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1 IntrodutionWhih approah to model redution is the most important? Population is not the ultimatejudge, and popularity is not a sienti� riterion, but \Vox populi, vox Dei," espeiallyin the epoh of itation indexes, impat fators and bibliometris. Let us ask Google. Itgave on 31st Deember 2006:� for \quasi-equilibrium" { 301000 links;� for \quasi steady state" 347000 and for \pseudo steady state" 76200, 423000 together;� for our favorite \slow manifold" [1,2℄ 29800 links only, and for \invariant manifold"slightly more, 98100;� for suh a framework topi as \singular perturbation" Google gave 361000 links;� for \model redution" even more, as we did expet, 373000;� but for \limiting step" almost two times more { 714000!Our goal is the general theory of stati and dynami limitation for multisale networks.The onept of limiting step gives, in some sense, the limit simpli�ation: the wholenetwork behaves as a single step. As the �rst result of our paper we introdue furtherspei�ation in this idea: the whole network behaves as a single step in statis, andas another single step in dynamis, the stationary rate and the relaxation time to thisstationary rate are limited by di�erent reation steps, and we desribe how to �nd thesesteps.The onept of limitation is very attrative both for theorists and experimentalists. It isvery useful to �nd onditions when a seleted reation step beomes the limiting step.We an hange onditions and study the network experimentally, step by step. It is veryonvenient to model a system with limiting steps: the model is extremely simple and anserve as a very elementary building blok for further study of more omplex systems, atypial situation both in industry and in systems biology.In IUPAC Compendium of Chemial Terminology one an �nd two artiles with de�nitionof limitation [3,4℄. Rate-determining step (rate-limiting step): \These terms are best re-garded as synonymous with rate-ontrolling step." \A rate-ontrolling (rate-determiningor rate-limiting) step in a reation ourring by a omposite reation sequene is an ele-mentary reation the rate onstant for whih exerts a strong e�et { stronger than thatof any other rate onstant { on the overall rate."It is not wise to objet to a de�nition and here we do not objet, but, rather, omplementthe de�nition by additional omments. The main omment is that usually when peopleare talking about limitation they expet signi�antly more: there exists an elementaryreation a rate onstant for whih exerts suh a strong e�et on the overall rate that thee�et of all other rate onstants together is signi�antly smaller. Of ourse, this is not yeta formal de�nition, and should be omplemented by a de�nition of \e�et", for example,by \ontrol funtion" identi�ed by derivatives [3℄ of the overall rate of reation, or byother overall rate \sensitivity parameters". 2



For the IUPAC Compendium de�nition a rate-ontrolling step always exists, beauseamong the ontrol funtions generially exists the biggest one. For the notion of limitationthat is used in pratie there exists a di�erene between systems with limitation andsystems without limitation.An additional problem arises: are systems without limitation rare or should they be treatedequitably with limitation ases? The arguments in favor of limitation typialness are asfollows: the real hemial networks are very multisale with very di�erent onstants andonentrations. For suh systems it is improbable to meet a situation with ompatiblee�ets of di�erent stages. Of ourse, these arguments are statistial and apply to generisystems from speial ensembles.During last entury, the onept of limiting step was revised several times. First simpleidea of a \narrow plae" (a least ondutive step) ould be applied without adaptationonly to a simple yle of irreversible steps that are of the �rst order (see Chap. 16 of [5℄or the paper of R.K. Boyd [6℄). When researhers try to apply this idea in more generalsituations they meet various diÆulties suh as:� Some reations have to be \pseudomonomoleular." Their onstants depend on onen-trations of outer omponents, and are onstant only under ondition that these outeromponents are present in onstant onentrations, or hange suÆiently slow. For ex-ample, the simplest Mihaelis{Menten enzymati reation is E+S ! ES ! E+P (Ehere stands for enzyme, S for substrate, and P for produt), and the linear atalytiyle here is S ! ES ! S. Hene, in general we must onsider nonlinear systems.� Even under �xed outer omponents onentration, the simple \narrow plae" behaviourould be spoiled by branhing or by reverse reations. For suh reation systems de�ni-tion of a limiting step simply as a step with the smallest onstant does not work. Thesimplest example is given by the yle: A1 $ A2 ! A3 ! A1. Even if the onstant ofthe last step A3 ! A1 is the smallest one, the stationary rate may be muh smaller thank3b (where b is the overall balane of onentrations, b = 1 + 2 + 3), if the onstantof the reverse reation A2 ! A1 is suÆiently big.In a series of papers [7,8℄, D.B. Northrop learly explained these diÆulties with manyexamples based on the isotope e�et analysis and suggested that the onept of rate{limiting step is \outmoded". Nevertheless, the main idea of limiting is so attrative thatNorthrop's arguments stimulated the searh for modi�ation and improvement of themain onept.W.J. Ray (Jr.) [9℄ proposed to use the sensitivity analysis. He onsidered yles of re-versible reations and suggested a de�nition: The rate{limiting step in a reation sequeneis that forward step for whih a hange of its rate onstant produes the largest e�et onthe overall rate. In his formal de�nition of sensitivity funtions the reiproal reation rate(1=W ) and rate onstants (1=ki) were used (see [9℄ ) and the onnetion between forwardand reverse step onstants (the equilibrium onstant) was kept �xed.Ray's approah was revised by G.C. Brown and C.E. Cooper [10℄ from the system ontrolanalysis point of view (see [11℄). They stress again that there is no unique rate{limitingstep spei� for an enzyme, and this step, even if it exists, depends on substrate, produt3



and e�etor onentrations. They demonstrated also that the ontrol oeÆientsCWki =  kiW �W�ki ![S℄;[P ℄;::: ;where W is the stationary reation rate and ki are onstants, are additive and obey thesummation theorems (as onentrations do). Simple relation between ontrol oeÆientsof rate onstants and intermediate onentrations was reported in [12℄. This relationonnets two type of experiments: measurement of intermediate levels and steady{staterate measurements.For the analysis of nonlinear yles the new onept of kineti polynomial was developed[13,14℄. It was proven that the stationary state of the single-route reation mehanism ofatalyti reation an be desribed by a single polynomial equation for the reation rate.The roots of kineti polynomial are the values of the reation rate in the steady state. Fora system with limiting step the kineti polynomial an be approximately solved and thereation rate found in the form of a series in powers of the limiting step onstant [15℄.In our approah, we analyze not only the steady state reation rates, but also the re-laxation dynamis of multisale systems. We foused mostly on the ase when all theelementary proesses have signi�antly di�erent time sales. In this ase, we obtain \limitsimpli�ation" of the model: all stationary states and relaxation proesses ould be ana-lyzed \to the very end", by straightforward omputations, mostly analytially. Chemialkinetis is an inexhaustible soure of examples of multisale systems for analysis. It is notsurprising that many ideas and methods for suh analysis were �rst invented for hemialsystems.In Se. 2 we analyze a simple example and the soure of most generalizations, the at-alyti yle, and demonstrate the main notions on this example. This analysis is quiteelementary, but inludes many ideas elaborated in full in subsequent setions.There exist several estimates for relaxation time in hemial reations (for example, [16℄),but even for the simplest yle with limitation the main property of relaxation time is notwidely known. For a simple irreversible atalyti yle with limiting step the stationaryrate is ontrolled by the smallest onstant, but the relaxation time is determined by theseond in order onstant. Hene, if in the stationary rate experiments for that yle wemostly extrat the smallest onstant, in relaxation experiments another, the seond inorder onstant will be observed.It is also proven that for yles with well separated onstants damped osillations areimpossible, and spetrum of the matrix of kineti oeÆients is real. For general reationnetworks with well separated onstants this property is proven in Se. 4.Another general e�et observed for a yle is robustness of stationary rate and relaxationtime. For multisale systems with random onstants, the standard deviation of onstantsthat determine stationary rate (the smallest onstant for a yle) or relaxation time (theseond in order onstant) is approximately n times smaller than the standard deviation ofthe individual onstant (where n is the yle length). Here we deal with the so-alled \order4



statistis". This derease of the deviation as n�1 is muh faster than for the standard errorsummation, where it dereases with inreasing n as n�1=2.In more general settings, robustness of the relaxation time was studied in [17℄ for hem-ial kinetis models of geneti and signalling networks. We proved in [17℄ that for largemultisale systems with hierarhial distribution of time sales the variane of the inverserelaxation time (as well as the variane of the stationary rate) is muh lower than thevariane of the separate onstants. Moreover, it an tend to 0 faster than 1/n, where nis the number of reations. It was demonstrated that similar phenomena are valid in thenonlinear ase as well. As a numerial illustration we used a model of signalling networkthat an be applied to important transription fators suh as NFkB.Eah multisale system is haraterized by its struture (the system of elementary pro-esses) and by the rate onstants of these proesses. To make any general statement aboutsuh systems when the struture is given but the onstants are unknown it is useful totake the onstant set as random and independent. But it is not obvious how to hose therandom distribution. The usual idea to take normal or uniform distribution meets obviousdiÆulties, the time sales are not suÆiently well separated.Statistial approah to hemial kinetis was developed in [18,19℄ and high-dimensionalmodel representations (HDMR) were proposed as eÆient tools to provide a fully globalstatistial analysis of a model. The work [20℄ was foused on how the network propertiesare a�eted by random rate onstant hanges. The rate onstants were transformed to alogarithmi sale to ensure an even distribution over the large spae.The log-uniform distribution on suÆiently wide interval helps us to improve the situation,indeed, but a ouple of extra parameters appears: � = �min log k and � = max log k.We have to study the asymptotis �! �1, � !1. This approah ould be formalizedby means of the uniform invariant distributions of log k on Rn . These distributions are�nite{additive, but not ountable{additive (not �-additive).The probability and measure theory without ountable additivity has a long history. InEulid's time only arguments based on �nite{additive properties of volume were legal.Eulid meant by equal area the sissors ongruent area. Two polyhedra are sissors{ongruent if one of them an be ut into �nitely many polyhedral piees whih an bere-assembled to yield the seond. But all proofs of the formula for the volume of a pyramidinvolve some form of limiting proess. Hilbert asks in his third problem: are two Eulideanpolyhedra of the same volume sissors ongruent? The answer is \no" (a review of oldand reent results is presented in [46℄). There is another invariant of utting and gluingpolyhedra.Finite{additive invariant measures on non-ompat groups were studied by G. Birkho�[39℄ (see also [40℄, Chap. 4). The frequeny{based Mises approah to probability foun-dations [41℄, as well as logial foundations of probability by R. Carnap [42℄ do not needthe �-additivity. Non-Kolmogorov probability theories are disussed now in the ontextof quantum physis [44℄, nonstandard analysis [45℄ and many other problems (and we donot pretend to provide here a full review of related works).5



We answer the question: What does it mean \to pik a multisale system at random"?We introdue and analyze a notion of multisale ensemble of reation systems. Theseensembles with well separated variables are presented in Se. 3.The best geometri example that helps us to understand this problem is one of LewisCarroll's Pillow Problems (published in 1883) [21℄: \Three points are taken at randomon an in�nite plane. Find the hane of their being the verties of an obtuse-angledtriangle." (In an aute-angled triangle all angles are omparable, in an obtuse-angledtriangle the obtuse angle is bigger than others and ould be muh bigger.) The solution ofthis problem depends signi�antly on the ensemble de�nition. What does it mean \pointsare taken at random on an in�nite plane"? Our intuition requires translation invariane,but the normalized translation invariant measure on the plain ould not be �-additive.Nevertheless, there exist �nite{additive invariant measures.Lewis Carroll proposed a solution that did not satisfy modern sientists. There exists a lotof attempts to improve the problem statement [22{25℄: redution from in�nite plane to abounded set, to a ompat symmetri spae, et. But the elimination of paradox destroysthe essene of Carroll's problem. If we follow the paradox and try to give a meaning to\points are taken at random on an in�nite plane" then we replae �-additivity of theprobability measure by �nite{additivity and ome to the applied probability theory for�nite{additive probabilities. Of ourse, this theory for abstrat probability spaes wouldbe too poor, and some additional geometri and algebrai strutures are neessary tobuild rih enough theory.This is not just a beautiful geometrial problem, but rather an applied question aboutproper de�nition of multisale ensembles. We need suh a de�nition to make any generalstatement about multisale systems, and briey analyze lessons of Carroll's problem inSe. 3.In this setion we use some mathematis to de�ne the multisale ensembles with wellseparated onstants. This is neessary for bakground of the analysis of systems withlimitation, but tehnial onsequenes are rather simple. We need only two properties ofa typial system from multisale ensemble with well separated onstants:(1) Every two reation rate onstants k, k0 are onneted by relation k � k0 or k � k0(with probability lose to 1);(2) The �rst property persists, if we delete two onstants k, k0 from the list of onstants,and add a number kk0 or a number k=k0 to that list (with probability lose to 1).lIf the reader an use these properties (when it is neessary) without additiona lari�ation,it is possible to skip reading Se. 3 and go diretly to more applied setions. In. Se. 4 westudy stati and dynami properties of linear multisale reation networks. An importantinstrument for that study is a hierarhy of auxiliary disrete dynamial system. Let Aibe nodes of the network (\omponents"), Ai ! Aj be edges (reations), and kji be theonstants of these reations (please pay attention to the inverse order of subsripts). Adisrete dynamial system � is a map that maps any node Ai in a node A�(i). To onstruta �rst auxiliary dynamial system for a given network we �nd for eah Ai the maximalonstant of reations Ai ! Aj: k�(i)i � kji for all j, and �(i) = i if there are no reations6



Ai ! Aj. Attrators in this disrete dynamial system are yles and �xed points.The fast stage of relaxation of a omplex reation network ould be desribed as masstransfer from nodes to orrespondent attrators of auxiliary dynamial system and massdistribution in the attrators. After that, a slower proess of mass redistribution betweenattrators should play a more important role. To study the next stage of relaxation,we should glue yles of the �rst auxiliary system (eah yle transforms into a point),de�ne onstants of the �rst derivative network on this new set of nodes, onstrut for thisnew network a (�rst) auxiliary disrete dynamial system, et. The proess terminateswhen we get a disrete dynamial system with one attrator. Then the inverse proess ofyle restoration and utting starts. As a result, we reate an expliit desription of therelaxation proess in the reation network, �nd estimates of eigenvalues and eigenvetorsfor the kineti equation, and provide full analysis of steady states for systems with wellseparated onstants.The problem of multisale asymptotis of eigenvalues of non-selfadjoint matries wasstudied by Vishik, Ljusternik [27℄ and Lidskii [28℄. Reently, some generalizations wereobtained by idempotent (min-plus) algebra methods [29℄. These methods provide naturallanguage for disussion of some multisale problems [30℄. In the Vishik{Ljusternik{Lidskiitheorem and its generalizations the asymptotis of eigenvalues and eigenvetors for thefamily of matries Aij(�) = aij�Aij + o(�Aij) is studied for � > 0, �! 0.In the hemial reation networks that we study, there is no small parameter � with agiven distribution of the orders �Aij of the matrix nodes. Instead of these powers of � wehave orderings of rate onstants. On the other hand, the matries of kineti equationshave some spei� properties. The possibility to operate with the graph of reations(yles surgery) signi�antly helps in our onstrutions. Nevertheless, there exists somesimilarity between these problems and, even for general matries, graphial representationis useful. The language of idempotent algebra [30℄, as well as nonstandard analysis within�nitisemals [31℄, an be used for desription of the multisale reation networks, butnow we postpone this for later use.A multisale system where every two onstants have very di�erent orders of magnitude is,of ourse, an idealization. In parametri families of multisale systems there ould appearsystems with several onstants of the same order. Hene, it is neessary to study e�etsthat appear due to a group of onstants of the same order in a multisale network. Thesystem an have modular struture, with di�erent time sales in di�erent modules, butwithout separation of times inside modules. We disuss systems with modular struturein Se. 5. The full theory of suh systems is a hallenge for future work, and here we studystruture of one module. The elementary modules have to be solvable. That means thatthe kineti equations ould be solved in expliit analytial form. We give the neessary andsuÆient onditions for solvability of reation networks. These onditions are presentedonstrutively, by algorithm of analysis of the reation graph.It is neessary to repeat our study for nonlinear networks. We disuss this problem andperspetive of its solution in onlusion. Here we again use the experiene summarizedin the IUPAC Compendium [3℄ where the notion of ontrolling step is generalized ontononlinear elementary reation by inlusion of some onentration into \pseudo-�rst order7



rate onstant".2 Stati and dynami limitation in a simple atalyti yle2.1 General properties of a yleThe atalyti yle is one of the most important substrutures that we study in reationnetworks. In the redued form the atalyti yle is a set of linear reations:A1 ! A2 ! : : : An ! A1:Redued form means that in reality some of these reation are not monomoleular andinlude some other omponents (not from the list A1; : : : An). But in the study of theisolated yle dynamis, onentrations of these omponents are taken as onstant andare inluded into kineti onstants of the yle linear reations.For the onstant of elementary reation Ai ! we use the simpli�ed notation ki beausethe produt of this elementary reation is known, it is Ai+1 for i < n and A1 for i = n.The elementary reation rate is wi = kii, where i is the onentration of Ai. The kinetiequation is: _i = wi�1 � wi; (1)where by de�nition w0 = wn. In the stationary state ( _i = 0), all the wi are equal: wi = w.This ommon rate w we all the yle stationary rate, andw = b1k1 + : : : 1kn ; i = wki ; (2)where b = Pi i is the onserved quantity for reations in onstant volume (for generalase of hemial kineti equations see elsewhere, for example, [26℄). The stationary ratew (2) is a produt of the arithmeti mean of onentrations, b=n, and the harmoni meanof onstants (inverse mean of inverse ki).2.2 Stati limitation in a yleIf one of the onstants, kmin, is muh smaller than others (let it be kmin = kn), thenn = b 1�Xi<n knki + o Xi<n knki !! ; i = b knki + o Xi<n knki !! ;w = knb 1 +O Xi<n knki !! ; (3)
8



or simply in linear approximationn = b 1�Xi<n knki ! ; i = bknki ; w = knb; (4)where we should keep the �rst{order terms in n in order not to violate the onservationlaw.The simplest zero order approximation for the steady state givesn = b; i = 0 (i 6= n): (5)This is trivial: all the onentration is olleted at the starting point of the \narrow plae",but may be useful as an origin point for various approximation proedures.So, the stationary rate of a yle is determined by the smallest onstant, kmin, if kmin issuÆiently small: w = kminb if Xki 6=kmin kminki � 1: (6)In that ase we say that the yle has a limiting step with onstant kmin.2.3 Dynamial limitation in a yleIf kn=ki is small for all i < n, then the kineti behaviour of the yle is extremely simple:the oeÆients matrix on the right hand side of kineti equation (1) has one simple zeroeigenvalue that orresponds to the onservation lawP i = b and n�1 nonzero eigenvalues�i = �ki + Æi (i < n): (7)where Æi ! 0 when Pi<n knki ! 0.It is easy to demonstrate (7): let us exlude the onservation law (the zero eigenvalue)P i = b and use independent oordinates i (i = 1; : : : n� 1); n = b �Pi<n i. In theseoordinates the kineti equation (1) has the form_ = K� knA+ knbe1 (8)where  is the vetor{olumn with omponents i (i < n), K is the lower triangle matrixwith nonzero elements only in two diagonals: (K)ii = �ki (i = 1; : : : n� 1), (K)i+1; i = ki(i = 1; : : : n�2) (other elements are equal to zero); A is the matrix with nonzero elementsonly in the �rst row: (A)1i � 1, e1 is the �rst basis vetor (e11 = 1, e1i = 0 for 1 < i < n).After that, eq. (7) follows simply from ontinuous dependene of spetra on matrix.The relaxation time of a stable linear system (8) is, by de�nition, � = [minfRe(��i) j i =1; : : : n� 1g℄�1. For small kn,� � 1=k� ; k� = minfki j i = 1; : : : n� 1g: (9)In other words, k� is the seond slowest rate onstant: kmin � k� � ::: .9



2.4 Relaxation equation for a yle rateA de�nition of the yle rate is lear for steady states beause stationary rates of allelementary reations in yle oinide. There is no ommon de�nition of the yle rate fornonstationary regimes. In pratie, one of steps is the step of produt release (the \�nal"step of the atalyti transformation), and we an onsider its rate as the rate of the yle.Formally, we an take any step and study relaxation of its rate to the ommon stationaryrate. The single relaxation time approximation gives for rate wi of any step:_wi = k� (kminb� wi); wi(t) = kminb + e�k� t(wi(0)� kminb); (10)where kmin is the limiting (the minimal) rate onstant of the yle, k� is the seond inorder rate onstant of the yle.So, for atalyti yles with the limiting onstant kmin, the relaxation time is also deter-mined by one onstant, but another one. This is k� , the seond in order rate onstant.It should be stressed that the only smallness ondition is required, kmin should be muhsmaller than other onstants. The seond onstant, k� should be just smaller than others(and bigger than kmin), but there is no � ondition for k� required.One of the methods for measurement of hemial reation onstants is the relaxationspetrosopy [32℄. Relaxation of a system after an impat gives us a relaxation time oreven a spetrum of relaxation times. For atalyti yle with limitation, the relaxationexperiment gives us the seond onstant k� , while the measurement of stationary rategives the smallest onstant, kmin. This simple remark may be important for relaxationspetrosopy of open system.2.5 Ensembles of yles and robustness of stationary rate and relaxation timeLet us onsider a atalyti yle with random rate onstants. For a given sample onstantsk1; : : : kn the ith order statistis is equal its ith-smallest value. We are interested in the�rst order (the minimal) and the seond order statistis.For independent identially distributed onstants the variane of kmin = minfk1; : : : kngis signi�antly smaller then the variane of eah ki, Var(k). The same is true for statistiof every order. For many important distributions (for example, for uniform distribution),the variane of ith order statisti is of order � Var(k)=n2. For big n it goes to zerofaster than variane of the mean that is of order � Var(k)=n. To illustrate this, let usonsider n onstants distributed in interval [a; b℄. For eah set of onstants, k1; : : : kn weintrodue \symmetri oordinates" si: �rst, we order the onstants, a � ki1 � ki2 �: : : kin � b, then alulate s0 = ki1 � a, sj = kij+1 � kij (j = 1; : : : n � 1), sn = b � kin.Transformation (k1; : : : kn) 7! (s0; : : : sn) maps a ube [a; b℄n onto n-dimensional simplex�n = f(s0; : : : sn) j Pi si = b � ag and uniform distribution on a ube transforms intouniform distribution on a simplex.For large n, almost all volume of the simplex is onentrated in a small neighborhood of its10



enter and this e�et is an example of measure onentration e�ets that play importantrole in modern geometry and analysis [34℄. All si are identially distributed, and fornormalized variable s = si=(b�a) the �rst moments are: E(s) = 1=(n+1) = 1=n+o(1=n),E(s2) = 2=[(n+ 1)(n+ 2)℄ = 2=n2 + o(1=n2),Var(s) = E(s2)� (E(s))2 = n(n+ 1)2(n+ 2) = 1n2 + o� 1n2� :Hene, for example, Var(kmin) = (b�a)2=n2+o(1=n2). The standard deviation of kmin goesto zero as 1=n when n inreases. This is muh faster than 1=pn presribed to the deviationof the mean value of independent observation (the \law of errors"). The same asymptoti� 1=n is true for the standard deviation of the seond onstant also. These parametersutuate muh less than individual onstants, and even less than mean onstant (for moreexamples with appliations to statistial physis we address to [35℄).It is impossible to use this observation for yles with limitation diretly, beause theinequality of limitation (6) is not true for uniform distribution. Aording to this inequal-ity, ratios ki=kmin should be suÆiently small (if ki 6= kmin). To provide this inequalitywe need to use at least the log-uniform distribution: ki = exp�i and �i are independentvariables uniformly distributed in interval [�; �℄ with suÆiently big (� � �)=n.One an interpret the log-uniform distribution through the Arrhenius law: k = A exp(��G=kT ),where �G is the hange of the Gibbs free energy inreation (it inludes both energetiand entropi terms: �G = �H � TS, where �H is enthalpy hange and �S is entropyhange in reation, T is temperature). The log-uniform distribution of k orresponds tothe uniform distribution of �G.For log-uniform distribution of onstants k1; : : : kn, if the interval of distribution is suf-�iently big (i.e. (� � �)=n � 1), then the yle with these onstants has the limitingstep with probability lose to one. More preisely we an show that for any two onstantski; kj the probability P[ki=kj > r or kj=ki > r℄ = (1 � log(r)=(� � �))2 approahes onefor any �xed r > 1 when � � �!1. Relaxation time of this yle is determined by theseond onstant k� (also with probability lose to one). Standard deviations of kmin andk� are muh smaller than standard deviation of single onstant ki and even smaller thanstandard deviation of mean onstant Pi ki=n. This e�et of stationary rate and relax-ation time robustness seems to be important for understanding robustness in biohemialnetworks: behaviour of the entire system is muh more stable than the parameters of itsparts; even for large utuations of parameters, the system does not hange signi�antlythe stationary rate (statis) and the relaxation time (dynamis).2.6 Systems with well separated onstants and monotone relaxationThe log-uniform idential distribution of independent onstants k1; : : : kn with suÆientlybig interval of distribution ((� � �)=n � 1) gives us the �rst example of ensembleswith well separated onstants: any two onstants are onneted by relation� or� withprobability lose to one. Suh systems (not only yles, but muh more omplex networkstoo) ould be studied analytially \up to the end".11



Some of their properties are simpler than for general networks. For example, the dampingosillations are impossible, i.e. the eigenvalues of kineti matrix are real (with probabilitylose to one). If onstants are not separated, damped osillations ould exist, for example,if all onstants of the yle are equal, k1 = k2 = : : : = kn = k, then (1 + �=k)n = 1and �m = k(exp(2�im=n) � 1) (m = 1; : : : n � 1), the ase m = 0 orresponds to thelinear onservation law. Relaxation time of this yle may be relatively big: � = 1k(1 �os(2�=n))�1 � n2=(2�k) (for big n).The atalyti yle without limitation an have relaxation time muh bigger then 1=kmin,where kmin is the minimal reation rate onstant. For example, if all k are equal, thenfor n = 11 we get � � 20=k. In more detail the possible relations between � and theslowest onstant were disussed in [33℄. In that paper, a variety of ases with di�erentrelationships between the steady-state reation rate and relaxation was presented.For atalyti yle, if a matrixK�knA (8) has a pair of omplex eigenvalues with nonzeroimaginary part, then for some g 2 [0; 1℄ the matrix K� gknA has a degenerate eigenvalue(we use a simple ontinuity argument). With probability lose to one, kmin� jki� kjj forany two ki; kj that are not minimal. Hene, the kmin-small perturbation annot transformmatrix K with eigenvalues ki (7) and given struture into a matrix with a degenerateeigenvalue. For proof of this statement it is suÆient to refer to diagonal dominane ofK (the absolute value of eah diagonal element is greater than the sum of the absolutevalues of the other elements in its olumn) and lassial inequalities.Let us give a detailed proof based on the expliit form of K left and right eigenvetors.Let vetor{olumn xi and vetor{row li be right and left eigenvetors of K for eigenvalue�ki. For oordinates of these eigenvetors we use notation xij and lij. Let us hoose anormalization ondition xii = lii = 1. It is straightforward to hek that xij = 0 (j < i) andlij = 0 (j > i), xij+1 = kjxj=(kj+1 � ki) (j � i) and lij�1 = kj�1lj=(kj�1 � kj) (j � i), andxii+m = mYj=1 ki+j�1ki+j � ki ; lii�m = mYj=1 ki�jki�j � ki (11)(when these oordinates have sense). Under seleted normalization ondition, the innerprodut of eigenvetors is: lixj = Æij, where Æij is the Kroneker delta.For ensembles with well separated onstants, with probability lose to one,ki�jki�j � ki � ( 1; if ki � ki�j;0; if ki � ki+j; (12)Hene, jlii�mj � 1 or jlii�mj � 0. To demonstrate that also jxii+mj � 1 or jxii+mj � 0, weshift nominators in the produt (11) on suh a way:xii+m = kiki+m � ki m�1Yj=1 ki+jki+j � ki :Exatly as in (12), eah multiplier ki+j=(ki+j � ki) here is either almost 1 or almost 0,12



and ki=(ki+m � ki) is either almost 0 or almost �1. In this 0-1 asymptotislii = 1; lii�m = 1 if ki�j > ki for all j = 1; : : :m; else lii�m = 0;rii = 1; rii+m = �1 if ki+j > ki for all j = 1; : : :m� 1 and ki+m < ki;else rii+m = 0: (13)In this asymptoti, only two oordinates of right eigenvetor ri an have nonzero values,rii = 1 and rii+m = �1 where m is the �rst suh positive integer that i + m < n andki+m < ki. It is possible that suh m does not exist. In that ase only rii = 1. (Let usremind that we onsider vetors in the subspae Pi i = 1 with oordinates 1; : : : n�1.In the full system of oordinates 1; : : : n, the last ase orresponds to rii = 1, rin = �1.)For left eigenvetor li, lii = : : : lii�q = 1 and lii�q�j = 0 where j > 0 and q is the �rst suhpositive integer that i�q�1 > 0 and ki�q�1 < ki. It is possible that suh q does not exist.In that ase all lii�j = 1. It is straightforward to hek that in this asymptoti lirj = Æij.The simplest example gives the order k1 > k2 > ::: > kn: lii�j = 1 for j � 0, rii = 1,rin = �1 and all other oordinates of eigenvetors are zero.For less trivial example, let us �nd the asymptoti of left and right eigenvetors for ahain of reations: A1!5 A2!3 A3!4 A4!1 A5!2 A6;where the upper index marks the order of rate onstants: k4 > k5 > k2 > k3 > k1 (ki isthe rate onstant of reation Ai ! :::).For left eigenvetors, rows li, we have the following asymptotis:l1 � (1; 0; 0; 0; 0; 0); l2 � (0; 1; 0; 0; 0; 0); l3 � (0; 1; 1; 0; 0; 0);l4 � (0; 0; 0; 1; 0; 0); l5 � (0; 0; 0; 1; 1; 0): (14)For right eigenvetors, olumns ri, we have the following asymptotis (we write vetor-olumns in rows):r1 � (1; 0; 0; 0; 0;�1); r2 � (0; 1;�1; 0; 0; 0); r3 � (0; 0; 1; 0; 0;�1);r4 � (0; 0; 0; 1;�1; 0); r5 � (0; 0; 0; 0; 1;�1): (15)For onveniene, we use all six oordinates, 1�6.The matrix elements of A in the eigenbasis of K are (A)ij = liAxj. From obtainedestimates for eigenvetors we get j(A)ijj . 1 (with probability lose to one). This estimatedoes not depend on values of kineti onstants. Now, we an apply the Gershgorin theorem(see, for example, [36℄ and for more details [37℄) to the matrix K � knA in the eigenbasisof K: the harateristi roots of K � knA belong to diss jz + kij � knRi(A), whereRi(A) = Pj j(A)ijj. If the diss do not interset, then eah of them ontains one andonly one harateristi number. For ensembles with well separated onstants these dissdo not interset (with probability lose to one). Complex onjugate eigenvalues ould notbelong to di�erent diss. In this ase, the eigenvalues are real { there exist no dampedosillations. 13



2.7 Limitation by two steps with omparable onstantsIf we onsider one-parametri families of systems, then appearane of systems with twoomparable onstants may be unavoidable. On a ontinuous way ki(s) from one systemwith well separated onstants to another suh system onstants may oinide: suh a points that ki(s) = kj(s) may exist, and this existene may be stable, that is, suh a pointpersists under ontinuous perturbations.For atalyti yle, we are interested in the following intersetion only: kmin and theseond onstant are of the same order, and are muh smaller than other onstants. Letthese onstants be kj and kl, j 6= l. The limitation ondition is1kj + 1kl � Xi6=j;l 1ki : (16)The steady state reation rate and relaxation time are determined by these two on-stants. In that ase their e�ets are oupled. For the steady state we get in �rst orderapproximation instead of (4):w = kjklkj + kl b; i = wki = bki kjklkj + kl (i 6= j; l);j = bklkj + kl 0�1� Xi6=j;l 1ki kjklkj + kl1A ; l = bkjkj + kl 0�1� Xi6=j;l 1ki kjklkj + kl1A : (17)Elementary analysis shows that under the limitation ondition (16) the relaxation time is� = 1kj + kl : (18)The single relaxation time approximation for all elementary reation rates in a yle withtwo limiting reations is_wi = kjklb� (kj + kl)wi; wi(t) = kjklkj + kl b+ e�(kj+kl)t  wi(0)� kjklkj + kl b! : (19)The atalyti yle with two limiting reations has the same stationary rate w (17) andrelaxation time (18) as a reversible reation A$ B with k+ = kj, k� = kl.In two-parametri families three onstants an meet. If three smallest onstants kj; kl; kmhave omparable values and are muh smaller than others, then stati and dynami prop-erties would be determined by these three onstants. Stationary rate w and dynami ofrelaxation for the whole yle would be the same as for 3-reation yle A! B ! C ! Awith onstants kj; kl; km. The damped osillation here are possible, for example, if kj =kl = km = k, then there are omplex eigenvalues � = k(�32 � ip32 ). Therefore, if a ylemanifests damped osillation, then at least three slowest onstants are of the same order.The same is true, of ourse, for more general reation networks.14



In N -parametri families of systems N + 1 smallest onstants an meet, and near suha \meeting point" a slow auxiliary yle of N + 1 reations determines behaviour of theentire yle.
3 Multisale ensembles and �nite{additive distributions3.1 Ensembles with well separated onstants, formal approahIn previous setion, ensembles with well separated onstants appear. We represented themby a log-uniform distribution in a suÆiently big interval log k 2 [�; �℄, but we were notinterested in most of probability distribution properties, and did not use them. The onlyproperty we really used is: if ki > kj, then ki=kj � 1 (with probability lose to one). Itmeans that we an assume that ki=kj � a for any preassigned value of a that does notdepend on k values. One an interpret this property as an asymptoti one for �! �1,� !1.That property allows us to simplify algebrai formulas. For example, ki + kj ould besubstituted by maxfki; kjg (with small relative error), oraki + bkjki + dkj � ( a=; if ki � kj;b=d; if ki � kj;for nonzero a; b; ; d (see, for example, (12)).Of ourse, some ambiguity an be introdued, for example, what is it, (k1 + k2) � k1, ifk1 � k2? If we �rst simplify the expression in brakets, it is zero, but if we open braketswithout simpli�ation, it is k2. This is a standard diÆulty in use of relative errors forround-o�. If we estimate the error in the �nal answer, and then simplify, we shall avoidthis diÆulty. Use of o and O symbols also helps to ontrol the error qualitatively: ifk1 � k2, then we an write (k1 + k2) = k1(1 + o(1)), and k1(1 + o(1)) � k1 = k1o(1).The last expression is neither zero, nor absolutely small { it is just relatively small withrespet to k1.The formal approah is: for any ordering of rate onstants, we use relations � and �,and assume that ki=kj � a for any preassigned value of a that does not depend on kvalues. This approah allows us to perform asymptoti analysis of reation networks. Aspeial version of this approah onsists of group ordering: onstants are separated onseveral groups, inside groups they are omparable, and between groups there are relations� or�. An example of suh group ordering was disussed at the end of previous setion(several limiting onstants in a yle). 15



3.2 Probability approah: �nite additive measuresThe asymptoti analysis of multisale systems for log-uniform distribution of independentonstants on an interval log k 2 [�; �℄ (�; � !1) is possible, but parameters �; � do notpresent in any answer, they just should be suÆiently big. A natural question arises, whatis the limit? It is a log-uniform distribution on a line, or, for n independent identiallydistributed onstants, a log-uniform distribution on Rn).It is well known that the uniform distribution on Rn is impossible: if a ube has positiveprobability � > 0 (i.e. the distribution has positive density) then the union of N > 1=�suh disjoint ubes has probability bigger than 1 (here we use the �nite{additivity ofprobability). This is impossible. But if that ube has probability zero, then the wholespae has also zero probability, beause it an be overed by ountable family of the ubetranslation. Hene, translation invariane and �-additivity (ountable additivity) are inontradition (if we have no doubt about probability normalization).Nevertheless, there exists �nite{additive probability whih is invariant with respet toEulidean group E(n) (generated by rotations and translations). Its values are densitiesof sets.Let D � Rn be a Lebesgue measurable subset. Density of D is the limit (if it exists):�(D) = limr!1 �(D \ B nr )�(B nr ) ; (20)where B nr is a ball with radius r and entre at origin. Density of Rn is 1, density ofevery half{spae is 1/2, density of bounded set is zero, density of a one is its solid angle(measured as a sphere surfae frational area). Density (20) and translation and rotationalinvariant. It is �nite-additive: if densities �(D) and �(H) (20) exist and D \H = ? then�(D [H) exists and �(D [H) = �(D) + �(H).Every polyhedron has a density. A polyhedron ould be de�ned as the union of a �nitenumber of onvex polyhedra. A onvex polyhedron is the intersetion of a �nite numberof half-spaes. It may be bounded or unbounded. The family of polyhedra is losed withrespet to union, intersetion and subtration of sets. For our goals, polyhedra form suÆ-iently rih lass. It is important that in de�nition of polyhedron �nite intersetions andunions are used. If one uses ountable unions, he gets too many sets inluding all opensets, beause open onvex polyhedra (or just ubes with rational verties) form a basis ofstandard topology.Of ourse, not every measurable set has density. If it is neessary, we an use the Hahn{Banah theorem and study extensions �Ex of � with the following property:�(D) � �Ex(D) � �(D);where �(D) = limr!1inf �(D \ B nr )�(B nr ) ; �(D) = limr!1sup �(D \ B nr )�(B nr ) :16



Funtionals �(D) and �(D) are de�ned for all measurable D. We should stress that suhextensions are not unique. Extension of density (20) using the Hahn{Banah theorem forpiking up a random integer was used in a very reent work [43℄.One of the most important onepts of any probability theory is the onditional probabil-ity. In the density{based approah we an introdue the onditional density. If densities�(D) and �(H) (20) exist, �(H) 6= 0 and the following limit �(DjH) exists, then we allit onditional density: �(DjH) = limr!1 �(D \H \ B nr )�(H \ B nr ) : (21)For polyhedra the situation is similar to usual probability theory: densities �(D) and �(H)always exist and if �(H) 6= 0 then onditional density exists too. For general measurablesets the situation is not so simple, and existene of �(D) and �(H) 6= 0 does not guaranteeexistene of �(DjH).On a line, onvex polyhedra are just intervals, �nite or in�nite. The probability de�nedon polyhedra is: for �nite intervals and their �nite unions it is zero, for half{lines x > � orx < � it is 1/2, and for the whole line R the probability is 1. If one takes a set of positiveprobability and adds or subtrats a zero{probability set, the probability does not hange.If independent random variables x and y are uniformly distributed on a line, then theirlinear ombination z = �x + �y is also uniformly distributed on a line. Indeed, vetor(x; y) is uniformly distributed on a plane (by de�nition), a set z >  is a half-plane, theorrespondent probability is 1/2. This is a simple, but useful stability property. We shalluse this result in the following form. If independent random variables k1; : : : kn are log-uniformly distributed on a line, then the monomialQni=1 k�ii for real �i is also log-uniformlydistributed on a line.3.3 Carroll obtuse problem and paradoxes of onditioningLewis Carroll's Pillow Problem #58 [21℄: \Three points are taken at random on an in�niteplane. Find the hane of their being the verties of an obtuse{angled triangle."A random triangle on an in�nite plane is presented by a point equidistributed in R6 . Dueto the density { based de�nition, we should take and alulate the density of the set ofobtuse{angled triangles in R6 . This is equivalent to the problem: �nd a fration of thesphere S5 � R6 that orresponds to obtuse{angled triangles. Just integrate... . But thereremains a problem. Verties of triangle are independent. Let us use the standard logifor disussion of independent trials: we take the �rst point A at random, then the seondpoint B, and then the third point C. Let us draw the �rst side AB. Immediately we �ndthat for almost all positions of the the third point C the triangle is obtuse{angled (see[22℄). L. Carroll proposed to take another ondition: let AB be the longest side and let Cbe uniformly distributed in the allowed area. The answer then is easy { just a ratio of areasof two simple �gures. But there are absolutely no reasons for uniformity of C distribution.And it is more important that the absolutely standard reasoning for independently hosenpoints gives another answer than ould be found on the base of joint distribution. Why17



these approahes are in disagreement now? Beause there is no lassial Fubini theoremfor our �nite{additive probabilities, and we annot easily transfer from a multiple integralto a repeated one.There exists a muh simpler example. Let x and y be independent positive real number.This means that vetor (x; y) is uniformly and independently distributed in the �rstquadrant. What is probability that x � y? Following the de�nition of probability basedon the density of sets, we take the orrespondent angle and �nd immediately that thisprobability is 1/2. This meets our intuition well. But let us take the �rst number x andlook for possible values of y. The result: for given x the seond number y is uniformlydistributed on [0;1), and only a �nite interval [0; x℄ orresponds to x � y. For the in�niterest we have x < y. Hene, x < y with probability 1. This is nonsense beause of symmetry.So, for our �nite{additive measure we annot use repeated integrals (or, may be, shoulduse them in a very peuliar manner).3.4 Law of total probability and orderingsFor polyhedra, there appear no onditioning problems. The law of total probabilities holds:if Rn = [mi=1Hi, Hi are polyhedra, �(Hi) > 0, �(Hi \Hj) = 0 for i 6= j, and D � Rn is apolyhedron, then �(D) = mXi=1 �(D \Hi) = mXi=1 �(DjHi)�(Hi): (22)Our basi example of multisale ensemble is log-uniform distribution of reation onstantsin Rn+ (log ki are independent and uniformly distributed on the line). For every orderingkj1 > kj2 > : : : > kjn a polyhedral one Hj1j2:::jn in Rn is de�ned. These ones haveequal probabilities �(Hj1j2:::jn) = 1=n! and probability of intersetion of ones for di�erentorderings is zero. Hene, we an apply the law of total probability (22). This means thatwe an study every event D onditionally, for di�erent orderings, and than ombine theresults of these studies in the �nal answer (22).For example, if we study a simple yle then formula (4) for steady state is valid with anygiven auray with unite probability for any ordering with the given minimal elementkn.For yle with given ordering of onstants we an �nd 0-1 approximation of left and righteigenvetors (13). This approximation is valid with any given auray for this orderingwith unite probability.If we onsider suÆiently wide log-uniform distribution of onstants on a bounded intervalinstead of the in�nite axis then these statements are true with probability lose to 1.For general system that we study below the situation is slightly more ompliated: newterms, auxiliary reations with monomial rate onstants k& = Qi k&ii ould appear withinteger (but not neessary positive) &i, and we should inlude these k& in ordering. Itfollows from stability property that these monomials are log-uniform distributed on in�niteinterval, if ki are. Therefore the situation seems to be similar to ordering of onstants,18



but there is a signi�ant di�erene: monomials are not independent, they depend on kiwith &i 6= 0.Happily, in the forthoming analysis when we inlude auxiliary reations with onstantk& , we always exlude at least one of reations with rate onstant ki and &i 6= 0. Hene,for we always an use the following statement (for the new list of onstants, or for the oldone): if kj1 > kj2 > : : : > kjn then kj1 � kj2 � : : : � kjn, where a � b for positive a; bmeans: for any given " > 0 the inequality "a > b holds with unite probability.If we use suÆiently wide but �nite log-uniform distribution then " ould not be arbi-trarily small (this depends on the interval with), and probability is not unite but loseto one. For given " > 0 probability tends to one when the interval width goes to in�nity.It is important that we use only �nite number of auxiliary reations with monomial on-stants, and this number is bounded from above for given number of elementary reations.For ompleteness, we should mention here general algebrai theory of orderings that isneessary in more sophistiated ases [47,48℄.4 Relaxation of multisale networks and hierarhy of auxiliary disrete dy-namial systems4.1 De�nitions, notations and auxiliary results4.1.1 NotationsIn this Se., we onsider a general network of linear (monomoleular) reations. Thisnetwork is represented as a direted graph (digraph): verties orrespond to omponentsAi, edges orrespond to reations Ai ! Aj with kineti onstants kji > 0. For eah vertex,Ai, a positive real variable i (onentration) is de�ned. A basis vetor ei orresponds toAi with omponents eij = Æij, where Æij is the Kroneker delta. The kineti equation forthe system is didt =Xj (kijj � kjii); (23)or in vetor form: _ = K.To write another form of (23) we use stoihiometri vetors: for a reation Ai ! Ajthe stoihiometri vetor ji is a vetor in onentration spae with ith oordinate �1,jth oordinate 1, and zero other oordinates. The reation rate wji = kjii. The kinetiequation has the form ddt =Xi;j wjiji; (24)where  is the onentration vetor. One more form of (23) desribes diretly dynamisof reation rates: dwjidt  = kjididt ! = kjiXl (wil � wli): (25)19



It is neessary to mention that, in general, system (25) is not equivalent to (24), beausethere are additional onnetions between variables wji. If there exists at least one Ai withtwo di�erent outgoing reations, Ai ! Aj and Ai ! Al (j 6= l), then wji=wli � kji=kli. Ifthe reation network generates a disrete dynamial system Ai ! Aj on the set of Ai (seebelow), then the variables wji are independent, and (25) gives equivalent representationof kinetis.A linear onservation law is a linear funtion de�ned on the onentrations q() =Pni=1 qii, whose value is preserved by the dynamis (23). The set of all the onservationlaws forms the left kernel of the matrix K. Equation (23) always has a linear onservationlaw: b() = Pi i = onst. If there is no other independent linear onservation law, thenthe system is weakly ergodi.Two verties are alled adjaent if they share a ommon edge. A path is a sequene ofadjaent verties. A graph is onneted if any two of its verties are linked by a path. Amaximal onneted subgraph of graph G is alled a onneted omponent of G. Everygraph an be deomposed into onneted omponents.A direted path is a sequene of adjaent edges where eah step goes in diretion of anedge. A vertex A is reahable by a vertex B, if there exists an oriented path from B to A.A nonempty set V of graph vertexes forms a sink, if there are no oriented edges fromAi 2 V to any Aj =2 V . For example, in the reation graph A1  A2 ! A3 the one-vertexsets fA1g and fA3g are sinks. A sink is minimal if it does not ontain a stritly smallersink. In the previous example, fA1g, fA3g are minimal sinks. Minimal sinks are also alledergodi omponents.A digraph is strongly onneted, if every vertex A is reahable by any other vertex B.Ergodi omponents are maximal strongly onneted subgraphs of the graph, but inverseis not true: there may exist maximal strongly onneted subgraphs that have outgoingedges and, therefore, are not sinks.We study ensembles of systems with a given graph and independent and well separatedkineti onstants kij. This means that we study asymptoti behaviour of ensembles withindependent identially distributed onstants, log-uniform distributed in suÆiently biginterval log k 2 [�; �℄, for �! �1, � !1, or just a log-uniform distribution on in�niteaxis, log k 2 R.4.1.2 Sinks and ergodiityIf there is no other independent linear onservation law, then the system is weakly ergodi.The weak ergodiity of the network follows from its topologial properties.The following properties are equivalent and eah one of them an be used as an alternativede�nition of weak ergodiity:(1) There exist the only independent linear onservation law for kineti equations (23)(this is b() = Pi i = onst). 20



(2) For any normalized initial state (0) (b() = 1) there exists a limit state � =limt!1 exp(Kt) (0) that is the same for all normalized initial onditions. (For all ,limt!1 exp(Kt)  = b()�.)(3) For eah two verties Ai; Aj (i 6= j) we an �nd suh a vertex Ak that oriented pathsexist from Ai to Ak and from Aj to Ak. This means that the following strutureexists: Ai ! : : :! Ak  : : : Aj:One of these paths an be degenerated: it might be i = k or j = k.(4) The network has only one minimal sink (one ergodi omponent).For every monomoleular kineti system, the Jordan ell for zero eigenvalue of matrixK is diagonal and the maximal number of independent linear onservation laws (i.e. thegeometri multipliity of the zero eigenvalue of the matrix K) is equal to the maximalnumber of disjoint ergodi omponents (minimal sinks).Let G = fAi1; : : : Ailg be an ergodi omponent. Then there exists a unique vetor (nor-malized invariant distribution) G with the following properties: Gi = 0 for i =2 fi1; : : : ilg,Gi > 0 for all i 2 fi1; : : : ilg b(G) = 1, KG = 0.If G1; : : : Gm are all ergodi omponents of the system, then there exist m independentpositive linear funtionals b1(), ... bm() suh that Pi bi = b and for eah limt!1 exp(Kt) = mXi=1 bi()Gi: (26)So, for any solution of kineti equations (23), (t), the limit at t!1 is a linear ombi-nation of normalized invariant distributions Gi with oeÆients bi((0)). In the simplestexample, A1  A2 ! A3, G1 = fA1g, G2 = fA3g, omponents of vetors G1, G2 are(1; 0; 0) and (0; 0; 1), orrespondingly. For funtionals b1;2 we get:b1() = 1 + k1k1 + k2 2; b2() = k2k1 + k2 2 + 3; (27)where k1; k2 are rate onstants for reation A2 ! A1, and A2 ! A3, orrespondingly. Wean mention that for well separated onstants either k1 � k2 or k1 � k2. Hene, oneof the oeÆients k1=(k1 + k2), k2=(k1 + k2) is lose to 0, another is lose to 1. This isan example of the general zero{one law for multisale systems: for any l; i, the value offuntional bl (26) on basis vetor ei, bl(ei), is either lose to one or lose to zero (withprobability lose to 1).We an understand better this asymptotis by using the Markov hain language. Fornon-separated onstants a partile in A2 has nonzero probability to reah A1 and nonzeroprobability to reah A3. The zero{one law in this simplest ase means that the dynamisof the partile beomes deterministi: with probability one it hooses to go to one ofverties A2; A3 and to avoid another. Instead of branhing, A2 ! A1 and A2 ! A3, weselet only one way: either A2 ! A1 or A2 ! A3. Graphs without branhing representdisrete dynamial systems. 21



4.1.3 Deomposition of disrete dynamial systemsDisrete dynamial system on a �nite set V = fA1; A2; : : : Ang is a semigroup 1; �; �2; :::,where � is a map � : V ! V . Ai 2 V is a periodi point, if �l(Ai) = Ai for some l > 0;else Ai is a transient point. A yle of period l is a sequene of l distint periodi pointsA; �(A); �2(A); : : : �l�1(A) with �l(A) = A. A yle of period one onsists of one �xedpoint, �(A) = A. Two yles, C;C 0 either oinide or have empty intersetion.The set of periodi points, V p, is always nonempty. It is a union of yles: V p = [jCj.For eah point A 2 V there exist suh a positive integer �(A) and a yle C(A) = Cjthat �q(A) 2 Cj for q � �(A). In that ase we say that A belongs to basin of attrationof yle Cj and use notation Att(Cj) = fA j C(A) = Cjg. Of ourse, Cj � Att(Cj). Fordi�erent yles, Att(Cj)\Att(Cl) = ?. If A is periodi point then �(A) = 0. For transientpoints �(A) > 0.So, the phase spae V is divided onto subsets Att(Cj). Eah of these subsets inludesone yle (or a �xed point, that is a yle of length 1). Sets Att(Cj) are �-invariant:�(Att(Cj)) � Att(Cj). The set Att(Cj) n Cj onsist of transient points and there existssuh positive integer � that �q(Att(Cj)) = Cj if q � � .4.2 Auxiliary disrete dynamial systems and relaxation analysis4.2.1 Auxiliary disrete dynamial systemFor eah Ai, we de�ne �i as the maximal kineti onstant for reations Ai ! Aj: �i =maxjfkjig. For orrespondent j we use notation �(i): �(i) = argmaxjfkjig. The funtion�(i) is de�ned under ondition that for Ai outgoing reations Ai ! Aj exist. Let us extendthe de�nition: �(i) = i if there exist no suh outgoing reations.The map � determines disrete dynamial system on a set of omponents V = fAig. Weall it the auxiliary disrete dynamial system for a given network of monomoleular rea-tions. Let us deompose this system and �nd the yles Cj and their basins of attration,Att(Cj).Notie that for the graph that represents a disrete dynami system, attrators are ergodiomponents, while basins are onneted omponents.An auxiliary reation network is assoiated with the auxiliary disrete dynamial system.This is the set of reations Ai ! A�(i) with kineti onstants �i. The orrespondent kinetiequation is _i = ��ii + X�(j)=i �jj; (28)or in vetor notations (24)ddt = ~K =Xi �ii�(i) i; ~Kij = ��jÆij + �jÆi �(j): (29)22



For deriving of the auxiliary disrete dynamial system we do not need the values ofrate onstants. Only the ordering is important. Below we onsider multisale ensemblesof kineti systems with given ordering and with well separated kineti onstants (k�(1) �k�(2) � ::: for some permutation �).In the following, we analyze �rst the situation when the system is onneted and has onlyone attrator. This an be a point or a yle. Then, we disuss the general situation withany number of attrators.4.2.2 Ayli auxiliary system with one attrator: struture and eigenvetorsIn the simplest ase, the auxiliary disrete dynamial system is ayli and has only oneattrator, a �xed point. Let this point be An (n is the number of verties). For suh asystem, it is easy to �nd expliit analyti solution of kineti equation (28). First of all,these systems have a harateristi property among all auxiliary dynamial systems: thestoihiometri vetors of reations Ai ! A�(i) form a basis in the subspae of onentrationspae with Pi i = 0: there exist n � 1 reation, and their stoihiometri vetors areindependent. On the other hand, existene of yles implies linear onnetions betweenstoihiometri vetors, and existene of two attrators in ayli system implies that thenumber of reations is less n� 1, and their stoihiometri vetors ould not form a basisin n� 1-dimensional spae.For ensembles with well separate onstants, relaxation of the whole network is approxi-mated by solution of auxiliary kineti equation (28) with high auray, with probabilitylose to 1. To prove this statement, let us �rst �nd left and right eigenvetors of matrix~K of auxiliary kineti system (28) for ayli auxiliary dynamis. In this ase, for anyvertex di�erent from the attrator there is an eigenvetor. Right eigenvetors will be on-struted by reurrene starting from the vertex and moving in the diretion of the ow.The onstrution is in opposite diretion for left eigenvetors.For zero eigenvalue, the right eigenvetor r0 has only one nonzero oordinate, n = 1, theleft eigenvetor is a raw l0 = (1; 1; : : : 1) (this orresponds to the linear onservation lawl0 = Pi i = onst), the normalization ondition holds: l0r0 = 1. Of ourse, l0 is lefteigenvetor with zero eigenvalue for any network of monomoleular reations. If for suha network the auxiliary disrete dynamial system is ayli and has only one attrator,a �xed point, then vetor r0 is right eigenvetor with zero eigenvalue, beause in this asethere is no outgoing reation of the form An ! Ai (i = 1; : : : n� 1).Nonzero eigenvalues of ~K (28) are ��i (i = 1; : : : n � 1). For left and right eigenvetorsof ~K with eigenvalue ��i we use notations li (vetor-raw) and ri (vetor-olumn), orre-spondingly, and apply normalization ondition rii = lii = 1. For given i, �i is the minimalinteger suh that ��i(i) = n (this is a \relaxation time" i.e. the number of steps to reahattrator). All indies f�k(i) j k = 0; 1; : : : �ig are di�erent. For right eigenvetor ri onlyoordinates ri�k(i) (k = 0; 1; : : : �i) ould have nonzero values, and( ~Kri)�k+1(i) = ���k+1(i)ri�k+1(i) + ��k(i)ri�k(i) = ��iri�k+1(i):23



Hene, ri�k+1(i) = ��k(i)��k+1(i) � �i ri�k(i) = kYj=0 ��j(i)��j+1(i) � �i= �i��k+1(i) � �i k�1Yj=0 ��j+1(i)��j+1(i) � �i : (30)The last transformation is onvenient for estimation of the produt for well separatedonstants (ompare to (12)):��j+1(i)��j+1(i) � �i � ( 1; if ��j+1(i) � �i;0; if ��j+1(i) � �i; �i��k+1(i) � �i � (�1; if �i � ��k+1(i);0; if �i � ��k+1(i): (31)For left eigenvetor li oordinate lij ould have nonzero value only if there exists suhq � 0 that �q(j) = i (this q is unique beause the auxiliary dynamial system has noyles). In that ase (for q > 0),(li ~K)j = ��jlij + �jli�(j) = ��ilij:Hene, lij = �j�j � �i li�(j) = q�1Yk=0 ��k(j)��k(j) � �i : (32)For every fration in (32) the following estimate holds:��k(j)��k(j) � �i � ( 1; if ��k(j) � �i;0; if ��k(j) � �i: (33)As we an see, every oordinate of left and right eigenvetors of ~K (30), (32) is either 0or �1, or lose to 0 or to 1 (with probability lose to 1). We an write this asymptotirepresentation expliitly (analogously to (13)). For left eigenvetors, lii = 1 and lij = 1 (fori 6= j) if there exists suh q that �q(j) = i, and ��d(j) > �i for all d = 0; : : : q � 1, elselij = 0. For right eigenvetors, rii = 1 and ri�k(j) = �1 if ��k(j) < �i and for all positivem < k inequality ��m(j) > �i holds, i.e. k is �rst suh positive integer that ��k(j) < �i.Vetor ri has not more than two nonzero oordinates. It is straightforward to hek thatin this asymptoti lirj = Æij.In general, oordinates of eigenvetors lij, rij are simultaneously nonzero only for one valuej = i beause the auxiliary system is ayli. On the other hand, lirj = 0 if i 6= j, justbeause that are eigenvetors for di�erent eigenvalues, �i and �j. Hene, lirj = Æij.For example, let us �nd the asymptoti of left and right eigenvetors for a branhed aylisystem of reations: A1!7 A2!5 A3!6 A4!2 A5!4 A8; A6!1 A7!3 A424



where the upper index marks the order of rate onstants: �6 > �4 > �7 > �5 > �2 > �3 >�1 (�i is the rate onstant of reation Ai ! :::).For left eigenvetors, rows li, we have the following asymptotis:l1 � (1; 0; 0; 0; 0; 0; 0; 0); l2 � (0; 1; 0; 0; 0; 0; 0; 0); l3 � (0; 1; 1; 0; 0; 0; 0; 0);l4 � (0; 0; 0; 1; 0; 0; 0; 0); l5 � (0; 0; 0; 1; 1; 1; 1; 0); l6 � (0; 0; 0; 0; 0; 1; 0; 0):l7 � (0; 0; 0; 0; 0; 1; 1; 0) (34)For right eigenvetors, olumns ri, we have the following asymptotis (we write vetor-olumns in rows):r1 � (1; 0; 0; 0; 0; 0; 0;�1); r2 � (0; 1;�1; 0; 0; 0; 0; 0); r3 � (0; 0; 1; 0; 0; 0; 0;�1);r4 � (0; 0; 0; 1;�1; 0; 0; 0); r5 � (0; 0; 0; 0; 1; 0; 0;�1); r6 � (0; 0; 0; 0; 0; 1;�1; 0);r7 � (0; 0; 0; 0;�1; 0; 1; 0): (35)For onveniene, we use all eight oordinates, 1�8.4.2.3 Relaxation of a system with ayli auxiliary dynamial systemLet us assume that the auxiliary dynamial system is ayli and has only one attrator,a �xed point. This means that stoihiometri vetors �(i) i form a basis in a subspaeof onentration spae with Pi i = 0. For every reation Ai ! Al the following linearoperators Qil an be de�ned:Qil(�(i) i) = li; Qil(�(p) p) = 0 for p 6= i: (36)The kineti equation for the whole reation network (24) ould be transformed in theform ddt =Xi 0�1 + Xl l 6=�(i) kli�iQil1A �(i) i�ii= 0�1 + Xj;l (l 6=�(j)) klj�j Qjl1AXi �(i) i�ii= 0�1 + Xj;l (l 6=�(j)) klj�j Qjl1A ~K; (37)
where ~K is kineti matrix of auxiliary kineti equation (29). By onstrution of auxiliarydynamial system, kli � �i if l 6= �(i). Notie also that jQjlj does not depend on rateonstants.Let us represent system (37) in eigenbasis of ~K obtained in previous subsetion. Anymatrix B in this eigenbasis has the form B = (~bij), ~bij = liBrj = Pqs liqbqsrjs, where (bqs)is matrix B in the initial basis, li and rj are left and right eigenvetors of ~K (30), (32).In eigenbasis of ~K the Gershgorin estimates of eigenvalues and estimates of eigenvetorsare muh more eÆient than in original oordinates: the system is stronger diagonally25



dominant. Transformation to this basis is an e�etive preonditioning for perturbationtheory that uses auxiliary kinetis as a �rst approximation to the kinetis of the wholesystem.First of all, we an exlude the onservation law. Any solution of (37) has the form(t) = br0 + ~(t), where b = l0~(t) = Pi ~i(t) = 0. On the subspae of onentration spaewith Pi i = 0 we get ddt = (1 + E)diagf��1; : : :� �n�1g; (38)where E = ("ij), j"ijj � 1, and diagf��1; : : :��n�1g is diagonal matrix with��1; : : :��n�1on the main diagonal. If j"ijj � 1 then we an use the Gershgorin theorem and state thateigenvalues of matrix (1+E)diagf��1; : : :��n�1g are real and have the form �i = ��i+�iwith j�ij � �i.To prove inequality j"ijj � 1 (for ensembles with well separated onstants, with proba-bility lose to 1) we use that the left and right eigenvetors of ~K (30), (32) are uniformlybounded under some non-degeneration onditions and those onditions are true for wellseparated onstants. For ensembles with well separated onstants, for any given positiveg < 1 and all i; j (i 6= j) the following inequality is true with probability lose to 1:j�i � �jj > g�i. Let us selet a value of g and assume that this diagonal gap ondition isalways true. In this ase, for every fration in (30), (32) we have estimate�ij�j � �ij < 1g :Therefore, for oordinates of right and left eigenvetors of ~K (30), (32) we getjri�k+1(i)j < 1gk < 1gn ; jlijj < 1gq < 1gn : (39)We an estimate j"ijj and j�ij=�i from above as onst�maxl 6=�(s)fkls=�sg. So, the eigen-values for kineti matrix of the whole system (37) are real and lose to eigenvalues ofauxiliary kineti matrix ~K (29). For eigenvetors, the Gershgorin theorem gives no re-sult, and additionally to diagonal dominane we must assume the diagonal gap ondition.Based on this assumption, we proved the Gershgorin type estimate of eigenvetors inAppendix 1. In partiular, aording to this estimate, eigenvetors for the whole reationnetwork are arbitrarily lose to eigenvetors of ~K (with probability lose to 1).So, if the auxiliary disrete dynamial system is ayli and has only one attrator (a�xed point), then the relaxation of the whole reation network ould be approximated bythe auxiliary kinetis (28):(t) = (l0(0))r0 + n�1Xi=1(li(0))ri exp(��it); (40)where l0 and r0 are left (vetor-raw) and right (vetor-olumn) eigenvetors of ~K or-respondent to zero eigenvalue (l0 = (1; 1; : : : 1), r0i = Æin, and Æin is Kroneker delta), liand ri are left and right eigenvetors of ~K orrespondent to eigenvalue ��i. For li and ri26



one an use exat formulas (30) and (32) or 0-1 asymptoti representations based on (33)and (31) for multisale systems. This approximation (40) ould be improved by iterativemethods, if neessary.4.2.4 Auxiliary system with one yli attratorThe seond simple partiular ase on the way to general ase is a reation network withomponents A1; : : : An whose auxiliary disrete dynamial system has one attrator, ayle with period � > 1: An��+1 ! An��+2 ! : : : An ! An��+1 (after some hangeof enumeration). We assume that the limiting step in this yle (reation with minimalonstant) is An ! An��+1. If auxiliary disrete dynamial system has only one attratorthen the whole network is weakly ergodi. But the attrator of the auxiliary system maynot oinide with a sink of the reation network.There are two possibilities:(1) In the whole network, all the outgoing reations from the yle have the formAn��+i ! An��+j (i; j > 0). This means that the yle verties An��+1; An��+2; : : : Anform a sink for the whole network.(2) There exists a reation from a yle vertex An��+i to Am, m � n � � . This meansthat the set fAn��+1; An��+2; : : : Ang is not a sink for the whole network.In the �rst ase, the limit (for t !1) distribution for the auxiliary kinetis is the well-studied stationary distribution of the yle An��+1; An��+2; : : : An desribed in Se. 2 (2),(3) (4), (6). The set fAn��+1; An��+2; : : :Ang is the only ergodi omponent for the wholenetwork too, and the limit distribution for that system is nonzero on verties only. Thestationary distribution for the yle An��+1 ! An��+2 ! : : : An ! An��+1 approximatesthe stationary distribution for the whole system. To approximate the relaxation proess,let us delete the limiting step An ! An��+1 from this yle. By this deletion we produean ayli system with one �xed point, An, and auxiliary kineti equation (29) transformsinto ddt = ~K0 = n�1Xi=1 �ii�(i) i: (41)As it is demonstrated, dynamis of this system approximates relaxation of the wholenetwork in subspae Pi i = 0. Eigenvalues for (41) are ��i (i < n), the orrespondedeigenvetors are represented by (30), (32) and 0-1 multisale asymptoti representation isbased on (33) and (31).In the seond ase, the set fAn��+1; An��+2; : : : Ang is not a sink for the whole net-work. This means that there exist outgoing reations from the yle, An��+i ! Aj withAj =2 fAn��+1; An��+2; : : : Ang. For every yle vertex An��+i the rate onstant �n��+ithat orresponds to the yle reation An��+i ! An��+i+1 is muh bigger than any otheronstant kj n��+i that orresponds to a \side" reation An��+i ! Aj (j 6= n� � + i + 1):�n��+i � kj n��+i. This is beause de�nition of auxiliary disrete dynamial system andassumption of ensemble with well separated onstants (multisale asymptotis). This in-equality allows us to separate motion and to use for omputation of the rates of outgo-ing reation An��+i ! Aj the quasi steady state distribution in the yle. This means27



that we an glue the yle into one vertex A1n��+1 with the orrespondent onentration1n��+1 = P1�i�� n��+i and substitute the reation An��+i ! Aj by A1n��+1 ! Aj withthe rate onstant renormalization: k1j n��+1 = kj n��+iQSn��+i=1n��+1. By the supersriptQS we mark here the quasistationary onentrations for given total yle onentration1n��+1. Another possibility is to reharge the link An��+i ! Aj to another vertex ofthe yle (usually to An): we an substitute the reation An��+i ! Aj by the reationAn��+q ! Aj with the rate onstant renormalization:kj n��+q = kj n��+iQSn��+i=QSn��+q: (42)We apply this approah now and demonstrate its appliability in more details later in thissetion.For the quasi-stationary distribution on the yle we get n��+i = n�n=�n��+i (1 � i < �).The original reation network is transformed by gluing the yle fAn��+1, An��+2; : : :Ang into a point A1n��+1. We say that omponents An��+1, An��+2; : : : An of the originalsystem belong to the omponent A1n��+1 of the new system. All the reations Ai ! Aj withi; j � n� � remain the same with rate onstant kji. Reations of the form Ai ! Aj withi � n� � , j > n� � (inoming reations of the yle fAn��+1; An��+2; : : : Ang) transforminto Ai ! A1n��+1 with the same rate onstant kji. Reations of the form Ai ! Aj withi > n� � , j � n� � (outgoing reations of the yle fAn��+1; An��+2; : : : Ang) transforminto reations A1n��+1 ! Aj with the \quasistationary" rate onstant kQSji = kji�n=�n��+i.After that, we selet the maximal kQSji for given j: k(1)j n��+1 = maxi>n�� kQSji . This k(1)j n��+1is the rate onstant for reation A1n��+1 ! Aj in the new system. Reations Ai ! Ajwith i; j > n� � (internal reations of the site) vanish.Among reations of the form An��+i ! Am (m � n� �) we �nd�(1)n��+i = maxi;m fkmn��+i�n=�n��+ig: (43)Let the orrespondent i;m be i1; m1.After that, we reate a new auxiliary disrete dynamial system for the new reationnetwork on the set fA1; : : : An�� ; A1n��+1g. We an desribe this new auxiliary system as aresult of transformation of the �rst auxiliary disrete dynamial system of initial reationnetwork. All the reation from this �rst auxiliary system of the form Ai ! Aj withi; j � n� � remain the same with rate onstant �i. Reations of the form Ai ! Aj withi � n�� , j > n�� transform into Ai ! A1n��+1 with the same rate onstant �i. One morereation is to be added: A1n��+1 ! Am1 with rate onstant �(1)n��+i. We \glued" the yleinto one vertex, A1n��+1, and added new reation from this vertex to Am1 with maximalpossible onstant (43). Without this reation the new auxiliary dynamial system hasonly one attrator, the �xed point A1n��+1. With this additional reation that point is not�xed, and a new yle appears: Am1 ! : : : A1n��+1 ! Am1 .Again we should analyze, whether this new yle is a sink in the new reation network,et. Finally, after a hain of transformations, we should ome to an auxiliary disretedynamial system with one attrator, a yle, that is the sink of the transformed wholereation network. After that, we an �nd stationary distribution by restoring of glued28



yles in auxiliary kineti system and applying formulas (2), (3) (4), (6) from Se. 2.First, we �nd the stationary state of the yle onstruted on the last iteration, afterthat for eah vertex Akj that is a glued yle we know its onentration (the sum of allonentrations) and an �nd the stationary distribution, then if there remain some vertiesthat are glued yles we �nd distribution of onentrations in these yles, et. At the endof this proess we �nd all stationary onentrations with high auray, with probabilitylose to one.As a simple example we use the following system, a hain supplemented by three reations:A1!1 A2!2 A3!3 A4!4 A5!5 A6; A6!6 A4; A5!7 A2; A3!8 A1; (44)where the upper index marks the order of rate onstants.Auxiliary disrete dynamial system for the network (44) inludes the hain and onereation: A1!1 A2!2 A3!3 A4!4 A5!5 A6!6 A4:It has one attrator, the yle A4!4 A5!5 A6!6 A4. This yle is not a sink for the wholesystem, beause there exists an outgoing reation A5!7 A2.By gluing the yle A4!4 A5!5 A6!6 A4 into a vertex A14 we get new network with a hainsupplemented by two reations:A1!1 A2!2 A3!3 A14; A14!? A2; A3!? A1: (45)Here the new rate onstant is k(1)24 = k25�6=�5 (�6 = k46 is the limiting step of the yleA4!4 A5!5 A6!6 A4, �5 = k65).Here we an make a simple but important observation: the new onstant k124 = k25�6=�5has the same log-uniform distribution on the whole axis as onstants k25, �6 and �5 have.The new onstant k124 depends on k25 and the internal yle onstants �6 and �5, and isindependent from other onstants.Of ourse, k(1)24 < �5, but relations between k(1)24 and k13 are a priori unknown. Bothorderings, k(1)24 > k13 and k(1)24 < k13, are possible, and should be onsidered separately, ifneessary. But for both orderings the auxiliary dynamial system for network (45) isA1!1 A2!2 A3!3 A14!? A2(of ourse, �(1)4 < �3 < �2 < �1). It has one attrator, the yle A2!2 A3!3 A14!? A2. Thisyle is not a sink for the whole system, beause there exists an outgoing reation A3!? A1.The limiting onstant for this yle is �(1)4 = k(1)24 = k25k46=k65. We glue this yle intoone point, A22. The new transformed system is very simple, it is just a two step yle:A1!1 A22!? A1. The new reation onstant is k(2)12 = k13�(1)4 =�3 = k13k25k46=(k65k43). Theauxiliary disrete dynamial system is the same graph A1!1 A22!? A1, this is a yle, andwe do not need further transformations.Let us �nd the steady state on the way bak, from this �nal auxiliary system to theoriginal one. For steady state of eah yle we use formula (4).29



The steady state for the �nal system is 1 = bk(2)12 =k21, 22 = b(1�k(2)12 =k21). The omponentA22 inludes the yle A2!2 A3!3 A14!? A2. The steady state of this yle is 2 = (2)2 k(1)24 =k32,3 = (2)2 k(1)24 =k43, (1)4 = (2)2 (1� k(1)24 =k32� k(1)24 =k43). The omponent A14 inludes the yleA4!4 A5!5 A6!6 A4. The steady state of this yle is 4 = (1)4 k46=k54, 5 = (1)4 k46=k65,6 = (1)4 (1� k46=k54 � k46=k65).For one atalyti yle, relaxation in the subspae Pi i = 0 is approximated by relaxationof a hain that is produed from the yle by utting the limiting step (Se. 2). For reationnetworks under onsideration (with one yli attrator in auxiliary disrete dynamialsystem) the diret generalization works: for approximation of relaxation in the subspaePi i = 0 it is suÆient to perform the following proedures:� To glue iteratively attrators (yles) of the auxiliary system that are not sinks of thewhole system;� To restore these yles from the end of the �rst proedure to its beginning. For eahof yles (inluding the last one that is a sink) the limited step should be deleted, andthe outgoing reation should be reharged to the head of the limiting steps (with theproper normalization), if it was not deleted before as a limiting step of one of the yles.The heads of outgoing reations of that yles should be reharged to the heads of thelimiting steps. Let for a yle this limiting step be Am ! Aq. If for a glued yle Ak thereexists an outgoing reation Ak ! Aj with the onstant � (43), then after restoration weadd the outgoing reation Am ! Aj with the rate onstant �. Kineti of the resultingayli system approximates relaxation of the initial networks (under assumption of wellseparated onstants, for given ordering, with probability lose to 1).Let us onstrut this ayli network for the same example (44). The �nal yle isA1!1 A22!? A1. The limiting step in this yle is A22!? A1. After utting we get A1!1 A22.The omponent A22 is glued yle A2!2 A3!3 A14!? A2. The reation A1!1 A22 orresponds tothe reation A1!1 A2 (in this ase, this is the only reation from A1 to yle; in other aseone should take the reation from A1 to yle with maximal onstant). The limiting stepin the yle is A14!? A2. After utting, we get a system A1!1 A2!2 A3!3 A14. The omponentA14 is the glued yle A4!4 A5!5 A6!6 A4 from the previous step. The limiting step in thisyle is A6!6 A4. After restoring this yle and utting the limiting step, we get an aylisystem A1!1 A2!2 A3!3 A4!4 A5!5 A6 (as one an guess from the beginning: this oinideneis provided by the simple onstant ordering seleted in (44)). Relaxation of this systemapproximates relaxation of the whole initial network.To demonstrate possible branhing of desribed algorithm for yles surgery (gluing,restoring and utting) with neessity of additional orderings, let us onsider the followingsystem: A1!1 A2!6 A3!2 A4!3 A5!4 A3; A4!5 A2; (46)The auxiliary disrete dynamial system for reation network (46) isA1!1 A2!6 A3!2 A4!3 A5!4 A3:30



It has only one attrator, a yle A3!2 A4!3 A5!4 A3. This yle is not a sink for the wholenetwork (46) beause reation A4!5 A2 leads from that yle. After gluing the yle into avertex A13 we get the new network A1!1 A2!6 A13!? A2. The rate onstant for the reationA13!A2 is k123 = k24k35=k54, where kij is the rate onstant for the reation Aj ! Ai inthe initial network (k35 is the yle limiting reation). The new network oinides with itsauxiliary system and has one yle, A2!6 A13!? A2. This yle is a sink, hene, we an startthe bak proess of yles restoring and utting. One question arises immediately: whihonstant is smaller, k32 or k123. The smallest of them is the limiting onstant, and theanswer depends on this hoie. Let us onsider two possibilities separately: (1) k32 > k123and (2) k32 < k123. Of ourse, for any hoie the stationary onentration of the soureomponent A1 vanishes: 1 = 0.(1) Let as assume that k32 > k123. In this ase, the steady state of the yle A2!6 A13!? A2is (aording to (4)) 2 = bk123=k32, 13 = b(1 � k123=k32), where b = P i. The omponentA13 is a glued yle A3!2 A4!3 A5!4 A3. Its steady state is 3 = 13k35=k43, 4 = 13k35=k54,5 = 13(1� k35=k43 � k35=k54).Let us onstrut an ayli system that approximates relaxation of (46) under the same as-sumption (1) k32 > k123. The �nal auxiliary system after gluing yles is A1!1 A2!6 A13!? A2.Let us delete the limiting reation A13!? A2 from the yle. We get an ayli systemA1!1 A2!6 A13. The omponent A13 is the glued yle A3!2 A4!3 A5!4 A3. Let us restore thisyle and delete the limiting reationA5!4 A3. We get an ayli system A1!1 A2!6 A3!2 A4!3 A5.Relaxation of this system approximates relaxation of the initial network (46) under addi-tional ondition k32 > k123.(2) Let as assume now that k32 < k123. In this ase, the steady state of the yle A2!6 A13!? A2is (aording to (4)) 2 = b(1�k32=k123), 13 = bk32=k123. The further analysis is the same asit was above: 3 = 13k35=k43, 4 = 13k35=k54, 5 = 13(1� k35=k43 � k35=k54) (with another13).Let us onstrut an ayli system that approximates relaxation of (46) under assumption(2) k32 < k123. The �nal auxiliary system after gluing yles is the same, A1!1 A2!6 A13!? A2,but the limiting step in the yle is di�erent, A2!6 A13. After utting this step, we get aylisystem A1!1 A2 ?A13, where the last reation has rate onstant k123.The omponent A13 is the glued yle A3!2 A4!3 A5!4 A3. Let us restore this yle and deletethe limiting reation A5!4 A3. The onnetion from glued yle A13!? A2 with onstant k123transforms into onnetion A5!? A2 with the same onstant k123.We get the ayli system: A1!1 A2, A3!2 A4!3 A5!? A2. The order of onstants is nowknown: k21 > k43 > k54 > k123, and we an substitute the sign \?" by \4":A3!2 A4!3 A5!4 A2.For both ases, k32 > k123 (k123 = k24k35=k54) and k32 < k123 it is easy to �nd the eigenvetorsexpliitly and to write the solution to the kineti equations in expliit form.31



4.3 Cyles surgery for auxiliary disrete dynamial system with arbitrary family of at-tratorsIn this subsetion, we summarize results of relaxation analysis and desribe the algorithmof approximation of steady state and relaxation proess for arbitrary reation networkwith well separated onstants.4.3.1 Hierarhy of yles gluingLet us onsider a reation network W with a given struture and �xed ordering of on-stants. The set of verties of W is A and the set of elementary reations is R. Eahreation from R has the form Ai ! Aj, Ai; Aj 2 A. The orrespondent onstant is kji.For eah Ai 2 A we de�ne �i = maxjfkjig and �(i) = argmaxjfkjig. In addition, �(i) = iif kji = 0 for all j.The auxiliary disrete dynamial system for the reation network W is the dynamialsystem � = �W de�ned by the map � on the set A. Auxiliary reation network V = VWhas the same set of verties A and the set of reations Ai ! A�(i) with reation onstants�i. Auxiliary kinetis is desribed by _ = ~K, where ~Kij = ��jÆij + �jÆi �(j).Every �xed point of �W is also a sink for the reation network W. If all attrators of thesystem �W are �xed points Af1; Af2; ::: 2 A then the set of stationary distributions for theinitial kinetis as well as for the auxiliary kinetis is the set of distributions onentratedthe set of �xed points fAf1; Af2; :::g. In this ase, the auxiliary reation network is ayli,and the auxiliary kinetis approximates relaxation of the whole network W.In general ase, let the system �W have several attrators that are not �xed points, butyles C1; C2; ::: with periods �1; �2; ::: > 1. By gluing these yles in points, we transformthe reation network W into W1. The dynamial system �W is transformed into �1. Forthese new system and network, the onnetion �1 = �W1 persists: �1 is the auxiliarydisrete dynamial system for W1.For eah yle, Ci, we introdue a new vertex Ai. The new set of verties, A1 = A [fA1; A2; :::g n ([iCi) (we delete yles Ci and add verties Ai).All the reation between A! B (A;B 2 A) an be separated into 5 groups:(1) both A;B =2 [iCi;(2) A =2 [iCi, but B 2 Ci;(3) A 2 Ci, but B =2 [iCi;(4) A 2 Ci, B 2 Cj, i 6= j;(5) A;B 2 Ci.Reations from the �rst group do not hange. Reation from the seond group transformsinto A ! Ai (to the whole glued yle) with the same onstant. Reation of the thirdtype hanges into Ai ! B with the rate onstant renormalization (42): let the yle Cibe the following sequene of reations A1 ! A2 ! :::A�i ! A1, and the reation rate32



onstant for Ai ! Ai+1 is ki (k�i for A�i ! A1). For the limiting reation of the yleCi we use notation klim i. If A = Aj and k is the rate reation for A ! B, then the newreation Ai ! B has the rate onstant kklim i=kj. This orresponds to a quasistationarydistribution on the yle (4). The same onstant renormalization is neessary for reationsof the fourth type. These reations transform into Ai ! Aj. Finally, reations of the �fthtype vanish.After we glue all the yles of auxiliary dynamial system in the reation network W,we get W1. Stritly speaking, the whole network W1 is not neessary, and in eÆientrealization of the algorithm for large networks the omputation ould be signi�antlyredued. What we need, is the orrespondent auxiliary dynamial system �1 = �W1 withauxiliary kinetis.To �nd the auxiliary kineti system, we should glue all yles in the �rst auxiliary system,and then add several reations: for eah Ai it is neessary to �nd in W1 the reation ofthe form Ai ! B with maximal onstant and add this reation to the auxiliary network.If there is no reation of the form Ai ! B for given i then the point Ai is the �xed pointfor W1 and verties of the yle Ci form a sink for the initial network.After that, we deompose the new auxiliary dynamial system, �nd yles and repeatgluing. Terminate when all attrators of the auxiliary dynamial system �m beome �xedpoints.4.3.2 Reonstrution of steady statesAfter this termination, we an �nd all steady state distributions by restoring yles in theauxiliary reation network Vm. Let Amf1; Amf2; ::: be �xed points of �m. The set of steadystates for Vm is the set of all distributions on the set of �xed points fAmf1; Amf2; :::g. Let ustake one of these distributions,  = (mf1; mf2; :::) (we mark the onentrations by the sameindexes as the vertex has; other i = 0).To make a step of yle restoration we selet those vertexes Amfi that are glued yles andsubstitute them in the list Amf1; Amf2; ::: by all the verties of these yles. For eah of thoseyles we �nd the limiting rate onstant and redistribute the onentration mfi betweenthe verties of the orrespondent yle by the rule (4) (with b = mfi). As a result, we geta set of verties and a distribution on this set of verties. If among these verties thereare glued yles, then we repeat the proedure of yle restoration. Terminate when thereis no glued yles in the support of the distribution. The resulting distribution is theapproximation to a steady state of W, and all steady states for W an be approximatedby this method.In order to onstrut the approximation to the basis of stationary distributions ofW, it issuÆient to apply the desribed algorithm to distributions onentrated on a single �xedpoint Amfi, mfj = Æij, for every i.The steady state approximation on the base of the rule (4) has �rst order in the limitingonstants. The zero order approximation also makes sense. For one yle is gives (5):33



all the onentration is olleted at the start of the limiting step. The algorithm for thezero order approximation is even simpler than for the �rst order. Let us start from thedistributions onentrated on a single �xed point Amfi, mfj = Æij for some i. If this pointis a glued yle then restore that yle, and �nd the limiting step. The new distributionis onentrated at the starting vertex of that step. If this vertex is a glued yle, thenrepeat. If it is not then terminate. As a result we get a distribution onentrated in onevertex of A.
4.3.3 Dominant kineti system for approximation of relaxationTo onstrut an approximation to the relaxation proess in the reation network W, wealso need to restore yles, but for this purpose we should start from the whole gluednetwork network Vm on Am (not only from �xed points as we did for the steady stateapproximation). On a step bak, from the set Am to Am�1 and so on some of glued ylesshould be restored and ut. On eah step we build an ayli reation network, the �nalnetwork is de�ned on the initial vertex set and approximates relaxation of W.To make one step bak from Vm let us selet the verties of Am that are glued ylesfrom Vm�1. Let these verties be Am1 ; Am2 ; :::. Eah Ami orresponds to a glued yle fromVm�1, Am�1i1 ! Am�1i2 ! :::Am�1i�i ! Am�1i1 , of the length �i. We assume that the limitingsteps in these yles are Am�1i�i ! Am�1i1 . Let us substitute eah vertex Ami in Vm by diverties Am�1i1 ; Am�1i2 ; :::Am�1i�i and add to Vm reations Am�1i1 ! Am�1i2 ! :::Am�1i�i (that arethe yle reations without the limiting step) with orrespondent onstants from Vm�1.If there exists an outgoing reation Ami ! B in Vm then we substitute it by the reationAm�1i�i ! B with the same onstant, i.e. outgoing reations Ami ! ::: are reattahed tothe heads of the limiting steps. Let us rearrange reations from Vm of the form B ! Ami .These reations have prototypes in Vm�1 (before the last gluing). We simply restore thesereations. If there exists a reation Ami ! Amj then we �nd the prototype in Vm�1, A! B,and substitute the reation by Am�1i�i ! B with the same onstant, as for Ami ! Amj .After that step is performed, the verties set is Am�1, but the reation set di�ers from thereations of the network Vm�1: the limiting steps of yles are exluded and the outgoingreations of glued yles are inluded (reattahed to the heads of the limiting steps). Tomake the next step, we selet verties of Am�1 that are glued yles from Vm�2, substitutethese verties by verties of yles, delete the limiting steps, attah outgoing reations tothe heads of the limiting steps, and for inoming reations restore their prototypes fromVm�2, and so on.After all, we restore all the glued yles, and onstrut an ayli reation network onthe set A. This ayli network approximates relaxation of the network W. We all thissystem the dominant system of W and use notation dommod(W).34



4.3.4 Zero-one law for nonergodi multisale networksThe �xed points Amfi of the disrete dynamial system �m are the glued ergodi om-ponents Gi � A of the initial network W. At the same time, these points are attra-tors of �m. Let us onsider the orrespondent deomposition of this system with parti-tion Am = [iAtt(Amfi). In the yle restoration during onstrution of dominant systemdommod(W) this partition transforms into partition of A: A = [iUi, Att(Amfi) transformsinto Ui and Gi � Ui (and Ui transforms into Att(Amfi) in hierarhial gluing of yles).It is straightforward to see that during onstrution of dominant systems for W fromthe network Vm no onnetion between Ui are reated. Therefore, the reation networkdommod(W) is a union of networks on sets Ui without any link between sets.If G1; : : : Gm are all ergodi omponents of the system, then there exist m independentpositive linear funtionals b1(), ... bm() that desribe asymptotial behaviour of kinetisystem when t!1 (26). For dommod(W) these funtionals are: bl() = PA2Ul A whereA is onentration of A. Hene, for the initial reation network W with well separatedonstants bl() � XA2Ul A: (47)This is the zero{one law for multisale networks: for any l; i, the value of funtional bl (26)on basis vetor ei, bl(ei), is either lose to one or lose to zero (with probability lose to 1).We already mentioned this law in disussion of a simple example (27). The approximateequality (47) means that for eah reagent A 2 A there exists suh an ergodi omponentG of W that A transforms when t!1 preferably into elements of G even if there existpaths from A to other ergodi omponents of W.4.4 Example: a prism of reationsLet us demonstrate work of the algorithm on a typial example, a prism of reationthat onsists of two onneted yles (Fig. 1,2). Suh systems appear in many areas ofbiophysis and biohemistry (see, for example, [49℄).For the �rst example we use the reation rate onstants ordering presented in Fig. 1a.For this ordering, the auxiliary dynamial system onsists of two yles (Fig. 1b) withthe limiting onstants k54 and k32, orrespondingly. These yles are onneted by fourreation (Fig. 1). We glue the yles into new omponents A11 and A12 (Fig. 1d), and thereation network is transformed into A11 $ A12. Following the general rule (k1 = kklim=kj),we determine the rate onstants: for reation A11 ! A12k121 = maxfk41k32=k21; k52; k63k32=k13g;and for reation A12 ! A11 k112 = k36k54=k46:There are six possible orderings of the onstant ombinations: three possibilities for thehoie of k121 and for eah suh a hoie there exist two possibilities: k121 > k112 or k121 < k112.35
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Fig. 1. Gluing of yles for the prism of reations with a given ordering of rate onstants inthe ase of two attrators in the auxiliary dynamial system: (a) initial reation network, (b)auxiliary dynamial system that onsists of two yles, () onnetion between yles, (d) gluingyles into new omponents, (e) network W1 with glued verties.The zero order approximation of the steady state depends only on the sign of inequalitybetween k121 and k112. If k121 � k112 then almost all onentration in the steady state isaumulated inside A12. After restoring the yle A4 ! A5 ! A6 ! A4 we �nd that inthe steady state almost all onentration is aumulated in A4 (the omponent at thebeginning of the limiting step of this yle, A4 ! A5). Finally, the eigenvetor for zeroeigenvalue is estimated as the vetor olumn with oordinates (0; 0; 0; 1; 0; 0).If, inverse, k121 � k112 then almost all onentration in the steady state is aumulatedinside A11. After restoring the yle A1 ! A2 ! A3 ! A1 we �nd that in the steadystate almost all onentration is aumulated in A2 (the omponent at the beginning ofthe limiting step of this yle, A2 ! A3). Finally, the eigenvetor for zero eigenvalue isestimated as the vetor olumn with oordinates (0; 1; 0; 0; 0; 0).For analysis of relaxation, let us analyze one of the six partiular ases separately.1. k121 = k41k32=k21 and k121 > k112.In this ase, the �nite ayli auxiliary dynamial system, �m = �1, is A11 ! A12, andW1 is A11 $ A12. We restore both yles and delete the limiting reations A2 ! A3 andA4 ! A5. This is the ommon step for all ases. Following the general proedure, wesubstitute the reation A11 ! A12 by A2 ! A4 with the rate onstant k121 = k41k32=k21(beause A2 is the head of the limiting step for the yle A1 ! A2 ! A3 ! A1, and theprototype of the reation A11 ! A12 is in that ase A1 ! A4.We �nd the approximate system for relaxation desription: reations A3 ! A1 ! A2 andA5 ! A6 ! A4 with original onstants, and reation A2 ! A4 with the rate onstantk121 = k41k32=k21. 36



This system graph is ayli and, moreover, represents a disrete dynamial system, as itshould be (not more than one outgoing reation for any omponent). Therefore, we anestimate the eigenvalues and eigenvetors on the base of formulas (31), (33). It is easy todetermine the order of onstants beause k121 = k41k32=k21: this onstant is the smallestnonzero onstant in the obtained ayli system. Finally, we have the following orderingof onstants: A3!3 A1!1 A2!5 A4, A5!4 A6!2 A4.So, the eigenvalues of the prism of reation for the given ordering are (with high auray,with probability lose to one) �k21 < �k46 < �k13 < �k65 < �k41k32=k21. The relaxationtime is � = k21=(k41k32).We use the same notations as in previous setions: eigenvetors li and ri orrespond tothe eigenvalue ��i, where �i is the reation rate onstant for the reation Ai ! ::: . Theleft eigenvetors li are:l1 � (1; 0; 0; 0; 0; 0); l2 � (1; 1; 1; 0; 0; 0); l3 � (0; 0; 1; 0; 0; 0);l4 � (1; 1; 1; 1; 1; 1); l5 � (0; 0; 0; 0; 1; 0); l6 � (0; 0; 0; 0; 0; 1): (48)The right eigenvetors ri are (we represent vetor olumns as rows):r1 � (1;�1; 0; 0; 0; 0); r2 � (0; 1; 0;�1; 0; 0); r3 � (0;�1; 1; 0; 0; 0);r4 � (0; 0; 0; 1; 0; 0); r5 � (0; 0; 0;�1; 1; 0); r6 � (0; 0; 0;�1; 0; 1) (49)The vertex A4 is the �xed point for the disrete dynamial system. There is no reationA4 ! ::: . For onveniene, we inlude the eigenvetors l4 and r4 for zero eigenvalue,�4 = 0. These vetors orrespond to the steady state: r4 is the steady state vetor, andthe funtional l4 is the onservation law.The orrespondent approximation to the general solution of the kineti equation for theprism of reation (Fig. 1a) is:(t) = 6Xi=1 ri(li; (0)) exp(��it): (50)Analysis of other �ve partiular ases is similar. Of ourse, some of the eigenvetors andeigenvalues an di�er.The �rst order in onstants ratios approximation for the steady state is desribed aboveas appliation of the rule (4) for restoring yles. The �rst order approximation for eigen-vetors is presented in Appendix 1.Of ourse, di�erent ordering an lead to very di�erent approximations. For example, letus onsider the same prism of reations, but with the ordering of onstants presented inFig. 2a. The auxiliary dynamial system has one yle (Fig. 2b) with the limiting onstantk36. This yle is not a sink to the initial network, there are outgoing reations from itsverties (Fig. 2). After gluing, this yles transforms into a vertex A11 (Fig. 2d). The gluednetwork,W1 (Fig. 2e), has two verties, A4 and A11 the rate onstant for the reation A4 !A11 is k54, and the rate onstant for the reation A11 ! A4 is k1 = maxfk41k36=k21; k46g.Hene, there are not more than four possible versions: two possibilities for the hoie of37
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Right eigenvetors are (inluding r4 for the zero eigenvalue):r1 � (1;�1; 0; 0; 0; 0); r2 � (0; 1; 0; 0; 0;�1); r3 � (0;�1; 1; 0; 0; 0);r4 � (0; 0; 0; 1; 0; 0); r5 � (0; 0; 0; 0; 1;�1); r6 � (0; 0; 0;�1; 0; 1); (52)Here we represent vetor olumns as rows.For the approximation of relaxation in that order we an use (50).5 Limitation in modular struture and solvable modules5.1 Modular limitationThe simplest one-onstant limitation onept annot be applied to all systems. There isanother very simple ase based on exlusion of \fast equilibria" Ai 
 Aj. In this limit,the ratio of reation onstants Kij = kij=kji is bounded, 0 < a < Kij < b < 1, but fordi�erent pairs (i; j); (l; s) one of the inequalities kij � kls or kij � kls holds. (One usuallyalls these K \equilibrium onstant", even if there is no relevant thermodynamis.) W.J.Ray (Jr.) [9℄ disussed that ase systematially for some real examples. Of ourse, it ispossible to reate the theory for that ase very similarly to the theory presented above.This should be done, but it is worth to mention now that the limitation onept an beapplied to any modular struture of reation network. Let for the reation network Wthe set of elementary reations R is partitioned on some modules: R = [iRi. We anonsider the related multisale ensemble of reation onstants: let the ratio of any tworate onstants inside eah module be bounded (and separated from zero, of ourse), butthe ratios between modules form a well separated ensemble. This an be formalized bymultipliation of rate onstants of eah module Ri on a time sale oeÆient ki. If weassume that lnki are uniformly and independently distributed on a real line (or ki areindependently and log-uniformly distributed on a suÆiently large interval) then we ometo the problem of modular limitation. The problem is quite general: desribe the typialbehavior of multisale ensembles for systems with given modular struture: eah modulehas its own time sale and these time sales are well separated.Development of suh a general theory is outside the sope of our paper, and here wejust �nd building bloks for the future theory, solvable reation modules. There may bemany various riteria of seletion the reation modules. Here are several possible hoies:individual reations (we developed the theory of multisale ensembles of individual rea-tions in this paper), ouples of mutually inverse reations, as we mentioned above, aylireation networks, ... .Among the possible reasons for seletion the lass of reation mehanisms for this purpose,there is one formal, but important: the possibility to solve the kineti equation for everymodule in expliit analytial (algebrai) form with quadratures. We all these systems\solvable". 39



5.2 Solvable reation mehanismsLet us desribe all solvable reation systems (with mass ation law), linear and nonlinear.Formally, we all the set of reation solvable, if there exists a linear transformation ofoordinates  7! a suh that kineti equation in new oordinates for all values of reationonstants has the triangle form: daidt = fi(a1; a2; ::: ai): (53)This system has the lower triangle Jaobian matrix � _ai=�aj.To onstrut the general mass ation law system we need: the list of omponents, A =fA1; ::: Ang and the list of reations (the reation mehanism):Xi �riAi !Xk �rkAk; (54)where r is the reation number, �ri; �rk are nonnegative integers (stoihiometri oeÆ-ients). Formally, it is possible that all �k = 0 or all �i = 0. We allow suh reations.They an appear in redued models or in auxiliary systems.A real variable i is assigned to every omponent Ai, i is the onentration of Ai,  is theonentration vetor with oordinates i. The reation kineti equations areddt =Xr rwr(); (55)where r is the reation stoihiometri vetor with oordinates ri = �ri � �ri, wr() isthe reation rate. For mass ation law,wr() = krYi �rii ; (56)where kr is the reation onstant.Physially, equations (55) orrespond to reations in �xed volume, and in more generalase a multiplier V (volume) is neessary:d(V )dt = V Xr rwr():Here we study the systems (55) and postpone any further generalization.The �rst example of solvable systems give the sets of reations of the form�riAi ! Xk; k>i�rkAk (57)40



(omponents Ak on the right hand side have higher numbers k than the omponent Aion the left hand side, i < k). For these systems, kineti equations (55) have the triangleform from the very beginning.The seond standard example gives the ouple of mutually inverse reations:Xi �iAi 
Xk �kAk; (58)these reations have stoihiometri vetors �, i = �i � �i. The kineti equation _ =(w+�w�) has the triangle form (53) in any orthogonal oordinate system with the lastoordinate an = (; ) = Pi ii. Of ourse, if there are several reations with proportionalstoihiometri vetors, the kineti equations have the triangle form in the same oordinatesystems.The general ase of solvable systems is essentially a ombination of that two (57), (58),with some generalization. Here we follow [50℄ and present an algorithm for analysis ofreation network solvability. First, we introdue a relation between reations \rth reationdiretly a�ets the rate of sth reation" with notation r ! s: r ! s if there exists suh Aithat ri�si 6= 0. This means that onentration of Ai hanges in the rth reation (ri 6= 0)and the rate of the sth reation depends on Ai onentration (�si 6= 0). For that relationwe use r ! s. For transitive losure of this relation we use notation r � s (\rth reationa�ets the rate of sth reation"): r � s if there exists suh a sequene s1; s2; ::: sq thatr! s1 ! s2 ! ::: sq ! s.The hanging omponent of the reation network W is suh Ai 2 A that for all reations�ri = 0. This means that all reation rates do not depend on onentration of Ai. Thehanging reation is suh element of R with number r that r � s only if s = �r forsome number �. An example of hanging omponents gives the last omponent An for thetriangle network (57). An example of hanging reations gives a ouple of reations (58) ifthey do not a�et any other reation.In order to hek solvability of the reation network W we should �nd all hanging om-ponents and reations and delete them from A and R, orrespondingly. After that, weget a new system, W1 with the omponent set A1 and the reation set R1. Next, weshould �nd all hanging omponents and reations for W1 and delete them from A1 andR1. Iterate until no hanging omponents or hanging reations ould be found. If the �nalset of omponents is empty, then the reation network W is solvable. If it is not empty,then W is not solvable.For example, let us onsider the reation mehanism with A = fA1; A2; A3; A4g andreations A1 + A2 ! 2A3, A1 + A2 ! A3 + A4, A3 ! A4, A4 ! A3. There are nohanging omponents, but two hanging reations, A3 ! A4 and A4 ! A3. After deletionof these two reations, two hanging omponents appear, A3 and A4. After deletion thesetwo omponents, we get two hanging reations, A1+A2 ! 0, A1+A2 ! 0 (they oinide).We delete these reations and get two omponents A1, A2 without reations. After deletionthese hanging omponents we obtain the empty system. The reation network is solvable.An oriented yle of the length more than two is not solvable. For eah number of ver-41



ties one an alulate the set of all maximal solvable mehanisms. For example, for �veomponents there are two maximal solvable mehanisms of monomoleular reations:(1) A1 ! A2 ! A4, A1 ! A4, A1 ! A3 ! A5, A1 ! A5, A4 $ A5;(2) A1 ! A2, A1 ! A3, A1 ! A4, A1 ! A5, A2 $ A3, A4 $ A5.It is straightforward to hek solvability of these mehanism. The �rst mehanism hasa ouple of hanging reations, A4 $ A5. After deletion of these reation, the systembeomes ayli, of the form (57). The seond mehanism has two ouples of hangingreations, A2 $ A3 and A4 $ A5. After deletion of these reations, the system also trans-forms into form (57). It is impossible to add any new monomoleular reations betweenfA1; A2; A3; A4; A5g to these mehanisms with preservation of solvability.Finally, we should mention onnetions between solvable reation networks and solvableLie algebras [51,52℄. Let us remind that matriesM1; :::Mq generate a solvable Lie algebrasif and only if they ould be transformed simultaneously into a triangle form by a hangeof basis.The Jaobian matrix for the mass ation law kineti equation (55) is:J =  �i�j! =Xr wrJr =Xrj wrj Mrj; (59)where Jr = r�>r diag� 11 ; 12 ; ::: 1n� =Xj 1jMrj;Mrj = �rjrej>; (60)�>r is the vetor row (�r1; ::: �rn), ej> is the jth basis vetor row with oordinates ej>k = Æjk.The Jaobian matrix (59) should have the lower triangle form in oordinates ai (53) for allnonnegative values of rate onstants and onentrations. This is equivalent to the lowertriangle form of all matries Mrj in these oordinates. Beause usually there are manyzero matries among Mrj, it is onvenient to desribe the set of nonzero matries.For the rth reation Ir = fi j�ri 6= 0g. The reation rate wr depends on i if and only ifi 2 Ir. For eah i = 1; ::: n we de�ne a matrixmri = 2640; 0; ::: r|{z}i ::: 0375 :The ith olumn of this matrix oinides with the vetor olumn r. Other olumns areequal to zero. For eah r we de�ne a set of matriesMr = fmri j i 2 Irg, andM = [rMr.The reation network W is solvable if and only if the �nite set of matriesM generatesa solvable Lie algebra.Classi�ation of �nite dimensional solvable Lie algebras remains a diÆult problem [52℄.42



It seems plausible that the lassi�ation of solvable algebras assoiated with reationnetworks an bring new ideas into this �eld of algebra.6 Conlusion: Conept of limit simpli�ation in multisale systemsIn this paper, we study networks of linear reations. For any ordering of reation rateonstants we look for the dominant kineti system. The dominant system is, by de�nition,the system that gives us the main asymptoti terms of the stationary state and relaxationin the limit for well separated rate onstants. In this limit any two onstants are onnetedby relation� or �.The topology of dominant systems is rather simple; they are those networks whih aregraphs of disrete dynamial systems on the set of verties. In suh graphs eah vertex hasno more than one outgoing reation. This allows us to onstrut the expliit asymptotisof eigenvetors and eigenvalues. In the limit of well separated onstants, the oordinatesof eigenvetors for dominant systems an take only three values: �1 or 0. All algorithmsare represented topologially by transformation of the graph of reation (labeled by re-ation rate onstants). We all these transformations \yles surgery", beause the mainoperations are gluing yles and utting yles in graphs of auxiliary disrete dynamialsystems.In the simplest ase, the dominant system is determined by the ordering of onstants.But for suÆiently omplex systems we need to introdue auxiliary elementary reations.They appear after yle gluing and have monomial rate onstants of the form k& = Qi k&ii .The dominant system depends on the plae of these monomial values among the orderedonstants.Constrution of the dominant system lari�es the notion of limiting steps for relaxation.There is an exponential relaxation proess that lasts muh more than the others in (40),(50). This is the slowest relaxation and it is ontrolled by one reation in the dominantsystem, the limiting step. The limiting step for relaxation is not the slowest reation, or theseond slowest reation of the whole network, but the slowest reation of the dominantsystem. That limiting step onstant is not neessarily a reation rate onstant for theinitial system, but an be represented by a monomial of suh onstants as well.The idea of dominant subsystems in asymptoti analysis was proposed by Newton anddeveloped by Kruskal [54℄. A modern introdution with some historial review is presentedin [55℄. In our analysis we do not use the degrees of small parameters (as it was done in[27{29,54,55℄), but operate diretly with the rate onstants orderings.To develop the idea of systems with well separated onstants to the state of a mathemat-ial notion, we introdue multisale ensembles of onstant tuples. This notion allows usto disuss rigorously uniform distributions on in�nite spae and gives the answers to aquestion: what does it mean \to pik a multisale system at random".Now we have the omplete theory and the exhaustive onstrution of algorithms for linear43



reation networks with well separated rate onstants. There are several ways of using thedeveloped theory and algorithms:(1) For diret omputation of steady states and relaxation dynamis; this may be usefulfor omplex systems beause of the simpliity of the algorithm and resulting formulasand beause often we do not know the rate onstants for omplex networks, andkinetis that is ruled by orderings rather than by exat values of rate onstants maybe very useful;(2) For planning of experiments and mining the experimental data { the observablekinetis is more sensitive to reations from the dominant network, and muh lesssensitive to other reations, the relaxation spetrum of the dominant network isexpliitly onneted with the orrespondent reation rate onstants, and the eigen-vetors (\modes") are sensitive to the onstant ordering, but not to exat values;(3) The steady states and dynamis of the dominant system ould serve as a robust �rstapproximation in perturbation theory or as a preonditioning in numerial methods.From a theoretial point of view the outlook is more important. Let us answer the question:what has to be done, but is not done yet? Three diretions for further development arelear now:(1) Constrution of dominant systems for the reation network that has a group of on-stants with omparable values (without relations � between them). We onsideredyles with several omparable onstants in Se. 2, but the general theory still hasto be developed.(2) Constrution of dominant systems for reation networks with modular struture. Wean assume that the ratio of any two rate onstants inside eah module be boundedand separated from zero, but the ratios between modules form a well separatedensemble. A reation network that has a group of onstants with omparable valuesgives us an example of the simplest modular struture: one module inludes severalreations and other modules arise from one reation. In Se. 5 we desribe all solvablemodules suh that it is possible to solve the kineti equation for every module inexpliit analytial (algebrai) form with quadratures (even for nononstant in timereation rate onstants).(3) Constrution of dominant systems for nonlinear reation networks. The �rst ideahere is the representation of a nonlinear reation as a pseudomonomoleular rea-tion: if for reation A + B ! ::: onentrations A and B are well separated, say,A � B, then we an onsider this reation as B ! ::: with rate onstant depen-dent on A. The relative hange of A is slow, and we an onsider this reationas pseudomonomoleular until the relation A � B hanges to A � B. We anassume that in the general ase only for small fration of nonlinear reations thepseudomonomoleular approah is not appliable, and this set of genuinely nonlin-ear reations hanges in time, but remains small. For nonlinear systems, even therealization of the limiting step idea for steady states of a one-route mehanism ofa atalyti reation is nontrivial and was developed through the onept of kinetipolynomial [15℄.Finally, the onept of \limit simpli�ation" will be developed. For multisale nonlinearreation networks the expeted dynamial behaviour is to be approximated by the system44



of dominant networks. These networks may hange in time but remain small enough. Theorresponding struture of fast{slow time separation in phase spae is not neessarily asmooth slow invariant manifold, but may be similar to a \razy quilt" and ould onsistof fragments of various dimensions that do not join ontinuously.Appendix 1: Estimates of eigenvetors for diagonally dominant matries withdiagonal gap onditionThe famous Gershgorin theorem gives estimates of eigenvalues. The estimates of or-respondent eigenvetors are not so well known. In the paper we use some estimates ofeigenvetors of kineti matries. Here we formulate and prove these estimates for generalmatries. Below A = (aij) is a omplex n � n matrix, Pi = Pj;j 6=i jaijj (sums of non-diagonal elements in rows), Qi = Pj;j 6=i jajij (sums of non-diagonal elements in olumns).Gershgorin theorem ([36℄, p. 146): The harateristi roots of A lie in the losed regionGP of the z-plane GP =[i GPi (GPi = fz ��� jz � aiij � Pig: (61)Analogously, the harateristi roots of A lie in the losed region GQ of the z-planeGQ =[i GQi (GQi = fz ��� jz � aiij � Qig: (62)Areas GPi and GQi are the Gershgorin diss.Gershgorin diss GPi (i = 1; : : : n) are isolated, if GPi \ GPj = ? for i 6= j. If diss GPi(i = 1; : : : n) are isolated, then the spetrum of A is simple, and eah Gershgorin dis GPiontains one and only one eigenvalue of A ([36℄, p. 147). The same is true for diss GQi .Below we assume that Gershgorin diss GQi (i = 1; : : : n) are isolated, this means that forall i; j jaii � ajjj > Qi +Qj: (63)Let us introdue the following notations:Qijaiij = "i; jaijjjajjj = �ij  "i =Xl Æli! ; minj jaii � ajjjjaiij = gi: (64)Usually, we onsider "i and �ij as suÆiently small numbers. In ontrary, gi should notbe small, (this is the gap ondition). For example, if for any two diagonal elements aii, ajjeither aii � ajj or aii � ajj, then gi & 1 for all i.Let �1 2 GQ1 be the eigenvalue of A (j�1 � a11j < Q1). Let us estimate the orrespondentright eigenvetor x(1) = (xi): Ax(1) = �1x(1). We take x1 = 1 and write equations for xi(i 6= 1): (aii � a11 � �1)xi + Xj; j 6=1;i aijxj = �ai1; (65)where �1 = �1 � a11, j�1j < Q1. 45



Let us introdue new variables~x = (~xi); ~xi = xi(aii � a11) (i = 2; : : : n):In these variables,  1� �1aii � a11! ~xi + Xj; j 6=1;i aijajj � a11 ~xj = �ai1; (66)or in matrix notations: (1�B)~x = �~a1, where ~a1 is a vetor olumn with oordinates ai1.beause of gap ondition and smallness of "i and �ij we �ij we an onsider matrix B asa small matrix, for assume that kBk < 1 and (1� B) is reversible (for detailed estimateof kBk see below).For ~x we obtain: ~x = �~a1 � B(1�B)�1~a1; (67)and for residual estimate kB(1� B)�1~a1k � kBk1� kBkk~a1k: (68)For eigenvetor oordinates we get from (67):xi = � ai1aii � a11 � (B(1� B)�1~a1)iaii � a11 (69)and for residual estimatej(B(1� B)�1~a1)ijjaii � a11j � kBk1� kBk k~a1kjaii � a11j : (70)Let us give more detailed estimate of residual. For vetors we use l1 norm: kxk = P jxij.The orrespondent operator norm of matrix B iskBk = maxkxk=1 kBxk �Xi maxj jbijj:With the last estimate for matrix B (66) we �nd:jbiij � Q1jaii � a11j � "1g1 � "g ; jbijj = jaijjjajj � a11j � �ijgj � �g (i 6= j); (71)where " = maxi "i, � = maxi;j �ij, g = mini gi. By de�nition, " � �, and for all i; jthe simple estimate holds: jbijj � "=g. Therefore, kBxk � n"=g and, kBk=(1� kBk) �n"=(g � n") (under ondition g > n"). Finally, k~a1k = Q1 and for residual estimate weget: ����xi + ai1aii � a11 ���� � n"2g(g � n") (i 6= 1): (72)46



More aurate estimate an be produed from inequalities (71), if it is neessary. For ourgoals it is suÆient to use the following onsequene of (72):jxij � �g + n"2g(g � n") (i 6= 1): (73)With this auray, eigenvetors of A oinide with standard basis vetors, i.e. with eigen-vetors of diagonal part of A, diagfa11; : : : anng.
Appendix 2: Time separation and averaging in ylesIn Se. 2 we analyzed relaxation of a simple yle with limitation as a perturbation of thelinear hain relaxation by one more step that loses the hain into the yle. The reationrate onstant for this perturbation is the smallest one. For this analysis we used expliitestimates (13) of the hain eginvetors for reations with well separated onstants.Of ourse, one an use estimates (30), (31) (32) and (33) to obtain a similar perturbationanalysis for more general ayli systems (instead of a linear hain). If we add a reationto an ayli system (after that a yle may appear) and assume that the reation rateonstant for additional reation is smaller than all other reation onstants, then thegeneralization is easy.This smallness with respet to all onstants is required only in a very speial ase whenthe additional reation has a form Ai ! Aj (with the rate onstant kji) and there is noreation of the form Ai ! ::: in the non-perturbed system. In Se. 5 and Appendix 1we demonstrated that if in a non-perturbed ayli system there exists another reationof the form Ai ! ::: with rate onstant �i, then we need inequality kji � �i only. Thisinequality allows us to get the uniform estimates of eigenvetors for all possible values ofother rate onstants (under the diagonally gap ondition in the non-perturbed system).For substantiation of yles surgery we need additional perturbation analysis for zeroeigenvalues. Let us onsider a simple yle A1 ! A2 ! ::: ! An ! A1 with reationAi ! ::: rate onstants �i. We add a perturbation A1 ! 0 (from A1 to nothing) withrate onstant ��1. Our goal is to demonstrate that the zero eigenvalue moves under thisperturbation to �0 = ��w�(1 + �w), the orrespondent left and right eigenvetors r0 andl0 are r0i = �i (1+�ri) and l0i = 1+�li, and �w, �ri and �li are uniformly small for a givensuÆiently small � under all variations of rate onstants. Here, w� is the stationary ylereation rate and �i are stationary onentrations for a yle (2) normalized by onditionPi �i = 1. The estimate �w� for ��0 is �-small with respet to any reation of the yle:w� = �i�i < �i for all i (beause �i < 1), and �w� � �i for all i.The kineti equation for the perturbed system is:_1 = �(1 + �)�11 + �nn; _i = ��ii + �i�1i�1 (for i 6= 1): (74)47



In the matrix form we an write_ = K = (K0 � �k1e1e1>); (75)where K0 is the kineti matrix for non-perturbed yle. To estimate the right perturbedeigenvetor r0 and eigenvalue �0 we are looking for transformation of matrix K into theform K = Kr � �re1>, where K is a kineti matrix for extended reation system withomponents A1; :::An, Krr = 0 and Pi ri = 1. In that ase, r is the eigenvetor, and� = ��r1 is the orrespondent eigenvalue.To �nd vetor r, we add to the yle new reations A1 ! Ai with rate onstants ��1riand subtrat the orrespondent kineti terms from the perturbation term �e1e1>. Afterthat, we get K = Kr � �re1> with � = �k1 and(Kr)1 = �k11 � �k1(1� r1)1 + knn;(Kr)i = �kii + �k1ri1 + ki�1i�1 for i > 1 (76)We have to �nd a positive normalized solution ri > 0, Pi ri = 1 to equation Krr = 0. Thisis the �xed point equation: for every positive normalized r there exists unique positivenormalized steady state �(r): Kr�(r) = 0, �i > 0, Pi �i (r) = 1. We have to solve theequation r = �(r). The solution exists beause the Brauer �xed point theorem.If r = �(r) then kiri � �k1rir1 = ki�1ri�1. We use notation w�i (r) for the orrespondentstationary reation rate along the \non-perturbed route": w�i (r) = kiri. In this notation,w�i (r) � �riw�1(r) = w�i�1(r). Hene, jw�i (r) � w�1(r)j < �w�1(r) (or jkiri � k1r1j < �k1r1).Assume � < 1=4 (to provide 1� 2� < 1=(1� �) < 1 + 2�). Finally,ri = 1ki 1 + �iPj 1kj = (1 + �i)�i (77)where the relative errors j�ij < 3� and �i = �i (0) is the normalized steady state for thenon-perturbed system. For yles with limitation, ri � (1 + �i)klim=ki with j�ij < 3�. Forthe eigenvalue we obtain �0 = ��w�1(r) = ��w�i (r)(1 + &i)= ��w�(1 + �) = ��ki�i (0)(1 + �) (78)for all i, with j&ij < � and j�j < 3�. j�j < 3�. Therefore, �0 is �-small rate onstant ki ofthe non-perturbed yle. This implies that �0 is �-small with respet to the real part ofevery non-zero eigenvalue of the non-perturbed kineti matrix K0 (for given number ofomponents n). For the yles from multisale ensembles these eigenvalues are typiallyreal and lose to �ki for non-limiting rate onstants, hene we proved for �0 even morethan we need.Let us estimate the orrespondent left eigenvetor l0 (a vetor row). The eigenvalue isknown, hene it is easy to do just by solution of linear equations. This system of n � 1equations is: �l1(1 + �)k1 + l2k1 = �0l1;�liki + li+1ki = �0li; i = 2; :::n� 1: (79)48
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