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we should hoose between spurious osillation in high order non-monotoneshemes and additional dissipation in �rst order shemes. Flux limiter shemesare invented to ombine high resolution shemes in areas with smooth �eldsand �rst order shemes in areas with sharp gradients.The idea of ux limiters an be illustrated by omputation of the ux F0;1of the onserved quantity u between a ell marked by 0 and one of two itsneighbour ells marked by �1:F0;1 = (1� �(r))f low0;1 + �(r)fhigh0;1 ;where f low0; 1 , fhigh0; 1 are low and high resolution sheme uxes, respetively, r =(u0 � u�1)=(u1 � u0), and �(r) � 0 is a ux limiter funtion. For r lose to 1,the ux limiter funtion �(r) should be also lose to 1.Many ux limiter shemes have been invented during the last two deades [43℄.No partiular limiter works well for all problems, and a hoie is usually madeon a trial and error basis.Below are several examples of ux limiter funtions:�mm(r) = max [0;min (r; 1)℄ (minmod, [36℄);�os(r) = max [0;min (r; �)℄ ; (1 � � � 2) (Osher, [10℄);�m(r) = max [0;min (2r; 0:5(1 + r); 2)℄ (monotonised entral [42℄);�sb(r) = max [0;min (2r; 1) ;min (r; 2)℄ (superbee, [36℄);�sw(r) = max [0;min (�r; 1) ; (r; �)℄ ; (1 � � � 2) (Sweby, [40℄):The lattie Boltzmann method has been proposed as a disretization of Boltz-mann's kineti equation and is now in wide use in uid dynamis and beyond(for an introdution and review see [38℄). Instead of �elds of moments M , thelattie Boltzmann method operates with �elds of disrete distributions f . Thisallows us to onstrut very simple limiters that do not depend on slopes orgradients.All the limiters we onstrut are based on the representation of distributionsf in the form: f = f � + kf � f �k f � f �kf � f �k ;where f � is the orrespondent quasiequilibrium (onditional equilibrium) forgiven moments M , f � f � is the nonequilibrium \part" of the distribution,whih is represented in the form \norm�diretion" and kf � f �k is the normof that nonequilibrium omponent (usually this is the entropi norm). Lim-iters hange the norm of the nonequilibrium omponent f � f �, but do nottouh its diretion or the equilibrium. In partiular, limiters do not hange the2



marosopi variables, beause moments for f and f � oinide. All limiters weuse are transformations of the formf 7! f � + �� (f � f �) (1)with � > 0. If f � f � is too big, then the limiter should derease its norm.The outline of the paper is as follows. In Se. 2 we introdue the notions andnotations from lattie Boltzmann theory we need, in Se. 3 we elaborate theidea of entropi limiters in more detail and onstrut several nonequilibriumentropy limiters for LBM, in Se. 4 some numerial experiments are desribed:(1) 1D athermal shok tube examples;(2) steady state vortex entre loations and observation of �rst Hopf bifur-ation in 2D lid-driven avity ow.Conluding remarks are given in Se. 5.2 BakgroundThe essene of lattie Boltzmann methods was formulated by S. Sui in thefollowing maxim: \Nonlinearity is loal, non-loality is linear" 2 . We shouldeven strengthen this statement. Non-loality (a) is linear; (b) is exatly andexpliitly solvable for all time steps; () spae disretization is an exat oper-ation.The lattie Boltzmann method is a disrete veloity method. The �nite setof veloity vetors fvig (i = 1; :::m) is seleted, and a uid is desribed byassoiating, with eah veloity vi, a single-partile distribution funtion fi =fi(x; t) whih is evolved by advetion and interation (ollision) on a �xedomputational lattie. The values fi are named populations. If we look at alllattie Boltzmann models, one �nds that there are two steps: free ight fortime Æt and a loal ollision operation.The free ight transformation for ontinuous spae isfi(x; t+ Æt) = fi(x� viÆt; t):After the free ight step the ollision step follows:fi(x) 7! Fi(ffj(x)g); (2)2 S. Sui, \Lattie Boltzmann at all-sales: from turbulene to DNA transloa-tion", Mathematial Modelling Centre Distinguished Leture, University of Leies-ter, Leiester UK, 15th November 2006. 3



or in the vetor form f(x) 7! F (f(x)):Here, the ollision operator F is the set of funtions Fi(ffjg) (i = 1; :::m).Eah funtion Fi depends on all fj (j = 1; :::m): new values of the populationsfi at a point x are known funtions of all previous population values at thesame point.The lattie Boltzmann hain \free ight ! ollision! free ight ! ollision� � � " an be exatly restrited onto any spae lattie whih is invariant withrespet to spae shifts of the vetors viÆt (i = 1; :::m). Indeed, free ight trans-forms the population values at sites of the lattie into the population valuesat sites of the same lattie. The ollision operator (2) ats pointwise at eahlattie site separately. Muh e�ort has been applied to answer the questions:\how does the lattie Boltzmann hain approximate the transport equation forthe moments M?", and \how does one onstrut the lattie Boltzmann modelfor a given marosopi transport phenomenon?" (a review is presented inbook [38℄).In our paper we propose a universal onstrution of limiters for all possibleollision operators, and the detailed onstrution of Fi(ffjg) is not importantfor this purpose. The only part of this onstrution we use is the loal equilibria(sometimes these states are named onditional equilibria, quasiequilibria, oreven simpler, equilibria).The lattie Boltzmann models should desribe the marosopi dynami, i.e.,the dynami of marosopi variables. The marosopi variables M`(x) aresome linear funtions of the population values at the same point: M`(x) =Pim`ifi(x), or in the vetor form, M(x) = m(f(x)). The marosopi vari-ables are invariants of ollisions:Xi m`ifi =Xi m`iFi(ffjg) (or m(f) = m(F (f))).The standard example of the marosopi variables are hydrodynami �elds(density{veloity{energy density): fn; nu; Eg(x) := Pif1; vi; v2i =2gfi(x). Butthis is not an obligatory hoie. If we would like to solve, by LBM methods,the Grad equations [22℄ or some extended thermodynami equations [25℄, weshould extend the list of moments (but, at the same time, we should be readyto introdue more disrete veloities for a proper desription of these extendedmoment systems). On the other hand, the athermal lattie Boltzmann modelswith a shortened list of marosopi variables fn; nug are very popular.The quasiequilibrium is the positive �xed point of the ollision operator forthe given marosopi variablesM . We assume that this point exists, is uniqueand depends smoothly on M . For the quasiequilibrium population vetor forgiven M we use the notation f �M , or simply f �, if the orrespondent value of4



M is obvious. We use �� to denote the equilibration projetion operation ofa distribution f into the orresponding quasiequilibrium state:��(f) = f �m(f):For some of the ollision models an entropi desription of equilibrium is pos-sible: an entropy density funtion S(f) is de�ned and the quasiequilibriumpoint f �M is the entropy maximiser for given M [26,39℄.As a basi example we shall onsider the lattie Bhatnagar{Gross{Krook(LBGK) model with overrelaxation (see, e.g., [3,12,23,28,38℄). The LBGK ol-lision operator is F (f) := ��(f) + (2� � 1)(��(f)� f); (3)where � 2 [0; 1℄. For � = 0, LBGK ollisions do not hange f , for � = 1=2these ollisions at as equilibration (this orresponds to the Ehrenfests' oarsegraining [15℄ further developed in [14,19,20℄), for � = 1, LBGK ollisions atas a point reetion with the enter at the quasiequilibrium ��(f).It is shown [8℄ that under some stability onditions and after an initial periodof relaxation, the simplest LBGK ollision with overrelaxation [23,38℄ providesseond order aurate approximation for the marosopi transport equationwith visosity proportional to Æt(1� �)=�.The entropi LBGK (ELBM) method [5,20,26,39℄ di�ers in the de�nitionof (3): for � = 1 it should onserve the entropy, and in general has the followingform: F (f) := (1� �)f + � ~f; (4)where ~f = (1 � �)f + ���(f). The number � = �(f) is hosen so that theonstant entropy ondition is satis�ed: S(f) = S( ~f). For LBGK (3), � = 2. Ofourse, for ELBM the entropi de�nition of quasiequilibrium should be valid.In the low-visosity regime, LBGK su�ers from numerial instabilities whihreadily manifest themselves as loal blow-ups and spurious osillations.The LBM experienes the same spurious osillation problems near sharp gra-dients as high order shemes do. The physial properties of the LBM shemesallows one to onstrut new types of limiters: the nonequilibrium entropy lim-iters. In general, they do the same work for LBM as ux limiters do for �nitedi�erenes, �nite volumes and �nite elements methods, but for LBM the mainidea behind the onstrution of nonequilibrium entropy limiter shemes is tolimit a salar quantity | nonequilibrium entropy (and not the vetors or ten-sors of spatial derivatives, as it is for ux limiters). These limiters introduesome additional dissipation, but all this dissipation ould easily be evaluatedthrough analysis of nonequilibrium entropy prodution.5



Two examples of suh limiters have been reently proposed: the positivityrule [6,31,41℄ and the Ehrenfests' regularisation [7℄. The positivity rule justprovides positivity of distributions: if a ollision step produes negative popu-lations, then the positivity rule returns them to the boundary of positivity. Inthe Ehrenfests' regularisation, one selets the k sites with highest nonequilib-rium entropy (the di�erene between entropy of the state f and entropy of theorresponding quasiequilibrium state f � at a given spae point) that exeed agiven threshold and equilibrates the state in these sites.The positivity rule and Ehrenfests' regularisation provide rare, intense andloalised orretions. It is easy and also omputationally heap to organisemore gentle transformation with smooth shift of highly nonequilibrium statesto quasiequilibrium. The following regularisation transformation distributesits ation smoothly: we an just hoose in (1) � = �(�S(f)) with suÆientlysmooth funtion �(�S(f)). Here f is the state at some site, f � is the orre-sponding quasiequilibrium state, S is entropy, and �S(f) := S(f �)� S(f).The next step in the development of the nonequilibrium entropy limiters is inthe usage of loal entropy �lters. The �lter of hoie here is the median �lter: itdoes not erase sharp fronts, and is muh more robust than onvolution �lters.An important problem is: \how does one reate nonequilibrium entropy lim-iters for LBM with non-entropi quasiequilibria?". We propose a solutionof this problem based on the nonequilibrium Kullbak entropy. For entropiquasiequilibrium the Kullbak entropy approah gives the same entropi lim-iters. In thermodynamis, Kullbak entropy belongs to the family of Massieu{Plank{Kramers funtions (anonial or grandanonial potentials).3 Nonequilibrium entropy limiters for LBM3.1 Positivity ruleThere is a simple reipe for positivity preservation [6,31,41℄: to substitutenonpositive I�0 (f)(x) by the losest nonnegative state that belongs to thestraight line ��f(x) + (1� �)��(f(x))j � 2 R� (5)de�ned by the two points, f(x) and orresponding quasiequilibrium. This op-eration is to be applied pointwise, at points of the lattie where positivityis violated. The oeÆient � depends on x too. Let us all this reipe thepositivity rule (Fig. 1). This reipe preserves positivity of populations andprobabilities, but an a�et auray of approximation. The same rule is ne-6
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Positivity domain Fig. 1. Positivity rule in ation. The motions stops at the positivity boundary.essary for ELBM (4) when the positive \mirror state" ~f with the same entropyas f does not exists on the straight line (5).3.2 Ehrenfests' regularisationTo disuss methods with additional dissipation, the entropi approah is veryonvenient. Let entropy S(f) be de�ned for eah population vetor f = (fi)(below we use the same letter S for loal in spae entropy, and hope thatontext will make this notation always lear). We assume that the globalentropy is a sum of loal entropies for all sites. The loal nonequilibriumentropy is �S(f) := S(f �)� S(f); (6)where f � is the orresponding loal quasiequilibrium at the same point.The Ehrenfests' regularisation [6,7℄ provides \entropy trimming": we moni-tor loal deviation of f from the orresponding quasiequilibrium, and when�S(f)(x) exeeds a pre-spei�ed threshold value Æ, perform loal Ehrenfests'steps to the orresponding quasiequilibrium: f 7! f � at those points.So that the Ehrenfests' steps are not allowed to degrade the auray of LBGKit is pertinent to selet the k sites with highest �S > Æ. The a posterioriestimates of added dissipation ould easily be performed by analysis of entropyprodution in Ehrenfests' steps. Numerial experiments show (see, e.g., [6,7℄)that even a small number of suh steps drastially improve stability.To avoid the hange of auray order \on average", the number of sites withthis step should be � O(Nh=L) where N is the total number of sites, h isthe step of the spae disretization and L is the marosopi harateristilength. But this rough estimate of auray in average might be destroyedby onentration of Ehrenfests' steps in the most nonequilibrium areas, forexample, in the boundary layer. In that ase, instead of the total number ofsites N in O(Nh=L) we should take the number of sites in a spei� region.The e�ets of onentration ould be easily analysed a posteriori.7



3.3 Smooth limiters of nonequilibrium entropyThe positivity rule and Ehrenfests' regularisation provide rare, intense andloalised orretions. Of ourse, it is easy and also omputationally heap toorganise more gentle transformation with a smooth shift of highly nonequilib-rium states to quasiequilibrium. The following regularisation transformationdistributes its ation smoothly:f 7! f � + �(�S(f))(f � f �): (7)The hoie of funtion � is highly ambiguous, for example, � = 1=(1+��Sk)for some � > 0 and k > 0. There are two signi�antly di�erent hoies: (i)ensemble-independent � (i.e., the value of � depends on loal value of �Sonly) and (ii) ensemble-dependent �, for example�(�S) = 1 + (�S=(�E(�S)))k�1=21 + (�S=(�E(�S)))k ; (8)where E(�S) is the average value of �S in the omputational area, k � 1,and � & 1. For small �S, �(�S) � 1 and for �S � �E(�S), �(�S) tendsto q�E(�S)=�S. It is easy to selet an ensemble-dependent � with ontrolof total additional dissipation.3.4 Monitoring of total dissipationFor given �, the entropy prodution in one LBGK step in quadrati approxi-mation for �S is: ÆLBGKS � [1� (2� � 1)2℄Xx �S(x);where x is the grid point, �S(x) is nonequilibrium entropy (6) at point x,ÆLBGKS is the total entropy prodution in a single LBGK step. It would bedesirable if the total entropy prodution for the limiter ÆlimS was small relativeto ÆLBGKS: ÆlimS < Æ0ÆLBGKS: (9)A simple ensemble-dependent limiter (perhaps, the simplest one) for a givenÆ0 operates as follows. Let us ollet the histogram of the �S(x) distribution,and estimate the distribution density, p(�S). We have to estimate a value�S0 that satis�es the following equation:Z 1�S0 p(�S)(�S ��S0) d�S = Æ0[1� (2� � 1)2℄ Z 10 p(�S)�S d�S: (10)8



In order not to a�et distributions with small expetation of �S, we hoosea threshold �St = maxf�S0; Æg, where Æ is some prede�ned value (as inthe Ehrenfests' regularisation). For states at sites with �S � �St we pro-vide homothety with quasiequilibrium enter f � and oeÆient q�St=�S (inquadrati approximation for nonequilibrium entropy):f(x) 7! f �(x) +s�St�S (f(x)� f �(x)): (11)3.5 Median entropy �lterThe limiters desribed above provide pointwise orretion of nonequilibriumentropy at the \most nonequilibrium" points. Due to the pointwise nature,the tehnique does not introdue any nonisotropi e�ets, and provides someother bene�ts. But if we involve the loal struture, we an orret loal non-monotone irregularities without touhing regular fragments. For example, wean disuss monotone inrease or derease of nonequilibrium entropy as regularfragments and onentrate our e�orts on redution of \spekle noise" or \saltand pepper noise". This approah allows us to use the aessible resoure ofentropy hange (9) more thriftily.Among all possible �lters, we suggest the median �lter. The median is a morerobust average than the mean (or the weighted mean) and so a single veryunrepresentative value in a neighborhood will not a�et the median valuesigni�antly. Hene, we suppose that the median entropy �lter will work betterthan entropy onvolution �lters.The median �lter onsiders eah site in turn and looks at its nearby neighbours.It replaes the nonequilibrium entropy value �S at the point with the medianof those values �Smed, then updates f by the transformation (11) with thehomothety oeÆient q�Smed=�S. The median, �Smed, is alulated by �rstsorting all the values from the surrounding neighbourhood into numerial orderand then replaing that being onsidered with the middle value. For example,if a point has 3 nearest neighbors inluding itself, then after sorting we have3 values �S: �S1 � �S2 � �S3. The median value is �Smed = �S2. For 9nearest neighbors (inluding itself) we have after sorting �Smed = �S5. For27 nearest neighbors �Smed = �S14.We aept only dissipative orretions (those resulting in a derease of �S,�Smed < �S) beause of the seond law of thermodynamis. The analogueof (10) is also useful for aeptane of the most signi�ant orretions.Median �ltering is a ommon step in image proessing [34℄ for the smoothingof signals and the suppression of impulse noise with preservation of edges.9



3.6 Entropi steps for non-entropi quasiequilibriaBeyond the quadrati approximation for nonequilibrium entropy all the logi ofthe above mentioned onstrutions remain the same. There exists only one sig-ni�ant hange: instead of a simple homothety (11) with oeÆient q�St=�Sthe transformation (7) should be applied, where the multiplier � is a solutionof the nonlinear equationS(f � + �(f � f �)) = S(f �)��St:This is essentially the same equation that appears in the de�nition of ELBMsteps (4).More di�erenes emerge for LBM with non-entropi quasiequilibria. The mainidea here is to reason that non-entropi quasiequilibria appear only beause oftehnial reasons, and approximate ontinuous physial entropi quasiequilib-ria. This is not an approximation of a density funtion, but an approximationof measure, i.e., from the ubature formula:f(v) �Xi fiÆ(v � vi)Z '(v)f(v) dv �Xi '(vi)fi:The disrete populations fi are onneted to ontinuous (and suÆientlysmooth) densities f(v) by ubature weights fi � wif(vi). These weights forquasiequilibria are found by moment and ux mathing onditions [37℄. Itis impossible to approximate the BGS entropy R f ln fdv just by disretiza-tion (to hange integration by summation, and ontinuous distribution f bydisrete fi), beause ubature weights appear as additional variables. Never-theless, the approximate disretization of the Kullbak entropy SK [30℄ doesnot hange its form:SK(f) = � Z f(v) ln f(v)f �(v)! dv � �Xi fi ln fif �i ! ; (12)beause fi=f �i approximates the ratio of funtions f(v)=f �(v) and Pi fi : : :gives the integral R f(v) : : :dv approximation. Here, in (12), the state f � is thequasiequilibrium with the same values of the marosopi variables as f . More-over, for given values of the marosopi variables, SK(f) ahieves its maxi-mum at the point f = f � (both for ontinuous and for disrete distributions).The orresponding maximal value is zero. Below, SK is the disrete Kullbakentropy. If the approximate disrete quasiequilibrium f � is non-entropi, wean use �SK(f) instead of �S(f).For entropi quasiequilibria with perfet entropy the disrete Kullbak entropy10



gives the same �S: �SK(f) = �S(f). Let the disrete entropy have thestandard form for an ideal (perfet) mixture [27℄.S(f) = �Xi fi ln fiWi!:After the lassial work of Zeldovih [44℄, this funtion is reognised as auseful instrument for the analysis of kineti equations (espeially in hemialkinetis [21℄). If we de�ne f � as the onditional entropy maximum for givenMj = Pkmjkfk, then ln f �k =Xj �jmjk;where �j(M) are the Lagrange multipliers (or \potentials"). For this entropyand onditional equilibrium we �nd�S = S(f �)� S(f) =Xi fi ln fif �i !; (13)if f and f � have the same moments, m(f) = m(f �). The right hand sideof (13) is �SK(f).In thermodynamis, the Kullbak entropy belongs to the family of Massieu{Plank{Kramers funtions (anonial or grandanonial potentials). There isanother sense of this quantity: SK is the relative entropy of f with respet tof � [18,35℄.In quadrati approximation,�SK(f) =Xi fi ln fif �i ! �Xi (fi � f �i )2f �i :3.7 ELBM ollisions as a smooth limiterOn the base of numerial tests, the authors of [41℄ laim that the positivityrule provides the same results (in the sense of stability and absene/preseneof spurious osillations) as the ELBM models, but ELBM provides betterauray.For the formal de�nition of ELBM (4) our tests do not support laims thatELBM erases spurious osillations (see below). Similar observation for Burgersequation was previously published in [4℄. We understand this situation in thefollowing way. The entropi method onsists at least of three omponents:(1) entropi quasiequilibrium, de�ned by entropy maximisation;11



(2) entropy balaned ollisions (4) that have to provide proper entropy bal-ane;(3) a method for the solution of the transendental equation S(f) = S( ~f) to�nd � = �(f) in (4).It appears that the �rst two items do not a�et spurious osillations at all,if we solve the equation for �(f) with high auray. Additional visosityis, potentially, added by expliit analyti formulas for �(f). In order not toderease entropy, errors in these formulas always inrease dissipation. Thisan be interpreted as a hidden transformation of the form (7), where theoeÆients in � depend also on f �.3.8 Monotoni and double monotoni limitersTwo monotoniity properties are important in the theory of nonequilibriumentropy limiters:(1) a limiter should move the distribution to equilibrium: in all ases of (1)0 � � � 1. This is the dissipativity ondition whih means that limitersnever produe negative entropy.(2) a limiter should not hange the order of states on the line: if for twodistributions with the same moments, f and f 0, �S(f) > �S(f 0) beforethe limiter transformation, then the same inequality should hold after thelimiter transformation too. For example, for the limiter (7) it means that�S(f � + x�(�S(f � + x(f � f �))(f � f �)) is a monotonially inreasingfuntion of x > 0.In quadrati approximation, �S(f � + x(f � f �)) = x2�S(f);�S(f � + x�(�S(f � + x(f � f �))(f � f �)) = x2�2(x2�S(f));and the seond monotoniity ondition transforms into the following require-ment: y�(y2s) is a monotonially inreasing (not dereasing) funtion of y > 0for any s > 0.If a limiter satis�es both monotoniity onditions, we all it \double mono-toni". For example, Ehrenfests' regularisation satis�es the �rst monotoniityondition, but obviously violates the seond one. The limiter (8) violates the�rst ondition for small �S, but is dissipative and satis�es the seond one inquadrati approximation for large �S. The limiter with � = 1=(1+��Sk) al-ways satis�es the �rst monotoniity ondition, violates the seond if k > 1=2,and is double monotoni (in quadrati approximation for the seond ondi-tion), if 0 < k � 1=2. The threshold limiters (11) are also double monotoni.12



Of ourse, it is not forbidden to use any type of limiters under the loal andglobal ontrol of dissipation, but double monotoni limiters provide some nat-ural properties automatially, without additional are.
4 Numerial experimentTo onlude this paper we report some numerial experiments onduted todemonstrate the performane of some of the proposed nonequilibrium entropylimiters for LBM from Se. 3.
4.1 Veloities and quasiequilibriaWe will perform simulations using both entropi and non-entropi quasiequi-libria, but we always work with an athermal LBM model. Whenever we usenon-entropi quasiequilibria we employ Kullbak entropy (13).In 1D, we use a lattie with spaing and time step Æt = 1 and a disreteveloity set fv1; v2; v3g := f0;�1; 1g so that the model onsists of stati, left-and right-moving populations only. The subsript i denotes population (notlattie site number) and f1, f2 and f3 denote the stati, left- and right-movingpopulations, respetively. The entropy is S = �H, withH = f1 log(f1=4) + f2 log(f2) + f3 log(f3);(see, e.g., [27℄) and, for this entropy, the loal entropi quasiequilibrium statef � is available expliitly:f �1 = 2�3 �2�p1 + 3u2�;f �2 = �6�(3u� 1) + 2p1 + 3u2�;f �3 = ��6�(3u+ 1)� 2p1 + 3u2�; (14)
where � :=Xi fi; u := 1�Xi vifi: (15)13



The standard non-entropi polynomial quasiequilibria [38℄ are:f �1 = 2�3  1� 3u22 !;f �2 = �6(1� 3u+ 3u2);f �3 = �6(1 + 3u+ 3u2): (16)
In 2D, we employ a uniform 9-speed square lattie with disrete veloitiesfvi j i = 0; 1; : : : 8g: v0 = 0, vi = (os((i � 1)�=2); sin((i � 1)�=2)) for i =1; 2; 3; 4, vi = p2(os((i � 5)�2 + �4 ); sin((i � 5)�2 + �4 )) for i = 5; 6; 7; 8. Thenumbering f0, f1; : : : ; f8 are for the stati, east, north, west, south, north-east, northwest, southwest and southeast-moving populations, respetively.As usual, the entropi quasiequilibrium state, f �, an be uniquely determinedby maximising an entropy funtionalS(f) = �Xi fi log� fiWi�;subjet to the onstraints of onservation of mass and momentum [2℄:f �i = �Wi 2Yj=1�2�q1 + 3u2j�0�2uj +q1 + 3u2j1� uj 1Avi;j : (17)Here, the lattie weights, Wi, are given lattie-spei� onstants: W0 = 4=9,W1;2;3;4 = 1=9 and W5;6;7;8 = 1=36. Analogously to (15), the marosopi vari-ables � and u = (u1; u2) are the zeroth and �rst moments of the distributionf , respetively. The standard non-entropi polynomial quasiequilibria [38℄ are:f �i = �Wi 1 + 3viu+ 9(viu)22 � 3u22 !: (18)4.2 LBGK and ELBMThe governing equations for LBGK arefi(x + vi; t+ 1) = f �i (x; t) + (2� � 1)(f �i (x; t)�fi(x; t)); (19)where � = 1=(2� + 1).For ELBM (4) the governing equations are:fi(x + vi; t+ 1) = (1� �)f �i (x; t) + � ~fi(x; t); (20)14



with � as above and ~f = (1��)f+�f �. The parameter, �, is hosen to satisfya onstant entropy ondition. This involves �nding the nontrivial root of theequation S((1� �)f + �f �) = S(f): (21)To solve (21) numerially we employ a robust routine based on bisetion. Theroot is solved to an auray of 10�15 and we always ensure that the returnedvalue of � does not lead to a numerial entropy derease. We stipulate thatif, at some site, no nontrivial root of (21) exists we will employ the positivityrule instead (Fig. 1).4.3 Shok tubeThe 1D shok tube for a ompressible athermal uid is a standard benhmarktest for hydrodynami odes. Our omputational domain will be the interval[0; 1℄ and we disretize this interval with 801 uniformly spaed lattie sites.We hoose the initial density ratio as 1:2 so that for x � 400 we set � = 1:0else we set � = 0:5. We will �x the kinemati visosity of the uid at � = 10�9.4.3.1 Comparison of LBGK and ELBMIn Fig. 2 we ompare the shok tube density pro�le obtained with LBGK(using entropi quasiequilibria (14)) and ELBM. On the same panel we alsodisplay both the total entropy S(t) := Px S(x; t) and total nonequilibriumentropy �S(t) := Px�S(x; t) time histories. As expeted, by onstrution,we observe that total entropy is (e�etively) onstant for ELBM. On the otherhand, LBGK behaves non-entropially for this problem. In both ases we ob-serve that nonequilibrium entropy grows with time.As we an see, the hoie between the two ollision formulas LBGK (19)or ELBM (20) does not a�et spurious osillation, and reported regularisa-tion [29℄ is, perhaps, the result of approximate analytial solution of the equa-tion (21). Inauray in the solution of (21) an be interpreted as a hiddennonequilibrium entropy limiter. But it should be mentioned that the entropimethod onsists not only of the ollision formula, but, what is important, in-ludes a speial hoie of quasiequilibrium that ould improve stability (see,e.g., [13℄). Indeed, when we ompare ELBM with LBGK using either entopi orstandard polynomial quasiequilibria, there appears to be some gain in employ-ing entropi quasiequilibria (Fig. 3). We observe that the post-shok regionfor the LBGK simulations is more osillatory when polynomial quasiequilibriaare used. In Fig. 3 we have also inluded a panel with the simulation result-ing from a muh higher visosity (� = 3:3333 � 10�2). Here, we observe noappreiable di�erenes in the results of LBGK and ELBM.15
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Fig. 2. Density and pro�le of the 1:2 athermal shok tube simulation with � = 10�9after 400 time steps using (a) LBGK (19); (b) ELBM (20). In this example, nonegative population are produed by any of the methods so the positivity rule isredundant. For ELBM in this example, (21) always has a nontrivial root. Totalentropy and nonequilibrium entropy time histories are shown in panels (), (d) and(e), (f) for LBGK and ELBM, respetively.
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4.3.2 Nonequilibrium entropy limiters.Now, we would like to demonstrate just a representative sample of the manypossibilities of limiters suggested in Se. 3. In eah ase the limiter is im-plemented by a post-proessing routine immediately following the ollisionstep (either LBGK (19) or ELBM (20)). Here, we will only onsider LBGKollisions and entropi quasiequilibria (14).The post-proessing step adjusts f by the update formula:f 7! f � + �(�S)(f � f �);where �S is de�ned by (6) and � is a limiter funtion.For the Ehrenfests' regularisation one would hoose�(�S)(x) = ( 1; �S(x) � Æ;0; otherwise,where Æ is a pre-spei�ed threshold value. Furthermore, it is pertinent to seletjust k sites with highest �S > Æ. This limiter has been previously applied tothe shok tube problem in [6{8℄ and we will not reprodue those results here.Instead, our �rst example will be the following smooth limiter:�(�S) = 11 + ��Sk : (22)For this limiter, we will �x k = 1=2 (so that the limiter is double monotoni inquadrati approximation to entropy) and ompare the density pro�les for � =Æ=(E(�S)k), Æ = 0:1; 0:01; 0:001. We have also ensured an ensemble-dependentlimiter beause of the dependene of � on the average E(�S). As with Fig. 2,we aompany eah panel with the total entropy and nonequilibrium entropyhistories. Note the di�erent sales for nonequilibrium entropy. Note also thatentropy (neessarily) now grows due to the additional dissipation.Our next example (Fig. 5) onsiders the threshold �lter (10). In this examplewe hoose the estimates �S0 = 5E(�S); 10E(�S); 20E(�S) and �x the tol-erane Æ = 0 so that the inuene of the threshold alone an be studied. Onlyentropi adjustments are aepted in the limiter: �St � �S. As the thresholdinreases, nonequilibrium entropy grows faster and spurious begin to appear.Finally, we test the median �lter (Fig. 6). We hoose a minimal �lter so thatonly the nearest neighbours are onsidered. As with the threshold �lter, weintrodue a tolerane Æ and we try the values Æ = 10�3; 10�4; 10�5. Onlyentropi adjustments are aepted in the limiter: �Smed � �S.17
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Fig. 4. Density and pro�le of the 1:2 athermal shok tube simulation with � = 10�9after 400 time steps using LBGK (19) and the smooth limiter (22) with k = 1=2,� = Æ=(E(�S)k) and (a) Æ = 0:1; (b) Æ = 0:01 and () Æ = 0:001. Total entropy andnonequilibrium entropy time histories for eah parameter set fk; �(Æ)g are displayedin the adjaent panels.We have seen that eah of the examples we have onsidered (Fig. 4, Fig. 5and Fig. 6) is apable of subduing spurious post-shok osillations omparedwith LBGK (or ELBM) on this problem (f. Fig. 2). Of ourse, by limitingnonequilibrium entropy the result is neessarily an inrease in entropy.From our experienes our reommendation is that the median �lter is thesuperior hoie amongst all the limiters suggested in Se. 3. The ation of themedian �lter is found to be both extremely gentle and, at the same time, verye�etive.4.4 Lid-driven avityOur seond numerial example is the lassial 2D lid-driven avity ow. Asquare avity of side length L is �lled with uid with kinemati visosity �(initially at rest) and driven by the avity lid moving at a onstant veloity(u0; 0) (from left to right in our geometry).18
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Colleted in Table 1, for Re = 2000; 5000 and 7500, are the oordinates ofthe primary and seondary vortex entres using (a) unregularised LBGK; (b)LBGK with median �lter limiter (Æ = 10�3); () LBGK with median �lter lim-iter (Æ = 10�4), all with non-entropi polynomial quasiequilibria (18). Lines(d), (e) and (f) are the same but with entropi quasiequilibria (17). The re-maining lines of Table 1 are as follows: (g) literature data [24℄ (unregularisedLBGK on a 256�256 grid); (h) literature data [41℄ (positivity rule); (i) litera-ture data [41℄ (ELBM). With the exeption of (g), all simulation are ondutedon a 100 � 100 grid. The top-left vortex does not appear at Re = 2000 andno data was provided for it in [41℄ at Re = 5000. The unregularised LBGKRe = 7500 simulation blows-up in �nite time and the simulation beomesmeaningless. The y-oordinate of the two lower-vorties at Re = 5000 in (i)appear anomalously small and were not reprodued by our experiments withthe positivity rule (not shown).We have onduted two runs of the experiment with the median �lter param-eter Æ = 10�3 and Æ = 10�4. Despite the inreased number of realisations thevortex entre loations remain e�etively unhanged and we detet no signif-iant variation between the two runs. This demonstrates the gentle nature ofthe median �lter. At Reynolds Re = 2000 the median �lter has no e�et at allon the vortex entres ompared with LBGK.We �nd no signi�ant di�erenes between the experiments with entropi andnon-entropi polynomial quasiequilibria in this test.The oordinates of the primary vortex entre for unregularised LBGK at Re =5000 are already quite inaurate as LBGK begins to lose stability. Stabilityis lost entirely at some ritial Reynolds number 5000 < Re � 7500 and thesimulation blows-up.Furthermore, we have agreement (within grid resolution) with the data givenin [24℄. Also ompiled in Table 1 is the data from the limiter experimentsonduted in [41℄ (although not expliitly disussed in the language of limitersby the authors of that work). In [41℄ the authors give vortex entre data forthe positivity rule (Fig. 1) and for ELBM (whih we interpret as ontaining ahidden limiter). In [41℄ the positivity rule is alled FIX-UP.As Reynolds number inreases the ow in the avity is no longer steady and amore ompliated ow pattern emerges. On the way to a fully developed tur-bulent ow, the lid-driven avity ow is known to undergo a series of perioddoubling Hopf bifurations. On our oarse grid, we observe that the oordi-nates of the primary vortex entre (maximum of the stream funtion) is a veryrobust feature of the ow, with little hange between oordinates (no hangein y-oordinates) omputed at Re = 5000 and Re = 7500 with the median �l-ter. On one hand, beause of this observation it beomes inonlusive whether21



Table 1Primary and seondary vortex entre oordinates for the lid-driven avity ow atRe = 2000; 5000; 7500.Primary Lower-left Lower-right Top-leftRe x y x y x y x y2000 (a) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appliable2000 (b) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appliable2000 () 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appliable2000 (d) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appliable2000 (e) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appliable2000 (f) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appliable2000 (g) 0.5255 0.5490 0.0902 0.1059 0.8471 0.0980 Not appliable2000 (h) 0.5200 0.5450 0.0900 0.1000 0.8300 0.0950 Not appliable2000 (i) 0.5200 0.5500 0.0890 0.1000 0.8300 0.1000 Not appliable5000 (a) 0.5152 0.6061 0.0808 0.1313 0.7980 0.0707 0.0505 0.89905000 (b) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0606 0.89905000 () 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0707 0.88895000 (d) 0.5152 0.5960 0.0808 0.1313 0.8081 0.0808 0.0505 0.89905000 (e) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0606 0.89905000 (f) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0707 0.88895000 (g) 0.5176 0.5373 0.0784 0.1373 0.8078 0.0745 0.0667 0.90595000 (h) 0.5150 0.5680 0.0950 0.0100 0.8450 0.0100 Not available5000 (i) 0.5150 0.5400 0.0780 0.1350 0.8050 0.0750 Not available7500 (a) | | | | | | | |7500 (b) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0606 0.89907500 () 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0707 0.88897500 (d) | | | | | | | |7500 (e) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0606 0.89907500 (f) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0707 0.88897500 (g) 0.5176 0.5333 0.0706 0.1529 0.7922 0.0667 0.0706 0.9098
22



the median limiter is adding too muh additional dissipation. On the otherhand, a more studious hoie of ontrol riteria may indiate that the �rstbifuration has already ourred by Re = 7500.4.4.2 First Hopf bifurationA survey of available literature reveals that the preise value of Re at whihthe �rst Hopf bifuration ours is somewhat ontentious, with most urrentstudies (all of whih are for inompressible ow) ranging from around Re =7400{8500 [9,32,33℄. Here, we do not intend to give a preise value beauseit is a well observed grid e�et that the ritial Reynolds number inreases(shifts to the right) with re�nement (see, e.g., Fig. 3 in [33℄). Rather, wewill be ontent to loalise the �rst bifuration and, in doing so, demonstratethat limiters are apable of regularising without e�eting fundamental owfeatures.To loalise the �rst bifuration we take the following algorithmi approah.Entropi quasiequilibria are in use. The initial uniform uid density pro�leis � = 1:0 and the veloity of the lid is u0 = 1=10 (in lattie units). Wereord the unsteady veloity data at a single ontrol point with oordinates(L=16; 13L=16) and run the simulation for 5000 non-dimensionless time units(5000L=u0 time steps). Let us denote the �nal 1% of this signal by (usig; vsig).We then ompute the energy Eu (`2-norm normalised by non-dimensionalsignal duration) of the deviation of usig from its mean:Eu := s Lu0jusigj(usig � usig)`2 ; (23)where jusigj and usig denote the length and mean of usig, respetively. Wehoose this robust statisti instead of attempting to measure signal amplitudebeause of numerial noise in the LBM simulation. The soure of noise in LBMis attributed to the existene of an inherently unavoidable neutral stabilitydiretion in the numerial sheme (see, e.g., [8℄).We opt not to employ the \boune-bak" boundary ondition used in the pre-vious steady state study. Instead we will use the di�usive Maxwell boundaryondition (see, e.g., [11℄), whih was �rst applied to LBM in [1℄. The esseneof the ondition is that populations reahing a boundary are reeted, propor-tional to equilibrium, suh that mass-balane (in the bulk) and detail-balaneare ahieved. The boundary ondition oinides with \boune-bak" in eahorner of the avity.To illustrate, immediately following the advetion of populations onsider thesituation of a wall, aligned with the lattie, moving with veloity uwall andwith outward pointing normal to the wall in the negative y-diretion (this is23



the situation on the lid of the avity with uwall = u0). The implementationof the di�usive Maxwell boundary ondition at a boundary site (x; y) on thiswall onsists of the updatefi(x; y; t+ 1) = f �i (uwall); i = 4; 7; 8;with  = f2(x; y; t) + f5(x; y; t) + f6(x; y; t)f �4 (uwall) + f �7 (uwall) + f �8 (uwall) :Observe that, beause density is a linear fator of the quasiequilibria (17),the density of the wall is inonsequential in the boundary ondition and antherefore be taken as unity for onveniene. As is usual, only those populationspointing in to the uid at a boundary site are updated. Boundary sites do notundergo the ollisional step that the bulk of the sites are subjeted to.We prefer the di�usive boundary ondition over the often preferred \boune-bak" boundary ondition with onstant lid pro�le. This is beause we haveexperiened diÆulty in separating the aforementioned numerial noise fromthe genuine signal at a single ontrol point using \boune-bak". We remarkthat the di�usive boundary ondition does not prevent unregularised LBGKfrom failing at some ritial Reynolds number Re > 5000.Now, we ondut an experiment and reord (23) over a range of Reynoldsnumbers. In eah ase the median �lter limiter is employed with parameterÆ = 10�3. Sine the transition between steady and periodi ow in the lid-driven avity is known to belong to the lass of standard Hopf bifurationswe are assured that E2u / Re [16℄. Fitting a line of best �t to the resultingdata loalises the �rst bifuration in the lid-driven avity ow to Re = 7135(Fig. 7). This value is within the tolerane of Re = 7402� 4% given in [33℄ fora 100�100 grid. We also provide a (time averaged) phase spae trajetory andFourier spetrum for Re = 7375 at the monitoring point (Fig. 8 and Fig. 9)whih learly indiate that the �rst bifuration has been observed.5 ConlusionsEntropy and thermodynamis are important for stability of the lattie Boltz-mann methods. It is now lear: after almost 10 years of work sine the pub-liation of [26℄ proved this statement (the main reviews are [5,28,39℄). Thequestion is now: \how does one utilise, optimally, entropy and thermody-nami strutures in lattie Boltzmann methods?". In our paper we attempt topropose a solution (temporary, at least). Our approah is appliable to bothentropi as well as for non-entropi polynomial quasiequilibria.24
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Fig. 7. Plot of energy squared, E2u (23), as a funtion of Reynolds number, Re, usingLBGK regularised with the median �lter limiter with Æ = 10�3 on a 100� 100 grid.Straight lines are lines of best �t. The intersetion of the sloping line with the x-axisours lose to Re = 7135.We have onstruted a system of nonequilibrium entropy limiters for the lattieBoltzmann methods (LBM):� the positivity rule that provides positivity of distribution;� the pointwise entropy limiters based on seletion and orretion of mostnonequilibrium values;� �lters of nonequilibrium entropy, and the median �lter as a �lter of hoie.All these limiters exploit physial properties of LBM and allow ontrol of totaladditional entropy prodution. In general, they do the same work for LBM asux limiters do for �nite di�erenes, �nite volumes and �nite elements meth-ods, and ome into operation when sharp gradients are present. For smoothlyhanging waves, the limiters do not operate and the spatial derivatives an berepresented by higher order approximations without introduing non-physialosillations. But there are some di�erenes too: for LBM the main idea behindthe onstrution of nonequilibrium entropy limiter shemes is to limit a salarquantity | the nonequilibrium entropy | or to delete the \salt and pepper"noise from the �eld of this quantity. We do not touh the vetors or tensorsof spatial derivatives, as it is for ux limiters.Standard test examples demonstrate that the developed limiters erase spuriousosillations without blurring of shoks, and do not a�et smooth solutions. Thelimiters we have tested do not produe a notieable additional dissipation and25



Fig. 8. Veloity omponents as a funtion of time for the signal (usig; vsig) at themonitoring point (L=16; 13L=16) using LBGK regularised with the median �lterlimiter with Æ = 10�3 on a 100 � 100 grid (Re = 7375). Dots represent simulationresults and the solid line is a 100 step time average of the signal.allow us to reprodue the �rst Hopf bifuration for 2D lid-driven avity on aoarse 100� 100 grid. At the same time the simplest median �lter deletes thespurious post-shok osillations for low visosity.Perhaps, it is impossible to �nd one best nonequilibrium entropy limiter forall problems. It is a speial task to onstrut the optimal limiters for a spei�lasses of problems.
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