
WEGNER ESTIMATE FOR
DISCRETE ALLOY-TYPE MODELS

IVAN VESELIĆ

Abstract. We study discrete alloy type random Schrödinger operators on
`2(Zd). Wegner estimates are bounds on the average number of eigenvalues
in an energy interval of finite box restrictions of these types of operators.
If the single site potential is compactly supported and the distribution of
the coupling constant is of bounded variation a Wegner estimate holds. The
bound is polynomial in the volume of the box and thus applicable as an
ingredient for a localisation proof via multiscale analysis.

1. Main results

A discrete alloy type model is a family of operators Hω = H0 +Vω on `2(Zd).
Here H0 denotes an arbitrary symmetric operator. In most applications H0 is
the discrete Laplacian on Zd. The random part Vω is a multiplication operator

(1) Vω(x) =
∑
k∈Zd

ωk u(x− k)

defined in terms of an i. i. d. sequence ωk : Ω→ R, k ∈ Zd of random variables
each having a density f , and a single site potential u ∈ `1(Zd; R). It follows that
the mean value ū :=

∑
k∈Zd u(k) is well defined. We will assume throughout

the paper that u does not vanish identically and that f ∈ BV . Here BV
denotes the space of functions with finite total bounded and ‖ · ‖BV denotes
the corresponding norm. The mathematical expectation w.r.t. the product
measure associated with the random variables ωk, k ∈ Zd will be denoted by
E .

The estimates we want to prove do not concern the operator Hω, ω ∈ Ω but
rather its finite box restrictions. Thus for the purposes of the present paper
domain and selfadjointness properties of Hω are irrelevant. For L ∈ N we denote
the subset [0, L]d ∩ Zd by ΛL, its characteristic function by χΛL , the canonical
inclusion `2(ΛL) → `2(Zd) by ιL and the adjoint restriction `2(Zd) → `2(ΛL)
by πL. The finite cube restriction of Hω is then defined as Hω,L := πLH0ιL +
VωχΛL : `2(ΛL) → `2(ΛL). For any ω ∈ Ω and L ∈ N the restriction Hω,L is a
selfadjoint finite rank operator. In particular its spectrum consists entirely of
real eigenvalues E(ω,L, 1) ≤ E(ω,L, n) ≤ · · · ≤ E(ω,L, ]ΛL) counted including
multiplicities. Note that if u has compact support, then there exists an n ∈ N
and an x ∈ Zd such that supp ⊂ Λ−n + x, where Λ−n := {−k | k ∈ Λn}. We
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may assume without loss of generality x = 0 without restricting the model (1).
The number of points in the support of u is denoted by ranku. Now we are
in the position to state our bounds on the expected number of eigenvalues of
finite box Hamiltonians Hω,L in a compact energy interval [E − ε, E + ε] .

Theorem 1. Assume that the single site potential u has support in Λ−n. Then
there exists a constant cu depending only on u such that for any L ∈ N, E ∈ R
and ε > 0 we have

E
{

Tr
[
χ[E−ε,E−ε](Hω,L)

]}
≤ cu ‖f‖BV ranku ε (L+ n)d·(n+1)

Remark 2. (1) By the assumption on the support of the single site potential
ranku ≤ nd

(2) The constant cu is given in terms of derivatives of a finite array of
polynomials constructed in terms of values of the function u.

(3) A bound of the type as it is given in Theorem 1 is called Wegner es-
timate. If such a bound holds one is interested in the dependence of
the RHS of the length of the energy interval (in our case 2ε) and on the
volume of the cube ΛL (in our case Ld).

(4) Our bound is linear in the energy-interval length and polynomial in the
volume of the cube. This implies that the Wegner bound can be used
for a localisation proof via multiscale analysis, see e.g. [3, 1, 6]. More
precisely, if an appropriate initial scale estimate is available, the mul-
tiscale analysis — using as an ingredient the Wegner estimate as given
in Theorem 1 — yields Anderson localisation. As the Wegner bound is
valid on the whole energy axis one can prove Anderson localisation in
any energy region where the initial scale estimate holds.

(5) If the single site potential u does not have compact support, one has to
use an enhanced version of the multiscale analysis and so-called uniform
Wegner estimates to prove localisation, see [8]. However, there exists
criteria which allow one to turn a standard Wegner estimate into a
uniform one, see Lemma 4.10.2 in [15].

(6) The main point of the theorem is that no assumption on u (apart form
the compact support) is required. In particular, the sign of u can change
arbitrarily. The single site potential may be even degenerate in the
sense that ū = 0. Also, note that the result holds on the whole energy
axis. These two properties are in contrast to earlier results on Wegner
estimates for sign-changing single site potentials. See the discussion of
the previous literature at the end of this section.

(7) If u does satisfy the assumption ū 6= 0 we obtain an even better bound.
This is the content of Theorem 3 below.

The next Theorem applies to single site potentials u ∈ `1(Zd) with non
vanishing mean ū 6= 0. Let m ∈ N be such that

∑
‖k‖≥m |u(k)| ≤ |ū/2|. Here

‖k‖ = ‖k‖∞ denotes the sup-norm.

Theorem 3. Assume ū 6= 0 and that f has compact support. Then we have
for any L ∈ N, E ∈ R and ε > 0

E
{

Tr
[
χ[E−ε,E−ε](Hω,L)

]}
≤ 8
ū
‖f‖BV min

(
Ld, ranku

)
ε (L+m)d
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In the case that the support of u is compact, we have an important

Corollary 4. Assume ū 6= 0 and suppu ⊂ Λ−n. Then we have for any L ∈ N,
E ∈ R and ε > 0

E
{

Tr
[
χ[E−ε,E−ε](Hω,L)

]}
≤ 4
ū
‖f‖BV ranku ε (L+ n)d

Im particular, the function R 3 E → E
{

Tr
[
χ(−∞,E](Hω,L)

]}
is Lipschitz

continuous.

If the operator Hω has a well defined integrated density of states N : R→ R,
meaning that

lim
L→∞

1
Ld

E
{

Tr
[
χ(−∞,E](Hω,L)

]}
= N(E)

at all continuity points ofN , then Corollary 4 implies that the integrated density
of states is Lipschitz continuous. Consequently its derivative, the density of
states, exists for almost all E ∈ R.

Remark 5. The situation that the two cases ū 6= 0 and ū = 0 have to be
distinguished occurs also in other contexts, see for instance the paper [10] on
weak disorder localisation.

When looking at Theorems 1 and 3 one might wonder what kind of Wegner
bound holds for non-compactly supported single site potentials with vanishing
mean. To apply the methods of the present paper in this case it seems that one
has to require that u tends to zero exponentially fast. So far only the case of
one space dimension is settled:

Theorem 6. Assume that f has compact support and that there exists s ∈ (0, 1)
and C ∈ (0,∞) such that |u(k)| ≤ Cs|k| for all k ∈ Z. Then there exists
an integer D ∈ N0 such that for each β > D/| log s| there exists a constant
K ∈ (0,∞) such that for all L ∈ N, E ∈ R and ε > 0

E
{

Tr
[
χ[E−ε,E−ε](Hω,L)

]}
≤ 8
c
‖f‖BV ε L (L+ β logL+ 2K)D+1

Let us discuss the relation of the above theorems to previous results [9, 14,
4, 11, 13] on Wegner estimates with single site potentials which are allowed
to change sign. The papers [9, 4] concern alloy type Schrödinger operators on
L2(Rd). The main result is a Wegner estimate for energies in a neighbourhood
of the infimum of the spectrum. It applies to arbitrary non-vanishing single
site potentials u ∈ Cc(Rd) and coupling constants with a picewise absolutely
continuous density. The upper bound is linear in the volume of the box and
Hölder-continuous in the energy variable.

The results of [14, 11, 13] concern both alloy type Schrödinger operators
on L2(Rd) and discrete alloy type Schrödinger operators on `2(Zd). Since the
present paper concerns the latter model we will discuss these results here first.
The papers [14, 11, 13] establish results analogous to Corollary 4 above, however
only under more restrictive assumptions. For instance in [13] the required
hypothesis is that suppu is compact and that the function

(2) θ 7→
∑
k∈Zd

u(k)e−ik·θ does not vanish on [0, 2π)d.
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For alloy type Schrödinger operators on L2(Rd) [14, 11, 13] derive a Wegner
estimate which is linear in the volume of the box and Lipschitz continuous
in the energy variable. The bound is valid for all compact intervals along the
energy axis. These bounds are valid for single site potentials u ∈ L∞c (Rd) which
have a generalised step function form and satisfy a condition analogous to (2).

Let us stress that Wegner estimates for sign changing single site potentials
are harder to prove for operators on L2(Rd) than for ones on `2(Zd). The reason
is that for discrete models we have in the randomness a degree of freedom for
each point in the configuration space Zd. For the continuum alloy type model
the configuration space is Rd while the degrees of freedom are indexed by a
much smaller set, namely Zd.

Recently a fractional moment bound for the alloy type model on `2(Z) has
been proven in [2]. It holds for arbitrary compactly supported single site po-
tentials. The result can be extended to the one-dimensional strip, while the
extension to Zd is unclear at the moment.

2. An abstract Wegner estimate and the proof of Theorem 3

An important step in the proofs of the Theorems of the last section is an
abstract Wegner estimate which we formulate now.

Theorem 7. Let L ∈ N, E ∈ R, ε > 0 and I := [E − ε, E + ε]. Denote by
E(ω,L, n) the n-th eigenvalue of the operator Hω,L. Assume that there exist an
δ > 0 and a ∈ `1(Zd; R) such that for all n

(3)
∑
k∈Zd

a(k)
∂

∂ωk
E(ω,L, n) ≥ δ

Then

E (TrχI(Hω,L)) ≤ 4ε
δ

∑
k∈Zd

a(k) ‖f‖BV rank(χΛu(· − k))

Since a ∈ `1 and the derivatives ∂
∂ωk

E(ω,L, n) are uniformly bounded, the
sum (3) is absolutely convergent. Note that one can always replace the sum∑

k∈Zd by
∑

k∈Λ+
L

. Here Λ+
L = {k ∈ Zd | u(· − k) ∩ ΛL 6= ∅} denotes the

set of lattice points such that the corresponding coupling constant influences
the potential in the box ΛL. In particular, if the support of u is contained in
[−n, . . . , 0]d, the sum reduces to

∑
k∈ΛL+n

. We give a simple sufficient condition
which ensures the hypothesis of Theorem 7.

Corollary 8. Let L ∈ N, ε > 0 and I := [E− ε, E+ ε]. Assume that there exist
an δ > 0 and a ∈ `1(Zd; R) such that for all n and all x ∈ ΛL∑

k∈Zd
a(k)u(x− k) ≥ δ

Then

E (TrχI(Hω,L)) ≤ 4ε
δ

∑
k∈Zd

a(k) ‖f‖BV rank(χΛu(· − k))
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Proof. By first order perturbation theory, respectively the Helman-Feynman
formula we have

∂

∂ωk
E(ω,L, n) = 〈ψn, u(· − k)ψn〉

where ψn is the normalised eigensolution to Hω,Lψn = E(ω,L, n)ψn. Thus∑
k∈Zd

a(k)
∂

∂ωk
E(ω,L, n) =

∑
k∈Zd

a(k)〈ψn, u(· − k)ψn〉 ≥ δ

�

The proof of Theorem 7 relies on quite standard techniques, see e.g. [16, 7,
4, 12]. The main point of the Theorem is that it singles out a relation between
properties of linear combinations of single site potentials and a Wegner estimate.
In the course of the proof we will need the following estimate.

Lemma 9. Let f : R → R be a function in BV ∩ L1(R), ρ ∈ C∞(R), k ∈ Zd
and s ∈ R. Then∑
n∈N

∫
dωkf(ωk)

∂

∂ωk
ρ(E(ω,L, n) + s) ≤ ‖f‖BV rank(χΛu(· − k))

∫
|ρ′(x)|dx

Note that if k 6∈ Λ+
L then ∂

∂ωk
E(ω,L, n) = 0. Also note that the sum over n

is in fact finite since Hω,L is defined on a finite dimensional vector space.

Proof. We will use that if g ∈ C∞ and f ∈ BV ∩ L1 the partial integration
bound ∫

f(x)g′(x)dx ≤ ‖g‖∞‖f‖BV

holds. Denote by E(ω, ωk = 0, L, n) the n-th eigenvalue of the operatorHω,ωk=0,L :=
Hω,L − ωku(· − k) on `2(ΛL). Partial integration yields∑

n∈N

∫
dωkf(ωk)

∂

∂ωk
ρ(E(ω,L, n) + s)

=
∫
dωkf(ωk)

∂

∂ωk

∑
n∈N

(
ρ(E(ω,L, n) + s)− ρ(E(ω, ωk = 0, L, n) + s)

)
≤ ‖f‖BV sup

ωk∈supp f

∣∣∣∑
n∈N

(ρ(E(ω,L, n) + s)− ρ(E(ω, ωk = 0, L, n) + s))
∣∣∣

Here we used that ωk 7→ E(ω,L, n) is an infinitely differentiable function cf.
[5]. Now ∑

n∈N
ρ(E(ω,L, n) + s)− ρ(E(ω, ωk = 0, L, n) + s)

= Tr
(
ρ((Hω,L + s)− ρ((Hω,ωk=0,L + s)

)
can be expressed in terms of the spectral shift function ξ(·, Hω,L, Hω,ωk=0,L) of
the operator pair Hω,L, Hω,ωk=0,L as∫

ρ′(x)ξ(x,Hω,L, Hω,ωk=0,L)dx.
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Since ‖ξ‖∞ is bounded by the rank of the perturbation χΛu(· − k), we obtain∑
n∈N

ρ(E(ω,L, n) + s)− ρ(E(ω, ωk = 0, L, n) + s) ≤ rank(χΛu(· − k))
∫
|ρ′|

and the proof of the Lemma is completed. �

Now we turn to the proof of Theorem 7.

Proof of Theorem 7. Let ρ ∈ C∞(R) be a non-decreasing function such that on
(−∞,−ε] it is identically equal to −1, on [ε,∞) it is identically equal to zero
and ‖ρ′‖∞ ≤ 1/ε. By the chain rule we have∑

k∈Zd
a(k)

∂

∂ωk
ρ(E(ω,L, n)− E + t)

= ρ′(E(ω,L, n)− E + t)
∑
k∈Zd

a(k)
∂

∂ωk
E(ω,L, n)

The assumption (3) implies now

ρ′(E(ω,L, n)− E + t) ≤ 1
δ

∑
k∈Zd

a(k)
∂

∂ωk
ρ(E(ω,L, n)− E + t)

Since χI ≤
∫ 2ε
−2ε dt ρ

′(x− E + t) for I := [E − ε, E + ε] we have

TrχI(Hω,L) ≤ 1
δ

∫ 2ε

−2ε
dt
∑
n∈N

∑
k∈Zd

a(k)
∂

∂ωk
ρ(E(ω,L, n)− E + t)

Note that for a random variable F : Ω→ R we have E (F ) = E (
∫
f(ωk)dωkF (ω))

Thus using Lemma 9 and
∫
|ρ′(x)|dx = 1 we obtain

E (TrχI(Hω,L)) ≤ 4ε
δ

∑
k∈Zd

a(k) ‖f‖BV rank(u · χΛ)

�

Now we are in the position to give a

Proof of Theorem 3. Let ψn be a normalised eigenfunction associated to E(ω,L, n)
and Q(L,m) =

⋃
k∈ΛL

(
k + [−m,m]d ∩ Zd

)
. W.l.o.g. we may assume ū > 0.

Then
∑

k∈Q(L,m) u(k) ≥ ū/2. Choose now the coefficients in Corollary 8 in the
following way: a(k) = 1 for k ∈ Q(L,m) and a(k) = 0 for k in the complement
of Q(L,m). Then∑

k∈Zd
a(k)〈ψn, u(· − k)ψn〉 = 〈ψn,

∑
k∈Q(L,m)

u(· − k)ψn〉 ≥ ū/2.

�

Proof of Corollary 4. Set a(k) = 1 for k ∈ ΛL+n and a(k) = 0 for k in the
complement of ΛL+n. Then∑

k∈Zd
a(k)〈ψn, u(· − k)ψn〉 = 〈ψn,

∑
k∈ΛL+n

u(· − k)ψn〉 = ū
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An application of Corollary 8 now completes the proof. �

3. Proof of Theorem 1

In this section we give a proof of Theorem 1. In view of Theorem 3 it is
sufficient to consider the case that the single site potential u : Zd → R, u ∈
`1(Zd) is degenerate in the sense that

∑
x∈Zd u(x) = 0. We explain how to find

in this situation an appropriate linear combination of single site potentials — or,
equivalently, an appropriate linear transformation of the random variables —
which can be efficiently used for averaging. The aim of the linear transformation
is to extract a perturbation potential which is strictly positive on the box Λ.

Let us first consider the case d = 1. Then we can assume without loss of
generality that suppu ⊂ {−n, . . . 0}. For a given cube ΛL = {0, . . . , L} we are
looking for an array of numbers ak, k ∈ ΛL+n such that we have

(4)
∑

k∈ΛL+n

aku(x− k) = constant > 0 for all x ∈ ΛL

In fact, we will find a sequence of numbers ak, k ∈ N such that we have

(5)
∑
k∈N

aku(x− k) = constant > 0 for all x ∈ N

If we truncate this sequence, we obtain an array of numbers satisfying (4).
For a function F : (1− ε, 1 + ε) → R with ε > 0 we say that it has a root of

order m ∈ {0, . . . , n} at t = 1 iff it is in Cm(1− ε, 1 + ε) and( dj
dtj

F (t)
)∣∣∣
t=1

= 0 for j = 0, . . . ,m− 1(6)

c(F ) :=
( dm
dtm

F (t)
)∣∣∣
t=1
6= 0(7)

In particular, m = 0 means that F (1) 6= 0. If F is a polynomial of degree not
exceeding m, if (6) holds and in addition c(F ) = 0, then F ≡ 0. In this case
we say that F has a root of infinite order at t = 1.

Given a function w : Z→ R such that Fw(t) :=
∑

ν∈Z t
νw(−ν) converges for

t ∈ (1 − ε, 1 + ε) we call (1 − ε, 1 + ε) 3 t 7→ F (t) := Fw(t) the accompanying
(Laurent) series of w. If suppw ⊂ {−n, . . . , 0} we call t 7→ p(t) := pw(t) :=∑n

ν=0 t
νw(−ν) the accompanying polynomial of w.

Lemma 10. Let D ∈ N0 and ak = kD for all k ∈ N. Let m be the order of the
root t = 1 of the Laurent series f accompanying the function w : Z → R with
convergent series

∑
ν∈Z t

νw(−ν) for t ∈ (1− ε, 1 + ε).
(a) If m > D then

∑
k∈Z akw(x− k) = 0 for all x ∈ N.

(b) If m = D then
∑

k∈Z akw(x− k) = c(F ) for all x ∈ N.

An important and well known special case is

Corollary 11. Let D ∈ N0 and ak = kD for all k ∈ N. Let m be the order of
the root t = 1 of the polynomial p accompanying the function w : Z → R with
suppw ⊂ {−n, . . . , 0}.
(a) If m > D then

∑x+n
k=x akw(x− k) = 0 for all x ∈ N.
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(b) If m = D then
∑x+n

k=x akw(x− k) = c(p) for all x ∈ N.

Due to the support condition
∑

k∈N akw(x − k) =
∑x+n

k=x akw(x − k) for all
x ∈ N.

Proof of Lemma 10. First note that for arbitrary ν ∈ N and s ∈ R we have

dν

dsν
F (es) =

ν∑
κ=1

cκ F
(κ)(es) eκs

with some c1, . . . , cν−1 ∈ N0 and cν = 1. For the value s = 0 it follows from
(6) that dν

dsνF (es) = 0 for ν = 0, . . . ,m − 1 and from (7) that dm

dsmF (es) =
F (m)(es) ems = c(F ).

We note that ak = dD

dsD
eks for s = 0 and insert this into the LHS of (5) to

obtain∑
k∈Z

akw(x− k) =
∑
k∈Z

w(x− k)
dD

dsD
eks =

∑
ν∈Z

w(−ν)
dD

dsD
e(ν+x)s

=
dD

dsD
(
exs F (es)

)
=

D∑
r=0

(
D

r

)( dr
dsr

F (es)
)( dD−r

dsD−r
exs
)
.(8)

For s = 0, (8) vanishes if D < m and equals c(F ) if D = m. �

Thus we have found in the case d = 1 and w = u a linear combination with
the desired property (5). In the multidimensional situation we will reduce the
dimension one by one and construct from a non-vanishing single site potential
in dimension j a non-vanishing one in dimension j − 1. In each reduction step
we apply Corollary 11.

Let w(j) : Zj → R be compactly supported and not identically vanishing.
W.l.o.g. we assume suppw(j) ⊂ [−n, 0]j ∩ Zj . Next we define a ‘projected’
single site potential w(j−1) : Zj−1 → R as follows. Consider the family of poly-
nomials p(x1, . . . , xj−1, ·) : R → R, indexed by (x1, . . . , xj−1) ∈ {−n, . . . , 0}j−1

and defined by

(9) p(x1, . . . , xj−1, t) :=
n∑
ν=0

tν w(j)(x1, . . . , xj−1,−ν) .

Let m(x1, . . . , xj−1) ∈ {0, . . . , n,∞} be the order of the root t = 1 of the polyno-
mial p(x1, . . . , xj−1, ·) and M := Mj := min

{
m(x1, . . . , xj−1) | x1, . . . , xj−1 ∈

{−n, . . . , 0}
}

the minimal degree occurring in the family. Since w(j) does not
vanish identically, Mj ≤ n. Set Ij−1 := {(x1, . . . , xj−1) ∈ {−n, . . . , 0}j−1 |
m(x1, . . . , xj−1) = Mj} and Jj−1 := {(x1, . . . , xj−1) ∈ {−n, . . . , 0}j−1 | m(x1, . . . , xj−1) >
Mj}.

Lemma 12. For all (x1, . . . , xj−1) ∈ {−n, . . . , 0}j−1 we have the equality

(10)
∑
k∈N

kM w(j)(x1, . . . , xj−1, xj − k) =
( dM
dtM

p(x1, . . . , xj−1, t)
)∣∣∣
t=1

.

We denote the function in (10) by w(j−1) : Zj → R. Then w(j−1) is independent
of the variable xj and therefore we call it the single site potential in reduced
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dimension and consider it sometimes as a function w(j−1) : Zj−1 → R. Its
support is contained in {−n, . . . , 0}j−1.

Moreover, w(j−1)(x1, . . . , xj−1) = 0 if (x1, . . . , xj−1) ∈ Jj−1 and w(j−1)(x1, . . . , xj−1) 6=
0 if (x1, . . . , xj−1) ∈ Ij−1.

Remark 13. The lemma establishes in particular that
• M is an element of {0, . . . , n}. If we had M ≥ n+1, then all polynomials
p(x1, . . . , xj−1, ·) would vanish identically and thus w(j) ≡ 0 contrary to
our assumption.
• w(j−1) does not vanish identically. In fact suppw(j−1) = Ij−1 6= ∅ by

definition.

Proof. Consider first the case (x1, . . . , xj−1) ∈ Jj−1. Then for any xj ∈ N

w(j−1)(x1, . . . , xj−1) =
∑
k∈N

kM w(j)(x1, . . . , xj−1, xj − k) = 0

by Lemma 11, part (a), since t = 1 is a root of order M + 1 or higher of the
accompanying polynomial p(x1, . . . , xj−1, ·).

Now, if (x1, . . . , xj−1) ∈ Ij−1 then the order of the root t = 1 of the polyno-
mial p(x1, . . . , xj−1, ·) equals M . Thus by part (b) of Lemma 11

w(j−1)(x1, . . . , xj−1) =
∑
k∈N

kM w(j)(x1, . . . , xj−1, xj − k)

=
( dM
dtM

p(x1, . . . , xj−1, t)
)∣∣∣
t=1

for all xj ∈ N. �

In the last step j = 1→ j−1 = 0 of the induction we obtain a reduced single
site potential

w(0) =
( dM1

dtM1
p(t)

)∣∣∣
t=1

= c(p)

which is a simply non-zero real.
Now we describe the result which is obtained after the reduction is applied

d times. Given a single site potential u : Zd → R with suppu ⊂ [−n, 0]d ∩ Zd,
set w(d) = u and

w(0) =
∑
k1∈N

kM1
1 w(1)(x1 − k1)(11)

=
∑
k1∈N

kM1
1 · · ·

∑
kd∈N

kMd
d w(d)(x1 − k1, . . . , xd − kd)(12)

Thus we have produced a linear combination of single site potentials∑
k∈ΛL+n

bkw
(d)(x1 − k1, . . . , xd − kd) where bk := kM1

1 . . . kMd
d

which is a constant, non-vanishing function on the cube ΛL. Moreover, the
coefficients satisfy the bound

|bk| ≤ kn1 . . . knd ≤ (L+ n)d·n for all k ∈ ΛL+n
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Now an application of Corollary 8 with the choice ak = bk for k ∈ ΛL+n and
ak = 0 for k in the complement of this set completes the Proof of Theorem 1.

4. Proof of Theorem 6

The assumption on the exponential decay of u implies that F (z) =
∑

ν∈Z z
νu(−ν)

is an absolutely and uniformly convergent Laurent series on the annulus {z ∈
C | r1 ≤ |z| ≤ r2} for some 0 < r1 < 1 < r2 < ∞ and represents there
a holomorphic function. This implies that there exists a D ∈ N0 such that
c(F ) := ∂D

∂zD
F (z) |z=1 6= 0. Otherwise F would be identically vanishing imply-

ing that u vanishes identically. Thus the root z = 1 of F has a well defined,
finite order D ∈ N0 and Lemma 10 can be applied.

The problem is now that the series
∑

k∈Z k
D is not absolutely convergent.

For this reason we will replace it with an appropriate finite cut-off sum. Assume
in the following w.l.o.g. that c(F ) > 0. A lengthy but easy calculation shows
that for all β > D/| log s| there exists a constant K ∈ (0,∞) such that

∀ x ∈ ΛL :
∑

k 6∈{−K,...,m}

|k|D|u(x− k)| ≤ c(F )
2

where m = L+ β logL+K. Consequently

∀ x ∈ ΛL :
∑

k∈{−K,...,m}

kDu(x− k) ≥ c(F )
2

Thus we can apply Corollary 8 with the choice ak = kD for k ∈ {−k, . . . ,m}
and ak = 0 for k ∈ {−k1, . . . ,m+ 1} and obtain

E
{

Tr
[
χ[E−ε,E−ε](Hω,L)

]}
≤ 8ε
c(F )

‖f‖BV L(L+ β logL+ 2K)D+1
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