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Abstract

For systems of N charged fermions (e.g. electrons) interacting with longitudinal op-
tical quantized lattice vibrations of a polar crystal we derive upper and lower bounds on
the minimal energy within the model of H. Fröhlich. The only parameters of this model,
after removing the ultraviolet cutoff, are the constants U > 0 and α > 0 measuring the
electron-electron and the electron-phonon coupling strengths. They are constrained by the
condition

√
2α < U , which follows from the dependence of U and α on electrical prop-

erties of the crystal. We show that the large N asymptotic behavior of the minimal energy
EN changes at

√
2α = U and that

√
2α ≤ U is necessary for thermodynamic stability:

for
√

2α > U the phonon-mediated electron-electron attraction overcomes the Coulomb
repulsion and EN behaves like −N7/3.
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1 Introduction

We study a system of N electrons in a polar (ionic) crystal, modelled by a Hamiltonian derived
by H. Fröhlich [12]. The model takes into account the electron-electron Coulomb repulsion,
and a linear interaction of the electrons with the longitudinal optical phonons. The model is
called the ’large polaron’ model, since it assumes that a polaron (dressed electron) extends over
a region which is large compared to the ion-ion spacing. In particular the underlying discrete
(and infinite) crystal is replaced by a continuum. See [7, 11, 19].

As is well-known, linear electron-phonon couplings induce an effective pair attraction be-
tween electrons. This attraction competes with the electron-electron repulsion and may cause
a phase-transition as the electron-phonon interaction strength increases. This mechanism is
behind the production of Cooper pairs in the BCS model of low temperature superconductiv-
ity, and in high-Tc superconductivity the role of many-polaron systems is being investigated
[1, 8, 17].

The Fröhlich Hamiltonian depends on two non-negative dimensionless quantities, U and
α. The constant U is the electron-electron repulsion strength, and α is the Fröhlich electron-
phonon coupling constant. Physically relevant models must satisfy the constraint, cf. [4, 28],

√
2α < U.

In this paper we prove upper and lower bounds on the minimal energy EN of the N -
electron Fröhlich Hamiltonian for all N and all non-negative values of U , α. In the unphysical
regime

√
2α ≥ U , our results imply that EN ∼ −N7/3. In the physical regime we find

that EN ≥ −CN2, thus establishing a sharp transition in the large N -asymptotics of EN at√
2α = U . This transition is due to the mediated attraction between electrons overcoming the

repulsion at
√

2α = U in the limit of large N . In fact, the quantity U −
√

2α appears in our
analysis as an effective Coulomb coupling strength. We also demonstrate that EN ≤ −αN and
EN+M ≤ EN +EM in the physical regime. We do not know whether or not EN is an extensive
quantity, but if it is not extensive, then this must be due to electron-phonon correlations, cf.
Proposition A.3.

We pause this discussion to introduce the mathematical model. The Fröhlich Hamiltonian
describing N electrons in a polar crystal reads

N∑
`=1

[
− 1

2∆x`
+
√

αΦ(x`)
]
+ Hph + UVC, (1.1)

where the number operator

Hph =
∫

R3

a∗(k)a(k)dk,

accounts for the kinetic energy of the phonons while the field operator

Φ(x) =
∫

R3

1
c0|k|

[
eik·xa(k) + e−ik·xa∗(k)

]
dk,

is responsible for the electron-phonon interaction. Here c0 := 23/4π. Finally the electron-
electron interaction is given by the sum of two-body Coulomb potentials

VC(x1, . . . , xN ) =
∑

1≤i<j≤N

1
|xi − xj |

.
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We work in units where the frequency of the longitudinal optical phonons, ωLO, Planck’s
constant ~, and the electron band mass are equal to one.

Let F denote the symmetric Fock space over L2(R3). The Hamiltonian (1.1) defines a
symmetric quadratic form onH = ∧NL2(R3)⊗F , but, a priori, it is not well defined as a self-
adjoint operator. For that one must first impose an ultraviolet cutoff on the electron-phonon
interaction: Let Λ > 0, and define the cutoff Hamiltonian as

HN,Λ =
N∑

`=1

−1
2∆x`

+ Hph +
√

α

N∑
`=1

ΦΛ(x`) + UVC,

where
ΦΛ(x) =

∫
|k|≤Λ

1
c0|k|

[
eik·xa(k) + e−ik·xa∗(k)

]
dk.

The operators HN,Λ are self-adjoint onD(Hph)∩D(
∑N

`=1 ∆x`
), by the Kato-Rellich theorem,

and it is well known, cf. [2, 6, 13, 14, 27], that HN,Λ converges, as Λ → ∞, in the norm-
resolvent sense to a self-adjoint operator, which we denote by HN . This implies that

EN = lim
Λ→∞

EN,Λ (1.2)

if EN,Λ := inf σ(HN,Λ) and EN := inf σ(HN ).
The main goal of this paper is to investigate the large N behavior of the minimal energy

EN as a function of α and U . Our first result is an upper bound in the regime
√

2α > U .

Theorem 1.1. There is a constant C such that for all N and for
√

2α ≥ U ≥ 0

EN ≤ (
√

2α− U)2N
7
3
[
EPTF + CN− 1

17
]
.

Here EPTF < 0 is given by (1.3) below.

Theorem 1.1 is proved variationally by using Pekar’s ansatz in terms of a product state,
which is known to give the correct ground state energy for N = 1, 2 in the large α limit
[9, 25, 26]. Taking the expectation value in a state f ⊗ η ∈ ∧NL2(R3) ⊗ F and explicitly
minimizing with respect to η we arrive at a Hartree-Fock type energy which is then estimated
by a Thomas-Fermi energy. This allows us to scale out all parameters and we are left with the
bound in Theorem 1.1, where

EPTF = inf
ρ≥0,

R
ρ(x)dx=1

EPTF(ρ), (1.3)

EPTF(ρ) := 3
10(6π2)

2
3

∫
R3

ρ(x)
5
3 dx− 1

2

∫
R6

ρ(x)ρ(y)
|x− y|

dxdy. (1.4)

We note that in the error term in Theorem 1.1 the exponent 1/17 can be replaced by any number
less than 2/33 at the expense of a larger and divergent constant C.

To show that the variational upper bound from Theorem 1.1 has the right asymptotics in N

and α, we provide the following lower bound:

Theorem 1.2. There exists C > 0 such that for all N and
√

2α ≥ U ≥ 0,

EN ≥ −CG(
√

2α− U)2N
7
3 − Cα2N

7
3
− 1

9 . (1.5)
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This lower bound is obtained, essentially, by completing the square with respect to cre-
ation and annihilation operators in the expression Hph +

√
α
∑n

j=1 Φ(xj). The computation
brings out an effective Coulomb interaction with coupling strength −

√
2α. Unfortunately, it

also yields an infinite self-energy, which must be dealt with before completing the square. For
that we use a commutator argument from [25], which is responsible for the error term in Theo-
rem 1.2. The resulting effective Hamiltonian with an attractive Coulomb potential is bounded
below by the ’gravitational collapse’ bound

N∑
j=1

−1
2∆j −

∑
1≤j<`≤N

1
|xj − x`|

≥ −CGN
7
3 (1.6)

due to Lévy-Leblond [20, Theorem 2]. Hence the presence of the constant CG in Theorem 1.2.
We now turn to the physical regime

√
2α < U . Here our lower bound is a byproduct

of our proof of Theorem 1.2, and we have no reason to believe it is optimal. Together with
Theorem 1.1 it demonstrates, however, that the model undergoes a sharp transition at α =
U/
√

2.

Theorem 1.3. For 0 <
√

2α < U ,

EN ≥ −
(

16
3πα2N2 + 3

) U

U −
√

2α
.

Last but not least there are the following universal variational upper bounds for EN and
EN+M .

Theorem 1.4. For all N,M , α and U we have

EN ≤ −αN,

EN+M ≤ EN + EM .

The bound E1 ≤ −α is well known from [19, 10] and it agrees with the result of a formal
computation of E1 by second order perturbation theory [11]. Also, it is consistent with Haga’s
computation of E1 including α2-terms1 [16]. The bound EN ≤ −αN follows from the esti-
mates E1 ≤ −α and EN ≤ NE1, the latter of which is a consequence of the second result
of Theorem 1.4. We remark that EN+M ≤ EN + EM holds quite generally for translation
invariant N -particle systems with interactions that go to zero with increasing particle separa-
tion. In particular it holds for fermions and for distinguishable particles alike. Numerically
computed upper bounds on E(N)/N , for N = 2 through N = 32 can be found in the litera-
ture [5], but in the case of fermions they are not refined enough to be consistent with the bound
EN+M ≤ EN + EM .

In this paper we have omitted spin, but the Fermi statistics is taken into account. There
are only few small modifications necessary for treating fermions with q spin states, such as
factor of q−2/3 in front of the Thomas-Fermi kinetic energy, which alters the upper bound in
Theorem 1.1 by a factor of q2/3.

The many-polaron model has also been studied with a confining potential of the form∑N
`=1 W (x`), W (0) = 0 and W ≥ 0 included in the Hamiltonian [18]. We could include such

a potential in our work as well, but, at least in the regime
√

2α > U this would not affect the
leading large N behaviour of EN .

1There is a sign error in Feynman’s quote of Haga’s result.
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2 Upper bounds on EN

In this section we prove Theorem 1.1 and Theorem 1.4. Since EN = limΛ→∞ EN,Λ we only
need to deal with the self-adjoint operator HN,Λ. Let f ∈ DN = ∧NL2(R3) ∩ H1(R3N )
be normalized and recall that the one-particle density matrix γ and the density function ρ

associated with f are defined by

γ(x, x′) := N

∫
R3(N−1)

f(x, x2, . . . , xN )f(x′, x2, . . . , xN )dx2 · · · dxN , (2.1)

ρ(x) := γ(x, x) = N

∫
R3(N−1)

|f(x, x2, . . . , xN )|2dx2 · · · dxN . (2.2)

In this paper the Fouriertransform ρ̂ of the density function ρ, or of any other function, is
defined by:

ρ̂(k) =
∫

R3

e−ik·xρ(x)dx,

that is, without a factor of (2π)−3/2.

Proposition 2.1. Suppose
√

2α ≥ U . Then for every one-particle density matrix γ on L2(R3)
with 0 ≤ γ ≤ 1, Tr[γ] = N , Tr[−∆γ] < ∞, and for ρ(x) := γ(x, x),

EN ≤ (
√

2α− U)2
[

1
2 Tr[−∆γ]− 1

2

∫
R6

ρ(x)ρ(y)
|x− y|

dxdy

]
−U(

√
2α− U)1

2

∫
R6

|γ(x, y)|2

|x− y|
dxdy.

Proof. This proof is based on the estimate EN,Λ ≤ 〈f⊗η, HN,Λf⊗η〉 for suitable normalized
f ∈ DN and η ∈ F . We begin by observing that the expectation value of the interaction oper-
ator in a state f ⊗ η may be represented in the following two ways: if f and η are normalized,
then 〈

f ⊗ η,

N∑
`=1

ΦΛ(x`)f ⊗ η
〉

=
∫

R3N

|f(x1, . . . , xN )|2
N∑

`=1

VΛ,η(x`) dx1 . . . dxN (2.3)

= 〈η, ΦΛ(ρ)η〉 (2.4)

where VΛ,η(x) := 〈η, ΦΛ(x)η〉, ρ is the density associated with f , and

ΦΛ(ρ) :=
∫

R3

ρ(x)〈η, ΦΛ(x)η〉 dx

=
∫
|k|≤Λ

1
c0|k|

[
ρ̂(k)a(k) + ρ̂(k)a∗(k)

]
dk.

Hence if we define Hη
N,Λ :=

∑N
`=1[−

1
2∆` +

√
αVΛ,η(x`)] + UVC , then

〈f ⊗ η, HN,Λf ⊗ η〉 = 〈f,Hη
N,Λf〉+ 〈η, Hphη〉. (2.5)
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The ground state energy of the N -body Hamiltonian Hη
N,Λ is bounded above by its ground

state energy in the Hartree-Fock approximation. By Lieb’s variational principle, [23] and [3,
Corollary 1], this Hartree-Fock ground state energy is bounded above by

EN,Λ
HF (γ, η) := Tr

[(
− 1

2∆ +
√

αVΛ,η

)
γ
]
+

U

2

∫
R6

ρ(x)ρ(y)− |γ(x, y)|2

|x− y|
dxdy (2.6)

for any one-particle density matrix γ with Tr[γ] = N and ρ(x) = γ(x, x). Hence, in view of
(2.5), we conclude that

EN,Λ ≤ EN,Λ
HF (γ, η) + 〈η, Hphη〉 (2.7)

for all normalized η ∈ F . In order to minimize the right hand side with respect to η, we use
that (2.3) equals (2.4). It follows, by Lemma A.2, that

inf
η∈F ,‖η‖=1

[√
α Tr(VΛ,ηγ) + 〈η, Hphη〉

]
= − α

c2
0

∫
|k|≤Λ

|ρ̂(k)|2

|k|2
dk. (2.8)

By combining (2.6), (2.7), and (2.8) and then letting Λ →∞ we arrive at

EN ≤ 1
2 Tr[−∆γ] + (U −

√
2α)1

2

∫
R6

ρ(x)ρ(y)
|x− y|

dxdy − U

2

∫
R6

|γ(x, y)|2

|x− y|
dxdy (2.9)

for any one-particle density matrix γ with Tr(γ) = N and ρ(x) = γ(x, x). Here (A.3) and
(1.2) were used also. In the case

√
2α = U it is clear from (2.9) or from (2.5) with η being

the vacuum vector, that EN ≤ 0. In the case where β :=
√

2α − U > 0, we choose the
density matrix γ on the form γ = Uβ γ̃U∗

β with Uβ defined by (Uβϕ)(x) := β3/2ϕ(βx). The
Proposition then follows from U∗

β∆Uβ = β2∆ and from γ(x, y) = β3γ̃(βx, βy) by a simple
change of variables in the integrals of (2.9).

The second ingredient for proving Theorem 1.1 is the following lemma.

Lemma 2.2. Let g ∈ H2(R3) with ‖g‖ = 1. Then for every ρ ∈ L1(R3) with ρ ≥ 0 and∫
R3 ρ(x)dx = N there exists a density matrix γ such that γ(x, x) = (ρ ∗ |g|2)(x) and

Tr[−∆γ] = 3
5(6π2)

2
3

∫
R3

ρ(x)
5
3 dx + N‖∇g‖2.

Proof. For the reader’s convenience, we recall the proof from [22, Page 621]. Let M : R6 → R
be defined by M(p, q) = 1 if |p| ≤ (6π)2/3ρ(q)1/3 and M(p, q) = 0 otherwise. Then

(2π)−3

∫
R6

M(p, q)dpdq =
∫

R3

ρ(q)dq = N

(2π)−3

∫
R6

p2M(p, q)dpdq = 3
5(6π)

2
3

∫
R3

ρ(q)
5
3 dq. (2.10)

We define γ by

γ = (2π)−3

∫
R6

M(p, q)Πpqdpdq

where Πpq is the rank one projection given by

Πpqϕ = gpq

∫
R3

gpq(x)ϕ(x)dx, gpq(x) = eipxg(x− q).
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It follows that γ(x, x) =
∫

R3 |g(x− q)|2ρ(q) dq, and from

Tr[−∆Πpq] = ‖∇gpq‖2 = p2 + ‖∇g‖2 + 2p · 〈g,−i∇g〉,

and (2.10) we find the asserted expression for Tr[−∆γ].

Proposition 2.1 and Lemma 2.2 suggest the definition of a Polaron Thomas-Fermi func-
tional by

EPTF(ρ) := 3
10(6π2)

2
3

∫
R3

ρ(x)
5
3 dx− 1

2

∫
R6

ρ(x)ρ(y)
|x− y|

dxdy, (2.11)

where ρ ∈ L1(R3) ∩ L5/3(R3) and ρ ≥ 0. If ρN (x) := N2ρ(N1/3x), then ‖ρN‖1 = N‖ρ‖1

and

EPTF(ρN ) = N
7
3EPTF(ρ).

Hence it suffices to consider densities ρ with
∫

ρ(x)dx = 1. Let

EPTF := inf
{
EPTF(ρ)

∣∣∣ρ ≥ 0,

∫
R3

ρ(x)dx = 1
}

which is finite by Lemma A.1.

Lemma 2.3. EPTF < 0.

Proof. Given ρ ∈ L1(R3) ∩ L5/3(R3) with ρ ≥ 0 and
∫

ρ dx = 1, let ρR(x) = R−3ρ(R−1x).
Then

∫
R3 ρR(x)dx = 1 for all R > 0 and

EPTF(ρR) = R−2 3
10(6π2)

2
3

∫
R3

ρ(x)
5
3 dx−R−1 1

2

∫
R6

ρ(x)ρ(y)
|x− y|

dxdy.

This is negative for R large enough.

Proof of Theorem 1.1. Let g ∈ L2(R3) be given by g(x) = (2π)−3/4e−x2/4 and set gε(x) =
ε−3/2g(x/ε), so that ‖gε‖ = 1 for all ε > 0. Let β =

√
2α − U ≥ 0. If β = 0 then EN ≤ 0

by Proposition 2.1. Hence it remains to consider the case β > 0. Every density function
ρN ∈ L1(R3) with ‖ρN‖1 = N is of the form ρN (x) = N2ρ(N1/3x) with ‖ρ‖1 = 1. From
Proposition 2.1 and Lemma 2.2 combined it follows that

β−2EN ≤ 3
10(6π2)

2
3

∫
R3

ρN (x)
5
3 dx− 1

2

∫
R6

ρN,ε(x)ρN,ε(y)
|x− y|

dxdy + N‖∇gε‖2, (2.12)

where ρN,ε = ρN ∗ |gε|2. Suppose 1 < µ < 6/5 and let f(k) := |̂g|2 = e−k2/2. Then
ρ̂N,ε(k) = ρ̂N (k)|̂gε|2(k) = ρ̂N (k)f(εk) and

sup
k 6=0

1− |f(k)|2

|k|µ−1
≤ 1. (2.13)
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By definition of f , by (2.13), and by Lemma A.1∫
R6

ρN (x)ρN (y)
|x− y|

dxdy −
∫

R6

ρN,ε(x)ρN,ε(y)
|x− y|

dxdy

=
1

2π2

∫
R3

(1− |f(εk)|2) |ρ̂N (k)|2

|k|2
dk

=
1

2π2
εµ−1

∫
R3

1− |f(εk)|2

|εk|µ−1

|ρ̂N (k)|2

|k|3−µ
dk

≤ 1
2π2

εµ−1

∫
R3

|ρ̂N (k)|2

|k|3−µ
dk

= N2+µ
3 εµ−12(2π)µ−2 cµ

c3−µ

∫
R6

ρ(x)ρ(y)
|x− y|µ

dxdy.

Combining this estimate with (2.12), we see that

β−2EN ≤ N
7
3EPTF(ρ) + Nε−2‖∇g‖2

+N2+µ
3 εµ−1(2π)µ−2 cµ

c3−µ

∫
R6

ρ(x)ρ(y)
|x− y|µ

dxdy

for all ρ ∈ L1(R3) with ‖ρ‖1 = 1. If {ρn} ⊂ L1(Rn) is a minimizing sequence, EPTF(ρn) →
EPTF as n → ∞, then ‖ρn‖5/3 is uniformly bounded by (A.1), and hence so is the term∫

ρn(x)ρn(y)/|x− y|µdxdy for µ < 6/5. Therefore, in the limit n →∞, we obtain

β−2EN ≤ N
7
3 EPTF + 1

4Nε−2 + N2+µ
3 εµ−1Cµ

where the constant Cµ is finite for µ < 6/5 and ‖∇g‖2 = 1/4 was used. Upon optimizing
with respect to ε we arrive at

β−2EN ≤ N
7
3 EPTF + N

9+5µ
3+3µ Dµ

with a new constant Dµ. This bound with the choice µ = 37/31 < 6/5 proves Theorem 1.1.

Proof of Theorem 1.4. We only need to prove that E1 ≤ −α. The bound EN ≤ −αN will
then follow from EN+M ≤ EN + EM as pointed out in the introduction.

Following Nelson [27] we introduce

BΛ :=
√

α

c0

∫
|k|≤Λ

1
i(1 + k2

2 )|k|
[
eik·xa(k) + e−ik·xa∗(k)

]
dk.

Then

eiBΛH1,Λe−iBΛ = 1
2

(
p2 + 2a∗ · p + 2p · a + a2 + (a∗)2 + 2a∗a

)
+ Hph − αeΛ, (2.14)

where

a :=
√

α

c0

∫
|k|≤Λ

k

(1 + k2

2 )|k|
eikxa(k) dk.

eΛ :=
1
c2
0

∫
|k|≤Λ

1
|k|2(1 + k2

2 )
dk
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From (2.14) we see that, for all normalized f ∈ L2(R3),

〈f ⊗ Ω, eiBΛH1,Λe−iBΛf ⊗ Ω〉 =
〈
f, (−1

2∆)f
〉
− αeΛ (2.15)

where Ω ∈ F denotes the vacuum vector. Since inf σ(−∆) = 0 it follows from (2.15) that
E1,Λ ≤ −αeΛ, where

lim
Λ→∞

eΛ =
1
c0

∫
R3

1
|k|2(1 + k2

2 )
dk = 1.

This concludes the proof of the first bound in Theorem 1.4.
A result similar to EN+M ≤ EN + EM is expressed by Theorem 6 in [15]. A copy of

the proof of that theorem, with small modifications due to the differences of the Hamiltonians,
also proves the desired bound here. In fact, the main part of the proof of [15, Theorem 6] is
Equation (19) and the equation thereafter, which show that the interaction between electrons
mediated by bosons decreases with increasing particle separation. This part remains valid for
the coupling function χ|k|≤Λ/(c0|k|) of the Hamiltonian HN,Λ. Other parts of the proof are
simplified due to the fact the phonon dispersion relation ωLO is constant and hence a local
operator with respect to the boson position as measured by i∇k.

3 Lower bounds on EN

In this section we prove Theorems 1.1, and 1.3. The first step is to make sure that phonons
with large momenta contribute to lower order in N . To this end, for given K, Λ, δ, κ > 0, we
define the operator

HN,Λ,K := −1
2(1− κ)

N∑
`=1

∆` + (1− δ)Hph + UVC

+
√

α

N∑
`=1

∫
|k|≤Λ

e−
|k|2

4K2

c0|k|
[
eik·x`a(k) + e−ik·x`a∗(k)

]
dk.

Of course, later on, δ, κ ∈ (0, 1) and K < Λ → ∞. The following result, in the case N = 1,
is essentially due to Lieb and Thomas [25]. While a sharp cutoff |k| ≤ K is used in [25], we
work with a Gaussian cutoff since we need the Fourier transform of the cutoff to be positive.

Lemma 3.1. Suppose K, Λ, α and U are positive, 0 < δ < 1 and let κ := 8αN
3Kδ I∞, where

I∞ := (
√

2− 1)/
√

π. Then

HN,Λ ≥ HN,Λ,K − 3
2δ

. (3.1)

Proof. For each ` ∈ {1, . . . , N}, we introduce three high momenta modes by

Z
(`)
j :=

∫
R3

T
(`)
j (k)a(k)dk, j ∈ {1, 2, 3},

T
(`)
j (k) :=

√
αχΛ(k)

1− e−
|k|2

4K2

c0|k|3
kje

−ik·x` ,
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kj ∈ R being the j-th component of k ∈ R3 and χΛ the characteristic function of the set {|k| ≤
Λ}. For later use we compute the inner product of two functions T

(`)
j . By straightforward

computations, ∫
R3

T
(`)
j (k)T (`)

j′ (k) dk = δjj′
α

3K
I Λ

K
, (3.2)

where

IR :=
√

2
π

∫ R

0

(1− e−
s2

4 )2

s2
ds.

Note that 4π/c2
0 =

√
2/π and that I∞ = limR→∞ IR = (

√
2 − 1)/

√
π as defined in the

statement of the lemma. By definition of HN,Λ,K ,

HN,Λ = HN,Λ,K +
N∑

`=1

(
− κ

2
∆` + I

(`)
K,Λ

)
+ δHph (3.3)

I
(`)
K,Λ :=

√
α

∫
|k|≤Λ

1− e−
|k|2

4K2

c0|k|
[
eik·x`a(k) + h.c.

]
dk

where we introduced the operators I
(`)
K,Λ associated with the ultraviolet part of the electron-

phonon interaction. The key ingredient of this proof is that

I
(`)
K,Λ =

3∑
j=1

[
p`,j , Z

(`)
j − Z

(`)∗
j

]
(3.4)

where p`,j := −i∂/∂x`,j
. This identity implies that

∣∣〈η, I
(`)
K,Λη〉

∣∣ ≤ 2
3∑

j=1

‖p`,jη‖‖(Z
(`)
j − Z

(`)∗
j )η‖

≤ κ

2
〈η,−∆`η〉+

2
κ

3∑
j=1

〈η,−(Z(`)
j − Z

(`)∗
j )2η〉

≤ κ

2
〈η,−∆`η〉+

4
κ

3∑
j=1

〈η, (Z(`)∗
j Z

(`)
j + Z

(`)
j Z

(`)∗
j )η〉, (3.5)

where κ > 0 is to be selected, and the estimate

|〈η, (Z(`)
j )2η〉| ≤ ‖Z(`)∗

j η‖‖Z(`)
j η‖ ≤ 1

2〈η, (Z(`)
j Z

(`)∗
j + Z

(`)∗
j Z

(`)
j )η〉

was used. From (3.2) and IΛ/K ≤ I∞ it is clear that

3∑
j=1

(Z(`)∗
j Z

(`)
j + Z

(`)
j Z

(`)∗
j ) =

3∑
j=1

2Z
(`)∗
j Z

(`)
j +

[
Z

(`)
j , Z

(`)∗
j

]
≤ 2αI∞

3K
Hph +

α

K
I∞. (3.6)

Combining (3.5) and (3.6) we arrive at

±
N∑

`=1

I
(`)
K,Λ ≤

κ

2

N∑
`=1

(−∆`) +
8αNI∞
3κK

Hph +
4αNI∞

κK
,

which, by (3.3) and the choice κ = 8αNI∞/(3Kδ), proves the lemma.
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Lemma 3.2. Suppose K, Λ, α, U and κ are positive, and 0 < δ ≤ 1/2. Then

HN,Λ,K ≥ −1
2(1− κ)

N∑
`=1

∆` −

(√
2α

1− δ
− U

)
VC −

2αNK√
π

. (3.7)

Proof. By completing the square in annihilation and creation operators, that is, by using
Lemma A.2, we see that

(1− δ)Hph +
√

α

c0

N∑
`=1

∫
|k|≤Λ

e−
|k|2

4K2

|k|
[
eik·x`a(k) + e−ik·x`a∗(k)

]
dk.

≥ − α

(1− δ)c2
0

N∑
j,`=1

∫
R3

e−
|k|2

2K2

|k|2
eik·(xj−x`) dk

= − 2α

(1− δ)c2
0

∑
j<`

∫
R3

e−
|k|2

2K2

|k|2
eik·(xj−x`) dk − αNK

(1− δ)
√

π
. (3.8)

The integral in (3.8) represents the electrostatic energy of two spherically symmetric, non-
negative charge distributions centered at xj and x`, respectively, each distribution having total
charge one, see (A.3). Hence Newton’s theorem, [24, Theorem 9.7], implies that

∫
R3

e−
|k|2

2K2

|k|2
eik·(xj−x`) dk ≤ 2π2

|xj − x`|
.

Since c2
0 = 2π2

√
2, it follows that (3.8) is bounded below by

−
√

2α

1− δ
VC −

αNK

(1− δ)
√

π
,

which proves the lemma.

Proof of Theorem 1.2. We shall combine the Lemmas 3.1 and 3.2 with suitable choices for
δ and K. First, suppose that 0 < δ ≤ 1/2 and that κ ∈ (0, 1). Since

√
2α − U ≥ 0,

by assumption of Theorem 1.2, the constant multiplying the potential VC in Lemma 3.2 is
positive, and hence, after the scaling transformation

x →

(√
2α

1− δ
− U

)−1

(1− κ)x

we may apply (1.6) and find that

HN,Λ,K ≥ −

(√
2α

1−δ − U
)2

1− κ
inf σ

( N∑
`=1

−1
2
∆` − VC

)
− 2αNK√

π

≥ −CG

(√
2α

1−δ − U
)2

1− κ
N

7
3 − 2αNK√

π
,

where CG is chosen such that (1.6) holds true.
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We now make the choices

δ = 1
2N− 1

9 and K = 1
332I∞αN1+ 2

9 ,

which imply that κ, as defined in Lemma 3.1, obeys κ = 1
2N−1/9 = δ. Using that (1− t)−1 ≤

1 + 2t, for 0 ≤ t ≤ 1/2, that U ≤
√

2α, and I∞/
√

π = (
√

2− 1)/π ≤ 1/(2π), we find that

HN,Λ,K ≥ −CG

[√
2α(1 + 2δ)− U

]2(1 + 2κ)N
7
3 − 32

3π
α2N2+ 2

9

≥ −CG

[
(
√

2α− U)2 + 16α2δ
]
(1 + 2κ)N

7
3 − 32

3π
α2N

7
3
− 1

9

≥ −CG

[
(
√

2α− U)2N
7
3 + 18α2N

7
3
− 1

9
]
− 32

3π
α2N

7
3
− 1

9

= −CG(
√

2α− U)2N
7
3 −

(
18CG +

32
3π

)
α2N

7
3
− 1

9 .

Proof of Theorem 1.3. Finally we consider the case, where U −
√

2α > 0. In Lemma 3.2 we
choose δ = (U −

√
2α)/(2U) and K = 8αNI∞/(3δ), so that κ = 1 in Lemma 3.1, and

U −
√

2α

1− δ
=

U −
√

2α

2(1− δ)
> 0.

From Lemma 3.1 and Lemma 3.2 it hence follows that

EN ≥ −2αNK√
π

− 3
2δ

= −16I∞
3
√

π
α2N2 2U

U −
√

2α
− 3U

U −
√

2α
,

where I∞/
√

π = (
√

2− 1)/π ≤ 1/(2π).

A Auxiliary Results

Lemma A.1. Suppose that ρ ∈ L1(R3) ∩ L5/3(R3), ρ ≥ 0, 0 < µ < 6/5, and let ρN (x) =
N2ρ(N1/3x). Then ∫

R6

ρ(x)ρ(y)
|x− y|µ

dxdy ≤ aµ‖ρ‖
2− 5µ

6
1 ‖ρ‖

5µ
6
5
3

(A.1)∫
R6

ρ(x)ρ(y)
|x− y|µ

dxdy = (2π)−µ c3−µ

cµ

∫
R3

|f̂(k)|2

|k|3−µ
dk (A.2)∫

R6

ρ(x)ρ(y)
|x− y|

dxdy =
1

2π2

∫
R3

|f̂(k)|2

|k|2
dk (A.3)∫

R6

ρN (x)ρN (y)
|x− y|µ

dxdy = N2+µ
3

∫
R6

ρ(x)ρ(y)
|x− y|µ

dxdy (A.4)

where

aµ :=
(

4π

3

)µ
3
(

6
5µ

)1+µ
3
(

6
5µ

− 1
)−1+µ

2

, cµ := π−
µ
2 Γ(

µ

2
)

in (A.1) and (A.2), respectively.
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Inequality (A.1), in the special case µ = 1, implies that EPTF(ρ) is bounded below, and
moreover, that ‖ρ‖5/3 is bounded unformly for densities ρ with ‖ρ‖1 = 1 and EPTF(ρ) ≤
EPTF + 1.

Proof of Lemma A.1. For each R > 0, by Hölder’s inequality,∫
R3

ρ(y)
|x− y|µ

dy =
∫
|x−y|≤R

ρ(y)
|x− y|µ

dy +
∫
|x−y|≥R

ρ(y)
|x− y|µ

dy

≤
(

8π

6− 5µ

) 2
5

R
6
5
−µ‖ρ‖ 5

3
+ R−µ‖ρ‖1.

By optimizing this bound w.r.to R > 0 we obtain (A.1). Equation (A.2) follows from [24,
Corollary 5.10]. The factor (2π)−µ stems from the differences in the definition of the Fouri-
ertransform. Equation (A.3) is the important special case µ = 1 from (A.2), and (A.4) is
straightforward to verify by a change of variables.

Lemma A.2. Suppose f ∈ L2(R3). Then, for every δ > 0,∫
R3

[
δa∗(k)a(k) + f(k)a(k) + f(k)a∗(k)

]
dk ≥ −1

δ
‖f‖2

and the lower bound is attained by the expectation value in the coherent state η ∈ F , ‖η‖ = 1,
defined by a(k)η = −δ−1f(k)η.

Proof. By completeing the square in creation and annihilation operators∫
R3

[
δa∗(k)a(k) + f(k)a(k) + f(k)a∗(k)

]
dk

=
∫

R3

[
δ
(
a∗(k) +

f(k)
δ

)(
a(k) +

f(k)
δ

)
− |f(k)|2

δ

]
dk

≥ −1
δ
‖f‖2

Proposition A.3. Suppose that
√

2α ≤ U . Then for all N,Λ > 0, and all f ∈ ∧NL2(R3), η ∈
F with ‖f‖ = ‖η‖ = 1,

〈f ⊗ η, HN,Λf ⊗ η〉 ≥ −cL
40
3

(
2
3π

) 2
3

N,

where cL = 1.68 or any other constant for which the Lieb-Oxford inequality holds.

Proof. As in the proof of Theorem 1.1

〈f ⊗ η, HN,Λf ⊗ η〉
= 〈f, (−1

2∆ + UVC)f〉+ 〈η, (Hph +
√

αφΛ(ρ))η〉

≥ 〈f, (−1
2∆ + UVC)f〉 −

√
2α1

2

∫
R6

ρ(x)ρ(y)
|x− y|

dxdy.
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Using the Lieb-Thirring [24, Theorem 2.15] and the Lieb-Oxford inequalities [22] we find that

〈f ⊗ η, HN,Λ(f ⊗ η)〉

≥ cLT

∫
R3

ρ(x)
5
3 dx + (U −

√
2α)1

2

∫
R6

ρ(x)ρ(y)
|x− y|

dxdy − cL

∫
R3

ρ(x)
4
3 dx (A.5)

where cLT = 3
10(3π

2 )2/3 and cL = 1.68 or any other constant for which the Lieb-Oxford
inequality is satisfied. From ρ(x)4/3 = ρ(x)5/6ρ(x)1/2 and the Cauchy-Schwarz inequality,
for every ε > 0, ∫

R3

ρ(x)
4
3 dx ≤

(∫
R3

ρ(x)
5
3 dx

) 1
2
(∫

R3

ρ(x)dx

) 1
2

≤ 1
2

(
ε

∫
R3

ρ(x)
5
3 dx +

1
ε

∫
R3

ρ(x)dx

)
. (A.6)

The estimates (A.5) and (A.6) with ε = 2cLT/UcL prove the proposition.
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[12] H. Fröhlich, Electrons in lattice fields, Adv. in Phys. 3 (1954), 325–362.
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[20] J.-M. Lévy-Leblond, Nonsaturation of gravitational forces, J. Math. Phys. 10 (1968),
806–812.

[21] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear
equation, Stud. Appl. Math. 70A (1977), 444–446.

[22] , Thomas-Fermi and related theories of atoms and molecules, Rev. Mod. Phys.
53 (1981), 603–604, Erratum 54 (1981), 311.

[23] , Variational principle for many-fermion systems, Phys. Rev. Lett. 46 (1981),
457–459, Erratum 47 (1981), 69.

[24] E. H. Lieb and M. Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14,
American Mathematical Society, 2001.

[25] E. H. Lieb and L. E. Thomas, Exact ground state energy of the strong-coupling polaron,
Comm. Math. Phys. 183 (1997), 511–519, Erratum 188 (1997) 499–500.

[26] T. Miyao and H. Spohn, The bipolaron in the strong coupling limit, Ann. Henri Poincaré
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