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Abstract: Let A and B be non-negative self-adjoint operators in a sep-
arable Hilbert space such that its form sum C is densely defined. It is shown
that the Trotter product formula holds for imaginary times in the L2-norm,
that is, one has

lim
n→+∞

∫ T

0

∥∥∥(e−itA/ne−itB/n
)n

h− e−itCh
∥∥∥2

dt = 0

for any element h of the Hilbert space and any T > 0. The result remains
true for the Trotter-Kato product formula

lim
n→+∞

∫ T

0

∥∥(f(itA/n)g(itB/n))n h− e−itCh
∥∥2

dt = 0

where f(·) and g(·) are so-called holomorphic Kato functions; we also derive
a canonical representation for any function of this class.
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1 Introduction

The aim of this paper is to prove a Trotter-Kato-type formula for unitary
groups. Apart of a pure mathematical interest such a product formula can be
related to physical problems. In particular, Trotter formula provides us with
a way to define Feynman path integrals [6, 13] and extending it beyond the
essentially self-adjoint case would allow us to treat in this way Schrödinger
operators with a much wider class of potentials.

In order to put our investigation into a proper context let us describe first
the existing related results. Let −A and −B be two generators of contraction
semigroups in the Banach space X. In the seminal paper [23] Trotter proved
that if the operator −C,

C := A + B,

is the generator of a contraction semigroup in X, then the formula

e−tC = s -lim
n→∞

(
e−tA/ne−tB/n

)n
(1.1)

holds in t ∈ [0, T ] for any T > 0. Formula (1.1) is usually called the Trotter
or Lie-Trotter product formula. The result was generalized by Chernoff in
[2] as follows: Let F (·) : R+ −→ B(X) be a strongly continuous contraction
valued function such that F (0) = I and the strong derivative F ′(0) exists and
is densely defined. If −C, C := F ′(0), is the generator of a C0-contraction
semigroup, then the generalized Lie-Trotter product formula

e−tC = s -lim
n→∞

F (t/n)n (1.2)

holds for t ≥ 0. In [3, Theorem 3.1] it is shown that in fact the convergence
in the last formula is uniform in t ∈ [0, T ] for any T > 0. Furthermore, in [3,
Theorem 1.1] this result was generalized as follows: Let F (·) : R+ −→ B(X)
a family of linear contractions on a Banach space X. Then the generalized
Lie-Trotter product formula (1.2) holds uniformly in t ∈ [0, T ] for any T > 0
if and only if there is a λ > 0 such that

(λ + C)−1 = s - lim
τ→+0

(λ + Sτ )
−1

where

Sτ :=
I − F (τ)

τ
, τ > 0.
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Using the results of Chernoff, Kato was able to prove in [14] the following the-
orem: Let A and B be two non-negative self-adjoint operators in a separable
Hilbert space H. Let us assume that the intersection dom(A1/2)∩dom(B1/2)
is dense in H. If C := A

.
+ B is the form sum of the operators A and B,

then Lie-Trotter product formula

e−tC = s -lim
n→∞

(
e−tA/ne−tB/n

)n
(1.3)

holds true uniformly in t ∈ [0, T ] for any T > 0. In addition, it was proven
that a symmetrized Lie-Trotter product formula,

e−tC = s -lim
n→∞

(
e−tA/2ne−tB/ne−tA/2n

)n
, (1.4)

is valid. In fact, the Lie-Trotter formula was extended to more general
products of the form (f(tA/n)g(tB/n))n or

(
f(tA/n)1/2g(tB/n)f(tA/n)1/2

)n
where f (and similarly g) is a real valued function f(·) : R+ −→ R+ obeying
0 ≤ f(t) ≤ 1, f(0) = 1 and f ′(0) = −1 which are called Kato functions
in the following. Usually product formulæ of that type are labeled as Lie-
Trotter-Kato.

It is a longstanding open question in linear operator theory to indicate
assumptions under which the Lie-Trotter product formulæ (1.3) and (1.4)
remain to hold for imaginary times, that is, under which assumptions the
formulæ

e−itC = s -lim
n→∞

(
e−itA/ne−itB/n

)n
, C = A

·
+ B, (1.5)

or
e−itC = s -lim

n→∞

(
e−itA/2ne−itB/ne−itA/2n

)n
, C = A

.
+ B, (1.6)

are valid, see [3, Remark p. 91], [9], [12] and [21]. We note that if A and B
be non-negative selfadjoint operators in H and the limit

U(t) := s- lim
n→∞

(
e−itA/ne−itB/n

)n
exists for all t ∈ R, then dom(A1/2) ∩ dom(B1/2) is dense in H and it holds

U(t) = e−itC , t ∈ R, where C := A
·
+ B, see [13, Proposition 11.7.3].

Hence it makes sense to assume that dom(A1/2) ∩ dom(B1/2) is dense in
H. Furthermore, applying Trotter’s result [23] one immediately gets that
formulæ (1.5) and (1.6) are valid if C := A + B is self-adjoint. Modifying
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Lie-Trotter product formula to a kind of Lie-Trotter-Kato product formula
Lapidus was able to show in [16], see also [17], that one has

e−itC = s -lim
n→∞

(
(I + itA/n)−1(I + itB/n)−1

)n
uniformly in t on bounded subsets of R. In [1] Cachia extended the Lapidus
result as follows. Let f(·) be a Kato function which admits a holomorphic
continuation to the right complex plane Cright := {z ∈ C : <e (z) > 0}
such that |f(z)| ≤ 1, z ∈ Cright. Such functions we call holomorphic Kato
functions in the following. We note that functions from this class admit
limits f(it) = limε→+0 f(ε + it) for a.e. t ∈ R, see Section 5. In [1] it was in
fact shown that if f and g holomorphic Kato functions, then

lim
n→∞

∫ T

0

∥∥∥∥(f(2itA/n) + g(2itB/n)

2

)n

h− e−itCh

∥∥∥∥2

dt = 0.

for any h ∈ H and T > 0. Since f(t) = e−t, t ∈ R+, belongs to the
holomorphic Kato class we find

lim
n→∞

∫ T

0

∥∥∥∥(e−2itA/n + e−2itB/n

2

)n

h− e−itCh

∥∥∥∥2

dt = 0.

for any h ∈ H and T > 0.
Before we close this introductory survey, let us mention one more family

of related results. The paper [1] was inspired by a work of Ichinose and
one of us [7] devoted to the so-called Zeno product formula which can be
regarded as a kind of degenerated symmetric Lie-Trotter product formula.
Specifically, in this formula one replaces the unitary factor e−itA/2 by an
orthogonal projection onto some closed subspace h ⊆ H and defines the
operator C as the self-adjoint operator which corresponds to the quadratic

form k(h, k) :=
(√

Bh,
√

Bk
)
, h, k ∈ dom(k) := dom(

√
B) ∩ h where it is

assumed that dom(k) is dense in h. In the paper [7] it was proved that

lim
n→∞

∫ T

0

∥∥∥(Pe−itB/nP
)n

h− e−itCh
∥∥∥ dt = 0

holds for any h ∈ h and T > 0 where P is the orthogonal projection from
H onto h. Subsequently, an attempt was made in [8] to replace the strong
L2-topology of [7] by the usual strong topology of H. To this end a class
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of admissible functions was introduced which consisted of Borel measurable
functions φ(·) : R+ −→ C obeying |φ(x)| ≤ 1, x ∈ R+, φ(0) = 1 and
φ′(0) = −i. It was shown in [8] that if φ is an admissible function such that
=m (φ(x)) ≤ 0, x ∈ R+, then

e−itC = s -lim
n→∞

(Pφ(tB/n)P )n = e−itC

holds uniformly in t ∈ [0, T ] for any T > 0. We stress that the func-
tion φ(x) = e−ix, x ∈ R+, is admissible but does not satisfy the condition
=m (e−ix) ≤ 0 for x ∈ R+, and the question about convergence of the Zeno
product formula in the strong topology of H remains open.

The paper is organized as follows: In Section 2 we formulate our main
result and relate it to the Feynman integral. In Section 3 is devoted to the
proof of the main result. The main result is generalized to Trotter-Kato
product formulas for holomorphic Kato function in Section 4. Finally, in
Section 5 we try to characterize holomorphic Kato functions.

2 The main result

With the above preliminaries, we can pass to our main result which can be
stated as follows:

Theorem 2.1 Let A and B two non-negative self-adjoint operators on the
Hilbert space H. If their form sum C := A

.
+ B is densely defined, then

lim
n→∞

∫ T

0

∥∥∥(e−itA/ne−itB/n
)n

h− e−itCh
∥∥∥2

dt = 0 (2.1)

and

lim
n→∞

∫ T

0

∥∥∥(e−itA/2ne−itB/ne−itA/2n
)n

h− e−itCh
∥∥∥2

dt = 0 (2.2)

holds for any h ∈ H and T > 0.

We note that Theorem 2.1 partially solves [13, Problem 11.3.9] by changing
slightly the topology.

Remark 2.2 From the viewpoint of physical applications, the formula (2.1)
allows us to extend the Trotter-type definition of Feynman integrals to
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Schrödinger operators with a wider class of potentials. Following [13, Defini-
tion 11.2.21] the Feynman integral F t

TP(V ) associated with the potential V
is the strong operator limit

F t
TP(V ) := s- lim

n→∞

(
e−itH0/ne−itV/n

)n
where H0 := −1

2
∆ and −∆ is the usually defined Laplacian operator in

L2(Rd). From [13, Corollary 11.2.22] one gets that the Feynman integral
exists if V : Rd −→ R is Lebesgue measurable and non-negative as well as
V ∈ L2

loc(Rd).
Taking into account Theorem 2.1 it is possible to extend the Trotter-

type definition of Feynman integrals if one replaces the L2(Rd)-topology by
the L2([0, T ] × Rd)-topology. Indeed, let us define the generalized Feynman
integral F t

gTP(V ) by

lim
n→∞

∫ T

0

∥∥∥(e−itH/ne−itV/n
)n

h−F t
gTP(V )h

∥∥∥2

dt = 0

for h ∈ L2(Rd) and T > 0. Obviously, the existence of F t
TP(V ) yields the

existence of F t
gTP(V ) where the converse is in general not true. By Theorem

2.1 one immediately gets that the generalized Feynman integral exists if V :
Rd −→ R is Lebesgue measurable and non-negative as well as V ∈ L1

loc(Rd).
This essentially extends the class of admissible potentials. The same class
of potentials is covered by the so-called modified Feynman integral F t

M(V )
defined by

F t
M(V ) := s- lim

n→∞

(
[I + i(t/n)H0]

−1[I + i(t/n)V ]−1
)n

,

see [13, Definition 11.4.4] and [13, Corollary 11.4.5]. However, in this case
the exponents are replaced by resolvents which leads to the loss of the typical
structure of Feynman integrals.

Remark 2.3

(i) Formula (2.1) holds if and only if convergence in measure takes place,
that is, for any η > 0, h ∈ H and T > 0 one has

lim
n→∞

∣∣∣{t ∈ [0, T ] :
∥∥∥(e−itA/ne−itB/n

)n
h− e−itCh

∥∥∥ ≥ η
}∣∣∣ = 0. (2.3)

where | · | denotes the Lebesgue measure.
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(ii) We note that the relation (1.3) can be rewritten as follows: for any
η > 0, h ∈ H and T > 0 one has

lim
n→∞

sup
t∈[0,T ]

∥∥∥(e−tA/ne−tB/n
)n

h− e−tCh
∥∥∥ = 0.

This shows that passing to imaginary times one effectively switches
from a uniform convergence to a convergence in measure.

(iii) Theorem 2.1 immediately implies the existence of a non-decreasing sub-
sequence nk ∈ N, k ∈ N, such that

lim
k→∞

∥∥∥(e−itA/nke−itB/nk
)nk

h− e−itCh
∥∥∥ = 0

holds for any h ∈ H and a.e. t ∈ [0, T ].

3 Proof of Theorem 2.1

The argument is based on the following lemma.

Lemma 3.1 Let {Sτ (·)}τ>0 be a family of bounded holomorphic operator-
valued functions defined in Cright such that <e (Sτ (z)) ≥ 0 for z ∈ Cright. Let
Rτ (z) := (I + Sτ (z))−1, z ∈ Cright. If the limit

s - lim
τ→+0

Rτ (t)

exists for all t > 0, then the following claims are valid:

(i) The limit
R(z) := s - lim

τ→+0
Rτ (z)

exists everywhere in Cright, the convergence is uniform with respect to z in
any compact subset of Cright, and the limit function R(z) is holomorphic in
Cright.

(ii) The limits
Rτ (it) := s - lim

ε→+0
Rτ (ε + it)

and
R(it) := s - lim

ε→+0
R(ε + it)

exist for a.e. t ∈ R.
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(iii) If, in addition, there is a non-negative self-adjoint operator C such that
the representation R(t) = (I+tC)−1 is valid for t > 0, then R(z) = (I+zC)−1

for z ∈ Cright and

lim
τ→+0

∫ T

0

∥∥Rτ (it)h− (I + itC)−1h
∥∥2

dt = 0 (3.1)

holds for any h ∈ H and T > 0.

Proof. The claims (i) and (ii) are obtained easily; the first one is a conse-
quence of [11, Theorem 3.14.1], the second follows from [22, Section 5.2]. It
remains to check the third claim. To prove R(z) = (I + zC)−1 we note that
(I + tC)−1, t > 0, admits an analytic continuation to Cright which is equal to
(I + zC)−1, z ∈ Cright. Since R(z) is an analytic function in Cright, by (i) one
immediately proves R(z) = (I + zC)−1 for z ∈ Cright. In particular, we get
the representation

R(it) = (I + itC)−1

for a.e. t ∈ R. Furthermore, by [1, Lemma 2] one has

lim
τ→+0

∫
R

(Rτ (it)h, v(t)) dt =

∫
R

(R(it)h, v(t)) dt (3.2)

for any h ∈ H and v ∈ L1(R, H). Let p(·) ∈ L1(R) be real and non-negative,
i.e. p(t) ≥ 0 a.e. in R. In particular, if v(t) := p(t)h we find

lim
τ→+0

∫
R

p(t) (Rτ (it)h, h) dt =

∫
R

p(t) (R(it)h, h) dt

which yields

lim
τ→+0

∫
R

p(t)<e {(Rτ (it)h, h)} dt =

∫
R

p(t)<e {(R(it)h, h)} dt. (3.3)

Since for each τ > 0 the function Sτ (z) is bounded in Cright the limit Sτ (it) :=
s -limε→+0 Sτ (ε + it) exists for a.e. t ∈ R, see [22, Section 5.2], and we have
<e (Sτ (it)) ≥ 0. Furthermore, from (3.3) we get

lim
τ→+0

∫
R

p(t) ((I + <e {Sτ (it)})Rτ (it)h,Rτ (it)h) dt (3.4)

=

∫
R

p(t)<e {(Rτ (it)h, h)} dt =

∫
R

p(t) ‖R(it)h‖2 dt.
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Obviously, we have∫
R

p(t) ‖Rτ (it)h−R(it)h‖2 dt =

∫
R

p(t) ‖Rτ (it)h‖2 dt

+

∫
R

p(t) ‖R(it)h‖2 dt− 2<e

{∫
R

p(t) (Rτ (it)h,R(it)h) dt

}
.

If p(t) ≥ 0 for a.e. t ∈ R, then∫
R

p(t) ‖Rτ (it)h−R(it)h‖2 dt

≤
∫

R
p(t) ((I + <e {Sτ (it)})Rτ (it)h,Rτ (it)h) dt

+

∫
R

p(t) ‖R(it)h‖2 dt− 2<e

{∫
R

p(t) (Rτ (it)h,R(it)h) dt

}
.

Choosing v(t) = p(t)R(it)h we obtain from (3.2) that

lim
τ→+0

∫
R

p(t) (Rτ (it)h,R(it)h) dt =

∫
R

p(t) ‖R(it)h‖2 dt. (3.5)

Taking then into account (3.4) and (3.5) we find

lim
τ→+0

∫
R

p(t) ‖Rτ (it)h−R(it)h‖2 dt = 0

and choosing finally p(t) := χ[0,T ](t), T > 0, we arrive at the formula (3.1)
for any h ∈ H and T > 0. �

Now we are in position to prove Theorem 2.1. We set

Fτ (z) := e−τzA/2e−τzBe−τzA/2, τ ≥ 0,

and

Sτ (z) :=
I − Fτ (z)

τ
, τ > 0,

for z ∈ Cright. Obviously, the family {Sτ (·)}τ>0 consists of bounded holo-
morphic operator-valued functions defined in Cright. Since ‖Fτ (z)‖ ≤ 1 for
z ∈ Cright we get that <e {Sτ (z)} ≥ 0 for z ∈ Cright and τ > 0. Using formula
(2.2) of [14] we find

s - lim
τ→+0

(I + Sτ (t))
−1 = (I + tC)−1
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for t ∈ R. Obviously, we have

Rτ (it) = (I + Sτ (it))
−1

for a.e t ∈ R where

Sτ (it) =
I − e−iτtA/2e−iτtBe−iτtA/2

τ

for t ∈ R and τ > 0. Applying Lemma 3.1 we obtain

lim
τ→+0

∫ T

0

∥∥(I + Sτ (it))
−1h− (I + itC)−1h

∥∥2
dt = 0 (3.6)

for any h ∈ H and T > 0.
Now we pass to H-valued functions introducing Ĥ := L2([0, T ], H). We

set
( Â f)(t) = tAf(t), f ∈ dom( Â ) = {f ∈ Ĥ : tAf(t) ∈ Ĥ }

and in the same way we define B̂ and Ĉ associated with the operators
B and C, respectively. It is obvious that the operators Â , B̂ and Ĉ are
non-negative. Setting

F̂ τ := e−iτ bA /2e−iτ bB e−iτ bA /2, τ > 0,

and

Ŝ τ :=
Î − F̂ τ

τ
, τ > 0,

we have

( F̂ τ ĥ )(t) = Fτ (it) ĥ (t) and ( Ŝ τ ĥ )(t) =
I − Fτ (it)

τ
ĥ (t),

where ĥ ∈ Ĥ . From Lemma 3.1 one immediately gets that

lim
τ→+0

‖( Î + Ŝ τ )
−1 ĥ − ( Î + Ĉ )−1 ĥ ‖ bH = 0

for any ĥ ∈ Ĥ . Applying now [3, Theorem 1.1] we find

s -lim
n→∞

F̂
n

s/n = e−is bC
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uniformly in s ∈ [0, T̂ ] for any T̂ > 0 which yields

lim
n→∞

∫ T

0

∥∥∥(e−istA/2ne−istB/ne−istA/2n
)n

ĥ (t)− e−istC ĥ (t)
∥∥∥2

dt = 0

for any ĥ ∈ Ĥ and s ∈ [0, T̂ ], T̂ > 0. Setting finally ĥ (t) = χ[0,T ](t)h,
h ∈ H, and s = 1 we arrive at the symmetrized form (2.2) of the product
formula. To get the other one, we take into account the relation(

e−istA/2ne−itB/ne−itA/2n
)n

= eitA/2n
(
e−itA/ne−itB/n

)n
e−itA/2n

which yields ∥∥∥(e−itA/2ne−itB/ne−itA/2n
)n

h− e−itCh
∥∥∥2

=∥∥∥(e−itA/ne−itB/n
)n

e−itA/2nh− e−itA/2ne−itCh
∥∥∥2

and through that the sought formula (2.1).

4 A generalization

Let f(·) be a holomorphic Kato function. In general, one cannot expect that
for any non-negative operator A the formula

s - lim
ε→+0

f((ε + it)A) = f(itA)

would be valid for all t ∈ R. This is due to the fact that the limit f(iy) does
not exist for each y ∈ R+, see Section 5. In order to avoid difficulties we
assume in the following that the limit f(iy) exist for all y ∈ R and indicate
in Section 5 conditions which guarantee this property.

Theorem 4.1 Let A and B two non-negative self-adjoint operators on the
Hilbert space H. Assume that C := A

.
+ B is densely defined. If f and g

be holomorphic Kato functions such that the limit f(iy) = limx→+0 f(x + iy)
exist for all y ∈ R, then

lim
n→∞

∫ T

0

∥∥(f(itA/n)g(itB/n))n h− e−itCh
∥∥2

dt = 0

for any h ∈ H and T > 0.
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Proof. We set

Fτ (z) := f(τzA)g(τzB), z ∈ Cright, τ ≥ 0,

and

Sτ (z) :=
I − Fτ (z)

τ
, z ∈ Cright, τ > 0.

We note that {Sτ (z)}τ>0 is a family of bounded holomorphic operator-valued
functions defined in Cright obeying <e {Sτ (z)} ≥ 0. We set Rτ (z) := (I +
Sτ (z))−1, z ∈ Cright, τ > 0. By [14] we know that

s -lim
n→∞

(f(tA/n)g(tB/n))n = e−tC

uniformly in t ∈ [0, T ] for any T > 0. Applying Theorem 1.1 of [3] we find

s - lim
τ→+0

Rτ (t) = (I + tC)−1

for t ∈ R+. Since Sτ (z), z ∈ Cright, is a holomorphic continuation of Sτ (t),
t ∈ R+, one gets that Rτ (z), z ∈ Cright, is in turn a holomorphic continuation
of Rτ (t), t ∈ R+. Since

Fτ (it) := s - lim
ε→+0

Fτ (ε + it) = f(iτ tA)g(iτ tB), τ > 0,

for t ∈ R we find that

Sτ (it) := s - lim
ε→+0

Sτ (ε + it) =
I − f(iτ tA)g(iτ tB)

τ
, τ > 0,

holds for t ∈ R, which further yields

Rτ (it) := s - lim
ε→+0

Rτ (ε + it) = (I + Sτ (it))
−1, τ > 0,

for t ∈ R. Applying Lemma 3.1 we prove (3.6). Following now the line of
reasoning used after formula (3.6) we complete the proof. �

Obviously, the Kato functions fk(x) := (1+x/k)−k, x ∈ R+, are holomorphic
Kato functions. Indeed, each function fk admits a holomorphic continuation,
f(z) = (1 + z/k)−k on z ∈ Crightand, moreover, the limit

fk(it) := lim
ε→+0

f(ε + it) = (1 + it/k)−k
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exists for any t ∈ R. This yields

lim
n→+∞

∫ T

0

∥∥((I + itA/kn)−k(I + itB/kn)−k
)n

h− e−itCh
∥∥ dt = 0

for any h ∈ H and T > 0. We note that for the particular case k = 1 Lapidus
demonstrated in [16] that

s- lim
n→+∞

(
(I + itA/n)−1(I + itB/n)−1

)n
= e−itC (4.1)

holds uniformly in t ∈ [0, T ] for any T > 0. By Theorem 4.1 one gets that
formula (4.1) is valid in a weaker topology as in [16]. This discrepancy will
be clarified in a forthcoming paper.

5 Holomorphic Kato functions

5.1 Representation

To make use of the results of the previous section one should know properties
of holomorphic Kato functions. To this purpose we will try in the following
to find a canonical representation for this function class.

Theorem 5.1 If f is a holomorphic Kato function, then

(i) there is an at most countable set of complex numbers {ξk}k, ξk ∈ Cright

with =m (ξk) ≥ 0 satisfying the condition

κ := 4
∑

k

<e (ξk)

|ξk|2
≤ 1 (5.1)

(ii) there is a Borel measure ν defined on R+ = [0,∞) obeying ν({0}) = 0
and ∫

R+

1

1 + t2
dν(t) < ∞

such that the limit β := limx→+0
2
π

∫
R+

1
x2+t2

dν(t) exists and satisfies the con-
dition β ≤ 1− κ;

(iii) the Kato function f admits the representation

f(x) = D(x) exp

{
−2x

π

∫
R+

1

x2 + t2
dν(t)

}
e−αx, x ∈ R+, (5.2)
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where α := 1− κ − β and D(x) is a Blaschke-type product given by

D(x) :=
∏

k

x2 − 2x<e (ξk) + |ξk|2

x2 + 2x<e (ξk) + |ξk|2
, x ∈ R+. (5.3)

The factor D(x) is absent if the set {ξk}k is empty; in that case we set κ := 0.
Conversely, if a real function f admits the representation (5.2) such that

the assumptions (i) and (ii) are satisfied as well as α+κ +β = 1 holds, then
f is a holomorphic Kato function and its holomorphic extension to Cright is
given by

f(z) = D(z) exp

{
−2z

π

∫
R+

1

z2 + t2
dν(t)

}
e−αz, z ∈ Cright.

Proof. If f is a holomorphic Kato function, then G(z) := f(−iz), z ∈ C+,
belongs to H∞(C+). We have f(z) = G(iz), z ∈ Cright, and taking into
account Section C of [15] we find that if G(·) ∈ H∞(C+), then there is a
real number γ ∈ [0, 2π), a sequence of complex numbers {zk}k, zk ∈ C+,
satisfying

n∑
k=1

=m (zk)

|i + zk|2
< ∞, (5.4)

a Borel measure ν defined on R such that∫
R

1

1 + t2
dν(t) < ∞,

and a real number α ≥ 0 such that G(·) admits the factorization

G(z) = eiγB(z) exp

{
− i

π

∫
R

(
1

z − t
+

t

1 + t2

)
dν(t)

}
eiaz, z ∈ C+,

where B(z) is the Blaschke product given by

B(z) :=
∏

k

(
eiαk

z − zk

z − zk

)
, z ∈ C+,

and {αk}k is a sequence of real numbers αk ∈ [0, 2π) determined by the
requirement

eiαk
i− zk

i− zk

≥ 0.

14



The sequence {zk}k coincides with the zeros of G(z) counting multiplicities.
The quantities γ, {zk}k, ν, a are uniquely determined by G(·).

Using the relation f(z) = G(iz), z ∈ Cright, one gets from here a factor-
ization of the holomorphic Kato function,

f(z) = eiγB(iz) exp

{
− i

π

∫
R

(
1

iz − t
+

t

1 + t2

)
dν(t)

}
e−αz, (5.5)

z ∈ Cright. Setting next ξk = −izk ∈ Cright the condition (5.4) takes the form

n∑
k=1

<e (ξk)

|1 + ξk|2
< ∞

and the Blaschke product can be written as

D(z) := B(iz) =
∏

k

(
eiαk

z − ξk

z + ξk

)
, z ∈ Cright, (5.6)

where the sequence of real numbers {αk}k is determined now by

eiαk
1− ξk

1 + ξk

≥ 0. (5.7)

The complex numbers ξk are the zeros of f(·).
Since the Kato function has to be real on R+ we easily find that the

condition f(z) = f(z), z ∈ Cright, has to be satisfied. Hence ξk and ξk

are simultaneously zeros of f(z) and the Blaschke-type product D(z) always

contains the factors eiαk z−ξk

z−ξk
and e−iαk z−ξk

z−ξk
simultaneously. This allows us to

put D(z) into the form

D(z) =
∏

k

z2 − 2z<e (ξk) + |ξk|2

z2 + 2z<e (ξk) + |ξk|2
∏

l

z − ηl

z + ηl

, z ∈ Cright, (5.8)

where <e (ξk) > 0, =m (ξk) > 0 for complex conjugated pairs and ηl > 0 for
the remaining real zeros. Hence we have D(z) = D(z) for z ∈ Cright. Using
this relation we find that

eiγ−g(z) = e−iγ−eg(z), z ∈ Cright,
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for z ∈ Cright where

g(z) :=
i

π

∫
R

1 + izt

iz − t
dµ(t) and g̃(z) := g(z) =

i

π

∫
R

1− izt

iz + t
dµ(t)

and dµ(t) = (1 + t2)−1dν(t). Since g(1) = g̃(1) we find e2iγ = 1 which yields
γ = 0 or γ = π. In both cases we have

e−g(z) = e−eg(z), z ∈ Cright.

By g(1) = g̃(1) we find that g(z) = g̃(z), z ∈ Cright. Setting µ̃(X) := µ(−X)
for any Borel set X of R we find∫

R

1 + izt

iz − t
dµ(t) =

∫
R

1 + izt

iz − t
dµ̃(t), z ∈ Cright.

Using ∫
R

1 + izt

iz − t
dµ(t) = (1− z2)

∫
R

1

iz − t
dµ(t)−

∫
R

dµ(t)

and ∫
R

1 + izt

iz − t
dµ̃(t) = (1− z2)

∫
R

1

iz − t
dµ̃(t)−

∫
R

dµ̃(t)

as well as the relation
∫

R dµ(t) =
∫

R dµ̃(t) we find∫
R

1

z − t
dµ(t) =

∫
R

1

z − t
dµ̃(t), z ∈ Cright,

which yields µ = µ̃. Hence the Borel measure obeys µ(X) = µ(−X) for any
Borel set X ⊆ R and this in turn implies ν(X) = ν(−X) for any Borel set.
Using this property we get∫

R

(
1

iz − t
+

t

1 + t2

)
dν(t) =

∫
R

1 + izt

iz − t
dµ(t)

=
1

iz
µ({0}) +

∫
R+

(
1 + izt

iz − t
+

1− izt

iz + t

)
dµ(t), z ∈ Cright,

where R+ = (0,∞). In this way we find∫
R

(
1

iz − t
+

t

1 + t2

)
dν(t) =

1

iz
ν({0})− 2iz

∫
R+

1

z2 + t2
dν(t)
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for z ∈ Cright. Summing up we find that a holomorphic Kato function admits
the representation

f(x) = eiγD(x) exp

{
− 1

πx
ν({0})− 2x

π

∫
R+

1

x2 + t2
dν(t)

}
e−αx,

x ∈ R+, where D(z) is given by (5.8). Since f(x) ≥ 0, x ∈ R+, one gets that
γ = 0 and D(x) ≥ 0, x ∈ R+, which means that the real zeros of f(z) are
of even multiplicity. Consequently, the Blaschke-type product D(z) is of the
form

D(z) =
∏

k

z2 − 2z<e (ξk) + |ξk|2

z2 + 2z<e (ξk) + |ξk|2
, z ∈ Cright.

We note that the inequality 0 ≤ f(x) ≤ 1, x ∈ R+, is valid.
Next we have to satisfy the conditions f(0) := limx→+0 f(x) = 1 and

f ′(0) = limx→+0
f(x)−1

x
= −1. Firstly we note that

f(x) ≤ exp

{
−ν({0})

πx

}
, x ∈ R+.

If ν({0}) 6= 0, then it follows that f(0) = 0 which contradicts the assumption

f(0) = 1, hence ν({0}) = 0. Next we set Dk(x) := x2−2x<e (ξk)+|ξk|2
x2+2x<e (ξk)+|ξk|2

, x ∈ R+.

Since 0 ≤ Dk(x) ≤ 1, x ∈ R+, we get

1− f(x) ≥ 1−D1(x) + D1(1−D2(x)) + D1(x)D2(x)(1−D3(x)) + · · ·

+
n∏

k=1

Dk(x)

(
1−

∏
k=n+1

Dk(x) exp

{
−2x

π

∫
R+

1

x2 + t2
dν(t)

}
e−αx

)
for x ∈ R+ and n = 1, 2, . . . . In this way we find the estimate

1− f(x) ≥ 1−D1(x) + D1(x)(1−D2(x)) +

D1(x)D2(x)(1−D3(x)) + · · ·+
n−1∏
k=1

Dk(x)(1−Dn(x))

for x ∈ R+ and n = 1, 2 . . . . This yields

1− f(x)

x
≥ 1−D1(x)

x
+ D1(x)

1−D2(x)

x
+

D1(x)D2(x)
1−D3(x)

x
+ · · ·+

n−1∏
k=1

Dk(x)
1−Dn(x)

x
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for x ∈ R+ and n = 1, 2 . . . , and since limx→+0 Dk(x) = 1 and

lim
x→+0

1−Dk(x)

x
= 4

<e (ξk)

|ξk|2

for k = 1, 2, . . . , we immediately obtain (5.1). In particular, we infer that

the limit D′(0) := limx→+0
D(x)−1

x
= −κ exists. Furthermore, we note that

condition (5.1) implies (5.6). Furthermore, we have

1− f(x) ≥ 1− exp

{
−2x

π

∫
R+

1

x2 + t2
dν(t)

}
, x ∈ R+,

which yields

lim
x→+0

exp

{
−2x

π

∫
R+

1

x2 + t2
dν(t)

}
= 1 ,

or

lim
x→+0

2x

π

∫
R+

1

x2 + t2
dν(t) = 0.

Moreover, we have

1− f(x)

x

≥ exp

{
−2x

π

∫
R+

1

x2 + t2
dν(t)

} exp
{

2x
π

∫
R+

1
x2+t2

dν(t)
}
− 1

x

≥ exp

{
−2x

π

∫
R+

1

x2 + t2
dν(t)

}
2

π

∫
R+

1

x2 + t2
dν(t)

which yields 1 ≥ lim supx→+0
2
π

∫
R+

1
x2+t2

dν(t). However, the function

p(x) := 2
π

∫
R+

1
x2+t2

dν(t), x ∈ R+, is decreasing which implies the existence

of β := limx→+0
2
π

∫
R+

1
x2+t2

dν(t). Summing up these considerations we have
found

f ′(0) = lim
x→+0

f(x)− 1

x
= −κ − β − α = −1 (5.9)

which completes the proof of the necessity of the conditions. The converse
is obvious. �
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5.2 On the existence of f(iy) everywhere

Besides the fact that f(x) has to be a holomorphic Kato function one needs
that the limit f(iy) := limx→+0 f(x + iy) exist for all y ∈ R. First we note
that the limit f(iy) exists for a.e. y ∈ R. This is a simple consequence of
the fact that the function G(z) := f(−iz), z ∈ Cright, belongs to H∞(C+):
for such functions the limit G(x) := limε→+0 G(x + iε) exists for a.e. x ∈ R
which immediately yields that f(iy) exists for a.e. y ∈ R. To begin with,
let us ask about the existence of the limit |f |(iy) := limx→+0 |f(x + iy)|.
For this purpose we note that the measure ν of Theorem 5.1 admits the
unique decomposition ν = νs + νac where νs is singular and νac is absolutely
continuous, and furthermore, the measure νac(·) can be represented as

dνac(t) = h(t)dt

where the function h(t) is non-negative and obeys∫
R+

h(t)
dt

1 + t2
< ∞.

Proposition 5.2 Let f(·) be a holomorphic Kato function and let ∆ be an
open interval of R. The limit |f |(iy) = limx→+0 |f(x + iy)| exists for every
y ∈ ∆, is continuous and different from zero on ∆ if and only if the limit

lim
x→+0

|D(x + iy)| = 1 (5.10)

exist for every y ∈ ∆, νs(∆) = 0 and the extended weight function h̃(t) :=
h(|t|), t ∈ R, is continuous on ∆.

In particular, the limit |f |(iy) exists for every y ∈ R, is continuous and
different from zero on R if and only if the limit (5.10) exists for every y ∈ R,

νs ≡ 0 and the extended function h̃(·) is continuous on R.

Proof. The measure ν of Theorem 5.1 is given on [0,∞). We extend it to
the real axis R setting ν(X) := ν(−X) for any Borel set X ⊆ (−∞, 0). Using
ν(X) := ν(−X) we obtain from (5.5) and (5.6) the representation

|f(x + iy)| = |D(x + iy)| exp

{
− 1

π

∫
R

x

x2 + (y + t)2
dν(t)

}
e−ax,

z = x + iy ∈ Cright, or

|f(x + iy)| = |D(x + iy)| exp

{
− 1

π

∫
R

x

x2 + (y − t)2
dν(t)

}
e−ax,
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z = x + iy ∈ Cright; in this way we find

− log(|f(x + iy)|) = − log(|D(x + iy)|) +
1

π

∫
R

x

x2 + (y − t)2
dν(t) + αx

for z = x + iy ∈ Crigth. Since one has limx→+0 |D(x + iy)| = 1 for a.e. y ∈ R
we infer that

− lim
x→+0

log(|f(x + iy)|) = lim
x→+0

1

π

∫
R

x

x2 + (y − t)2
dν(t)

for a.e. y ∈ R. Since

lim
x→+0

1

π

∫
R

x

x2 + (y − t)2
dν(t) = h̃(y)

holds for almost all y ∈ R we obtain − log(|f |(iy)) = h̃(y) for a.e. y ∈ R.
By assumption |f |(iy) is continuous and different from zero on ∆. Hence

the extended weight function h̃(y) can be assumed to be continuous on ∆.

However, if h̃(·) is continuous on ∆, then one has

lim
x→+0

1

π

∫
R

x

x2 + (y − t)2
h̃(t) dt = h̃(y)

for each y ∈ ∆ which means that

lim
x→+0

{
− log(|D(x + iy)|) +

1

π

∫
R

x

x2 + (y − t)2
dνs(t)

}
= 0

for each y ∈ ∆. Since − log(|D(x + iy)|) ≥ 0 we find limx→+0 log(|D(x +
iy)|) = 0 and

lim
x→+0

1

π

∫
R

x

x2 + (y − t)2
dνs(t) = 0

for each y ∈ ∆. Taking into account [19] one can conclude that the symmetric
derivative ν ′s(y),

ν ′s(y) := lim
ε

νs((y − ε, y + ε))

2ε

exists and obeys ν ′s(y) = 0 for every y ∈ ∆. If νs({y0}) > 0 for y0 ∈ ∆, then

0 = lim
ε→+0

νs((y0 − ε, y0 + ε))

2ε
≥ lim

ε→+0

νs({y0})
2ε
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which yields νs({y0}) = 0, hence ν({y}) = 0 for any y ∈ ∆. This means
that νs has to be singular continuous. Let us introduce the function θ(t) :=
νs([0, t)), t ∈ [0, t). The function νs(t) is continuous and monotone. From
ν ′s(y) = 0 we get that the derivative of θ′(y) exists and θ′(y) = 0 for each
y ∈ ∆. Hence the function is constant which yields that νs(∆) = 0.

Conversely, let us assume that h̃(·) is continuous on ∆, νs(∆) = 0, and
condition (5.10) holds. Then we have the representation

|f(x + iy)| = |D(x + iy)|

× exp

{
− 1

π

∫
R

x

x2 + (y − t)2
dνs(t)−

1

π

∫
R

x

x2 + (y − t)2
h̃(t) dt

}
e−ax

If y ∈ ∆, then limx→+0
1
π

∫
R

x
x2+(y−t)2

dνs(t) = 0. Since h̃(·) is continuous on

the interval ∆ we have limx→+0
1
π

∫
R

x
x2+(y−t)2

h̃(t) dy = h̃(y) for each y ∈ ∆.

Thus we find limx→+0 |f(x+ iy)| = e−
eh(y) for each y ∈ ∆ and the limit |f |(iy)

is continuous on ∆. Since h̃(y) is finite for each y ∈ ∆ the limit |f |(iy) is
different from zero for each y ∈ ∆. �

Conditions of the type appearing in the proposition were discussed in [20].
In particular, it turns out that the condition (5.10) is satisfied if and only if

lim
x→+0

τ(iy, x)

x
= 0 (5.11)

holds for every y ∈ ∆ where

τ(iy, t) :=
∑

|iy−ξk|≤t

<e (ξk), y ∈ R+, t > 0. (5.12)

It is clear that the validity of the condition (5.11) is related to the distribution
of zeros in Cright. Of course, if there is only a finite number of zeros ξk, then
condition (5.11) is satisfied.

Theorem 5.3 Let f(·) is a holomorphic Kato function and let ∆ be an open
interval of R. The limit f(iy) = limx→+0 f(x + iy) exists for every y ∈ ∆, is
locally Hölder continuous and different from zero on ∆ if and only if the zeros
of f(·) do not accumulate to any point of i∆ := {iy : y ∈ ∆}, νs(∆) = 0 and

the extended weight function h̃ := h(|t|), t ∈ R, is locally Hölder continuous
on ∆.
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In particular, the limit f(iy) exists for every y ∈ R, is locally Hölder
continuous and different from zero on R if and only if f(·) has only a finite
number of zeros in every bounded open set of Cright, νs ≡ 0 and the extended

weight function h̃(·) is locally Hölder continuous on R.

Proof. We note that the existence of the limit f(iy) = limx→+0 f(x + iy)
for each y ∈ ∆ yields the existence of |f |(iy) = limx→+0 |f(x + iy)| and
the relation |f(iy)| = |f |(iy) for each y ∈ ∆. Hence |f |(·) is continuous.
Applying Proposition 5.2 we get that condition (5.10) is satisfied, νs(∆) = 0

and h̃(·) is continuous. In fact, one has h(y) = − log(|f |(iy)), y ∈ ∆. This

yields that the function h̃(·) is locally Hölder continuous on ∆ as well. If h̃(·)
is locally Hölder continuous on ∆, then the limit

ϕ(y) := lim
x→+0

i

π

∫
R

(
1

iz − t
+

t

1 + t2

)
dν(t)

= lim
x→+0

{
i

π

∫
R

(
1

iz − t
+

t

1 + t2

)
dνs(t) +

i

π

∫
R

(
1

iz − t
+

t

1 + t2

)
h̃(t)dt

}
,

z = x + iy ∈ Cright, exist for every y ∈ ∆. Indeed, we have

i

π

∫
R

(
1

iz − t
+

t

1 + t2

)
dνs(t) (5.13)

=
1

π

∫
R

x

x2 + (y − t)2
dνs(t)−

i

π

∫
R

(
y − t

x2 + (y − t)2
+

t

1 + t2

)
dνs(t)

where we have used νs(−X) = νs(X). Taking into account that νs(∆) = 0
we immediately get from the representation (5.13) that the limit

ϕs(y) := lim
x→+0

i

π

∫
R

(
1

iz − t
+

t

1 + t2

)
dνs(t) = − i

π

∫
R

1 + yt

y − t

dνs(t)

1 + t2
,

z = x + iy ∈ Cright, exist for each y ∈ ∆. Since

i

π

∫
R

(
1

iz − t
+

t

1 + t2

)
h̃(t) dt

=
1

π

∫
R

x

x2 + (y − t)2
h̃(t) dt− i

π

∫
R

(
y − t

x2 + (y − t)2
+

t

1 + t2

)
h̃(t) dt
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we infer that

ϕac(y) := lim
x→+0

i

π

∫
R

(
1

iz − t
+

t

1 + t2

)
h̃(t) dt

= h̃(y) + lim
x→+0

i

π

∫
R

(
y − t

x2 + (y − t)2
+

t

1 + t2

)
h̃(t) dt,

z = x + iy ∈ Cright. If h̃(·) is locally Hölder continuous on ∆, then the limit

ϕ̃ac(y) := lim
x→+0

i

π

∫
R

(
y − t

x2 + (y − t)2
+

t

1 + t2

)
h̃(t)dt

exists for each y ∈ ∆, and consequently, the limit ϕ(y) = ϕs(y)+ϕac(y) exist
for every y ∈ ∆. Using the representation

exp

{
i

π

∫
R

(
1

iz − t
+

t

1 + t2

)
h̃(t)dt

}
f(x + iy)eαz = D(x + iy) (5.14)

for z = x + iy ∈ Cright we find the existence of the limit

D(iy) := lim
x→+0

D(x + iy) (5.15)

for every y ∈ ∆. Taking into account (5.14) we find that D(iy) is continuous
on ∆. Using the conformal mapping Cright 3 z −→ 1−z

1+z
∈ D := {z ∈ C :

|z| < 1} which maps Cright onto D and setting

B(z) := D((1− z)(1 + z)−1), z ∈ D,

one defines a Blaschke product in D. The open set ∆ transforms into an open
set δ of T := {z ∈ C : |z| = 1}. By the Lindelöf sectorial theorem [18] we get
that B(z) admits radial boundary values for each point of δ. The boundary
function B(eiθ) := limr→1 B(reiθ) admits the representation

B(eiθ) = D(−i tan(θ/2)), eiθ ∈ δ. (5.16)

Since D(iy) is continuous on ∆ the Blaschke product B(eiθ) is continuous
on δ. If eiθ0 ∈ δ is an accumulation point of zeros of, then for every ε > 0
the set {B(eiθ : |θ − θ0| < ε} contains T, see [4, Chapter 5] or [5, Remark
4.A.3]. Since B(eiθ) is continuous on δ, this is impossible which shows that
eiθ0 is not an accumulation point of zeros of B(z). Hence no point of δ is an

23



accumulation point which yields that no point of ∆ is an accumulation point
of zeros of f(·).

Conversely, let us assume that no point of i∆ is an accumulation point of
zeros of f(·). This yields that no point of δ is an accumulation point of zeros
of B(z). Since infk∈N |eiθ − zk| > 0 for any eiθ ∈ δ by a result of Frostman
[10] one gets that the radial boundary values B(eiθ) = limr→1 B(reiθ) exist
for each eiθ ∈ δ. Using [5, Remark 4.A.2] we get that B(eiθ) is continuous
on δ. Applying again the Lindelöf sectorial theorem [18] we find that D(iy)
exists for each y ∈ ∆ and is continuous.

Since νs(∆) = 0 the limit ϕs(·) exists for every y ∈ ∆. Because h̃(·) is
locally Hölder continuous on ∆ we conclude that the limit ϕac(y) exist for
every y ∈ ∆. Hence the limit ϕ(y) exists for every y ∈ ∆ and

S(iy) := lim
x→+0

exp

{
− i

π

∫
R

(
1

iz − t
+

t

1 + t2

)
dν(t)

}
e−αz,

z = x+ iy ∈ Cright, exists for every y ∈ ∆. In this way we have demonstrated
the existence of f(iy) and the representation f(iy) = D(iy)S(iy)e−iay for
each y ∈ ∆. Using this representation we get that f(iy) is locally Hölder
continuous on ∆ and different from zero.

If the limit f(iy) exist for each y ∈ R, is locally Hölder continuous and
different from zero, then in view of the first part no point of the imaginary
axis is an accumulation point of zeros of f(·). Therefore, any rectangle of
the form O := {z ∈ Cright : |=m (z)| < y0, 0 < <e (z) < x0} contains
only a finite number of zeros. Otherwise, it would be exists an imaginary
accumulation point. Hence any bounded open sets contains only a finite
number of zeros. From the first part it follows that h̃(·) is locally Hölder
continuous on R.

Conversely, if any open set contains only a finite number of zeros, then,
in particular, the rectangle of the form O contains only a finite number of
zeros. Hence imaginary accumulation points do not exists. By the first part
it immediately follows that f(·) is locally Hölder continuous and different
from from zero on R. �

5.3 Examples

1. If the holomorphic Kato function f(·) has no zeros in Cright and ν ≡ 0,
then f(z) = e−z, z ∈ Cright, where α = 1 follows from condition (5.9).
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2. If the holomorphic Kato function f(·) has zeros and the measure ν ≡ 0,
then f(·) is of the form f(z) = D(z)e−αz, where the Blaschke-type
product D(z) is given by (5.3). In particular, if n = 1 we find the
representation

f(z) =
z2 − 2z<e (ξ) + |ξ|2

z2 + 2z<e (ξ) + |ξ|2
e−αz, z ∈ Cright ,

where ξ ∈ Cright such that

α + 4
<e (ξ)

|ξ|2
= 1.

This gives the representation

f(z) =
z2 − 2η

(
z − 2

1−α

)
z2 + 2η

(
z + 2

1−α

) e−αz, z ∈ Cright, (5.17)

0 < η ≤ 4
1−α

, 0 ≤ α ≤ 1, where we have denoted ξ = η + iτ , η > 0,

and τ =
√

4
(1−α)2

−
(
η − 2

1−α

)2
. The limit f(iy) := limε→+0 f(ε + iy),

y ∈ R, exists for each y ≥ 0 and is given by

f(iy) =
y2 + 4η 1

1−α
+ 2iηy

y2 − 4η 1
1−α

+ 2iηy
e−iαy =: φ(y), y ∈ R.

We note that φ(·) is admissible.

3. If the holomorphic Kato function f(z) has no zeros and the measure ν
is atomar, then f(z) admits the representation

f(z) = exp

{
−2z

π

∑
l

1

z2 + s2
l

ν({sl})

}
e−αz, z ∈ Cright,

where {sl}l the point where ν({sl}) 6= 0. In the particular case when
dν(t) = cδ(t− s)dt, s > 0, we have

f(z) = exp

{
−2zc

π

1

z2 + s2

}
e−αz,
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and α + 2c
π

1
s2 = 1 which yields c = 1

2
(1− α)πs2 and

f(z) := exp

{
−z(1− α)

s2

z2 + s2

}
e−αz

The limit f(iy) := limε→+0 f(ε+iy), y ∈ R, exists for all y ∈ R\{−s, s}
and is given by

f(iy) = exp

{
iy(1− α)

s2

y2 − s2

}
e−iαy := φ(y), y ∈ R \ {−s, s}.

The function φ(y) is admissible.

4. If the holomorphic Kato function f(z) has no zeros and the measure ν is
absolutely continuous, that is, dν(t) = h(t)dt, h(t)(1+ t2)−1 ∈ L1(R+),
then f(z) admits the representation

f(z) = exp

{
−2z

π

∫ ∞

0

h(t)

z2 + t2
dt

}
e−αz, z ∈ Cright

such that

α + lim
x→+0

2

π

∫ ∞

0

h(t)

x2 + t2
dt = 1.

In particular, if f(x) = (1 + x
k
)−k, x ∈ R+, then the holomorphic

continuation f(z) = (1 + z
k
)−k has no zeros which means that in the

representation (5.2) the Blaschke-type product D(x) is absent. More-
over, the limit f(iy) = (1+ iy

k
)−k exists for all y ∈ R+, |f(iy)| is locally

Hölder continuous and different from zero on R+. Taking into account
Theorem 5.3 this yields the representation

f(z) = exp

{
−kz

π

∫
R+

1

z2 + t2
ln
(
1 +

t2

k2

)
dt

}
e−αz, z ∈ Cright.

A straightforward computation shows that

lim
x→+0

k

π

∫
R+

1

x2 + t2
ln
(
1 +

t2

k2

)
dt = 1

which yields α = 0, and consequently, we have

f(z) = exp

{
−kz

π

∫
R+

1

z2 + t2
ln
(
1 +

t2

k2

)
dt

}
for z ∈ Cright.
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