
On distribution of energy and vorticity for
solutions of 2D Navier-Stokes equations with

small viscosity

Sergei B. Kuksin

Abstract

We study distributions of some functionals of space-periodic so-
lutions for the randomly perturbed 2D Navier-Stokes equation, and
of their limits when the viscosity goes to zero. The results obtained
give explicit information on distribution of the velocity field of space-
periodic turbulent 2D flows.

0 Introduction
s0

We consider the 2D Navier-Stokes equation (NSE) under periodic boundary
conditions, perturbed by a random force:

v′τ − ε∆v + (v · ∇)v +∇p̃ = εa η̃(τ, x),

div v = 0, v = v(τ, x) ∈ R2, p̃ = p̃(τ, x), x ∈ T2 = R2/(2πZ2).
(0.1) 00

Here 0 < ε � 1 and the scaling exponent a is a real number. We assume
that a < 3

2
since a ≥ 3

2
corresponds to non-interesting equations with small

solutions (see
K3
[Kuk06a], Section 10.3). It is also assumed that

∫
v dx ≡∫

η̃ dx ≡ 0 and that the force η̃ is a divergence-free Gaussian random field,
white in time and smooth in x. Under mild non-degeneracy assumption on
η̃ (see in Section

s1
1) the Markov process which the equation defines in the

function space H,

H = {u(x) ∈ L2(T2; R2) | div u = 0,

∫
T2

u dx = 0} ,
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has a unique stationary measure. We are interested in asymptotic (as ε → 0)
properties of this measure and of the corresponding stationary solution. The
substitution

v = εbu , τ = ε−bt , ν = ε3/2−a ,

where b = a− 1/2, reduces eq. (
00
0.1) to

u̇− ν∆u + (u · ∇)u +∇p =
√

ν η(t, x), div u = 0, (0.2) NSE

where u̇ = u′t and η(t) = εb/2η̃(ε−bt) is a new random field, distributed as η̃
(see

K3
[Kuk06a]). Below we study eq. (

NSE
0.2).

Let µν be the unique stationary measure for (
NSE
0.2) and uν(t) ∈ H be

the corresponding stationary solution, i.e., Duν(t) ≡ µν (here and below D
signifies the distribution of a random variable). Comparing to other equa-
tions (

00
0.1), the equation (

NSE
0.2) has the special advantage: when ν → 0 along

a subsequence {νj}, stationary solution uνj
converges in distribution to a

stationary process U(t) ∈ H, formed by solutions of the Euler equation

u̇(t, x) + (u · ∇)u +∇p = 0 , div u = 0 . (0.3) E

Accordingly, µνj
⇀ µ0, where µ0 = DU(0) is an invariant measure for (

E
0.3)

(see below Theorem
t1
1.1). The solution U is called the Eulerian limit. This is

a random process of order one since E|∇xU(t, ·)|2H equals to an explicit non-
zero constant. The goal of this paper is to study properties of the measure µ0

since they are responsible for asymptotical properties of solutions for equation
(
00
0.1).

The first main difficulty in this study is to rule out the possibility that
with a positive probability the energy E(uν) of the process uν , equal to
1
2

∫
|uν(t, x)|2 dx, becomes very small with ν (and that the energy of the

Eulerian limit vanishes with a positive probability). In Section
s2
2 we show

that this is not the case and that

P{E(uν) < δ} ≤ Cδ1/4, ∀ δ > 0, (0.4) est

for each ν. To prove the estimate we develop further some ideas, exploited in
KP06
[KP06] in a similar situation. Namely, we construct a new process ũν ∈ H,
coupled to the process uν , such that E(ũν(τ)) = E(uν(τν−1)) and ũν satisfies
an Ito equation, independent from ν. Next we use Krylov’s result

Kry86
[Kry87] on

distribution of Ito integrals to estimate Dũν(τ) and recover (
est
0.4).
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In Section
s3
3 we use (

est
0.4) to prove that the distribution of energy of the

Eulerian limit U has a density against the Lebesgue measure, i.e.

DE(U) = e(x) dx, e ∈ L1(R+).

The functionals Φf (u(·)) =
∫

f(rot u(x)) dx are integrals of motion for the
Euler equation. An analogy with the averaging theory for finite-dimensional
stochastic equations (e.g., see

WF03
[FW03]) suggests that their distributions be-

have well when ν → 0. Accordingly, in Section
s4
4 we study the distributions

of vector-valued random variables

Φf (uν(t)) =
(
Φf1(uν(t), . . . , Φfm(uν(t)

)
∈ Rm ,

and of Φf (U(t)). Assuming that the functions fj are analytic, linearly inde-
pendent and satisfy certain restriction on growth, we show that the distribu-
tion of Φf (U(t)) has a density against the Lebesgue measure:

D
(
ΦfU(t)

)
= pf (x) dx′ , pf ∈ L1(Rm).

To prove this result we show that the measures DΦfuν(t) are absolutely
continuous with respect to the Lebesgue measure, uniformly in ν. The proof
crucially uses (

est
0.4) as well as obtained in

K06J
[Kuk06b] uniform in ν bounds on

exponential moments of the random variables rot(uν(t, x)).
Since m is arbitrary, then this result implies that the measure µ0 is gen-

uinely infinite dimensional in the sense that any compact set of finite Haus-
dorff dimension has zero µ0-measure.

Other equations. The results and the methods of this work apply to other
PDE of the form

〈Hamiltonian equation〉+ ν〈dissipation〉 =
√

ν 〈random force〉 , (0.5) DampDr

provided that the corresponding Hamiltonian PDE has at least two ‘good’
integrals of motion. In particular, they apply to the randomly forced complex
Ginzburg-Landau equation

u̇− (ν + i)∆u + i|u|2u =
√

ν η(t, x), dim x ≤ 4, (0.6) CGL

supplemented with the odd periodic boundary conditions. The correspond-
ing Hamiltonian PDE is the NLS equation, having two ‘good’ integrals: the
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Hamiltonian H and the total number of particles E = 1
2

∫
|u|2 dx. Eq. (

CGL
0.6)

was considered in
KS04J
[KS04], where it was proved that for stationary in time

solutions uν of (
CGL
0.6) an inviscid limit V (t) (as ν → 0 along a subsequence)

exists and possesses properties, similar to those, stated in Theorem
t1
1.1. The

methods of this work allow to prove that the random variable E(uν(t)) sat-
isfies (

est
0.4) uniformly in ν > 0, that H(uν(t)) meets similar estimates and

that V is distributed in such a way that D
(
H(V (t))

)
and D

(
E(V (t))

)
are

absolutely continuous with respect to the Lebesgue measure.
If dim x = 1, then the NLS equation is integrable and the inviscid limit V

may be analysed further, using the methods, developed in
KP06
[KP06] to study

the damped/driven KdV equation (which is another example of the system
(
DampDr
0.5)).

Certainly our methods as well apply to some finite-dimensional systems
of the form (

DampDr
0.5). In particular – to Galerkin approximations for the 3D NSE

under periodic boundary conditions, perturbed by a random force, similar to
(
force
1.2). It is easy to establish for that system analogies of results in Sections

s1
1-

s3
3. More interesting example is given by system (

DampDr
0.5), where the Hamiltonian

equation is the Euler equation for a rotating solid body
A1
[Arn89]. This sys-

tem can be cautiously regarded as a finite-dimensional model for (
00
0.1); see

Appendix.1

1 Preliminaries
s1

Using the Leray projector Π : L2(T2; R2) → H we rewrite eq. (
NSE
0.2) as the

equation for u(t) = u(t, ·) ∈ H:

u̇ + νA(u) + B(u) =
√

ν η(t). (1.1) N

Here A(u) = −Π∆u and B(u) = Π(u · ∇)u. We denote by ‖ · ‖ and by (·, ·)
the L2-norm and scalar product in H. Let (es, s ∈ Z2 \ {0}) be the standard
trigonometric basis of this space:

es(x) =
sin(s · x)√

2π|s|

[
−s2

s1

]
or es(x) =

cos(s · x)√
2π|s|

[
−s2

s1

]
,

1We are thankful to V. V. Kozlov and members of his seminar in MSU for drawing our
attention to this equation.
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depending whether s1 +s2δs1,0 > 0 or s1 +s2δs1,0 < 0. The force η is assumed
to be a Gaussian random field, white in time and smooth in x:

η =
d

dt
ζ(t, x), ζ =

∑
s∈Z2\{0}

bsβs(t)es(x) , (1.2) force

where {bs} is a set of real constants, satisfying

bs = b−s 6= 0 ∀ s,
∑

|s|2b2
s < ∞ ,

and {βs(t)} are standard independent Wiener processes.
This equation is known to have a unique stationary measure µν .

2 This
is a probability Borel measure in the space H which attracts distributions
of all solutions for (

N
1.1). Let uν(t, x) be a corresponding stationary solution,

i.e.
Duν(t) ≡ µν .

Apart from being stationary in t, this solution is known to be stationary
(=homogeneous) in x.

For any l ≥ 0 we denote by Hl, l ≥ 0, the Sobolev space H ∩H l(T2; R2),
given the norm

‖u‖l =
( ∫ (

(−∆)l/2u(x)
)2

dx
)1/2

(1.3) norm

(so ‖u‖0 = ‖u‖). A straightforward application of Ito’s formula to ‖uν(t)‖2

and ‖uν(t)‖2
1 implies that

E ‖uν(t)‖2
1 ≡

1

2
B0 , E‖uν(t)‖2

2 ≡
1

2
B1 , (1.4) ito

where for l ∈ R we denote Bl =
∑
|s|2lb2

s (note that B0, B1 < ∞ by assump-
tion); e.g. see in

K3
[Kuk06a].

The theorem below describes what happen to the stationary solutions
uν(t, x) as ν → 0. For the theorem’s proof see

K3
[Kuk06a].

2Due to results of the recent work
HM06
[HM06], the stationary measure µν is unique if bs 6= 0

for |s| ≤ N , where N is a ν-independent constant. Theorems
t1
1.1 and

t2
2.1 below remain

true under this weaker assumption, but our arguments in Sections
s3
3,

s4
4 use essentially that

all coefficients bs are non-zero.
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t1 Theorem 1.1. Any sequence ν̃j → 0 contains a subsequence νj → 0 such
that

Duνj
(·) ⇀ DU(·) in P

(
C(0,∞;H1)

)
. (1.5) conv

The limiting process U(t) ∈ H1, U(t) = U(t, x), is stationary in t and in x.
Moreover,

1)a) every its trajectory U(t, x) is such that

U(·) ∈ L2 loc(0,∞;H2), U̇(·) ∈ L1 loc(0∞;H1) .

b) It satisfies the free Euler equation (
E
0.3), so µ0 = D(U(0)) is an invari-

ant measure for (
E
0.3),

c) ‖U(t)‖0 and ‖U(t)‖1 are time-independent quantities. If g is a bounded
continuous function, then

∫
T2 g(rot U(t, x)) dx also is a time-independent

quantity.
2) For each t ≥ 0 we have E‖U(t)‖2

1 = 1
2
B0, E‖U(t)‖2

2 ≤ 1
2
B1 and

E exp
(
σ‖U(t)‖2

1

)
≤ C for some σ > 0, C ≥ 1.

Amplification. If B2 < ∞, then the convergence (
conv
1.5) holds in the space

P(C(0,∞;Hκ)), for any κ < 2.

See
K3
[Kuk06a], Remark 10.4.

Due to 1b), the measure µ0 = DU(0) is invariant for the Euler equation.
By 2) it is supported by the space H2 and is not a δ-measure at the origin.
The process U is called the Eulerian limit for the stationary solutions uν of
(
N
1.1). Note that apriori the process U and the measure µ0 depend on the

sequence νj.
Since ‖u‖2

1 ≤ ‖u‖0‖u‖2 and E ‖u‖2
1 ≤ (E‖u‖2

0)
1/2(E‖u‖2

1)
1/2, then (

ito
1.4)

implies that
1

2
B2

0B
−1
1 ≤ E‖uν(t)‖2

0 ≤
1

2
B1 (1.6) es

for all ν. That is, the characteristic size of the solution uν remains ∼ 1 when
ν → 0. Since the characteristic space-scale also is ∼ 1, then the Reynolds
number of uν grows as ν−1 when ν decays to zero. Hence, Theorem

t1
1.1

describes a transition to turbulence for space-periodic 2D flows, stationary
in time. Recall that eq. (

NSE
0.2) is the only 2D NSE (

00
0.1), having a limit of order

one as ν → 0 (cf.
K3
[Kuk06a], Section 10.3). Thus the various Eulerian limits

as in Theorem
t1
1.1 with different coefficients {bs} (corresponding to different

spectra of the applied random forces) describe all possible 2D space-periodic
stationary turbulent flows.

Our goal is to study further properties of the Eulerian limit.
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2 Estimate for energy of solutions
s2

2.1 The result
ss2.1

The energy Eν(t) = 1
2
‖uν(t)‖2

0 of a stationary solution uν is a stationary
process. It satisfies the relations

1

4
B2

0B
−1
1 ≤ EEν(t) =

1

4
B0 , E exp(σEν(t)) ≤ C , (2.1) 2.1

where σ, C > 0 are independent from ν (see (
es
1.6) and

K3
[Kuk06a], Section 4.3).

Let us arrange the numbers |bs| in the decreasing order: |bs1| ≥ |bs2| ≥ . . . .

t2 Theorem 2.1. There exists a constant C > 0, depending only on B1 and
|bs2|, such that

P{Eν(t) < δ} ≤ Cδ1/4, (2.2) 2.2

uniformly in ν ∈ (0, 1].

Due to the convergence (
conv
1.5), the energy E0(t) = 1

2
‖U(t)‖2 of the Eulerian

limit also satisfies (
2.2
2.2).

Introducing the fast time τ = tν−1 we get for u(τ) = u(τ, x) the equation

du(τ) = (−Au− ν−1B(u))dτ +
∑

s

bses dβs(τ) , (2.3) 2.3

where {βs(τ) =
√

ν βs(ντ), s ∈ Z2\0}, are new standard independent Wiener
processes.

2.2 Beginning of proof
ss2.2

The proof goes in five steps. We start with a geometrical lemma which is
used below in the heart of the construction.

Let us denote by S the sphere {u ∈ H | ‖u‖0 = 1}. Let {ej, j ≥ 1}, be
the basis {es, s ∈ Z2 \{0}}, re-parameterised by the natural numbers in such
a way that ej = es(j), where |s(j)| ≥ |s(i)| if j ≥ i.

l1 Lemma 2.2. There exists δ > 0 with the following property. Let v0, ṽ0 be
any two points in S. Then for (v, ṽ) ∈ S × S such that

‖v − v0‖0 < δ, ‖ṽ − ṽ0‖0 < δ (2.4) 2.4
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there exists an unitary operator U(v,ṽ) = U
(v0,ṽ0)
(v,ṽ) of the space H, satisfying

i) U is an operator-valued Lipschitz function of v and ṽ with a Lipschitz
constant ≤ 2;

ii) U(v,ṽ)(ṽ) = v;
iii) there exists a unitary vector η = η(v, ṽ) in the plane span {e1, e2} such

that the vector U(v,ṽ)(η) makes with this plane an angle ≤ π/4. Accordingly,

max
i,j∈{1,2}

∣∣(U(v,ṽ)ei, ej)
∣∣ ≥ c∗, (2.5) 2.5

where c∗ > 0 is an absolute constant.

Proof. Let us start with the following observation:
There exists δ > 0 such that for any v0 ∈ S and v1 ∈ {v ∈ S | ‖v −

v0‖0 < δ} there exists an unitary transformation Wv1,v0 of the space H with
the following property: Wv0,v0 = id, Wv1,v0(v0) = v1 and W is a Lipschitz
function of v1 and v0 with a Lipschitz constant ≤ 2.

To prove the assertion let us denote by A the linear space of bounded
anti self-adjoint operators in H (given the operator norm), and consider the
map

A× S → S, (A, v) 7→ eAv .

Note that the differential of this map in A, evaluated at A = 0, v = v0, is the
map A′ 7→ A′v0, which sends A to the space Tv0S = {v ∈ H | (v, v0) = 0} and
admits a right inverse operator of unit norm. So the assertion with W = eA,
where A satisfies the equation eAv0 = v1, follows from the implicit function
theorem.

To prove the lemma we choose unit vectors η0, η̃0 ∈ span {e1, e2} such
that (v0, η0) = 0 and (ṽ0, η̃0) = 0. Next we choose an unitary transformation
U , such that U(ṽ0) = v0 and U(η̃0) = η0. For vectors v, ṽ, satisfying (

2.4
2.4),

denote U(ṽ) = ξ̃. Then ‖ξ̃ − v0‖0 < δ. Let Wv,ξ̃ be the operator from the
assertion above. We set Uv,ṽ = Wv,ξ̃ ◦ U . This operator obviously satisfies i)

and ii). Since ‖Uv,ṽ(η̃0)− η0‖0 ≤ Cδ, then choosing δ < C−12−1/2 we achieve
iii) with η = η̃0.

Remark. Let j1 and j2 be any two different natural numbers. The same
arguments as above prove existence of an unitary operator U , satisfying i),
ii) and such that maxi∈{1,2}, j∈{j1,j2}

∣∣(Uei, ej)
∣∣ ≥ c∗ .

For any (v0, ṽ0) ∈ S × S let Oδ(v0, ṽ0) ⊂ S × S be the open domain,
formed by all pairs (v, ṽ), satisfying (

2.4
2.4). Let O1,O2, . . . be a countable
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system of domains Oδ/2(vj, ṽj) =: Oj, j ≥ 1, which cover S × S. We call
(vj, ṽj) the centre of the domain Oj.

Consider the mapping

S × S → N, (v, ṽ) 7→ n(v, ṽ) = min{j | (v, ṽ) ∈ Oj} . (2.6) map

It is measurable with respect to the Borel sigma-algebras. Finally, for j =
1, 2, . . . and (v, ṽ) ∈ Oj we define the operators

U j
v,ṽ = U

(vj ,ṽj)
v,ṽ .

2.3 Step 1: equation for ũ(t)
ss2.3

Till the end of Section
s2
2 for any u ∈ H we will denote

v = u/‖u‖0 if u 6= 0 and v = e1 if u = 0. (2.7) denote

Let us fix any T0 > 0. We start to construct a process ũ(τ), 0 ≤ τ ≤
T0, with continuous trajectories, satisfying ‖ũ(τ)‖0 ≡ ‖u(τ)‖0. The process
will be constructed as a solution of a stochastic equation, in terms of some
stopping times 0 = τ0 ≤ τ1 < τ2 < . . . .

We set τ0 = 0 and define a random variable n0 = n(v(0), v(0)) ∈ N
(see (

map
2.6)). Let us consider the following stochastic equation for u(τ) =

(u(τ), ũ(τ)) ∈ H ×H:

du(τ) = (−Au− ν−1B(u))dτ +
∑

s

bses dβs(τ), (2.8) e1

dũ(τ) = −U∗
uAu dτ +

∑
s

U∗
ubses dβs(τ). (2.9) e2

Here U∗
u is the adjoint to the unitary operator Uu = U

n0(ω)
v,ṽ (where v = v(u)

and ṽ = ṽ(ũ), see (
denote
2.7)). Let us fix any γ ∈ (0, 1] and define the stopping

times

Tγ = inf{τ ∈ [0, T0] | ‖u(τ)‖0 ∧ ‖ũ(τ)‖0 ≤ γ or ‖u(τ)‖2 ≥ γ−1} ,

τ1 = inf{τ ∈ [0, T0] | u(τ) /∈ Oδ(vn0 , ṽn0)} ∧ Tγ .

Here and in similar situations below inf ∅ = T0, and (vn0 , ṽn0) is the centre
of the domain On0 .
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For 0 ≤ τ ≤ τ1 the operator Uu is a Lipschitz function of u since ‖u‖0 ≥ γ
and ‖ũ‖0 ≥ γ. As ‖u(τ)‖2 ≤ γ−1 for τ ≤ Tγ, then it is not hard to see that
the system (

e1
2.8),(

e2
2.9), supplemented with the initial condition

u(0) = (u(0), u(0)) (2.10) 2.8

has a unique strong solution u(τ), 0 ≤ τ ≤ τ1, satisfying

E sup
0≤τ≤τ1

‖ũ(τ)‖2
0 ≤ C(T0, ν, γ). (2.11) 2.9

Next we set n1 = n(v(τ1), ṽ(τ1)) and for τ ≥ τ1 re-define the operator Uu

in (
e2
2.9) as U

n1(ω)
v,ṽ (as before, v = v(u(τ)) and ṽ = ṽ(ũ(τ))). We set

τ2 = inf{τ ∈ [τ1, T0] | u(τ) /∈ Oδ(vn1 , ṽn1)} ∧ Tγ,

where (vn1 , ṽn1) is the centre of On1 , and consider the system (
e1
2.8), (

e2
2.9) for

τ1 ≤ τ ≤ τ2 with the initial condition at τ1, obtained by continuity. The
system has a unique strong solution and (

2.9
2.11) holds with τ1 replaced by τ2.

Iterating this construction we obtain stopping times τ0 ≤ τ1 ≤ τ2 ≤ . . . , the
operator Uu(τ), piecewise constant in τ and discontinuous at points τ = τj, as
well as a strong solution u(τ) of (

e1
2.8)-(

2.8
2.10), defined for 0 ≤ τ < limj→∞ τj ≤

Tγ, and satisfying (
2.9
2.11) with τ1 replaced by any τj. Clearly τj < τj+1, unless

τj = τj+1 = Tγ.

2.4 Step 2: growth of stopping times τj

For any τ ≥ 0 let us write ũ(τ ∧ Tγ) as

ũ(τ ∧ Tγ) = u(0)−
∫ τ∧Tγ

0

U∗A(u) dθ +

∫ τ∧Tγ

0

∑
s

bsU
∗es dβs =: (ũ1 + ũ2)(τ) .

Since ‖u‖2 ≤ γ−1, then the process ũ1(τ) ∈ H is Lipschitz in τ . A straight-
forward application of the Kolmogorov criterion implies that the process
ũ2(τ) ∈ H a.s. satisfies the Hölder condition with the exponent 1/3. So the
process ũ(τ ∧ Tγ) is a.s. Hölder. The process u(τ ∧ Tγ) is Hölder as well, so

‖u
(
(τj + ∆) ∧ Tγ; ω)− u(τj; ω)‖0 ≤ K(ω)∆1/3 .

Since ‖u(τj+1)−u(τj)‖0 ≥ δ
2

unless τj+1 = Tγ, then |τj+1− τj| ≥ (δ/2K(ω))3

or τj+1 = Tγ. As τj ≤ Tγ ≤ T0, then

τj = Tγ for j ≥ j(γ; ω) , (2.12) 2.10
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where j(γ) < ∞ a.s.
We have constructed a process u(τ), τ ∈ [0, Tγ], which satisfies (

e1
2.8)-

(
2.8
2.10), where the operator Uu is a piecewise constant function of τ .

2.5 Step 3: ‖ũ(τ)‖0 ≡ ‖u(τ)‖0 for τ ≤ Tγ
ss2.5

For j = 0, 1, . . . we will prove the following assertion:

if ‖ũ(τj)‖0 = ‖ u(τj)‖0 a.s., then

‖ũ(τ)‖0 = ‖ u(τ)‖0 for τj ≤ τ ≤ τj+1, a.s.
(2.13) 2.11

Since ũ(τ0) = u(τ0), then (
2.10
2.12) and (

2.11
2.13) would imply that

‖ũ(τ)‖0 = ‖ u(τ)‖0 ∀ 0 ≤ τ ≤ Tγ , (2.14) 2.12

for any γ > 0.
To prove (

2.11
2.13) we consider (following Lemma 7.1 in

KP06
[KP06]) the quan-

tities E(τ) = 1
2
‖u(τ)‖2

0 and Ẽ(τ) = 1
2
‖ũ(τ)‖2

0. Due to Ito’s formula we
have

dE = (u,−Au) dτ +
1

2
B0dτ + (u,

∑
s

bses dβs(τ))

and

dẼ =(ũ,−U∗Au) dτ +
1

2

∑
b2
s|U∗es|2dτ + (ũ,

∑
s

bs(U
∗es) dβs(τ))

=
‖ũ‖0

‖u‖0

(u,−Au) dτ +
1

2
B0dτ +

‖ũ‖0

‖u‖0

(u,
∑

s

bses dβs(τ)) .

Therefore,

d(E − Ẽ)2 =2(E − Ẽ)
‖u‖0 − ‖ũ‖0

‖u‖0

(u,−Au) dτ(‖u‖0 − ‖ũ‖0

‖u‖0

)2 ∑
s

b2
s(u, es)

2dτ +Mτ ,

where Mτ stands for the corresponding stochastic integral.
For 0 ≤ τ ≤ Tγ let us denote J(τ) = (E − Ẽ)2

(
(τ ∨ τi) ∧ τi+1

)
. Then

d

dτ
EJ(τ) =2E

(
(E − Ẽ)

‖u‖0 − ‖ũ‖0

‖u‖0

(u− Au)Iτi≤τ≤τi+1

)
+E

((‖u‖0 − ‖ũ‖0

‖u‖0

)2 ∑
b2
s(u, es)

2Iτi≤τ≤τi+1

)
.
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Since ‖u‖0 − ‖ũ‖0 = 2(E−Ẽ)
‖u‖0+‖ũ‖0 and |(u,−Au)| ≤ γ−2, ‖u‖0, ‖ũ‖0 ≥ γ, then

d
dτ

EJ(τ) ≤ CγEJ(τ). As J(0) = 0, then EJ(τ) ≡ 0 and (
2.11
2.13) is established.

Accordingly (
2.12
2.14) also is proved.

2.6 Step 4: limit γ → 0

Since B2 < ∞, then u(τ) satisfies the γ-independent estimate

E sup
0≤τ≤T0

‖u(τ)‖2 ≤ C(T0, ν)

(see
K3
[Kuk06a], Section 4.3). Accordingly

P
{

sup
0≤τ≤T0

‖u(τ)‖2 ≤ γ−1
}
→ 1 as γ → 0. (2.15) 2.20

Let us denote by û(τ) the 4-vector (u1(τ), . . . , u4(τ)), where u(τ) =∑
uj(τ)ej (we recall that e1, e2, . . . are the basis vectors es, re-parameterised

by natural numbers). Then

ûj(τ) = uj(0) +

∫ τ

0

Fjds + bjβj(s), j = 1, . . . , 4 ,

where Fj is the j-th component of the drift in (
2.3
2.3). Since û is a stationary

process, then P{û(0) = 0} = 0 (this follows, say, from Krylov’s result, used
in the next subsection). Setting FR

j = Fj ∧R, we denote by ûR(τ) ∈ R4 the
process

ûR
j (τ) = uj(0) +

∫ τ

0

FR
j ds + bjβj(s), j = 1, . . . , 4 .

By the Girsanov theorem, distribution of the process ûR(τ), 0 ≤ τ ≤ T0,
is absolutely continuous with respect to the process (b1β1, . . . , b4β4) + û(0).
Therefore

P{ min
0≤τ≤T0

|ûR(τ)| = 0} = 0 , (2.16) 2.21

for any R. Since max0≤τ≤T0 |ûR(τ) − û(τ)| → 0 as R → ∞ in probability,
then the process û(τ) also satisfies (

2.21
2.16). Jointly with (

2.20
2.15) this implies

that
P{Tγ = T0} → 1 as γ → 0 ,

and we derive from (
2.12
2.14) the relation

‖ũ(τ)‖0 = ‖u(τ)‖0 ∀ 0 ≤ τ ≤ T0, a.s.

12



2.7 Step 5: end of proof
ss2.7

The advantage of the process ũ compare to u is that it satisfies the ν-
independent Ito equation (

e2
2.9). Let us consider the first two components

of the process:

dũj = −
(
U∗

u,ũ(τ)A(u)
)

j
dτ +

∞∑
l=1

(
U∗

u,ũ(τ)
)

jl
bl dβl(τ) , (2.17) 2.23

where j = 1, 2. Denoting aj(τ) =
∑∞

l=1

(
U∗

jlbl

)2
=

∑∞
l=1

(
Uljbl

)2
and using

(
2.5
2.5) we find that a.s.

C ≥ a1(τ) + a2(τ) ≥ c > 0 ∀ τ , (2.18) 2.24

where C = 2
√

B0 and c depends only on |b1| ∧ |b2|. Due to (
ito
1.4) for each

τ ≥ 0 we have E|U∗A(u(τ))|j ≤
√

B1/2. This bound and the first estimate
in (

2.24
2.18) imply that Lemma 5.1 from

Kry86
[Kry87] applies to the Ito equation

(
2.23
2.17) uniformly in ν if we choose the lemma’s parameters as follows:

d = 1, γ = 1, As = s, rs = 1, cs = 1, yt = t, ϕt = t. (2.19) kry

Taking in the lemma for f(t, x) the characteristic function of the segment
[−δ, δ], we get

E

∫ γR

0

e−taj(τ)1/2I{|ũj(τ)|≤δ} dτ ≤ C
√

δ , j = 1, 2,

where γR ≤ 1 is the first exit time ≤ 1 of the process ũj from the segment
[−R,R]. Sending R to ∞ we get that

E

∫ 1

0

aj(τ)1/2I{|ũj(τ)|≤δ} dτ ≤ C1

√
δ , j = 1, 2 , (2.20) 2.25

uniformly in ν.
For c as in (

2.24
2.18) let us consider the event Qτ

1 = {a1(τ) ≥ 1
2
c} and denote

by Qτ
2 its complement. Then

a1(τ) ≥ 1

2
c on Qτ

1 and a2(τ) ≥ 1

2
c on Qτ

2. (2.21) 2.26

Let us set
Qτ = {|ũ1(τ)|+ |ũ2(τ)| ≤ δ}.

13



Then

P(Qτ ) = E(IQτ IQτ
1

+ IQτ IQτ
2
) ≤ E(I{|ũ1(τ)|≤δ}IQτ

1
+ I{|ũ2(τ)|≤δ}IQτ

2
).

By (
2.26
2.21) the r.h.s. is bounded by√

2

c
E

(
I{|ũ1(τ)|≤δ}

√
a1 + I{|ũ2(τ)|≤δ}

√
a2

)
.

Jointly with (
2.25
2.20) the obtained inequality shows that∫ 1

0

P(Qτ ) dτ ≤ C2

√
δ.

Since

P{‖u(τ)‖0 ≤
δ

2
} = P{‖ũ(τ)‖0 ≤

δ

2
} ≤ P(Qτ ) ,

where the l.h.s. is independent from τ , then

P{‖u(τ)‖0 ≤
δ

2
} ≤ C2

√
δ

for any δ > 0. This relation implies (
2.2
2.2).

The constant C in (
2.2
2.2), as well as all other constants in this section,

depend only on B1 and |b1| ∧ |b2|. Using the Remark in Section
ss2.2
2.2 we may

replace |b1|∧ |b2| by |bj1|∧ |bj2|, where j1 and j2 correspond to s1 and s2. This
completes the theorem’s proof.

3 Distribution of energy
s3

Again, let uν(τ) be a stationary solution of (
N
1.1), written in the form (

2.3
2.3),

let Eν(τ) be its energy and E0(τ) = 1
2
‖U(τ)‖2

0 be the energy of the Eulerian
limit.

t3 Theorem 3.1. For any R > 0 let Q ⊂ [−R, R] be a Borel set. Then

P{Eν(τ) ∈ Q} ≤ pR(|Q|) (3.1) 3.1

uniformly in ν ∈ (0, 1], where pR(t) → 0 as t → 0

14



In particular, the measures D(Eν(τ)) are absolutely continuous with re-
spect to the Lebesgue measure. Since D(Eνj

) ⇀ D(E0(τ)), then E0(τ) sat-
isfies (

3.1
3.1) for any open set Q ⊂ [−R,R]. Accordingly, P{E0(τ) ∈ Q} = 0 if

|Q| = 0 since the Lebesgue measure is regular. We got

Corollary 3.2. The measure D(E0(τ)) is absolutely continuous with respect
to the Lebesgue measure.

Proof of the theorem. For any δ > 0 let us consider the set

O = O(δ) = {u ∈ H2 | ‖u‖2 ≤ δ−
1
4 , ‖u‖0 ≥ δ}

Writing u = uν as u =
∑

uses, we set uI =
∑

|s|≤N uses and uII = u−uI . For

any u ∈ O we have ‖uII‖2
0 ≤ N−4‖uII‖2

2 ≤ δ−
1
2 N−2. So ‖uI‖2

0 ≥ δ2−δ−
1
2 N−4.

Choosing N = N(δ) =
[
21/4δ−5/8

]
we achieve

‖uI‖2
0 ≥

1

2
δ2 ∀u ∈ O.

The stationary process E(uν(τ)) satisfies the Ito equation

dE =
(
− ‖u(τ)‖2

1 +
1

2
B0

)
dτ +

∑
bsus(τ) dβs(τ)

(see in Section (
ss2.5
2.5)). The diffusion coefficient a(τ) satisfies

a(τ) =
∑

b2
s|us(τ)|2 ≥ b2

N‖uI(τ)‖2
0,

where bN = min|s|≤N |bs| > 0. So,

a(τ) ≥ 1

2
b2
Nδ2 if u(τ) ∈ O. (3.2) 3.2

Besides,

E|a(τ)| ≤ maxs b2
s

2
B0 , E

∣∣− ‖u(τ)‖2
1 +

1

2
B0

∣∣ ≤ B0 .

Let Q ⊂ [−R, R] be a Borel set and f be its indicator function. Applying
the Krylov lemma with the same choices of parameters as in (

kry
2.19), passing

to the limit as R → ∞ as in Section
ss2.7
2.7 and taking into account that E(τ)

is a stationary process, we get that

E
(
a(τ)1/2f(E(τ)

)
≤ C|Q|1/2, (3.3) 3.3
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uniformly in ν > 0. Due to (
ito
1.4) and (

2.2
2.2),

P{u(τ) 6∈ O} ≤ 1

2
B1

√
δ + C

√
δ.

Jointly with (
3.2
3.2) and (

3.3
3.3) this estimate implies that

P(Eν(τ) ∈ Q) = Ef(E(τ)) ≤ C(|Q|1/2b−1
N δ−1) + C1

√
δ ∀ 0 < δ ≤ 1,

where N = N(δ). Now (
3.1
3.1) follows.

4 Distributions of functionals of vorticity
s4

In his section we assume that B6 < ∞. The vorticity ζ = rot u(t, x) of a
solution u for (

N
1.1), written in the fast time τ = νt, satisfies the equation

ζ ′τ −∆ζ + ν−1(u · ∇)ζ = ξ(τ, x). (4.1) 4.1

Here ξ = d
dt

∑
s∈Z2\{0} βs(τ)ϕs(x) and

ϕs =
|s|√
2π

cos s · x, ϕ−s = − |s|√
2π

sin s · x,

for any s such that s1 + s2δs1,0 > 0. We will study eq. (
4.1
4.1) in Sobolev spaces

H l = {ζ ∈ H l(T2) |
∫

ζ dx = 0}, l ≥ 0,

given the norms ‖ · ‖l, defined as in (
norm
1.3).

Let us fix m ∈ N and choose any m analytic functions f1(ζ), . . . , fm(ζ),
linear independent modulo constant functions.3 We assume that the func-
tions fj(ζ), . . . , f ′′′j (ζ) have at most a polynomial growth as |ζ| → ∞ and
that

f ′′j (ζ) ≥ −C ∀ j, ∀ζ (4.2) 4.01

(for example, each fj(ζ) is a trigonometric polynomial, or a polynomial of
an even degree with a positive leading coefficient). Consider the map

F : H l → Rm, ζ 7→ (F1(ζ), . . . , Fm(ζ)),

Fj =

∫
T2

fj(ζ(x)) dx,

3I.e., C1f1(ζ) + · · ·+ Cmfm(ζ) 6=const, unless C1 = · · · = Cm = 0.
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where 0 < l < 1. Since for any P < ∞ we have H l ⊂ LP (T2) if l is sufficiently
close to 1, then choosing a suitable l = l(F ) we achieve that the map F is
C2-smooth. Let us fix this l. We have

dF (ζ)(ξ) =
( ∫

f ′1(ζ(x))ξ(x) dx, . . . ,

∫
f ′m(ζ(x))ξ(x) dx

)
.

l2 Lemma 4.1. If ζ 6≡ 0, then the rank of dF (ζ) is m.

Proof. Assume that the rank is < m. Then there exists number C1, . . . , Cm,
not all equal to zero, such that∫

(C1f
′
1(ζ) + · · ·+ Cmf ′m(ζ))ξ dx = 0 ∀ ξ ∈ H l. (4.3) 4.2

Denote P (ζ) = C1f
′
1(ζ) + · · · + Cmf ′m(ζ). This is a non-constant analytic

function. Due to (
4.2
4.3), P (ζ(x)) = const. Denote this constant C∗. Then the

connected set ζ(T2) lies in the discrete set P−1(C∗). So ζ(T2) is a point, i.e.
ζ(x) ≡ const. Since

∫
ζ dx = 0, then ζ(x) ≡ 0.

Now let ζ(t) = rot uν(t), where uν is a stationary solution of (
N
1.1). Ap-

plying Ito’s formula to the process F (ζ(τ)) ∈ Rm and using that Fj is an
integral of motion for the Euler equation, we get that

dFj(τ) =
( ∫

f ′j(ζ(τ, x))∆ζ(τ, x) dx +
1

2

∑
s

b2
s

∫
f ′′j(ζ(τ, x))ϕ2

s(x) dx)
)
dτ

+
∑

s

bs

( ∫
f ′j(ζ(τ, x))ϕs(x) dx

)
dβs(τ).

Since bs ≡ b−s and ϕ2
s + ϕ2

−s ≡ |s|2/2π2, then

dFj(τ) =
( ∫

f ′′j(ζ)(−|∇xζ|2 +
1

4π
B1) dx

)
dτ

+
∑

s

bs

( ∫
f ′j(ζ(τ, x))ϕs(x) dx

)
dβs(τ)

:= Hj(ζ(τ)) dτ +
∑

s

hjs(ζ(τ)) dβs(τ) .

Ito’s formula applies since under our assumptions all moments of the random
variables ζ(τ, x) and |∇xζ(τ, x)| are finite (see

K3
[Kuk06a], Section 4.3). Using
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that Fj(τ) is a stationary process, we get from the last relation that EHj = 0,
i.e.

E

∫
f ′′j(ζ(τ, x))|∇xζ(τ, x)|2 dx =

B1

4π
E

∫
f ′′j(ζ(τ, x)) dx. (4.4) bal

Since B6 < ∞ then all moments of random variables |ζ(τ, x)| are bounded
uniformly in ν ∈ (0, 1], see

K06J
[Kuk06b] and (10.11) in

K3
[Kuk06a]. Jointly with

(
4.0
4.3), (

bal
4.4) and the equality

E

∫
|∇xζ(τ, x)|2dx = E‖uν(τ)‖2

2 =
1

2
B1

this implies that
E|Hj(ζ(τ))| ≤ Cj < ∞ (4.5) 4.03

uniformly in ν (and for all τ).
Let us consider the diffusion matrix a(ζ(τ)), ajl(ζ) =

∑
s hjs(ζ)hls(ζ),

and denote D(ζ) = | det ajl(ζ)|. Clearly

E tr(ajl)(ζ(τ)) ≤ C, (4.6) 4.04

uniformly in ν. Noting that hjs(ζ) = bs(dF (ζ))js, we obtain from Lemma
l2
4.1

l3 Lemma 4.2. The function D is continuous on H l and D > 0 outside the
origin.

Now we regard (
4.1
4.1) as an equation in H1 and set

Oδ = {ζ ∈ H1 | ‖ζ‖1 ≤ δ−1, ‖ζ‖l ≥ δ} .

Since H1 b H l, then D ≥ c(δ) > 0 everywhere in Oδ.
Estimates (

4.03
4.5), (

4.04
4.6) allow to apply Krylov’s lemma with p = d = m to

the stationary process F (ζν(τ)) ∈ Rm, uniformly in ν. Choosing there for f
the characteristic function of a Borel set Q ⊂ {|z| ≤ R}, we find that

P{F (ζν(τ)) ∈ Q} ≤ P{ζν(τ) /∈ Oδ}+ c(δ)−1/(m+1)CR|Q|1/(m+1) (4.7) 4.3

(cf. the arguments in Section
s3
3). Since ‖ζ‖1 = ‖u‖2 and ‖ζ‖l ≥ ‖ζ‖0 ≥ ‖u‖0

for ζ = rot u, then due to (
ito
1.4) and (

2.2
2.2) the first term in the r.h.s. of (

4.3
4.7)

goes to zero with δ uniformly in ν, and we get that

P{F (ζν(τ)) ∈ Q} ≤ pR(|Q|) , pR(t) → 0 as t → 0 , (4.8) 4.4

uniformly in ν. Evoking Amplification to Theorem
t1
1.1 we derive from (

4.4
4.8)

that the vorticity ζ0 of the Eulerian limit U satisfies (
4.4
4.8), if Q is an open

subset of BR. We have got
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Theorem 4.3. If B6 < ∞, then the distribution of the stationary solution
for the 2D NSE, written in terms of vorticity (

4.1
4.1), satisfies (

4.4
4.8) uniformly

in ν. The vorticity ζ0 of the Eulerian limit U is distributed in such a way
that the law of F (ζ0(τ)) is absolutely continuous with respect to the Lebesgue
measure in Rm.

Corollary 4.4. Let X b H∩C1(T2; R2) be a compact set of finite Hausdorff
dimension. Then µ0(X) = 0.

Proof. Denote the Hausdorff dimension of X by d and choose any m > d.
Then (F ◦ rot)(X) is a subset of Rm of positive codimension. So its measure
with respect to D(f(ζ0(t)) equals zero. Since D(f(ζ0(t)) = (F ◦ rot) ◦ µ0,
then µ0(X) = 0.

5 Appendix: rotation of solid body

The Euler equation for a freely rotating solid body, written in terms of its
momentum M ∈ R3, is

Ṁ + [M, A−1M ] = 0, (5.1) Eul

where A is the operator of inertia and [·, ·] is the vector product. The corre-
sponding damped/driven equation (

DampDr
0.5) is

Ṁ + [M, A−1M ] + νM =
√

ν η(t) , (5.2) PEu

where the random force is η(t) = d
dt

∑3
j=1 bjβj(t)ej with non-zero bj’s, and

{e1, e2, e3} is the eigenbasis of the operator A. Eq. (
PEu
5.2) has a unique sta-

tionary measure µν . Let Mν(t) be a corresponding stationary solution. An
inviscid limit, similar to that in Theorem

t1
1.1, holds:

DMνj
(·) ⇀ DM0(·) as νj → 0 , (5.3) 0

where M0(t) ∈ R3 is a stationary process, formed by solutions of (
Eul
5.1). The

Euler equation has two quadratic integrals of motion: H1(M) = 1
2
|M |2 and

H2(M) = 1
2
(A−1M, M). Distributions of the random variables H1(Mν(t))

and H2(Mν(t)), 0 ≤ ν ≤ 1, satisfy direct analogies of the assertions in
Sections

s2
2,

s3
3.
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To analyse further the processes Mν with ν � 1 and the inviscid limit
M0, we note that a.e. level set of the vector-integral H = (H1, H2) is formed
by two periodic trajectories of (

Eul
5.1) (see

A1
[Arn89]). Denote them S±

(H1,H2).

It is easy to see that the conditional probabilities for Mν(t) to belong to
S+

(H1,H2) or to S−
(H1,H2) are equal. Since the dynamics, defined by (

Eul
5.1) on

each set S±
(H1,H2) obviously is ergodic with respect to a corresponding measure

ν±(H1,H2),
4 then the methods of

FW98, WF03, KP06
[FW98, FW03, KP06] apply to the process

H(Mνj
(τ)) ∈ R2, τ = νjt, and allow to prove that a limiting process H0(τ)

exists and satisfies a SDE, obtained from the equation for H(M(τ)) by the
usual stochastic averaging with respect to the ergodic measures ν±(H1,H2) on

the curves S±
(H1,H2). It is very plausible that the averaged equation has a

unique stationary measure θ. If so, then

D(H(M0)) = θ

and

D(M0) =
∑

α∈{+,−}

∫
R2

πανα
(H1,H2) θ(dH1 dH2),

where π+ = π− = 1/2. Cf. Theorem 6.6 in
KP06
[KP06]. In particular, the con-

vergence (
0
5.3) holds as ν → 0 (i.e., the limit does not depend on a sequence

νj → 0).
The representation above for the measure D(M0) is called its disintegra-

tion with respect to the map H : R3 → R2, and may be obtained inde-
pendently from the arguments above (see references in

K07Arn
[Kuk07]). The role

of the arguments is to represent the measure θ in terms of the averaged
equation. The measure µ0 = DU(0), corresponding to the Eulerian limit U
(Theorem

t1
1.1) also admits a similar disintegration, see

K07Arn
[Kuk07]. In that work

we conjecture an averaging procedure to find the measures, involved in the
disintegration of µ0.
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