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Abstract

We consider families of dynamics that can be described in terms of Perron-Frobenius
operators with exponential mixing properties. For piecewise C

2 expanding interval maps
we rigorously prove continuity properties of the drift J(λ) and of the diffusion coefficient
D(λ) under parameter variation. Our main result is that D(λ) has a modulus of continuity
of order O(|δλ| · | log |δλ|)2), i.e. D(λ) is Lipschitz continuous up to quadratic logarithmic
corrections. For a special class of piecewise linear maps we provide more precise estimates
at specific parameter values. Our analytical findings are verified numerically for the latter
class of maps by using exact formulas for the transport coefficients. We numerically observe
strong local variations of all continuity properties.

1 Introduction

In simple deterministic dynamical systems physical quantities like transport coefficients can be
fractal functions of control parameters. This finding was first reported for a one-dimensional
piecewise linear map lifted periodically onto the whole real line, for which the diffusion coefficient
was computed by using Markov partitions and topological transition matrices [26, 27, 29]. A
generalization of this result was obtained for a map with both drift and diffusion by deriving
exact analytical solutions for the transport coefficients [15,9]. Further maps modeling chemical
reaction-diffusion [14] and anomalous diffusion [33] yielded also fractal transport coefficients.
Recent work aimed at physically more realistic models like (Hamiltonian) particle billiards,
for which computer simulations yielded transport coefficients that are non-monotonic under
parameter variation [31]. Ref. [32] contains a summary of this line of research.

These results asked for a more detailed characterization of the “fractality” of transport
coefficients. A first attempt in this direction was reported by Klages and Klauß [30], who
used standard techniques from the theory of fractal dimensions for characterizing the drift and
diffusion coefficients of the map studied in [15]. They numerically computed a non-integer
box counting dimension for these curves which varied with the parameter interval, leading to
the notion of a “fractal fractal dimension”. These results were questioned by Koza [35], who
computed the oscillation of these graphs at specific Markov partition parameter values. His
work suggested a dimensionality of one by conjecturing that there exist non-trivial logarithmic
corrections to the usual power law behaviour in the oscillation.

This research reveals the need to study the parameter dependence of transport coefficients
in a rigorous mathematical setting, which can be formulated as follows: Given a parametrized
family of chaotic dynamical systems Tλ : I → I on an interval I with unique invariant physical
measures µλ together with a family of sufficiently regular observables ψλ : I → R one has, under
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suitable mixing assumptions on the systems (Tλ, µλ), a law of large numbers and a central limit

theorem for the partial sum processes Sλ,n(x) =
∑n−1

k=0 ψλ(T k
λx), namely

lim
n→∞

n−1Sλ,n = J(λ) :=

∫

I

ψλ(x) dµλ(x) for µt-a.e. x

and
L(n− 1

2Sλ,n) ⇒ N (0, 2D(λ))

where D(λ) := limn→∞
1
2n

∫

I

(

∑n−1
k=0 (ψλ(T k

λx) − J(λ))
)2

dµλ(x). For suitable choices of the

observables ψλ, the process Sλ,n is just the deterministic random walk generated by a lift of
the map Tλ to the real axis, and J(λ) and D(λ) are the drift and diffusion coefficient of this
random walk respectively.

There are a few rigorous results in the literature describing the dependence of µλ and of
quantities like J(λ) for various classes of systems. Without going into the details they can be
summarized as follows: If the maps Tλ and the observables ψλ depend smoothly on λ and if
the topological conjugacy class of Tλ is not changed when λ is varied, then µλ (and hence J(λ))
depends differentiably on λ [4,8,10,19,20,39,40]. If the topological class changes, quantities like
J(λ) may behave less regular and have a modulus of continuity not better than |δλ · log |δλ||,
even for very simple maps Tλ like symmetric tent maps [3]. On the other hand, this modulus of
continuity is the rule for systems whose Perron-Frobenius operator (acting on a suitable space
of “regular” densities) has a spectral gap [22, 24].

The goal of this paper is to explicitly relate these mathematical results to transport coeffi-
cients. We do so by rigorously proving continuity properties of J(λ) and D(λ) under parameter
variation for certain classes of deterministic maps. In Section 2 we give a general estimate
for families of dynamics (deterministic or not), which can be described in terms of Perron-
Frobenius operators with exponential mixing properties. The applicability of these general
results to piecewise C2 expanding interval maps and in particular to the class of piecewise lin-
ear maps discussed in [26, 27, 29, 15, 32] is checked in Section 3. The main result is that D(λ)
has a modulus of continuity of order O(|δλ| · | log |δλ|)2), i.e. D(λ) is Lipschitz continuous up to
quadratic logarithmic corrections. In Section 4 we summarize the general results for transport
coefficients in the special case of piecewise linear maps and provide more precise estimates for
special parameters. Our analytical findings are verified by numerical computations in Section 5,
for which we use exact analytical formulas of the transport coefficients [15]. Particularly, we
numerically analyze local variations of these properties. Our work corrects and amends previous
results reported in [30, 35].

2 The general setting

Let I be a compact interval, m normalized Lebesgue measure on I, L1
m the space of Lebesgue-

integrable functions from I to R, and BV ⊂ L1
m the space of L1

m-equivalence classes of functions
of bounded variation. We use the following simplified notation for the two corresponding norms:

|f |1 :=

∫

|f | dm , ‖f‖ := Var(f) (1)

where

Var(f) := sup

{
∫

fϕ′ dm : ϕ ∈ C1(R,R), |ϕ|∞ ≤ 1

}

(2)

is the variation of f as a function from R → R (i.e. extended by f ≡ 0 on R \ I). If f
is differentiable as a function from R → R integration by parts shows easily that Var(f) =
∫

|f ′| dm. Var is obviously a semi-norm, and as |f |1 ≤ |f |∞ ≤ 1
2 Var(f), it is actually a norm.

This and more details on functions of bounded variation can be found in [25, section 2.3]. The
monograph [2] is a comprehensive reference for most of the background material needed in this
section.
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We consider a family T of nonsingular maps T : I → I. Nonsingular means that the
Perron-Frobenius operator PT : L1

m → L1
m is well defined, i.e.

∫

PT f · g dm =

∫

f · g ◦ T dm (f ∈ L1
m, g ∈ L∞

m ) . (3)

By definition, |PT |1 = 1 for all T ∈ T , and we assume

Hypothesis 1 C1 := sup{‖Pn
T ‖ : T ∈ T , n ∈ N} <∞.

Our main assumption is that the maps in T are uniformly exponentially mixing in the following
sense:

Hypothesis 2 Each T ∈ T has a unique invariant probability density hT ∈ BV (so PThT =
hT ), and there are constants γ ∈ (0, 1) and C2 > 0 such that, for all T ∈ T ,

|Pn
T f |1 ≤ C2γ

n Var(f) for all f ∈ BV with

∫

f dm = 0 and for all n ∈ N . (4)

Observe the following consequences of Hypothesis 1 and 2:

|Pn
T f − hT |1 ≤ C2γ

n(Var(f) + 2C1) for all probability densitiesf ∈ BV (5)

and
Var(hT ) ≤ 2C1 (T ∈ T ) . (6)

Indeed, |Pn
T f−hT |1 = |Pn

T (f−hT )|1 ≤ C2γ
n(Var(f)+Var(hT )) → 0 as n→ ∞ by Hypothesis 2

for each probability density f ∈ BV , and Var(Pn
T 1) ≤ C1 Var(1) = 2C1 by Hypothesis 1. Hence

(6) follows from the definition (2) of Var(.), and then (5) is an immediate consequence.
Since it is our goal to investigate the dependence of various dynamical quantities as functions

of T ∈ T , we need to introduce a distance on T . At this stage the following one, which was
already considered in [22], is most apropriate. It measures the distance between two maps T1

and T2 from T in terms of a suitable norm of PT1
− PT2

:

|‖PT1
− PT2

|‖ := sup {|PT1
f − PT2

f |1 : f ∈ BV, ‖f‖ ≤ 1} . (7)

This distance can be controlled in terms of a more “hands-on” distance between the graphs of
the maps:

d(T1, T2) := inf{ǫ > 0 : ∃Iǫ ⊆ I and ∃ a diffeomorphism σ : I → I s.th.

m(I \ Iǫ) < ǫ, T1|Iǫ
= T2 ◦ σ|Iǫ

, and

∀x ∈ Iǫ : |σ(x) − x| < ǫ, |1/σ′(x) − 1| < ǫ} .
(8)

Namely (see [22, Lemma 13]),

|‖PT1
− PT2

|‖ ≤ 12 · d(T1, T2) . (9)

Now, as a warm-up exercise, we can prove the following estimate: for k ≥ 0 let

ℓk : (0,∞) → (0,∞), ℓk(u) := u · (1 + | log u|)k . (10)

Lemma 1 There exist constants K ′
1,K1 > 0 such that

|hT1
− hT2

|1 ≤ K ′
1 · ℓ1(|‖PT1

− PT2
|‖) ≤ K1 · ℓ1(d(T1, T2)) (T1, T2 ∈ T ) (11)
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Proof: Let η̃ := |‖PT1
− PT2

|‖, assume without loss of generality that η̃ < 1, and fix N ∈ N.
For f ∈ BV ,

|PN
T1
f − PN

T2
f |1 ≤

N−1
∑

k=0

|PN−k−1
T1

(PT1
− PT2

)P k
T2
f |1 ≤

N−1
∑

k=0

|(PT1
− PT2

)P k
T2
f |1

≤
N−1
∑

k=0

|‖PT1
− PT2

|‖‖P k
T2
f‖ ≤

N−1
∑

k=0

η̃ C1‖f‖ ≤ C1Nη̃‖f‖
(12)

where we used Hypothesis 1. Hence,

|hT1
− hT2

|1 ≤ |PN
T1

1 − PN
T2

1|1 + |PN
T1

(1 − hT1
)|1 + |PN

T2
(1 − hT2

)|1
≤ 2C1Nη̃ + 2 · C2γ

N (2 + 2C1)

where we used (4) and (6). With N = ⌈ log η̃
log γ ⌉, this is (11). q.e.d.

Remark 1 Even if T is a family of piecewise linear maps and if T1 has the Markov property, this
estimate can generally not be improved. Examples for this fact within the family of symmetric
mixing tent maps are provided in [3, 37].

Suppose now that to each T ∈ T there is associated an “observable” ψT : I → R. We make
the following assumptions:

Hypothesis 3 C3 := sup{Var(ψT ) : T ∈ T } <∞

Hypothesis 4 There is C4 > 0 such that |ψT1
− ψT2

|1 ≤ C4d(T1, T2) for all T1, T2 ∈ T .

Denote

J(T ) :=

∫

I

ψThT dm . (13)

Then we have immediately from (6) and Lemma 1

Corollary 1 There is some K2 > 0 such that, for all T1, T2 ∈ T ,

|J(T1) − J(T2)| ≤ K2 · ℓ1(d(T1, T2)) (14)

J(T ) is the “drift” of the partial sum process

ST,n :=

n−1
∑

k=0

ψT ◦ T k = nJ(T ) +

n−1
∑

k=0

ψ̂T ◦ T k

under the invariant measure hTm, where ψ̂T = ψT − J(T ). Observe that

Var(ψ̂T ) ≤ 2C3, |ψT1
− ψT2

| ≤ 2C4 d(T1, T2) for all T, T1, T2 ∈ T . (15)

In view of Hypothesis 2 we can also define the “diffusion coefficient”1 of this process:

D(T ) := lim
n→∞

1

2n

∫

(

n−1
∑

k=0

ψ̂T ◦ T k

)2

hT dm

=
1

2

∫

ψ̂2
T hT dm+

∞
∑

n=1

∫

ψ̂T · ψ̂T ◦ T n hT dm

=
1

2

∫

ψ̂2
T hT dm+

∞
∑

n=1

∫

Pn
T (ψ̂ThT ) ψ̂T dm

(16)

1This is the convention in the physics literature. In the mathematics literature one would rather call 2D(T )
the diffusion coefficient.
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Even more, we have the central limit theorem

L(n− 1

2 (ST,n − nJ(T )) ⇒ N (0, 2D(T )) as n→ ∞ , (17)

see e.g. [21, 18, 38]. Among physicists (16) is known as the Taylor-Green-Kubo formula for
diffusion [32]. For the dependence of D(T ) on T we prove:

Proposition 1 There is some K3 > 0 such that, for all T1, T2 ∈ T ,

|D(T1) −D(T2)| ≤ K3 · ℓ2(d(T1, T2)) (18)

Proof: Observe first that, for all ψ, h ∈ BV ,

Var(ψh) ≤ Var(ψ)|h|∞ + Var(h)|ψ|∞ ≤ Var(ψ)Var(h) . (19)

Indeed, for differentiable u we have Var(u) =
∫

|u′| dm, so for differentiable h and ψ (19) follows
from the product rule of diferentiation. General h and ψ are then approximated using mollifiers.
It follows that, in view of (4),

∣

∣

∣

∣

∫

Pn
T (ψ̂ThT ) ψ̂T dm

∣

∣

∣

∣

≤ |Pn
T (ψ̂ThT )|1 · |ψ̂T |∞ ≤ C2C3γ

n Var(ψ̂ThT )

≤ 4C1C2C
2
3γ

n .

(20)

Let η̃ = ‖PT1
− PT2

‖ as before, denote η := d(T1, T2) (so that η̃ ≤ 12η), and fix N = ⌈ log η
log γ ⌉.

For all T1, T2 ∈ T , eq. (20) implies

2

∞
∑

n=N

∣

∣

∣

∣

∫

Pn
T1

(ψ̂T1
hT1

) ψ̂T1
dm−

∫

Pn
T2

(ψ̂T2
hT2

) ψ̂T2
dm

∣

∣

∣

∣

≤ 16C1C2C
2
3

1 − γ
η . (21)

For 0 ≤ n < N we use a different estimate. We decompose

∫

Pn
T1

(ψ̂T1
hT1

) ψ̂T1
dm−

∫

Pn
T2

(ψ̂T2
hT2

) ψ̂T2
dm = ∆n

1 + ∆n
2 + ∆n

3 + ∆n
4 (22)

where

|∆n
1 | :=

∣

∣

∣

∣

∫

Pn
T1

(ψ̂T1
hT1

) (ψ̂T1
− ψ̂T2

) dm

∣

∣

∣

∣

≤ 1

2
Var(Pn

T1
(ψ̂T1

hT1
)) |ψ̂T1

− ψ̂T2
|1

≤4C2
1C3C4η

(23)

and

|∆n
2 | :=

∣

∣

∣

∣

∫

(Pn
T1

− Pn
T2

)(ψ̂T1
hT1

) ψ̂T2
dm

∣

∣

∣

∣

≤ |‖Pn
T1

− Pn
T2
|‖Var(ψ̂T1

hT1
)|ψ̂T2

|∞

≤4C1C
2
3 |‖Pn

T1
− Pn

T2
|‖ ≤ 4(C1C3)

2nη̃

(24)

where the last inequality follows from eq. (12). Next,

|∆n
3 | :=

∣

∣

∣

∣

∫

Pn
T2

(

(ψ̂T1
− ψ̂T2

)hT1

)

ψ̂T2
dm

∣

∣

∣

∣

≤ |ψ̂T1
− ψ̂T2

|1 |hT1
|∞ |ψ̂T2

|∞

≤4C1C3C4η

(25)

and

|∆n
4 | :=

∣

∣

∣

∣

∫

Pn
T2

(

ψ̂T2
(hT1

− hT2
)
)

ψ̂T2
dm

∣

∣

∣

∣

≤ |hT1
− hT2

|1 |ψ̂T2
|∞ |ψ̂T2

|∞

≤C2
3K1ℓ1(η̃)

(26)

5



¿From (23) - (26) we see that

|∆n
1 | + |∆n

2 | + |∆n
3 | + |∆n

4 | ≤ K̃(nη + ℓ1(η)) (27)

for some constant K̃ > 0. Hence, in view of (21) and the choice of N ,

|D(T1) −D(T2)| ≤
4C1C2C

2
3

1 − γ
η + K̃

(

ℓ1(η) + 2

N−1
∑

n=1

(nη + ℓ1(η))
)

≤ 4C1C2C
2
3

1 − γ
η + K̃

(

N2η + (2N − 1)ℓ1(η)
)

≤ K3 · ℓ2(η)

(28)

for a suitable constant K3. q.e.d.

Remark 2 Quite often slightly stronger forms of Hypotheses 2 and 4 are satisfied, where the
mixing assumption (4) is replaced by

Var(Pn
T f) ≤ C′

2γ
n Var(f) for all f ∈ BV with

∫

f dm = 0 and n ∈ N (29)

and the assumption on the T -dependence of ψT is strengthened to

Var(ψT1
− ψT2

) ≤ C′
4d(T1, T2) for all T1, T2 ∈ T . (30)

An inspection of the above estimates shows that |∆n
1 | ≤ 4C1C

′
2C3C4γ

nη and |∆n
2 | ≤ 4C1C

′
2C3(1−

γ)−1η if (29) is assumed. If additionally (30) is assumed, then |∆n
3 | can be estimated as follows:

Let α :=
∫

I
(ψ̂T1

− ψ̂T2
)hT1

dm. Then

|∆n
3 | =

∣

∣

∣

∣

∫

Pn
T2

(

(ψ̂T1
− ψ̂T2

)hT1
− αhT2

)

ψ̂T2
dm

∣

∣

∣

∣

≤ C2C3 γ
n Var

(

(ψ̂T1
− ψ̂T2

)hT1
− αhT2

)

≤ C1C2C3C
′
4(4 + 2)γnη .

(31)

Hence,
∑N−1

n=0 |∆n
1 | + |∆n

3 | = O(η) uniformly in N and
∑N−1

n=0 |∆n
2 | = O(Nη) = O(ℓ1(η)). But

we see no way, in general, to bound the ∆n
4 -terms in a similar way. However, for particular

families of maps (which are all topologically conjugate), we will see in subsection 4.2 that
∆n

4 = 0 for all n and that the estimate for |∆n
2 | can be made more precise.

3 Checking Hypothesis 1 and 2

3.1 General piecewise expanding maps

In this subsection we show how the general Hypothesis 1 and 2 can be verified in the more
particular setting when T is a parametrized family of piecewise twice continuously differentiable
and expanding interval maps. So, from now on, we look at the following setting:

Λ ⊂ R
d is a compact parameter space, T = {Tλ : λ ∈ Λ}, and (T1)

there is some L > 0 such that d(Tλ1
, Tλ2

) ≤ L|λ1 − λ2| for all λ1, λ2 ∈ Λ. (T2)

We start with an abstract result which reduces Hypothesis 2 essentially to a uniform Lasota-
Yorke type inequality.

Lemma 2 Assume (T1) and (T2). Then Hypothesis 1 and 2 are valid if the transformations
T ∈ T are mixing and satisfy a uniform Lasota-Yorke type inequality: there are constants
C5, C6 > 0 and α ∈ (0, 1) such that

Var(Pn
T f) ≤ C5α

n Var(f) + C6|f |1 for all T ∈ T , n ∈ N, f ∈ BV. (LY)
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Proof: As |PT |1 = 1 and |f |1 ≤ 1
2‖f‖, it is straightforward to check that Hypothesis 1 holds

with C1 = C5 + 1
2C6.

We turn to Hypothesis 2. Note first that, because of (T1) and (T2), it suffices to show that
for each λ ∈ Λ there are δ(λ) > 0, C2(λ) > 0 and γ(λ) ∈ (0, 1) such that (4) holds with these
constants for all Tλ1

with |λ1 − λ| < δ(λ). But this is guaranteed by Corollary 2 and Remark
1c in [24]. q.e.d.

Our next task is to give sufficient conditions for (LY). To this end we specialize further and
assume from now on that our maps are piecewise expanding (PE) maps in the following sense:

For each λ ∈ Λ there is a finite partition (I1
λ, . . . , I

Nλ

λ ) of I into sub-

intervals such that all Tλ|Ij

λ
are monotone, C2, and κλ := inf |T ′

λ| > 2 .
(PE)

Already in [36] it was proved that each individual (PE)-map (even if 1 < κλ ≤ 2) satisfies
(LY) with constants C5, C6, α depending on the map. For parametrized families of maps one
can generally find uniform constants, but there are counterexamples where this is not possible
[22, 6, 7]. Under the above assumption infλ∈Λ κλ > 2 one can, however, give simple sufficient
conditions ensuring the uniform LY-inequality. The proof in [36] (see also [25, Proposition 2.1])
shows

Var(PTλ
f) ≤ 2

κλ
Var(f) + (Dλ + Eλ)|f |1 (32)

where

Dλ = sup
x

∣

∣

∣

∣

∣

(

1

T ′
λ(x)

)′
∣

∣

∣

∣

∣

, Eλ =
2

κλ minj |Ij
λ|
. (33)

From this (LY) follows with α = 2
κλ

, C5 = 1, and C6 = supλ
κλ

κλ−2 (Dλ + Eλ) provided this
supremum is finite.

In some cases of interest the Eλ, λ ∈ Λ, are not bounded because there are arbitrarily short
monotonicity intervals. In such situations, ad hoc arguments are needed. We give an example
in the next section.

3.2 Piecewise linear modulo 1 maps

We now look at a particular model dealt with in [12,13,16,17] from a mathematical perspective
and in [26, 27, 29, 15, 32] from a physics point of view. Let I = [− 1

2 ,
1
2 ], Λ = [a0, a1] × [− 1

2 ,
1
2 ]

for some constants 2 < a0 < a1, and for λ = (a, b) ∈ Λ consider

Tλ(x) = ax+ b mod (Z − 1

2
) . (34)

Hofbauer [16] showed that these maps have always a unique invariant probability density2, but
although these maps received further attention also in the mathematical literature [17,12,13], it
is not so easy to draw Hypothesis 2 from these sources. Therefore we will take up a rather direct
computation made in [23] to prove, without having to rely on the compactness assumption (T1),
the following lemma.

Lemma 3 Let λ = (a, b) ∈ Λ. Then

Var(PTλ
f) ≤ 2

a
Var(f) + 2

∣

∣

∣

∣

∫

f dm

∣

∣

∣

∣

for all f ∈ BV and n ∈ N. (35)

(This implies immediately Hypothesis 1 with C1 = 1 + a0

a0−2 and Hypothesis 2 as well as its

strengthening (29) with γ = 2
a0

and C2 = C′
2 = 1.)

2Indeed, Hofbauer shows this for the maximal measure of such maps, but since these maps have constant
slope, the maximal measures are just the absolutely continuous ones. For numerical results on the probability
densities associated with these measures and how they change under parameter variation see [27].
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Proof: Denote by F the family of all C1-functions ϕ : R → R with |ϕ|∞ ≤ 1. In [23, eq. (11)]
a number Γ(ϕ, s) ≥ 0 is defined for each pair of ϕ ∈ F and s ∈ R. In view of [23, eq. (13) and
(14)] it suffices to show that for each ϕ ∈ F there is some s ∈ [−2, 2] such that Γ(ϕ, s) ≤ 2

a .3 4

We will show that this is the case for s = sϕ := ϕ(1
2 ) − ϕ(− 1

2 ).
Let p = ⌈a+1

2 − b⌉ − 1 and q = ⌈a+1
2 + b⌉ − 1. Then −p − 1

2 ≤ Tλ(− 1
2 ) < −p + 1

2 ,
q − 1

2 < Tλ(1
2 ) ≤ q + 1

2 , and Tλ has monotonicity intervals (Ak, Bk), k = −p, . . . , q, where

A−p = −1

2
, Ak = a−1(k − 1

2
− b) (k = −p+ 1, . . . , q)

Bq =
1

2
, Bk = a−1(k +

1

2
− b) (k = −p, . . . , q − 1)

In order to estimate Γ(ϕ, s) in [23, eq. (11)] one has to evaluate certain terms Uk := ψ(Ak) −
ℓkgk(Ak) − sAk and Vk := ψ(Ak) − ℓkgk(Ak) − sBk. In our case, gk(Ak) = a−1, as gk is the
inverse of the derivative of the k-th monotone branch. The quantity ℓk is an abbreviation for
ϕ(TλAk), where TλAk denotes a limit from the right. Therefore, using the formula on the
bottom of [23, p.1779], we obtain

aUk =a · (ψ(Ak) − ℓkgk(Ak) − sϕAk)

= − ϕ(−a
2

+ b+ p) + (k + p)
(

ϕ(
1

2
) − ϕ(−1

2
)
)

− sϕ · (k − 1

2
− b)

= − ϕ(−a
2

+ b+ p) + sϕ · (p+
1

2
+ b) if k > −p ,

aU−p = − ϕ(−a
2

+ b+ p) + sϕ · a
2
,

(36)

and similarly,

a Vk =a · (ψ(Ak) − ℓkgk(Ak) − sϕBk)

= −ϕ(−a
2

+ b+ p) + sϕ · (p− 1

2
+ b) if k < q ,

a Vq = − ϕ(−a
2

+ b+ p) + sϕ · (p+ q − a

2
) .

(37)

It follows that |Vk − Uk′ | ≤ a−1|sϕ| for all k, k′ ∈ {−p, . . . , q}. Hence, by [23, eqs. (11) and
(12)],

Γ(ϕ, sϕ) ≤ a−1 +
1

2
a−1|sϕ| ≤

2

a
. (38)

q.e.d.

Next we check assumption (T2) on the Lipschitz dependence of the maps on the parameters,
so we estimate d(Ta,b, Ta′,b′). For the proof we extend the maps to the whole real line (keeping
the same names) by applying definition (34) to all x ∈ R.

Suppose a′ < a and denote by Ak and A′
k, k = −p + 1, . . . , q, the discontinuity points of

the two maps as introduced in the proof of Lemma 3. Consider the linear map L : R → R,
L(x) = (ax + b − b′)/a′ and observe that L(Ak) = A′

k (−p < k ≤ q) and a′L(x) + b′ = ax + b
for all x ∈ R. Let [u, v] := I ∩ L−1(I) and I0 := [u + δ, v − δ] for some arbitrarily small δ > 0.
Define σ : I → I by σ(x) = L(x) if x ∈ I0 and extend σ to a diffeomorphism of I. Then

• m(I \ I0) ≤ (1 − a′

a ) + |b′ − b|/a+ 2δ ≤ a−1
0 (|a′ − a| + |b′ − b|) + 2δ

• |σ(x) − x| = |L(x) − x| ≤ 1
2 | a

a′
− 1| + |b− b′|/a′ ≤ a−1

0 (1
2 |a− a′| + |b− b′|) for all x ∈ I0

• |1/σ′(x) − 1| = |a′

a − 1| ≤ a−1
0 |a′ − a| for all x ∈ I0

• Ta′(σ(x)) = Ta(x) for all x ∈ I0.

So d(Ta, Ta′) ≤ a−1
0 (|a− a′| + |b− b′|) as δ > 0 could be chosen arbitrarily small,

3var(.) in [23] is the same as Var(.) here. This is different from the use of var(.) in [25].
4Following this reference precisely, the reader will notice that instead of the factor 2

a
one gets the factor

2

a
+ 1

2
Vg. But Vg = 0 for piecewise linear transformations as noticed at the bottom of [23, p.1779].
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4 Transport coefficients

We apply the results of the previous sections to determine transport coefficients of the deter-
ministic random walks generated by the maps Tλ = Ta,b from subsection 3.2. The random

walks in question are Sλ,n =
∑n−1

k=0 ψλ ◦ T k
λ with

ψλ(x) = (a− 1)x+ b . (39)

It is an easy exercise to see that Hypothesis 3 and 4 as well as their strengthening (30) are
satisfied: Var(ψa,b) ≤ 2(a−1+ |b|) < 2(a1+1) =: C3 and |ψa,b−ψa′,b′ |1 ≤ 1

2 Var(ψa,b−ψa′,b′) ≤
|a− a′| + |b− b′|.

For later use we note that the maps Ta,b and Ta,−b are conjugate in the sense that Ta,b(−x) =
−Ta,−b(x), in particular ha,−b(−x) is also an invariant density for Ta,b and, by uniqueness,
ha,b(x) = ha,−b(−x).

We first note the following explicit form of the drift:

J(λ) = J(a, b) :=

∫

ψa,bha,b dm = b+ (a− 1)

∫

xha,b(x) dx . (40)

As noted above, ha,0(x) = ha,0(−x). Hence J(a, 0) = 0.5

4.1 Upper bounds for the modulus of continuity of the drift and the

diffusion coefficient

Now we apply Corollary 1 and Proposition 1 to our setting.

Proposition 2 For the family of maps (Tλ : λ ∈ Λ) defined above, there are constants K3,K4 >
0 such that the drift J(λ) := J(Tλ) and the diffusion coefficient D(λ) := D(Tλ), λ = (a, b),
satisfy

|J(λ) − J(λ′)| ≤ K3 · |λ− λ′| ·
(

1 +
∣

∣ log |λ− λ′|
∣

∣

)

(λ, λ′ ∈ Λ) (41)

|D(λ) −D(λ′)| ≤ K4 · |λ− λ′| ·
(

1 +
∣

∣ log |λ− λ′|
∣

∣

)2
(λ, λ′ ∈ Λ) . (42)

Corollary 2 a) The graph of D : Λ → R has box- and Hausdorff-dimension 2.

b) For each b ∈ R, the graph of Db : [a0, a1] → R, Db(a) = D(a, b), has box- and Hausdorff-
dimension 1.

c) For each a > 2, the graph of Da : [− 1
2 ,

1
2 ] → R, Da(b) = D(a, b), has box- and Hausdorff-

dimension 1.

Proof: Denote by dimB and dimH the box and Hausdorff dimension, respectively. Obviously,
2 ≤ dimH(graph(D)) ≤ dimB(graph(D)). So it remains to show that dimB(graph(D)) ≤ 2. To
this end subdivide the rectangle Λ into little squares of equal size ≈ N−1. For each such square
Q we have

max{D(λ) : λ ∈ Q} − min{D(λ) : λ ∈ Q} ≤ K4N
−1(1 + logN)2 . (43)

Hence,

dimB(graph(D)) ≤ lim sup
N→∞

log(K4N
2(1 + logN)2)

logN
= 2 . (44)

The two other claims are proved in the same way. q.e.d.

5In [27] it was conjectured, based on analyzing these deterministic random walks in terms of Markov par-
titions, that for b = 0 and a > 2 the maps Tλ exhibit a central limit theorem and that a diffusion coefficient
exists, which is confirmed by (17).
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Remark 3 Corollary 2 has already been conjectured by Koza [35]. His conjecture was based
on calculating the pointwise Minkowski-Bouligand dimension for algebraic Markov partition
parameter values of this family of maps by using the exact solutions for drift and diffusion
coefficient given in [15]. This led him to conclude that the oscillation [41] of D(λ) is linear in
the size of the subinterval multiplied with a logarithmic term, cp. (20) of [35] with (43) above.
The exponent of this logarithmic correction was found to be either one or two depending on
the type of Markov partition.

4.2 A closer look at maps with integer slope

We finish this section with a closer look at the functions Da(b) when a is an integer larger
than 2. In this case T = Ta,b can be seen as an a-fold covering linear circle map, so it leaves
Lebesgue measure invariant. Therefore hT = 1 for all such T and the estimates from the proof
of Proposition 1 simplify drastically: Fix a ∈ {3, 4, 5, . . .}. Then J(a, b) = b for all b (see (40)

and [15, 32]), ψ̂a,b(x) = (a − 1)x =: ψ̂a(x) is the same for all b, and denoting T1 = Ta,b and
T2 = Ta,b′ we can replace estimates (22) - (27) by

∫

I

Pn
T2

(ψ̂T2
hT2

) ψ̂T2
dm−

∫

I

Pn
T1

(ψ̂T1
hT1

) ψ̂T1
dm

=

∫

I

ψ̂a(x) ψ̂a(T n
2 x) dx −

∫

I

ψ̂a(x) ψ̂a(T n
1 x) dx

=(a− 1)2
(
∫

I

xT n
a,b′(x) dx −

∫

I

xT n
a,b(x) dx

)

(45)

To evaluate this difference assume henceforth that 0 ≤ b ≤ 1
2 . There is no loss in doing so,

because Ta,b and Ta,−b are conjugate as obseved above. Define the “rotation” R : I → I by
R(x) = x− b

a−1 mod (Z − 1
2 ). It conjugates Ta,b to Ta,0, namely

R(T n
a,0x) = T n

a,b(Rx) for all x ∈ I and n ∈ N.

Therefore, denoting b̂ = − 1
2 + b

a−1 and χb(x) = 1[− 1

2
,b̂)(x) − b

a−1 ,

∫

I

xT n
a,b(x) dx =

∫

I

R(x)R(T n
a,0x) dx =

∫

I

(x+ χb(x))(T
n
a,0x+ χb(T

n
a,0x)) dx

so that
∫

I

xT n
a,b′(x) dx −

∫

I

xT n
a,b(x) dx

=

∫

I

Pn
a,0x · (χb′(x) − χb(x)) dx +

∫

I

Pn
a,0(χb′ − χb)(x) · xdx

+

∫

I

Pn
a,0χb′(x) · (χb′(x) − χb(x)) dx +

∫

I

Pn
a,0(χb′ − χb)(x) · χb(x) dx

As
∫

I
χb′(x) dx = 0 and Var(χb) = 2 for all b, the third term is of order O((2/a)n|b′ − b|) by

Lemma 3. As Pn
a,0x = a−nx, the first term is at most of the same order. Therefore their sums

over all n are of the order O(|b′ − b|).
We turn to the two remaining terms. Their sum from n = 0 to ∞ is of the form

∞
∑

n=0

∫

I

Pn
a,0(χb′ − χb)(x) · gb(x) dx =

∞
∑

n=0

∫

I

(χb′ − χb)(x) · gb(T
n
a,0x) dx (46)

with gb(x) = x + χb(x). Let δ = b′−b
a−1 . As

∫ 1/2

−1/2
(χb′ − χb)(x) dx = 0, Var(χb′ − χb) ≤ 4, and

|gb| ≤ 2, the n-th integral is of order O((2/a)n). Hence the sum from n = Nδ := ⌈ log |δ|−1

log a ⌉ to
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∞ is of order |δ|, and it remains to estimate the sum from n = 0 to Nδ − 1. For these n we
have an|δ| ≤ 1.

We start with the special case b = 0 where we have χb = 0, so gb(x) = x. Then the n-th
term in the sum (46) evaluates to

∫ − 1

2
+δ

− 1

2

T n
a,0(x) dx =

{

δ · (− 1
2 + 1

2a
nδ) if a is odd

δ · (1
2a

nδ) if a is even and n ≥ 1

It follows that the sum from n = 0 to Nδ − 1 in (46) is of the order O(|δ|) if a is even and that

it is δ · (− log |δ|−1

2 log a + O(1)) if a is odd.

Consider next the case b = 1
2 . As b = − 1

2 gives rise to the same map, the we may assume

w.l.o.g. that − 1
2 < b′ < b, i.e. δ < 0. If a is odd, then Ta,0b̂ = b̂ + 1

2 and Ta,0(b̂ + 1
2 ) = b̂.

Therefore

∫

I

(χb′ − χb)(x) · gb(T
n
a,0x) dx =

∫ b̂′

b̂

gb(T
n
a,0x) dx

=

{

∫ δ

0
(b̂ + ant) + χb(b̂+ ant) dt if n is even

∫ δ

0 (b̂ + 1
2 + ant) + χb(b̂ + 1

2 + ant) dt if n is odd

=

{

δb̂+ 1
2a

nδ2 + δ − δ b
a−1 if n is even

δ(b̂+ 1
2 ) + 1

2a
nδ2 − δ b

a−1 if n is odd

as long as an|δ| < b
a−1 , i.e. n < Ñδ := Nδ − log(a−1)−log b

log a . For the remaining n this identity

needs to be modified by at most |δ|. In any case,

Nδ−1
∑

n=0

∫

I

(χb′ −χb)(x)·gb(T
n
a,0x) dx =

Nδ

2
· δ
2

+
Nδ

2
·0+O(δ) = δ log |δ|−1 1

4 log a
+O(δ) for odd a

with a constant in “O” that depends on b and a but not on b′. If a is even, then Ta,0b̂ = b̂, and
following the argument for odd a and even n we obtain

Nδ−1
∑

n=0

∫

I

(χb′ − χb)(x) · gb(T
n
a,0x) dx = Nδ ·

δ

2
+ O(δ) = δ log |δ|−1 1

2 log a
+ O(δ) for even a.

We turn to more general parameters 0 < b < 1
2 . We have to estimate

s(δ) :=

Nδ−1
∑

n=0

∫

I

(χb′ − χb)(x) · gb(T
n
a,0x) dx =

Nδ−1
∑

n=0

∫ b̂+δ

b̂

gb(T
n
a,0x) dx

=

Nδ−1
∑

n=0

∫ δ

0

gb(T
n
a,0(b̂) + ant) dt

(47)

The details of this estimate depend strongly on the distributional properties of the orbit of b̂
under Ta,0 and we discuss only two particular but important cases where the situation does not

become too complicated. First we look at such b for which the orbit of b̂ is eventually periodic
but where the periodic part does neither contain − 1

2 nor b̂. (This is a countable dense set of
parameters.) In this case one can argue as above for b = 1

2 and odd a and show that

s(δ) = δ log |δ|−1 Cb

log a
+ O(δ)

with Cb =
∫

I gb(x) dµb(x) where µb is the equidistribution on the periodic part of the orbit of

b̂. Exceptionally this may be zero, but typically it won’t.
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Next we look at Lebesgue typical points b̂, i.e. at Lebesgue typical parameters b. For fixed
δ we interpret s(δ) as a random variable where randomness is introduced via the parameter

b ∈ (0, 1
2 ). We are going to show that the random variables δ−1N

− 1

2

δ s(δ) converge in distribution
to a mixture of Gaussians, i.e.

L(δ−1N
− 1

2

δ s(δ)) ⇒
∫ 1

0

N (0, σ2
z) dz as δ → 0 (48)

with suitable variances σ2
z > 0 that depend on the fixed parameter a. This shows that approx-

imately s(δ) = δ(log |δ|−1)
1

2 Z with a random variable Z that is a mixture of Gaussians which
depends only on the fixed integer parameter a.

As a first step we compare s(δ) to
∑Nδ−1

n=0 δ ·gb(T
n
a,0b̂). As gb(x) = x+χb(x), we can estimate

the difference for the x- and the χb(x)-constributions separately. For the x-contribution the
difference is easily seen to be of order O(δ). For the χb(x)-contribution we estimate each of the
last Lδ := ⌈ 3

log a logNδ⌉ terms of the sum by 2 thus getting a contribution of order O(δ logNδ).
For the remaining terms we note the following two estimates which are obvious from a short
look at the graph of T n

a,0:

m{b ∈ I : |T n
a,0(b̂) − (−1

2
)| < anδ}, m{b ∈ I : |T n

a,0(b̂) − b̂| < anδ} ≤ 4anδ ,

so that

m

{

b ∈ I : ∃n ∈ {0, . . . , Nδ − Lδ − 1} s.th. |T n
a,0(b̂) − (−1

2
)| < anδ or |T n

a,0(b̂) − b̂| < anδ

}

≤ 8

a− 1
a−Lδ =

8

a− 1
N−3

δ .

It follows that
∑Nδ−Lδ−1

n=0

∫ δ

0 χb(T
n
a,0(b̂) + ant) dt =

∑Nδ−Lδ−1
n=0 δχb(T

n
a,0b̂) except on a set of

b of Lebesgue measure at most 8
a−1N

−3
δ . Hence, observing that LδN

−1
δ → 0 as δ → 0, the

convergence in (48) will follow once we have proved

L(YNδ
) ⇒

∫ 1

0

N (0, σ2
z) dz as Nδ → ∞ (49)

where YN (b) := N− 1

2

∑N−1
n=0 gb(T

nb̂) and b is uniformly distributed in the interval (0, 1
2 ). (To

ease the notation we abbreviate Ta,0 by T .) As the single contributions to the sum in YN

depend on b via T n(b̂) and b itself, this is not the situation of the usual central limit theorem,
so we treat the problem in two steps:

Step 1: For fixed z ∈ (0, 1) consider Y z
N (b) := N− 1

2

∑N−1
n=0 gz(T

nb̂). It is a well known general
fact that, for fixed z, the Y z

N converge in distribution to some N (0, σ2
z) (see e.g. [21, 18, 38])

- except for the strict positivity of σ2
z . To prove this we use [38, Lemma 6]: suppose for a

contradiction that σ2
z = 0. Then there is a function ψ : I → R of bounded variation such that

gz(x) = ψ(Tx) − ψ(x) for Lebesgue-a.e. x. Let M := 2 sup |ψ|. Then
∣

∣

∑n
k=0 gz(T

kx)
∣

∣ ≤M for
all n and a.a. x. Looking at suitable periodic orbits it is easy to see that there are n = n0 and
x = x0 for which this sum is larger than M + 2. But then, as both T and also gz are at least
one-sided continuous, there is a small interval close to x0 on which the same sum is larger than
M + 1, which contradicts the above bound that holds for all n and Lebesgue-a.a. x.

Step 2: We need a number of preparations:

(i) Let J := (− 1
2 ,− 1

2 + 1
2(a−1) ) be the interval through which b̂ ranges when b is chosen

randomly from (0, 1
2 ).

(ii) Let (rj)j > 0 be any sequence of natural numbers tending to infinity and such that rj ≤ j
1

4

for all j. For each j denote by Cj ⊂ I = [− 1
2 ,

1
2 ] a set of points that subdivides I into

arj intervals of the same length which are mapped onto I bijectively by T rj . (If a is odd
take Cj := T−rj{− 1

2}, if a is even take Cj := T−rj{0}.) For z ∈ Cj denote by Ij
z the

subinterval with left endpoint z.
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(iii) ‖YN −YN ◦T 2rN‖∞ = O(rNN
− 1

2 ) = o(1) as N → ∞ because the two sums involved differ
only by 4rN terms.

(iv) Var(P rN

T ( 1
m(J)1J − 1)) ≤ ( 2

a )rN Var( 1
m(J)1J − 1) = o(1) as N → ∞ by Lemma 3.

(v) m{x ∈ IN
z : Y z

N (T rNx) 6= YN (T rNx)} = a−rNm{x ∈ I : Y z
N (x) 6= YN (x)} ≤ a−rNm(IN

z ).

In order to prove (48) we now proceed as follows: it suffices to show that for each bounded
Lipschitz function φ : R → R holds

1

m(J)

∫

J

φ(YN (b)) db =

∫ 1

0

(
∫

I

φ(b) dN (0, σ2
z)(b)

)

dz + o(1) as N → ∞ . (50)

To simplify the notation we write
∫

J
φ(YN ) dm instead of

∫

J
φ(YN (b)) db etc..

1

m(J)

∫

J

φ(YN ) dm =
1

m(J)

∫

J

φ(YN ◦ T 2rN ) dm+ o(1) by (iii)

=

∫

I

P rN

T (m(J)−11J) · φ(YN ◦ T rN ) dm+ o(1)

=

∫

I

φ(YN ◦ T rN ) dm+ o(1) by (iv)

=
∑

z∈CN

∫

IN
z

φ(Y z
N ◦ T rN ) dm+ o(1) by (v)

=
∑

z∈CN

∫

I

P rN

T 1IN
z
· φ(Y z

N ) dm+ o(1)

=
∑

z∈CN

m(IN
z )

∫

I

φ(Y z
N ) dm+ o(1)

=
∑

z∈CN

m(IN
z )

∫

I

φdN (0, σ2
z) + o(1) by step 1

=

∫ 1

0

(
∫

I

φdN (0, σ2
z)

)

dz + o(1) as N → ∞

where one has to choose a sufficiently slowly growing sequence (rN ) in the second last equality.

Summary of results for integer a In view of the factor (a−1)2 in (45) and of the definition

of δ = b′−b
a−1 the above discussion shows:

(1) For even a ≥ 4,

Da(b′) −Da(0) = O(b′) and

Da(b′) −Da(
1

2
) =

a− 1

2 log a
(b′ − 1

2
) log |b′ − 1

2
|−1 + O(b′ − 1

2
)

(2) For odd a ≥ 3,

Da(b′) −Da(0) = − a− 1

2 log a
b′ log |b′|−1 + O(b′) and

Da(b′) −Da(
1

2
) =

a− 1

4 log a
(b′ − 1

2
) log |b′ − 1

2
|−1 + O(b′ − 1

2
)
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(3) If b is such that b̂ = − 1
2 + b

a−1 is eventually periodic under Ta,0 and the periodic part of

the orbit neither contains − 1
2 nor b̂, then there is a constant Ca,b such that

Da(b′) −Da(b) = Ca,b (b′ − b) log |b′ − b|−1 + O(b′ − b).

This generalizes observations (1) and (2). See also Remark 3.

(4) For fixed δ and random b drawn uniformly from (0, 1
2 ) or from (− 1

2 , 0),

Da(b+ δ(a− 1)) −Da(b) = Ca δ(log |δ|−1)1/2 Zδ + O(δ) as δ → 0

with a constant Ca > 0 and random variables Zδ which all have the same distribution - a
mixture of Gaussians as in (48) depending only on the fixed parameter a.

In view of these findings the graphs of Da : [− 1
2 ,

1
2 ] → R are fractal in the sense of Section 12.2

in [41] – at least for integer values of a –, although they have box - and Hausdorff-dimension 1.

Remark 4 In Refs. [27, 14, 32] it has been shown that for b = 0 the dynamics of ψλ can
be expressed in terms of generalized Takagi (or de Rham) functions. Analogous conclusions
hold for the case of b 6= 0 [34]. The above results are thus intimately related to continuity
properties of this class of functions under parameter variation. These functions are defined
by simple functional recursion relations and have been introduced in the literature completely
independently from the diffusion problem considered here.

5 Numerical results

Guided by the analytical results of the previous sections, in this part we numerically study the
transport coefficients generated by the piecewise linear maps (34). We are aiming particularly
at a numerical verification of Proposition 2 and of the summary of Section 4.2. To some extent
the numerics enables us to go beyond the analytical findings as far as detailed local properties
of these transport coefficients are concerned.

Let us start with a reminder of previous results: Exact analytical solutions for drift J and
diffusion coefficient D for all parameter values a, b were derived in [15].6 In [30] data sets were
generated from these expressions and analyzed by standard numerical box counting [41]. This
procedure relies on the assumption that

N(ǫ) ∼ ǫ−B (51)

for small enough ǫ, where N is the number of square boxes of side length ǫ needed to cover
the graph of J or D, and B = dimB(graph) defines the box (counting) dimension. Analysing
D(a) = D(a, 0) on 2 ≤ a ≤ 8, see Fig. 1 (a), based on 106 data points uniformly distributed in
a yielded a box dimension of B ≃ 1.039 [30]. The inset in Fig. 1 (a) depicts N(ǫ) for the new,
larger data set of 109 points of D(a) in comparison to (51) with the above exponent. Data and
fit are undistinguishable.

Fig. 1 (b) displays the numerical results from [30] for the local box dimension B(a) of D(a).
That is, according to (51) B was computed locally on a regular grid of small subintervals ∆a
centered around a. The figure shows that (51) yields locally different results for B(a) forming
an oscillatory structure that becomes more pronounced the smaller ∆a. Consequently, D(a)
was said to be characterized by a “fractal fractal dimension” in [30].

6Another set of formulas was reported in [9] but only for D(a).
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Figure 1: (a) Diffusion coefficient D(a) on the interval 2 ≤ a ≤ 8 with 2000 data points for
the one-dimensional map (34) sketched in the lower right edge with bias b = 0 and a as the
slope of the map. The inset of (a) shows standard box counting based on 109 data points for
D(a), where N is the number of boxes of side length ǫ. The dashed line in the inset depicts
the power law (51) with box dimension B = 1.039 as computed in [30]. (b) displays the box
dimension B(a) computed locally on a regular grid of subintervals of size ∆a = 0.006 centered
around a. For each subinterval a data set of 106 values has been used, and a running average
was performed over any three neighboring B(a). Both figures, except the inset, are from [30].

5.1 Box counting for the diffusion coefficient

Motivated by Proposition 2 and by [35], the numerical results of [30] are now reevaluated
and supplemented by new, further numerical analysis. We start with the diffusion coefficient
D(a). Corollary 2 states that B(a) = 1 for all intervals ∆a, which is at variance with the
results presented in Fig. 1. However, in contrast to the standard box counting assumption (51),
Proposition 2 is compatible with the existence of multiplicative logarithmic terms by giving
upper bounds for their exponents. The discussion in Subsection 4.2 shows that these terms do
indeed exist.

In detail, Corollary 2 states an upper bound for the box counting function N(ǫ) of D(a) of

N(ǫ) ≤ K4ǫ
−1(1 − ln ǫ)2 . (52)

This motivates us to plot the product Nǫ as a function of − ln ǫ: For small enough ǫ and in
double-logarithmic representation one should then see a straight line with the slope yielding
the exponent of the logarithmic term. Fig. 2 numerically verifies the existence of this term for
D(a) on 2 ≤ a ≤ 8: There clearly exists a non-zero exponent, however, in the numerics − ln ǫ
is not large enough to overcome the additive constant in (52) for producing a straight line.

In Fig. 2 three data sets have been plotted consisting of different numbers of data points for
D(a). The bending off of the graphs at larger − ln ǫ reflects that box counting starts to resolve
the single points of all the underlying data sets: From the figure one can roughly estimate that
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Figure 2: N is the number of boxes of length ǫ needed to cover D(a) shown in Fig. 1 (a)
generated from 106, 108 and 109 data points. Motivated by (52), in contrast to the inset of
Fig. 1 (a) here we plot the product Nǫ as a function of − ln ǫ double-logarithmically. The
dashed black line represents a three-parameter fit for the largest data set over 0.5 ≤ − ln ǫ ≤ 12
with the functional form of (53). The inset shows results for the exponent of the logarithmic
correction α obtained from fits where we vary the upper bound ǫmax of the fit interval.

for a data set of 106 points for D(a) deviations set in around − ln ǫcut ≃ 7, or ǫcut ≃ 10−3.
Compared with a separation of δa = 6 ·10−6 between any two data points along the a-axis, this
yields a difference of about three orders of magnitude. The same order of magnitude argument
holds if one compares ǫcut obtained approximately for 108 data points from Fig. 2 with the
corresponding separation of δa = 6 · 10−8 between any two data points. This leads to the
prediction that for the set of 109 data points − ln ǫcut ≃ 14 in Fig. 2.

Inspired by (52), we now fit the box counting results with the function

N(ǫ) = K5ǫ
−1(1 +K6 ln ǫ)α (53)

instead of (51). If this fit function reproduces the numerically computed N(ǫ) reasonably well,
Proposition 2 predicts that 0 ≤ α ≤ 2. However, we emphasize that this Proposition only gives
us a strict upper bound – it does not actually tell us the “true” functional form of the whole
graph. We have indeed checked that fit functions others than (53), which also obey (52), work
similarly well. In order to be close to Proposition 2 we stick to the fit function (53) in the
following.

The dashed black line in Fig. 2 shows a fit of the box counting results for 109 data points
of D(a) with this functional form.7 The inset of Fig. 2 depicts results for the exponent α
computed from different fit intervals [0.5,− ln ǫmax] for the same data set of 109 points. It
indicates convergence towards α ≃ 1.2 (− ln ǫmax → 12). The decrease for − ln ǫmax > 12 is
well in agreement with the cutoff predicted above, which is due to the limited data set. Note

7For all fits the nonlinear least-squares Marquardt-Levenberg algorithm as implemented in gnuplot 4.0 has
been used.
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Figure 3: Local variation of the product Nǫ needed to cover D(a) around integer values of a:
(a) shows results for parameter intervals of size ∆a = 0.06 centered around different a, based
on 108 data points. (b) displays results for subintervals ∆a all centered around a = 4, whereas
in (c) all subintervals converge towards a = 5. In (b) and (c) the graphs have been scaled by
multiplying ǫ with the order of magnitude difference between the different values for ∆a.

that the cutoff sets in much later than the beginning of the plateau. Hence we conclude that
for a data set of 109 points for D(a), 2 ≤ a ≤ 8, and by assuming the fit function (53), the
numerical value for the exponent of the logarithmic term is α ≃ 1.2. This is again in agreement
with Proposition 2.8 Note that fits by (53) do not tell the full story: The numerically exact data
in Fig. 2 show the existence of a non-trivial fine structure pointing towards more complicated
functional forms for the “true” N(ǫ), which should reflect the intricate structure of D(a) in
Fig. 1 (a). These irregularities may not be understood as numerical errors.

After having verified the existence of logarithmic contributions on large parameter intervals
we now look at local variations of the exponent α. This is demonstrated by doing box counting
for D(a) on small intervals around integer values of a. Fig. 3 (a) reveals that there exist two
families of curves: The one for even a is at the bottom of this figure, whereas the one for odd
a is on top. Additionally, all graphs show up such that the ones for larger slopes are always on
top in both groups thus creating an oscillatory structure.

We first consider the special case a = 2.03, where according to Fig. 3 (a) α ≃ 0. Note that
D(2) = 0, correspondingly the parameter region just above a = 2 marks the onset of diffusion,
cf. Fig. 1 (a). As described in [27, 28, 32], for a → 2 there is asymptotic convergence of D(a)
to the simple random walk solution D(a) = (a − 2)/(2a). This physical argument explains
why α → 0 (a → 2). There is a trend that larger even integer slopes in (a) give 0 ≤ α ≤ 1
whereas odd a give 1 < α ≤ 2. Unfortunately, the fits producing these results are very unstable,

8We have checked that these fit results do not significantly depend on the choice of the initial seeds for
our three fit parameters and that the asymptotic standard error for them is less than 10% for − ln ǫmax > 10.
However, in our view quantitative error estimates are not reliable in this case, because we may not assume that
the residua are normally distributed random variables.
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hence even these rough estimates should be taken with care. In any case, the indicated order
of magnitude of α appears to be in agreement with Proposition 2. Our fits furthermore suggest
that not only α is a function of a but also that the other two parameters in (53) are locally
varying. This agrees with conclusions drawn in [30].

Figs. 3 (b) and (c) provide a more detailed local analysis by looking at successively smaller
subintervals around two specific slopes. While (c) suggests α → 0 (∆a → 0) around a = 5, (b)
with a = 4 yields approximately α → 1 (∆a → 0).9 Note that the graphs in (b) and (c) have
been scaled as described in the figure. Interestingly, this transformation leads to a collapse
onto a master curve in (b), whereas it does not work that way in (c). Similar observations
have been reported in [35]. Together with the analytical results of Subsection 4.2, Fig. 3 thus
demonstrates remarkable continuity properties of D(a, b) around integer slopes, which strongly
depend on the direction in parameter space.

These differences between graphs for odd and even a are consistent with the local box
counting dimension displayed in Fig. 1 (b): They suggest that the oscillatory structure in
B(a) actually reflects local variations of the parameters in (53) determining the logarithmic
corrections, erroneously being fit in [30] with the standard box counting equation (51) instead
of taking the existence of logarithmic terms into account. This result is confirmed by covering
small parameter regions around a = 4 and a = 5 with non-overlapping sequences of subintervals
and looking for local variations of the box counting results. Again, one finds oscillations that
roughly correspond to the ones in Fig. 1 (b). Although there is no linear functional relationship
between α(a) and B(a), one may thus argue that Fig. 1 (b) tells us something about the
magnitude of local logarithmic corrections.

We remark that with the computing power available to us it was impossible to produce a
graph like Fig. 1 (b) for local values of α, because for each α(a) box counting would have required
a data set of at least 109 values of D(a). Such large data sets appear to be necessary because
of monotonicity of the exponents: if E is a subset of F then α(E) ≤ α(F ). Local variations
of α thus pose a serious problem to any numerical box counting analysis, since eventually α(a)
should always converge to the largest local exponent. However, if this exponent is exhibited
just on a tiny subinterval it could be extremely tedious to detect it numerically. This argument
of course also applies to our previous result of α ≃ 1.2 for D(a) on 2 ≤ a ≤ 8, which strictly
speaking only holds for the given data set of 109 points. We cannot exclude that some tiny
interval of D(a) eventually yields a larger value of α. In other words, the goal of our numerical
analysis cannot be to compute unambiguous values for any exponents but rather to demonstrate
qualitative and quantitative order-of-magnitude agreement with Proposition 2.

5.2 Box counting for the drift

We continue our numerical analysis by investigating the parameter dependence of the drift,
or current, J(a, b). As for the diffusion coefficient, we start with a brief reminder of previous
results in form of Fig. 4: Like Fig. 1, it displays a highly oscillatory structure both in the drift as
well as in the local box dimension as functions of a for fixed b, where B(a) has been computed
according to (51) by again disregarding any logarithmic corrections. Note particularly the
pronounced minima at odd integer values. As before, we now reevaluate these findings on the
basis of Proposition 2 by taking logarithmic terms into account.

Fig. 5 numerically confirms the existence of logarithmic corrections for J(a, b): There exist
non-zero exponents α as allowed by Proposition 2. Note particularly the pronounced, different
fine structures of both curves displayed in the main part, which are much stronger than in Fig. 2
for D(a). Due to these oscillations, in case of J(a, b) it is numerically very difficult to extract
reliable values for the exponents α by using (53). The two fits included in the main graph yield
an order of magnitude of α ≃ 0.1, which matches to Proposition 2.

The inset of Fig. 5 is analogous to Fig. 3 (a) in that it shows box counting results for the
current J(a, b) , b = 0.01, mostly at integer values of the slope a. Note that J(2, 0.01) ≃ 0 [15],
which marks the onset of the drift. As we have argued for the diffusion coefficient, at a = 2.03

9Again, the fit results are highly unstable, so the latter value should be taken with care.
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Figure 4: (a) Drift J(a) = J(a, 0.01) on the interval 2 ≤ a ≤ 8 based on 2000 data points. As
in Fig. 1, (b) depicts the box dimension B(a) computed locally on a regular grid of subintervals
of size ∆a = 0.01 averaged over any three neighboring points. Both figures are from [30].

we are thus in a random walk regime for which one may expect α ≃ 0, as is shown in the figure.
However, α(a) 6= 0 in all the other cases of the inset suggesting again a local variability of α for
J(a, b), at least around integer values of a. As in Fig. 3 (a) there exist two family of curves, one
for even a at the bottom and one for odd a on top of the figure. There is also again an additional
ordering, however, here it is such that curves for larger slopes are always at the bottom in both
families of graphs, except at a = 2.03. The additional graph for a = 7.09 exemplifies the strong
local variability of α around a = 7 which, as well as the difference between odd and even slopes
for box counting results of the drift, agrees with the oscillations in the local box dimension B(a)
shown in Fig. 4.

Fits for all the inset curves yield a trend towards small exponents around even and somewhat
larger values around odd slopes with an order of magnitude of 0 ≤ α ≤ 1, which appears to
be consistent with Proposition 2. However, we emphasize again that these results give only a
rough indication for the numerical reasons discussed above. Exact results are only available
for special cases: As we have discussed in Subsection 4.2, J(a, b) = b for constant a ∈ N under
variation of b, where we thus have α = 0, linear response and a caricature of Ohm’s law. For
general a one finds that J(a, b)/(b| log |b||) is bounded but has no limit for b → 0 [15] pointing
towards logarithmic corrections.

We have also qualitatively checked graphs of D(a, b) and J(a, b) for other parameter values,
that is, by choosing different values for a and b fixed in the parameter plane and studying the
resulting functions of the remaining free control parameters. Qualitatively, we obtain results
that are analogous to the ones discussed above.

5.3 Continuity properties of the diffusion coefficient at integer slopes

The previous two subsections demonstrated a very peculiar behaviour of local box counting
results for drift and diffusion coefficient around integer slopes a at fixed values of the bias b.
Subsection 4.2, in turn, gave exact analytical expressions for the difference Da(b′) − Da(b) of
the diffusion coefficient as a function of ∆b = b′ − b at integer a in the limit of small ∆b. This
suggests to numerically study the continuity properties of Da(b) at fixed integer values of a in
more detail.

In order to access suitably small values of the parameter ∆b, we have employed the Fortran90
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Figure 5: Main graph: Product Nǫ as a function of − ln ǫ for the drift J(a, b) over the interval
2 ≤ a ≤ 8 at b = 0.01 (red ’+’ symbols, based on 109 data points) and at b = 0.49 (green ’x’
symbols, based on 108 data points). Included are two fits over the intervals 8 ≤ − ln ǫ ≤ 13
(b = 0.01) and 4 ≤ − ln ǫ ≤ 11.5 (b = 0.49). Inset: Local variation of the product Nǫ as a
function of − ln ǫ for parameter intervals of size ∆a = 0.06, mostly centered around integer
values of a and based on 108 data points. The graph for a = 7.09 demonstrates that, in
agreement with Fig. 4 (b), there exist strong local fluctuations of the box counting functions
under variation of the slope a of the map.

library mpfun90 [1] for arbitrary-precision arithmetic. Using this library we have calculated the
difference quotient (Da(b′)−Da(b))/(b′ − b) of D with fixed b at values of ∆b down to 10−200.
Figure 6 (a) shows a subset of our results for a = 3 and a = 4 at fixed b ∈ {−0.5, 0}. There is
excellent agreement between the numerical results and the analytical observations (1) and (2)
of Subsection 4.2 predicting straight lines. This agreement is as good to the limits of attainable
precision, and has been checked for other integer values than those shown in Fig. 6.

Figure 6 (b) depicts the diffusion coefficientDa(b) at a = 4 and a blowup around b = 0, which
corresponds to the two curves in (a) at this a value. Note that there is reflection symmetry
for Da(b) with respect to b = −0.5 and b = 0. One can see that at b = −0.5, where the
difference quotient in (a) displays a multiplicative logarithmic term, Da(b) in (b) exhibits a
global maximum in form of a sharp cusp. The global minimum at b = 0, on the other hand, is
approached in a rather smooth, oscillatory manner yielding a rounded-off shape, see the inset in
(b). This relates to the difference quotient curve in (a) with zero logarithmic term. Analogous
observations are made for a = 3, where Da(b) exhibits local maxima both at b = −0.5 and at
b = 0, and for other integer slopes. We remark that the quite regular structure of Da(b) in (b),
particularly around both local extrema, resembles very much the one of the fractal generalized
Takagi functions studied in [27, 14, 32].

Observation (3) generalizes observations (1) and (2) by stating that logarithmic corrections
are typical for parameter values of b yielding Markov partitions. In [26, 27, 29, 15] it has been
shown (for b = 0) that Markov partition parameter values identify local maxima and minima of
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Figure 6: (a) Difference quotient (Da(b′) −D(b))/(b′ − b) as a function of ln(b′ − b) at integer
values of a ∈ {3, 4} and with fixed b ∈ {−0.5, 0}. Each curve is based on 105 data points.
Included are best fit curves (black dashed lines) whose fitted slopes (from bottom to top:
3/(2 ln4), 1/ ln 3 and 1/(2 ln 3)) agree with the analytic predictions of Subsection 4.2 to four
significant figures. The case a = 4, b = 0 clearly has slope zero, as predicted. The barely visible
fine scale oscillations of each curve reflect higher order correlations in these quantities. (b)
Diffusion coefficient Da(b) at a = 4 for −0.5 ≤ b ≤ 0 and a magnification of the region around
b = 0. For each curve 2000 data points have been computed from exact analytical solutions for
Da(b) [15]. These curves form the basis for the two graphs at a = 4 displayed in (a).

the parameter-dependent diffusion coefficient by relating them to ballistic and localized orbits
of the critical points of the lifted map, respectively. One may thus speculate that the above
numerical observation holds true for local extrema on finer scales, that is, that local cusps in
Da(b) reflect logarithmic corrections in the local difference quotient, whereas rounded-off local
extrema signify the lack of logarithmic terms. See also [35] for related results. Furthermore, in
Fig. 6 (a) we deliberately restricted the range of ln(b′ − b) so that, upon very close scrutiny, a
fine structure of all curves can be seen on top of the straight line behaviour. Fig. 6 (b) suggests
that this oscillatory fine structure, which yields higher order corrections to the analytical results
of Subsection 4.2, is induced by the fine structure of Da(b).

We have also numerically investigated the accuracy of observation (4) in Subsection 4.2.
Its main statement is that at fixed ∆b and with b values taken uniformly from the interval
[0, 1/2), the quantity (D(b′)−D(b))/∆b

√
− ln∆b should be distributed like a mixture of centered

Gaussians, that distribution being independent of the particular value of ∆b. In fact what is
typically seen at integer slopes is a distribution rather close to a pure Gaussian. We have tested
this using the technique of quantile-quantile plotting (qqplots) as well the standard Shapiro-
Wilk normality test. Both tools were implemented in the statistical package R [42].

Figure 7 presents results obtained for three sets of data with the slope fixed at a = 4. For
larger a, the results become closer to a fixed Gaussian, as the function g(x) in (46) becomes
more dominated by the x term which has no b dependence. Here however, deviations from
Gaussianity can be seen, at least for sufficiently small ∆b. In the three parts of Figure 7, the
red line with slope σ and zero offset µ shows the theoretical result for a Gaussian distribution
with standard deviation σ and mean µ, with those parameters here taken as those of our data
set. As can be seen, all our distributions show close agreement with this curve. However, the
Shapiro-Wilk normality test is more discerning: in (a) ∆b = 10−10 and we obtain a p-value of
only 0.008, well below the significance level for rejecting the null hypothesis of normality. In
(b) ∆b = 10−50 and we get a p-value of 0.25, demonstrating that this distribution is indeed
very close to a pure Gaussian. It is however likely that the deviations from Gaussianity in (a)
are rather due to deterministic effects arising from the relatively large value of ∆b chosen and
not from the nature of the true limiting distribution being a mixture of Gaussians predicted
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Figure 7: (a) Normal quantile-quantile plot at a = 4 for the distribution of D(b′)−D(b), scaled
by ∆b

√
− ln ∆b, with chosen ∆b = b′ − b = 10−10 held constant and b picked from a uniform

distribution on [0, 1/2). The red line with slope σ and zero offset µ would be the result for a
Gaussian distribution with standard deviation σ and mean µ. Here the numerically obtained
values of these parameters were used for the fit. (b) As (a) but with ∆b = 10−50. (c) As (b)
but with the range of b restricted to [0, 0.005).

by observation (4). It seems that the dominant behaviour when the distribution seems to have
converged is not detectably different from a pure Gaussian. We note that despite this, the two
distributions in (a) and (b) are similar and both have mean close to zero, demonstrating that
we have no disagreement with observation (4), merely that its details are too sensitive to check
numerically.

It is however possible to go further numerically, for example one can also study the nature
of the distribution obtained when b is taken from a subinterval of [0, 1/2), which as can be
seen in Fig. 7 (c) leads in the case of integer a to distributions with rather more fine structure
than the nice curves seen in Figs. 7 (a) and (b). This is clear evidence of the deterministic
nature of the underlying system in the form of strong correlations at fine scales. In this case
the Shapiro-Wilk p-value is about 0.001.

As far as observation (4) is concerned, away from integer values of a quite different behaviour
is seen thus clarifying that this observation is rather to be considered atypical. Here the
distribution of D−differences is centred around zero still, but with a more sharply peaked and
heavily tailed distribution than a Gaussian. These deviations persist even very close to the
integer cases (e.g. at a = 3+10−50), though Gaussian behaviour does appear to be approached
slowly in the limit of integer values.

These numerical methods can also be used to investigate variation of the continuity of the
transport coefficients as b is held fixed and a varies, as considered in [35] and already looked
at using box counting in Fig. 3. Here the maximal exponent of logarithmic correction, i.e.
D(a′) −D(a) ∼ |a′ − a|(ln |a′ − a|)2, can be seen for odd a, and though this might appear to
be in contradiction to the third part of Fig. 3 for a = 5, in fact arbitrarily close to a = 5 the
exponent tends locally to zero. Thus the box counting only sees the “typical” local behaviour
and the current method is more suited for picking out atypical behaviour at specific points.

6 Conclusions and outlook

(1) We proved rigorously that the diffusion coefficient of deterministic random walks generated
by piecewise expanding interval maps depends continuously on the maps. More precisely,
for “natural” parametrizations of the maps by some parameter λ, the diffusion coefficient
as a function of the parameters has a modulus of continuity not worse than |δλ|(log |δλ|)2.
Even if all maps in the family are topologically conjugate, the detailed analysis of section 4.2
shows that the modulus of continuity cannot be expected to be better than |δλ · log |δλ||.
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This is in sharp contrast to the situation for the drift (or other averages of observables)
that depend differentiably on parameters in this case [4]. One might thus conjecture: If
the maps are all topologically conjugate as in the case of integer slopes, then J is Lipschitz
and D has simple logarithmic corrections. Otherwise J has simple logarithmic corrections
and D has quadratic ones.

(2) We verified numerically the existence of logarithmic corrections in the box counting data
for both the parameter dependent drift and diffusion coefficients. The computed values
for the exponents of these logarithmic terms are compatible with the bounds predicted by
our mathematical theory. However, we emphasize again the serious difficulties to obtain
quantitatively reliable numerical results, which required to analyze huge data sets. These
difficulties are due to strong local variations of these exponents and of the other control
parameters governing the logarithmic corrections, as we find numerically.

These new numerical results correct and amend the previous box counting analysis of
Klages and Klauß [30] along the lines conjectured by Koza [35]. Our model thus gener-
ates interesting examples of fractals for which the definition of the standard box counting
dimension is misleading. We conclude that the (local) non-integer variations of the box
dimension reported in [30] actually reflect non-trivial local variations of the parameters of
the logarithmic corrections.

We have furthermore numerically verified analytical predictions for the difference quotient
of the diffusion coefficient as a function of the bias at integer slopes. These results suggest
that the existence of logarithmic corrections is intimately related to the shape of the extrema
in the diffusion coefficient curves.

(3) In [33] a nonlinear generalization of our present model has been studied, which exhibits
anomalous diffusion generated by marginal fixed points. Computer simulations led to con-
jecture that the anomalous diffusion coefficient of this map is discontinuous on a dense set
of parameter values. It would be interesting to check this conjecture mathematically.

These fractal transport coefficients also seem to provide a nice testing ground for methods
of multifractal analysis [11].

Another important problem is to check whether such logarithmic corrections in transport
coefficients might also be expected to occur in more ‘physical’ systems, which are perhaps
even accessible experimentally. This seems to be strongly related to the question whether
a family of physical dynamical systems shares the same topological conjugacy class under
parameter variation.
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