschitz constant ≤ 2;
ii) $U_{(v, \tilde{v})}(\tilde{v})=v$;
iii) there exists a unitary vector $\eta=\eta(v, \tilde{v})$ in the plane span $\left\{e_{1}, e_{2}\right\}$ such that the vector $U_{(v, \tilde{v})}(\eta)$ makes with this plane an angle $\leq \pi / 4$. Accordingly,

$$
\begin{equation*}
\max _{i, j \in\{1,2\}}\left|\left(U_{(v, \tilde{v})} e_{i}, e_{j}\right)\right| \geq c_{*}, \tag{2.5}
\end{equation*}
$$

where $c_{*}>0$ is an absolute constant.
Proof. Let us start with the following observation:
There exists $\delta>0$ such that for any $v_{0} \in S$ and $v_{1} \in\{v \in S \mid \| v-$ $\left.v_{0} \|_{0}<\delta\right\}$ there exists an unitary transformation $W_{v_{1}, v_{0}}$ of the space \mathcal{H} with the following property: $W_{v_{0}, v_{0}}=i d, W_{v_{1}, v_{0}}\left(v_{0}\right)=v_{1}$ and W is a Lipschitz function of v_{1} and v_{0} with a Lipschitz constant ≤ 2.

To prove the assertion let us denote by \mathcal{A} the linear space of bounded anti self-adjoint operators in \mathcal{H} (given the operator norm), and consider the map

$$
\mathcal{A} \times S \rightarrow S, \quad(A, v) \mapsto e^{A} v
$$

Note that the differential of this map in A, evaluated at $A=0, v=v_{0}$, is the map $A^{\prime} \mapsto A^{\prime} v_{0}$, which sends \mathcal{A} to the space $T_{v_{0}} S=\left\{v \in \mathcal{H} \mid\left(v, v_{0}\right)=0\right\}$ and admits a right inverse operator of unit norm. So the assertion with $W=e^{A}$, where A satisfies the equation $e^{A} v_{0}=v_{1}$, follows from the implicit function theorem.

To prove the lemma we choose unit vectors $\eta_{0}, \tilde{\eta}_{0} \in \operatorname{span}\left\{e_{1}, e_{2}\right\}$ such that $\left(v_{0}, \eta_{0}\right)=0$ and $\left(\tilde{v}_{0}, \tilde{\eta}_{0}\right)=0$. Next we choose an unitary transformation U, such that $U\left(\tilde{v}_{0}\right)=v_{0}$ and $U\left(\tilde{\eta}_{0}\right)=\eta_{0}$. For vectors v, \tilde{v}, satisfying (2.4), denote $U(\tilde{v})=\tilde{\xi}$. Then $\left\|\tilde{\xi}-v_{0}\right\|_{0}<\delta$. Let $W_{v, \tilde{\xi}}$ be the operator from the assertion above. We set $U_{v, \tilde{v}}=W_{v, \tilde{\xi}} \circ U$. This operator obviously satisfies i) and ii). Since $\left\|U_{v, \tilde{v}}\left(\tilde{\eta}_{0}\right)-\eta_{0}\right\|_{0} \leq C \delta$, then choosing $\delta<C^{-1} 2^{-1 / 2}$ we achieve iii) with $\eta=\tilde{\eta}_{0}$.

Remark. Let j_{1} and j_{2} be any two different natural numbers. The same arguments as above prove existence of an unitary operator U, satisfying i), ii) and such that $\max _{i \in\{1,2\}, j \in\left\{j_{1}, j_{2}\right\}}\left|\left(U e_{i}, e_{j}\right)\right| \geq c_{*}$.

For any $\left(v_{0}, \tilde{v}_{0}\right) \in S \times S$ let $\mathcal{O}_{\delta}\left(v_{\rho_{2}}, \tilde{4}_{4}\right) \subset S \times S$ be the open domain, formed by all pairs (v, \tilde{v}), satisfying (2.4). Let $\mathcal{O}^{1}, \mathcal{O}^{2}, \ldots$ be a countable
system of domains $\mathcal{O}_{\delta / 2}\left(v_{j}, \tilde{v}_{j}\right)=: \mathcal{O}^{j}, j \geq 1$, which cover $S \times S$. We call $\left(v_{j}, \tilde{v}_{j}\right)$ the centre of the domain \mathcal{O}^{j}.

Consider the mapping

$$
\begin{equation*}
S \times S \rightarrow \mathbb{N}, \quad(v, \tilde{v}) \mapsto n(v, \tilde{v})=\min \left\{j \mid(v, \tilde{v}) \in \mathcal{O}^{j}\right\} \tag{2.6}
\end{equation*}
$$

It is measurable with respect to the Borel sigma-algebras. Finally, for $j=$ $1,2, \ldots$ and $(v, \tilde{v}) \in \mathcal{O}^{j}$ we define the operators

$$
U_{v, \tilde{v}}^{j}=U_{v, \tilde{v}}^{\left(v_{j}, \tilde{v}_{j}\right)} .
$$

2.3 Step 1: equation for $\tilde{u}(t)$

ss2. 3
Till the end of Section $\frac{\$ 2}{2}$ for any $u \in \mathcal{H}$ we will denote

$$
\begin{equation*}
v=u /\|u\|_{0} \text { if } u \neq 0 \text { and } v=e_{1} \text { if } u=0 \tag{2.7}
\end{equation*}
$$

denote
Let us fix any $T_{0}>0$. We start to construct a process $\tilde{u}(\tau), 0 \leq \tau \leq$ T_{0}, with continuous trajectories, satisfying $\|\tilde{u}(\tau)\|_{0} \equiv\|u(\tau)\|_{0}$. The process will be constructed as a solution of a stochastic equation, in terms of some stopping times $0=\tau_{0} \leq \tau_{1}<\tau_{2}<\ldots$.

We set $\tau_{0}=0$ and define a random variable $n_{0}=n(v(0), v(0)) \in \mathbb{N}$ (see $\left.\left(\frac{\text { map }}{2.6}\right)\right)$. Let us consider the following stochastic equation for $\mathbf{u}(\tau)=$ $(u(\tau), \tilde{u}(\tau)) \in \mathcal{H} \times \mathcal{H}:$

$$
\begin{gather*}
d u(\tau)=\left(-A u-\nu^{-1} B(u)\right) d \tau+\sum_{s} b_{s} e_{s} d \beta_{s}(\tau), \tag{2.8}\\
d \tilde{u}(\tau)=-U_{\mathbf{u}}^{*} A u d \tau+\sum_{s} U_{\mathbf{u}}^{*} b_{s} e_{s} d \beta_{s}(\tau) \tag{2.9}
\end{gather*}
$$

Here $U_{\mathbf{u}}^{*}$ is the adjoint to the unitary operator $U_{\mathbf{u}}=U_{v, \tilde{v}}^{n_{0}(\omega)}$ (where $v=v(u)$ and $\tilde{v}=\tilde{v}(\tilde{u})$, see $\left(\frac{\text { dennete }}{2.7)}\right.$). Let us fix any $\gamma \in(0,1]$ and define the stopping times

$$
\begin{gathered}
T_{\gamma}=\inf \left\{\tau \in\left[0, T_{0}\right] \mid\|u(\tau)\|_{0} \wedge\|\tilde{u}(\tau)\|_{0} \leq \gamma \text { or }\|u(\tau)\|_{2} \geq \gamma^{-1}\right\} \\
\tau_{1}=\inf \left\{\tau \in\left[0, T_{0}\right] \mid \mathbf{u}(\tau) \notin \mathcal{O}_{\delta}\left(v_{n_{0}}, \tilde{v}_{n_{0}}\right)\right\} \wedge T_{\gamma}
\end{gathered}
$$

Here and in similar situations below $\inf \emptyset=T_{0}$, and $\left(v_{n_{0}}, \tilde{v}_{n_{0}}\right)$ is the centre of the domain $\mathcal{O}^{n_{0}}$.

For $0 \leq \tau \leq \tau_{1}$ the operator $U_{\mathbf{u}}$ is a Lipschitz function of \mathbf{u} since $\|u\|_{0} \geq \gamma$ and $\|\tilde{u}\|_{0} \geq \gamma_{1}$ As $\|u(\tau)\|_{2} \leq \gamma^{-1}$ for $\tau \leq T_{\gamma}$, then it is not hard to see that the system (2.8),(2.9), supplemented with the initial condition

$$
\begin{equation*}
\mathbf{u}(0)=(u(0), u(0)) \tag{2.10}
\end{equation*}
$$

has a unique strong solution $\mathbf{u}(\tau), 0 \leq \tau \leq \tau_{1}$, satisfying

$$
\begin{equation*}
\mathbf{E} \sup _{0 \leq \tau \leq \tau_{1}}\|\tilde{u}(\tau)\|_{0}^{2} \leq C\left(T_{0}, \nu, \gamma\right) \tag{2.11}
\end{equation*}
$$

Next we set $n_{1}=n\left(v\left(\tau_{1}\right), \tilde{v}\left(\tau_{1}\right)\right)$ and for $\tau \geq \tau_{1}$ re-define the operator $U_{\mathbf{u}}$ in $\left(\frac{\mathrm{e}^{2} 2}{2.9)}\right.$) as $U_{v, \tilde{v}}^{n_{1}(\omega)}$ (as before, $v=v(u(\tau))$ and $\left.\tilde{v}=\tilde{v}(\tilde{u}(\tau))\right)$. We set

$$
\tau_{2}=\inf \left\{\tau \in\left[\tau_{1}, T_{0}\right] \mid \mathbf{u}(\tau) \notin \mathcal{O}_{\delta}\left(v_{n_{1}}, \tilde{v}_{n_{1}}\right)\right\} \wedge T_{\gamma},
$$

where $\left(v_{n_{1}}, \tilde{v}_{n_{1}}\right)$ is the centre of $\mathcal{O}^{n_{1}}$, and consider the system (${ }_{(2.8}{ }^{1}$), (2.e2. ${ }^{2}$) for $\tau_{1} \leq \tau \leq \tau_{2}$ with the initial condition at τ_{2}, obtained by continuity. The system has a unique strong solution and (2.11) holds with τ_{1} replaced by τ_{2}. Iterating this construction we obtain stopping times $\tau_{0} \leq \tau_{1} \leq \tau_{2} \leq \ldots$, the operator $U_{\mathbf{u}}(\tau)$, piecewise constant in τ and discontinuous at points $\tau=\tau_{j}$, as well as a strong solution $\mathbf{u}(\tau)$ of (2.8)-(2.10), defined for $0 \leq \tau<\lim _{j \rightarrow \infty} \tau_{j} \leq$ T_{γ}, and satisfying (2.11) with τ_{1} replaced by any τ_{j}. Clearly $\tau_{j}<\tau_{j+1}$, unless $\tau_{j}=\tau_{j+1}=T_{\gamma}$.

2.4 Step 2: growth of stopping times τ_{j}

For any $\tau \geq 0$ let us write $\tilde{u}\left(\tau \wedge T_{\gamma}\right)$ as
$\tilde{u}\left(\tau \wedge T_{\gamma}\right)=u(0)-\int_{0}^{\tau \wedge T_{\gamma}} U^{*} A(u) d \theta+\int_{0}^{\tau \wedge T_{\gamma}} \sum_{s} b_{s} U^{*} e_{s} d \beta_{s}=:\left(\tilde{u}_{1}+\tilde{u}_{2}\right)(\tau)$.
Since $\|u\|_{2} \leq \gamma^{-1}$, then the process $\tilde{u}_{1}(\tau) \in \mathcal{H}$ is Lipschitz in τ. A straightforward application of the Kolmogorov criterion implies that the process $\tilde{u}_{2}(\tau) \in \mathcal{H}$ a.s. satisfies the Hölder condition with the exponent $1 / 3$. So the process $\tilde{u}\left(\tau \wedge T_{\gamma}\right)$ is a.s. Hölder. The process $u\left(\tau \wedge T_{\gamma}\right)$ is Hölder as well, so

$$
\left\|\mathbf{u}\left(\left(\tau_{j}+\Delta\right) \wedge T_{\gamma} ; \omega\right)-\mathbf{u}\left(\tau_{j} ; \omega\right)\right\|_{0} \leq K(\omega) \Delta^{1 / 3}
$$

Since $\left\|\mathbf{u}\left(\tau_{j+1}\right)-\mathbf{u}\left(\tau_{j}\right)\right\|_{0} \geq \frac{\delta}{2}$ unless $\tau_{j+1}=T_{\gamma}$, then $\left|\tau_{j+1}-\tau_{j}\right| \geq(\delta / 2 K(\omega))^{3}$ or $\tau_{j+1}=T_{\gamma}$. As $\tau_{j} \leq T_{\gamma} \leq T_{0}$, then

$$
\begin{equation*}
\tau_{j}=T_{\gamma} \quad \text { for } \quad j \geq j(\gamma ; \omega), \tag{2.12}
\end{equation*}
$$

where $j(\gamma)<\infty$ a.s.
We have constructed a process $\mathbf{u}(\tau), \tau \in\left[0, T_{\gamma}\right]$, which satisfies (${ }_{(2) 1}^{2.8)}$ (2.10), where the operator $U_{\mathbf{u}}$ is a piecewise constant function of τ.

2.5 Step 3: $\|\tilde{u}(\tau)\|_{0} \equiv\|u(\tau)\|_{0}$ for $\tau \leq T_{\gamma}$

For $j=0,1, \ldots$ we will prove the following assertion:
if $\left\|\tilde{u}\left(\tau_{j}\right)\right\|_{0}=\left\|u\left(\tau_{j}\right)\right\|_{0} \quad$ a.s., then

$$
\begin{equation*}
\|\tilde{u}(\tau)\|_{0}=\|u(\tau)\|_{0} \text { for } \tau_{j} \leq \tau \leq \tau_{j+1} \text {, a.s. } \tag{2.13}
\end{equation*}
$$

Since $\tilde{u}\left(\tau_{0}\right)=u\left(\tau_{0}\right)$, then $\left(\frac{2.10}{2.12}\right)$ and $\left(\frac{2.11}{2.13}\right)$ would imply that

$$
\begin{equation*}
\|\tilde{u}(\tau)\|_{0}=\|u(\tau)\|_{0} \quad \forall 0 \leq \tau \leq T_{\gamma} \tag{2.14}
\end{equation*}
$$

for any $\gamma>0$.
To prove $\left(\frac{2.11}{2.13}\right)$ we consider (following Lemma 7.1 in $\left.\left.{ }^{\text {KP06 }} \mathrm{KP} 06\right]\right)$ the quantities $E(\tau)=\frac{1}{2}\|u(\tau)\|_{0}^{2}$ and $\tilde{E}(\tau)=\frac{1}{2}\|\tilde{u}(\tau)\|_{0}^{2}$. Due to Ito's formula we have

$$
d E=(u,-A u) d \tau+\frac{1}{2} B_{0} d \tau+\left(u, \sum_{s} b_{s} e_{s} d \beta_{s}(\tau)\right)
$$

and

$$
\begin{aligned}
d \tilde{E} & =\left(\tilde{u},-U^{*} A u\right) d \tau+\frac{1}{2} \sum b_{s}^{2}\left|U^{*} e_{s}\right|^{2} d \tau+\left(\tilde{u}, \sum_{s} b_{s}\left(U^{*} e_{s}\right) d \beta_{s}(\tau)\right) \\
& =\frac{\|\tilde{u}\|_{0}}{\|u\|_{0}}(u,-A u) d \tau+\frac{1}{2} B_{0} d \tau+\frac{\|\tilde{u}\|_{0}}{\|u\|_{0}}\left(u, \sum_{s} b_{s} e_{s} d \beta_{s}(\tau)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
d(E-\tilde{E})^{2}= & 2(E-\tilde{E}) \frac{\|u\|_{0}-\|\tilde{u}\|_{0}}{\|u\|_{0}}(u,-A u) d \tau \\
& \left(\frac{\|u\|_{0}-\|\tilde{u}\|_{0}}{\|u\|_{0}}\right)^{2} \sum_{s} b_{s}^{2}\left(u, e_{s}\right)^{2} d \tau+\mathcal{M}_{\tau},
\end{aligned}
$$

where \mathcal{M}_{τ} stands for the corresponding stochastic integral.
For $0 \leq \tau \leq T_{\gamma}$ let us denote $J(\tau)=(E-\tilde{E})^{2}\left(\left(\tau \vee \tau_{i}\right) \wedge \tau_{i+1}\right)$. Then

$$
\begin{aligned}
\frac{d}{d \tau} \mathbf{E} J(\tau) & =2 \mathbf{E}\left((E-\tilde{E}) \frac{\|u\|_{0}-\|\tilde{u}\|_{0}}{\|u\|_{0}}(u-A u) I_{\tau_{i} \leq \tau \leq \tau_{i+1}}\right) \\
& +\mathbf{E}\left(\left(\frac{\|u\|_{0}-\|\tilde{u}\|_{0}}{\|u\|_{0}}\right)^{2} \sum b_{s}^{2}\left(u, e_{s}\right)^{2} I_{\tau_{i} \leq \tau \leq \tau_{i+1}}\right) .
\end{aligned}
$$

Since $\|u\|_{0}-\|\tilde{u}\|_{0}=\frac{2(E-\tilde{E})}{\|u\|_{0}+\|\tilde{u}\|_{0}}$ and $|(u,-A u)| \leq \gamma^{-2},\|u\|_{0},\|\tilde{u}\|_{0} \geq \gamma$, then $\frac{d}{d \tau} \mathbf{E} J(\tau) \leq C_{\uparrow} \mathbf{E}_{\downarrow} 1_{2}(\tau)$. As $J(0)=0$, then $\mathbf{E} J(\tau) \equiv 0$ and $\left(\frac{2.13}{2.13}\right)$ is established. Accordingly (2.14) also is proved.

2.6 Step 4: limit $\gamma \rightarrow 0$

Since $B_{2}<\infty$, then $u(\tau)$ satisfies the γ-independent estimate

$$
\mathbf{E} \sup _{0 \leq \tau \leq T_{0}}\|u(\tau)\|_{2} \leq C\left(T_{0}, \nu\right)
$$

(see ${ }^{[K 3}$ Kuk06a], Section 4.3). Accordingly

$$
\begin{equation*}
\mathbf{P}\left\{\sup _{0 \leq \tau \leq T_{0}}\|u(\tau)\|_{2} \leq \gamma^{-1}\right\} \rightarrow 1 \quad \text { as } \quad \gamma \rightarrow 0 \tag{2.15}
\end{equation*}
$$

Let us denote by $\hat{u}(\tau)$ the 4 -vector $\left(u_{1}(\tau), \ldots, u_{4}(\tau)\right)$, where $u(\tau)=$ $\sum u_{j}(\tau) e_{j}$ (we recall that e_{1}, e_{2}, \ldots are the basis vectors e_{s}, re-parameterised by natural numbers). Then

$$
\hat{u}_{j}(\tau)=u_{j}(0)+\int_{0}^{\tau} F_{j} d s+b_{j} \beta_{j}(s), \quad j=1, \ldots, 4
$$

where F_{j} is the j-th component of the drift in $\left(\frac{2.3}{2.3}\right)$. Since \hat{u} is a stationary process, then $\mathbf{P}\{\hat{u}(0)=0\}=0$ (this follows, say, from Krylov's result, used in the next subsection). Setting $F_{j}^{R}=F_{j} \wedge R$, we denote by $\hat{u}^{R}(\tau) \in \mathbb{R}^{4}$ the process

$$
\hat{u}_{j}^{R}(\tau)=u_{j}(0)+\int_{0}^{\tau} F_{j}^{R} d s+b_{j} \beta_{j}(s), \quad j=1, \ldots, 4
$$

By the Girsanov theorem, distribution of the process $\hat{u}^{R}(\tau), 0 \leq \tau \leq T_{0}$, is absolutely continuous with respect to the process $\left(b_{1} \beta_{1}, \ldots, b_{4} \beta_{4}\right)+\hat{u}(0)$. Therefore

$$
\begin{equation*}
\mathbf{P}\left\{\min _{0 \leq \tau \leq T_{0}}\left|\hat{u}^{R}(\tau)\right|=0\right\}=0 \tag{2.16}
\end{equation*}
$$

for any R. Since $\max _{0 \leq \tau \leq T_{0}}\left|\hat{u}^{R}(\tau)-\hat{u}(\tau)\right| \rightarrow 0$ as $R \rightarrow \infty_{2}$ in probability, then the process $\hat{u}(\tau)$ also satisfies $\left(\frac{2.21}{2.16}\right)$. Jointly with $\left(\frac{2.20}{2.15}\right)$ this implies that

$$
\mathbf{P}\left\{T_{\gamma}=T_{0}\right\} \rightarrow 1 \quad \text { as } \quad \gamma \rightarrow 0
$$

and we derive from $\left(\frac{2.12}{2.14}\right)$ the relation

$$
\|\tilde{u}(\tau)\|_{0}=\|u(\tau)\|_{0} \quad \forall 0 \leq \tau \leq T_{0}, \quad \text { a.s. }
$$

2.7 Step 5: end of proof

The advantage of the process \tilde{u} compare to u is that it satisfies the ν independent Ito equation ($\overline{2}_{2.9}^{2}$). Let us consider the first two components of the process:

$$
\begin{equation*}
d \tilde{u}_{j}=-\left(U_{u, \tilde{u}}^{*}(\tau) A(u)\right)_{j} d \tau+\sum_{l=1}^{\infty}\left(U_{u, \tilde{u}}^{*}(\tau)\right)_{j l} b_{l} d \beta_{l}(\tau), \tag{2.17}
\end{equation*}
$$

where $j=1,2$. Denoting $a_{j}(\tau)=\sum_{l=1}^{\infty}\left(U_{j l}^{*} b_{l}\right)^{2}=\sum_{l=1}^{\infty}\left(U_{l j} b_{l}\right)^{2}$ and using (2.5) we find that a.s.

$$
\begin{equation*}
C \geq a_{1}(\tau)+a_{2}(\tau) \geq c>0 \quad \forall \tau, \tag{2.18}
\end{equation*}
$$

where $C=2 \sqrt{B_{0}}$ and c depends only on $\left|b_{1}\right| \wedge\left|b_{2}\right|$. Due to $\left(\frac{\text { it. }}{1.4}\right)$ for each $\tau \geq 2.24$ have $\mathbf{E}\left|U^{*} A(u(\tau))\right|_{j} \leq \sqrt{B_{1} / 2} \mathbb{T r y h i s}^{2}$ This bound and the first estimate in. (2.18) imply that Lemma 5.1 from $\left[\frac{K r y 80}{}[7]\right.$ applies to the Ito equation (2.17) uniformly in ν if we choose the lemma's parameters as follows:

$$
\begin{equation*}
d=1, \quad \gamma=1, \quad A_{s}=s, \quad r_{s}=1, \quad c_{s}=1, \quad y_{t}=t, \quad \varphi_{t}=t \tag{2.19}
\end{equation*}
$$

Taking in the lemma for $f(t, x)$ the characteristic function of the segment $[-\delta, \delta]$, we get

$$
\mathbf{E} \int_{0}^{\gamma_{R}} e^{-t} a_{j}(\tau)^{1 / 2} I_{\left\{\mid \tilde{u}_{j}(\tau) \leq \delta\right\}} d \tau \leq C \sqrt{\delta}, \quad j=1,2,
$$

where $\gamma_{R} \leq 1$ is the first exit time ≤ 1 of the process \tilde{u}_{j} from the segment $[-R, R]$. Sending R to ∞ we get that

$$
\begin{equation*}
\mathbf{E} \int_{0}^{1} a_{j}(\tau)^{1 / 2} I_{\left\{\left|\tilde{u}_{j}(\tau)\right| \leq \delta\right\}} d \tau \leq C_{1} \sqrt{\delta}, \quad j=1,2 \tag{2.20}
\end{equation*}
$$

uniformly in $\nu{ }_{\cdot 12.24}$
For c as in $\left(\frac{2.24}{2.18}\right)$ let us consider the event $Q_{1}^{\tau}=\left\{a_{1}(\tau) \geq \frac{1}{2} c\right\}$ and denote by Q_{2}^{τ} its complement. Then

$$
\begin{equation*}
a_{1}(\tau) \geq \frac{1}{2} c \text { on } Q_{1}^{\tau} \text { and } a_{2}(\tau) \geq \frac{1}{2} c \text { on } Q_{2}^{\tau} . \tag{2.21}
\end{equation*}
$$

Let us set

$$
Q^{\tau}=\left\{\left|\tilde{u}_{1}(\tau)\right|+\left|\tilde{u}_{2}(\tau)\right| \leq \delta\right\} .
$$

Then

$$
\mathbf{P}\left(Q^{\tau}\right)=\mathbf{E}\left(I_{Q^{\tau}} I_{Q_{1}^{\tau}}+I_{Q^{\tau}} I_{Q_{2}^{\tau}}\right) \leq \mathbf{E}\left(I_{\left\{\left|\tilde{u}_{1}(\tau)\right| \leq \delta\right\}} I_{Q_{1}^{\tau}}+I_{\left\{\left|\tilde{u}_{2}(\tau)\right| \leq \delta\right\}} I_{Q_{2}^{\tau}}\right) .
$$

By $\left(\frac{2.26}{2.21}\right)$ the r.h.s. is bounded by

$$
\sqrt{\frac{2}{c}} \mathbf{E}\left(I_{\left\{\left|\tilde{u}_{1}(\tau)\right| \leq \delta\right\}} \sqrt{a_{1}}+I_{\left\{\left|\tilde{u}_{2}(\tau)\right| \leq \delta\right\}} \sqrt{a_{2}}\right) .
$$

Jointly with $\left(\frac{2.25}{2.20}\right)$ the obtained inequality shows that

$$
\int_{0}^{1} \mathbf{P}\left(Q^{\tau}\right) d \tau \leq C_{2} \sqrt{\delta}
$$

Since

$$
\mathbf{P}\left\{\|u(\tau)\|_{0} \leq \frac{\delta}{2}\right\}=\mathbf{P}\left\{\|\tilde{u}(\tau)\|_{0} \leq \frac{\delta}{2}\right\} \leq \mathbf{P}\left(Q^{\tau}\right)
$$

where the l.h.s. is independent from τ, then

$$
\mathbf{P}\left\{\|u(\tau)\|_{0} \leq \frac{\delta}{2}\right\} \leq C_{2} \sqrt{\delta}
$$

for any $\delta>0$. This relation implies ($\left(\frac{2.2}{2 \cdot 2}\right)$.
The constant C in $\left(\frac{2.2}{2.2}\right)$, as well as all other constants in this section, depend only on B_{1} and $\left|b_{1}\right| \wedge\left|b_{2}\right|$. Using the Remark in Section $\frac{5.2}{2.2}$ we may replace $\left|b_{1}\right| \wedge\left|b_{2}\right|$ by $\left|b_{j_{1}}\right| \wedge\left|b_{j_{2}}\right|$, where j_{1} and j_{2} correspond to s_{1} and s_{2}. This completes the theorem's proof.

3 Distribution of energy

Again, let $u_{\nu}(\tau)$ be a stationary solution of ($\left.\mathbb{N}_{1.1}^{1}\right)$, written in the form (2.3), let $E_{\nu}(\tau)$ be its energy and $E_{0}(\tau)=\frac{1}{2}\|U(\tau)\|_{0}^{2}$ be the energy of the Eulerian limit.
t3 Theorem 3.1. For any $R>0$ let $Q \subset[-R, R]$ be a Borel set. Then

$$
\begin{equation*}
\mathbf{P}\left\{E_{\nu}(\tau) \in Q\right\} \leq p_{R}(|Q|) \tag{3.1}
\end{equation*}
$$

uniformly in $\nu \in(0,1]$, where $p_{R}(t) \rightarrow 0$ as $t \rightarrow 0$

In particular, the measures $\mathcal{D}\left(E_{\nu}(\tau)\right)$ are absolutely continuous with respect to the Lebesgue measure. Since $\mathcal{D}\left(E_{\nu_{j}}\right) \rightharpoonup \mathcal{D}\left(E_{0}(\tau)\right)$, then $E_{0}(\tau)$ satisfies (3.1) for any open set $Q \subset[-R, R]$. Accordingly, $\mathbf{P}\left\{E_{0}(\tau) \in Q\right\}=0$ if $|Q|=0$ since the Lebesgue measure is regular. We got

Corollary 3.2. The measure $\mathcal{D}\left(E_{0}(\tau)\right)$ is absolutely continuous with respect to the Lebesgue measure.

Proof of the theorem. For any $\delta>0$ let us consider the set

$$
\mathcal{O}=\mathcal{O}(\delta)=\left\{u \in \mathcal{H}^{2} \left\lvert\,\|u\|_{2} \leq \delta^{-\frac{1}{4}}\right.,\|u\|_{0} \geq \delta\right\}
$$

Writing $u=u_{\nu}$ as $u=\sum u_{s} e_{s}$, we set $u^{I}=\sum_{|s| \leq N} u_{s} e_{s}$ and $u^{I I}=u-u^{I}$. For any $u \in \mathcal{O}$ we have $\left\|u^{I I}\right\|_{0}^{2} \leq N^{-4}\left\|u^{I I}\right\|_{2}^{2} \leq \delta^{-\frac{1}{2}} N^{-2}$. So $\left\|u^{I}\right\|_{0}^{2} \geq \delta^{2}-\delta^{-\frac{1}{2}} N^{-4}$. Choosing $N=N(\delta)=\left[2^{1 / 4} \delta^{-5 / 8}\right]$ we achieve

$$
\left\|u^{I}\right\|_{0}^{2} \geq \frac{1}{2} \delta^{2} \quad \forall u \in \mathcal{O}
$$

The stationary process $E\left(u_{\nu}(\tau)\right)$ satisfies the Ito equation

$$
d E=\left(-\|u(\tau)\|_{1}^{2}+\frac{1}{2} B_{0}\right) d \tau+\sum b_{s} u_{s}(\tau) d \beta_{s}(\tau)
$$

(see in Section $\binom{(\mathbf{s s} 2.5)}{2.5}$. The diffusion coefficient $a(\tau)$ satisfies

$$
a(\tau)=\sum b_{s}^{2}\left|u_{s}(\tau)\right|^{2} \geq \underline{b}_{N}^{2}\left\|u^{I}(\tau)\right\|_{0}^{2}
$$

where $\underline{b}_{N}=\min _{|s| \leq N}\left|b_{s}\right|>0$. So,

$$
\begin{equation*}
a(\tau) \geq \frac{1}{2} \underline{b}_{N}^{2} \delta^{2} \quad \text { if } \quad u(\tau) \in \mathcal{O} \tag{3.2}
\end{equation*}
$$

Besides,

$$
\mathbf{E}|a(\tau)| \leq \frac{\max _{s} b_{s}^{2}}{2} B_{0}, \quad \mathbf{E}\left|-\|u(\tau)\|_{1}^{2}+\frac{1}{2} B_{0}\right| \leq B_{0} .
$$

Let $Q \subset[-R, R]$ be a Borel set and f be its indicator function. Applying the Krylov lemma with the same choices of parameters as in (2.19), passing to the limit as $R \rightarrow \infty$ as in Section $\frac{\frac{\text { SS2. }}{2.7} \text { and }}{}$ taking into account that $E(\tau)$ is a stationary process, we get that

$$
\begin{equation*}
\mathbf{E}\left(a(\tau)^{1 / 2} f(E(\tau)) \leq C|Q|^{1 / 2}\right. \tag{3.3}
\end{equation*}
$$

$$
\mathbf{P}\{u(\tau) \notin \mathcal{O}\} \leq \frac{1}{2} B_{1} \sqrt{\delta}+C \sqrt{\delta}
$$

Jointly with $\binom{3.2}{3.2}$ and $\left(\frac{3.3}{3.3}\right)$ this estimate implies that

$$
\mathbf{P}\left(E_{\nu}(\tau) \in Q\right)=\mathbf{E} f(E(\tau)) \leq C\left(|Q|^{1 / 2} \underline{b}_{N}^{-1} \delta^{-1}\right)+C_{1} \sqrt{\delta} \quad \forall 0<\delta \leq 1
$$

where $N=N(\delta)$. Now (3.1 $\frac{3}{3.1}$) follows.

4 Distributions of functionals of vorticity

In his section we assume that $B_{6}<\infty$. The vorticity $\zeta=\operatorname{rot} u(t, x)$ of a solution u for ($(\mathbb{I} .1)$, written in the fast time $\tau=\nu t$, satisfies the equation

$$
\begin{equation*}
\zeta_{\tau}^{\prime}-\Delta \zeta+\nu^{-1}(u \cdot \nabla) \zeta=\xi(\tau, x) \tag{4.1}
\end{equation*}
$$

Here $\xi=\frac{d}{d t} \sum_{s \in \mathbb{Z}^{2} \backslash\{0\}} \beta_{s}(\tau) \varphi_{s}(x)$ and

$$
\varphi_{s}=\frac{|s|}{\sqrt{2} \pi} \cos s \cdot x, \quad \varphi_{-s}=-\frac{|s|}{\sqrt{2} \pi} \sin s \cdot x
$$

for any s such that $s_{1}+s_{2} \delta_{s_{1,0}}>0$. We will study eq. ($\left.\frac{4.1}{4.1}\right)$ in Sobolev spaces

$$
H^{l}=\left\{\zeta \in H^{l}\left(\mathbb{T}^{2}\right) \mid \int \zeta d x=0\right\}, \quad l \geq 0
$$

given the norms $\|\cdot\|_{l}$, defined as in (11.3).
Let us fix $m \in \mathbb{N}$ and choose any m analytic functions $f_{1}(\zeta), \ldots, f_{m}(\zeta)$, linear independent modulo constant functions. ${ }^{3}$ We assume that the functions $f_{j}(\zeta), \ldots, f_{j}^{\prime \prime \prime}(\zeta)$ have at most a polynomial growth as $|\zeta| \rightarrow \infty$ and that

$$
\begin{equation*}
f_{j}^{\prime \prime}(\zeta) \geq-C \quad \forall j, \quad \forall \zeta \tag{4.2}
\end{equation*}
$$

(for example, each $f_{j}(\zeta)$ is a trigonometric polynomial, or a polynomial of an even degree with a positive leading coefficient). Consider the map

$$
\begin{aligned}
F: H^{l} \rightarrow \mathbb{R}^{m}, \zeta & \mapsto\left(F_{1}(\zeta), \ldots, F_{m}(\zeta)\right), \\
F_{j} & =\int_{\mathbb{T}^{2}} f_{j}(\zeta(x)) d x
\end{aligned}
$$

[^2]where $0<l<1$. Since for any $P<\infty$ we have $H^{l} \subset L_{P}\left(\mathbb{T}^{2}\right)$ if l is sufficiently close to 1 , then choosing a suitable $l=l(F)$ we achieve that the map F is C^{2}-smooth. Let us fix this l. We have
$$
d F(\zeta)(\xi)=\left(\int f_{1}^{\prime}(\zeta(x)) \xi(x) d x, \ldots, \int f_{m}^{\prime}(\zeta(x)) \xi(x) d x\right)
$$

12 Lemma 4.1. If $\zeta \not \equiv 0$, then the rank of $d F(\zeta)$ is m.
Proof. Assume that the rank is $<m$. Then there exists number C_{1}, \ldots, C_{m}, not all equal to zero, such that

$$
\begin{equation*}
\int\left(C_{1} f_{1}^{\prime}(\zeta)+\cdots+C_{m} f_{m}^{\prime}(\zeta)\right) \xi d x=0 \quad \forall \xi \in H^{l} \tag{4.3}
\end{equation*}
$$

Denote $P(\zeta)=C_{\mathrm{h}} f_{2}^{\prime}(\zeta)+\cdots+C_{m} f_{m}^{\prime}(\zeta)$. This is a non-constant analytic function. Due to $\left(\frac{4}{4} .3\right), P(\zeta(x))=$ const. Denote this constant C_{*}. Then the connected set $\zeta\left(\mathbb{T}^{2}\right)$ lies in the discrete set $P^{-1}\left(C_{*}\right)$. So $\zeta\left(\mathbb{T}^{2}\right)$ is a point, i.e. $\zeta(x) \equiv$ const. Since $\int \zeta d x=0$, then $\zeta(x) \equiv 0$.

Now let $\zeta(t)=\operatorname{rot} u_{\nu}(t)$, where u_{ν} is a stationary solution of (N.1). Applying Ito's formula to the process $F(\zeta(\tau)) \in \mathbb{R}^{m}$ and using that F_{j} is an integral of motion for the Euler equation, we get that

$$
\begin{aligned}
d F_{j}(\tau) & \left.=\left(\int f_{j}^{\prime}(\zeta(\tau, x)) \Delta \zeta(\tau, x) d x+\frac{1}{2} \sum_{s} b_{s}^{2} \int f^{\prime \prime}{ }_{j}(\zeta(\tau, x)) \varphi_{s}^{2}(x) d x\right)\right) d \tau \\
& +\sum_{s} b_{s}\left(\int{f^{\prime}}_{j}(\zeta(\tau, x)) \varphi_{s}(x) d x\right) d \beta_{s}(\tau)
\end{aligned}
$$

Since $b_{s} \equiv b_{-s}$ and $\varphi_{s}^{2}+\varphi_{-s}^{2} \equiv|s|^{2} / 2 \pi^{2}$, then

$$
\begin{aligned}
d F_{j}(\tau) & =\left(\int f^{\prime \prime}{ }_{j}(\zeta)\left(-\left|\nabla_{x} \zeta\right|^{2}+\frac{1}{4 \pi} B_{1}\right) d x\right) d \tau \\
& +\sum_{s} b_{s}\left(\int f_{j}^{\prime}(\zeta(\tau, x)) \varphi_{s}(x) d x\right) d \beta_{s}(\tau) \\
& :=H_{j}(\zeta(\tau)) d \tau+\sum_{s} h_{j s}(\zeta(\tau)) d \beta_{s}(\tau)
\end{aligned}
$$

Ito's formula applies since under our assumptions all moments of the random variables $\zeta(\tau, x)$ and $\left|\nabla_{x} \zeta(\tau, x)\right|$ are finite (see $\frac{K}{K} u k 06$ a], Section 4.3). Using
that $F_{j}(\tau)$ is a stationary process, we get from the last relation that $\mathbf{E} H_{j}=0$, i.e.

$$
\begin{equation*}
\mathbf{E} \int f^{\prime \prime}{ }_{j}(\zeta(\tau, x))\left|\nabla_{x} \zeta(\tau, x)\right|^{2} d x=\frac{B_{1}}{4 \pi} \mathbf{E} \int f^{\prime \prime}{ }_{j}(\zeta(\tau, x)) d x . \tag{4.4}
\end{equation*}
$$

Since $B_{6}<\infty$ then all moments of random variables $|\zeta(\tau, x)|$ are bounded uniformly in $\nu \in(0,1]$, see [Kuk06b] and (10.11) in [Kuk06a]. Jointly with (4.0), (4.4. 4.4$)$ and the equality

$$
\mathbf{E} \int\left|\nabla_{x} \zeta(\tau, x)\right|^{2} d x=\mathbf{E}\left\|u_{\nu}(\tau)\right\|_{2}^{2}=\frac{1}{2} B_{1}
$$

this implies that

$$
\begin{equation*}
\mathbf{E}\left|H_{j}(\zeta(\tau))\right| \leq C_{j}<\infty \tag{4.5}
\end{equation*}
$$

uniformly in ν (and for all τ).
Let us consider the diffusion matrix $a(\zeta(\tau)), a_{j l}(\zeta)=\sum_{s} h_{j s}(\zeta) h_{l s}(\zeta)$, and denote $D(\zeta)=\left|\operatorname{det} a_{j l}(\zeta)\right|$. Clearly

$$
\begin{equation*}
\mathbf{E} \operatorname{tr}\left(a_{j l}\right)(\zeta(\tau)) \leq C \tag{4.6}
\end{equation*}
$$

uniformly in ν. Noting that $h_{j s}(\zeta)=b_{s}(d F(\zeta))_{j s}$, we obtain from Lemma $\frac{12}{4.1}$
13 Lemma 4.2. The function D is continuous on H^{l} and $D>0$ outside the origin.

Now we regard ($\stackrel{4.1}{4.1})$ as an equation in H^{1} and set

$$
\mathcal{O}_{\delta}=\left\{\zeta \in H^{1} \mid\|\zeta\|_{1} \leq \delta^{-1},\|\zeta\|_{l} \geq \delta\right\}
$$

Estimates (4.5), (4.6) allow to apply Krylov's lemma with $p=d=m$ to the stationary process $F\left(\zeta_{\nu}(\tau)\right) \in \mathbb{R}^{m}$, uniformly in ν. Choosing there for f the characteristic function of a Borel set $Q \subset\{|z| \leq R\}$, we find that

$$
\begin{equation*}
\mathbf{P}\left\{F\left(\zeta_{\nu}(\tau)\right) \in Q\right\} \leq \mathbf{P}\left\{\zeta_{\nu}(\tau) \notin \mathcal{O}_{\delta}\right\}+c(\delta)^{-1 /(m+1)} C_{R}|Q|^{1 /(m+1)} \tag{4.7}
\end{equation*}
$$

 for $\zeta=\operatorname{rot} u$, then due to $\left(\frac{1.7}{1.4}\right)$ and $\left(\frac{2.2}{2.2}\right)$ the first term in the r.h.s. of $\left(\frac{4.3}{4.7}\right)$ goes to zero with δ uniformly in ν, and we get that

$$
\begin{equation*}
\mathbf{P}\left\{F\left(\zeta_{\nu}(\tau)\right) \in Q\right\} \leq p_{R}(|Q|), \quad p_{R}(t) \rightarrow 0 \text { as } t \rightarrow 0 \tag{4.8}
\end{equation*}
$$

uniformly in ν. Evoking Amplification to Theorem 1.1 .1 we derive from ($\begin{aligned} & 4.4 \\ & 4.8)\end{aligned}$ that the vorticity ζ_{0} of the Eulerian limit U satisfies (4.8), if Q is an open subset of B_{R}. We have got

Theorem 4.3. If $B_{6}<\infty$, then the distribution of the statiqnary solution for the 2D NSE, written in terms of vorticity (4.1), satisfies (4.8) uniformly in ν. The vorticity ζ_{0} of the Eulerian limit U is distributed in such a way that the law of $F\left(\zeta_{0}(\tau)\right)$ is absolutely continuous with respect to the Lebesgue measure in \mathbb{R}^{m}.

Corollary 4.4. Let $X \Subset \mathcal{H} \cap C^{1}\left(\mathbb{T}^{2} ; \mathbb{R}^{2}\right)$ be a compact set of finite Hausdorff dimension. Then $\mu_{0}(X)=0$.

Proof. Denote the Hausdorff dimension of X by d and choose any $m>d$. Then $(F \circ \operatorname{rot})(X)$ is a subset of \mathbb{R}^{m} of positive codimension. So its measure with respect to $\mathcal{D}\left(f\left(\zeta_{0}(t)\right)\right.$ equals zero. Since $\mathcal{D}\left(f\left(\zeta_{0}(t)\right)=(F \circ\right.$ rot $) \circ \mu_{0}$, then $\mu_{0}(X)=0$.

5 Appendix: rotation of solid body

The Euler equation for a freely rotating solid body, written in terms of its momentum $M \in \mathbb{R}^{3}$, is

$$
\begin{equation*}
\dot{M}+\left[M, A^{-1} M\right]=0 \tag{5.1}
\end{equation*}
$$

where A is the operator of inertia and $[$.] is the vector product. The corresponding damped/driven equation (0.5) is

$$
\begin{equation*}
\dot{M}+\left[M, A^{-1} M\right]+\nu M=\sqrt{\nu} \eta(t), \tag{5.2}
\end{equation*}
$$

where the random force is $\eta(t)=\frac{d}{d t} \sum_{j=1}^{3} b_{j} \beta_{j}(t) e_{j}$ with non-zero b_{j} 's, and $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the eigenbasis of the operator A. Eq. (5.2) has a unique stationary measure μ_{ν}. Let $M_{\nu}(t)$ be a corresponding stationary solution. An inviscid limit, similar to that in Theorem $\stackrel{t}{1.1}$, holds:

$$
\begin{equation*}
\mathcal{D} M_{\nu_{j}}(\cdot) \rightharpoonup \mathcal{D} M_{0}(\cdot) \quad \text { as } \quad \nu_{j} \rightarrow 0 \tag{5.3}
\end{equation*}
$$

To analyse further the processes M_{ν} with $\nu \ll 1$ and the inviscid limit M_{0}, we note that a.e. level set of the vector-integral $H=\left(H_{1}, H_{2}\right)$ is formed by two periodic trajectories of (5.1) (see [ATrn89]). Denote them $S_{\left(H_{1}, H_{2}\right)}^{ \pm}$. It is easy to see that the conditional probabilities for $M_{\nu}(t)$ to belong to $S_{\left(H_{1}, H_{2}\right)}^{+}$or to $S_{\left(H_{1}, H_{2}\right)}^{-}$are equal. Since the dynamics, defined by (5.1) on each set $S_{\left(H_{1}, H_{2}\right)}^{ \pm}$obviously is ergodic with respect to a corresponding measure
 $H\left(M_{\nu_{j}}(\tau)\right) \in \mathbb{R}^{2}, \tau=\nu_{j} t$, and allow to prove that a limiting process $H_{0}(\tau)$ exists and satisfies a SDE, obtained from the equation for $H(M(\tau))$ by the usual stochastic averaging with respect to the ergodic measures $\nu_{\left(H_{1}, H_{2}\right)}^{ \pm}$on the curves $S_{\left(H_{1}, H_{2}\right)}^{ \pm}$. It is very plausible that the averaged equation has a unique stationary measure θ. If so, then

$$
\mathcal{D}\left(H\left(M_{0}\right)\right)=\theta
$$

and

$$
\mathcal{D}\left(M_{0}\right)=\sum_{\alpha \in\{+,-\}} \int_{\mathbb{R}^{2}} \pi_{\alpha} \nu_{\left(H_{1}, H_{2}\right)}^{\alpha} \theta\left(d H_{1} d H_{2}\right),
$$

where $\pi_{+} \overline{\overline{0}} \pi_{-}=1 / 2$. Cf. Theorem 6.6 in $[\mathrm{KP06} 06]$. In particular, the convergence (5.3) holds as $\nu \rightarrow 0$ (i.e., the limit does not depend on a sequence $\left.\nu_{j} \rightarrow 0\right)$.

The representation above for the measure $\mathcal{D}\left(M_{0}\right)$ is called its disintegration with respect to the map $H: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, and may ${ }^{0} 0 \mathcal{F}_{\text {arn }}$ obtained independently from the arguments above (see references in [Kuk07]). The role of the arguments is to represent the measure θ in terms of the averaged equation. The measure $\mu_{0}=\mathcal{D} U(0)$, corresponding to the Eulerian limit U (Theorem 1.1) also admits a similar disintegration, see $\frac{[0,7 \mathrm{Arn}}{\mathrm{Kuk07}] . \text { In that work }}$ we conjecture an averaging procedure to find the measures, involved in the disintegration of μ_{0}.

References

A1 [Arn89] V. Arnold, Mathematical Methods in Classical Mechanics, 2nd ed., Springer-Verlag, Berlin, 1989.

[^3]FW98 [FW98] M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems, 2nd ed., Springer-Verlag, New York, 1998.

WF03 [FW03] M. I. Freidlin and A. D. Wentzell, Averaging principle for stochastic perturbations of multifrequency systems, Stochastics and Dynamics 3 (2003), 393-408.

HM06 [HM06] M. Hairer and J. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Annals of Mathematics 164 (2006), no. 3.

KP06 [KP06] S. B. Kuksin and A. L. Piatnitski, Khasminskii - Whitham averaging for randomly perturbed KdV equation, Preprint (2006), see at www.ma.hw.ac.uk/ ${ }^{\text {kuksin/rfpdeLim.html. }}$

Kry86 [Kry87] N. V. Krylov, Estimates of the maximum of the solution of a parabolic equation and estimates of the distribution of a semimartingale, Math. USSR Sbornik, 58 (1987), 207-221.

KS04J [KS04] S. B. Kuksin and A. Shirikyan, Randomly forced CGL equation: stationary measures and the inviscid limit, J. Phys. A: Math. Gen. 37 (2004), 1-18.

K3 [Kuk06a] S. B. Kuksin, Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions, Europear Mathematical Society Publishing House, 2006, also see mp_arc 06-178.

K06J [Kuk06b] , Remarks on the balance relations for the two-dimensional Navier-Stokes equation with random forcing, J. Stat. Physics 122 (2006), 101-114.

K07Arn [Kuk07] _ Eulerian limit for 2D Navier-Stokes equation and damped/driven KdV equation as its model, preprint (2007).

[^0]: ${ }^{1}$ We are thankful to V. V. Kozlov and members of his seminar in MSU for drawing our attention to this equation.

[^1]: ${ }^{2}$ Due to results of the recent work HMO6 HM06], the stationary measure μ_{ν} js tauique if $b_{s} \neq 0$ for $|s| \leq N$, where N is a ν-independent constant. Theorems 1.1 and 2.1 below remain true under this weaker assumption, but our arguments in Sections 3,4 use essentially that all coefficients b_{s} are non-zero.

[^2]: ${ }^{3}$ I.e., $C_{1} f_{1}(\zeta)+\cdots+C_{m} f_{m}(\zeta) \neq$ const, unless $C_{1}=\cdots=C_{m}=0$.

[^3]: ${ }^{4}$ the density of the measure $\nu_{\left(H_{1}, H_{2}\right)}^{ \pm}$against the Lebesgue measure on the curve $S_{\left(H_{1}, H_{2}\right)}^{ \pm}$ is inverse-proportional to velocity of the trajectory.

