Representations of a Quantum Phase Space with General Degrees of Freedom

Asao Arai
Department of Mathematics, Hokkaido University
Sapporo, Hokkaido 060-0810
Japan
E-mail: arai@math.sci.hokudai.ac.jp

July 14, 2009

Abstract

For each integer $n \geq 2$ and a parameter $\Lambda=(\theta, \eta)$ with θ and η being $n \times n$ real anti-symmetric matrices, a quantum phase space (QPS) (or a non-commutative phase space) with n degrees of freedom, denoted $\operatorname{QPS}_{n}(\Lambda)$, is defined, where θ and η are parameters measuring non-commutativity of the QPS. Hilbert space representations of $\operatorname{QPS}_{n}(\Lambda)$ are considered. A concept of quasi-Schrödinger representation of $\operatorname{QPS}_{n}(\Lambda)$ is introduced. It is shown that there exists a general correspondence between representations of $\operatorname{QPS}_{n}(\Lambda)$ and those of the canonical commutation relations with n degrees of freedom. Irreducibility of representations of $\operatorname{QPS}_{n}(\Lambda)$ are investigated. A concept of Weyl representation of $\operatorname{QPS}_{n}(\Lambda)$ is defined. It is proved that every Weyl representation of $\operatorname{QPS}_{n}(\Lambda)$ on a separable Hilbert space is unitarily equivalent to a direct sum of a quasi-Schrödinger representation of the $\operatorname{QPS}_{n}(\Lambda)$ (a uniqueness theorem). Finally representations of $\operatorname{QPS}_{n}(\Lambda)$ which are not unitarily equivalent to any direct sum of a quasi-Schrödinger representation are described.

Keywords: Quantum phase space; non-commutative phase space; canonical commutation relations.

Mathematics Subject Classification 2000: 81D05, 81R60, 47L60, 47N50

1 Introduction

In recent years, there have been increasing interests in studying physical aspects of quantum theory on non-commutative space-times (e.g., $[3,5,11]$), non-commutative spaces (e.g., $[7,8]$) and non-commutative phase spaces (e.g., $[9,10,15,19]$). Each of these noncommutative objects are defined by a non-commutative algebra. It seems, however, that mathematically rigorous analyses of the non-commutative algebras from representation
theoretic points of view have not yet fully developed. In this paper we consider Hilbert space representations of a non-commutative phase space with general finite degrees of freedom.

We denote by $\mathbb{N}=\{1,2, \cdots\}$ the set of natural numbers. Let $n \in \mathbb{N}$ with $n \geq 2$. To define a non-commutative phase space with n degrees of freedom, we take two $n \times n$ real anti-symmetric matrices $\theta=\left(\theta_{j k}\right)_{j, k=1, \cdots, n}$ and $\eta=\left(\eta_{j k}\right)_{j, k=1, \cdots, n}$. Then we introduce an algebra generated by $2 n$ elements $\hat{Q}_{j}, \hat{P}_{j}(j=1, \cdots, n)$ and a unit element I obeying deformed canonical commutation relations (CCR's) with n degrees of freedom

$$
\begin{align*}
& {\left[\hat{Q}_{j}, \hat{Q}_{k}\right]=i \theta_{j k} I,} \tag{1.1}\\
& {\left[\hat{P}_{j}, \hat{P}_{k}\right]=i \eta_{j k} I} \tag{1.2}\\
& {\left[\hat{Q}_{j}, \hat{P}_{k}\right]=i \delta_{j k} I, \quad j, k=1, \cdots, n} \tag{1.3}
\end{align*}
$$

where $[A, B]:=A B-B A, i$ is the imaginary unit, and $\delta_{j k}$ is the Kronecker delta. We call this algebra the quantum phase space (QPS) or the non-commutative phase space with n degrees of freedom and parameter

$$
\begin{equation*}
\Lambda:=(\eta, \theta) . \tag{1.4}
\end{equation*}
$$

We denote it by $\operatorname{QPS}_{n}(\Lambda)$.
It is obvious that \hat{Q}_{j} and \hat{Q}_{k} (resp. \hat{P}_{j} and \hat{P}_{k}) with $j \neq k$ do not commute if and only if $\theta_{j k} \neq 0$ (resp. $\eta_{j k} \neq 0$). Hence the parameter Λ "measures" the non-commutativity of \hat{Q}_{j} 's and \hat{P}_{j} 's respectively. Moreover $\operatorname{QPS}_{n}(\Lambda)$ in the case $\theta=\eta=0$ reduces to the algebra of the CCR's with n degrees of freedom. Hence $\operatorname{QPS}_{n}(\Lambda)$ can be regarded as a deformation of the algebra of the CCR's with n degrees of freedom.

As a piece of work closely related to the present one, we mention only [19], where the following case is considered in a heuristic manner: $n=2$,

$$
\theta=\frac{a}{1+\frac{a b}{4}} \epsilon, \quad \eta=\frac{b}{1+\frac{a b}{4}} \epsilon
$$

($a>0$ and $b>0$ are constants) with

$$
\epsilon:=\left(\begin{array}{cc}
0 & 1 \tag{1.5}\\
-1 & 0
\end{array}\right) .
$$

Our QPS is a generalization of this QPS.
Let \mathcal{H} be a complex Hilbert space with inner product $\langle\cdot, \cdot\rangle$ (linear in the second variable) and norm $\|\cdot\|$. For a linear operator A, we denote its domain by $D(A)$. Let $\mathcal{D} \neq\{0\}$ be a subspace of \mathcal{H} (not necessarily dense in \mathcal{H}) and \hat{Q}_{j}, \hat{P}_{j} be symmetric operators on \mathcal{H}.

Definition 1.1 We say that the triple $\left(\mathcal{H}, \mathcal{D},\left\{\hat{Q}_{j}, \hat{P}_{j}\right\}_{j=1}^{n}\right)$ is a representation (on \mathcal{H}) of the algebra $\operatorname{QPS}_{n}(\Lambda)$ if $\mathcal{D} \subset \cap_{j, k=1}^{n} D\left(\hat{Q}_{j} \hat{Q}_{k}\right) \cap D\left(\hat{P}_{j} \hat{P}_{k}\right) \cap D\left(\hat{Q}_{j} \hat{P}_{k}\right) \cap D\left(\hat{P}_{j} \hat{Q}_{k}\right)$ and it satisfy (1.1)-(1.3) on \mathcal{D} with I being the identity on \mathcal{H} (we sometimes omit the identity I below).

If all \hat{Q}_{j} and $\hat{P}_{j}(j=1, \cdots, n)$ are self-adjoint, we say that the representation $(\mathcal{H}, \mathcal{D}$, $\left.\left\{\hat{Q}_{j}, \hat{P}_{j}\right\}_{j=1}^{n}\right)$ is self-adjoint.

In every representation $\left(\mathcal{H}, \mathcal{D},\left\{\hat{Q}_{j}, \hat{P}_{j}\right\}_{j=1}^{n}\right)$ of $\operatorname{QPS}_{n}(\Lambda)$, we have commutation relations (1.1)-(1.3) on \mathcal{D}. Hence the following Heisenberg uncertainty relations follow: for all $\psi \in \mathcal{D}$ with $\|\psi\|=1$ and $j, k=1, \cdots, n$,

$$
\begin{align*}
\left(\Delta \hat{Q}_{j}\right)_{\psi}\left(\Delta \hat{Q}_{k}\right)_{\psi} & \geq \frac{1}{2}\left|\theta_{j k}\right| \tag{1.6}\\
\left(\Delta \hat{P}_{j}\right)_{\psi}\left(\Delta \hat{P}_{k}\right)_{\psi} & \geq \frac{1}{2}\left|\eta_{j k}\right| \tag{1.7}\\
\left(\Delta \hat{Q}_{j}\right)_{\psi}\left(\Delta \hat{P}_{k}\right)_{\psi} & \geq \frac{1}{2}\left|\delta_{j k}\right| \tag{1.8}
\end{align*}
$$

where, for a symmetric operator A and a vector $\psi \in D(A)$ with $\|\psi\|=1$,

$$
(\Delta A)_{\psi}:=\|A-\langle\psi, A \psi\rangle\|,
$$

the uncertainty of A in the vector state ψ.
The outline of the present paper is as follows. In Section 2, we introduce a concept of normality of the parameter Λ. Using the Schrödinger representation of the CCR's with n degrees of freedom, we show that there exists a general class of self-adjoint representations of $\operatorname{QPS}_{n}(\Lambda)$ with Λ normal. We call each of them a quasi-Schrödinger representation of $\operatorname{QPS}_{n}(\Lambda)$. As a special case, we introduce a concept of Schrödinger representation of $\operatorname{QPS}_{n}(\Lambda)$. We also define regularity of Λ and show that, if Λ is regular, then the Schrödinger representation of the CCR's with n degrees of freedom can be recovered from a quasi-Schrödinger representation of $\operatorname{QPS}_{n}(\Lambda)$.

In Section 3, we show that there exists a general correspondence between representations of $\operatorname{QPS}_{n}(\Lambda)$ and those of the CCR's with n degrees of freedom.

Section 4 is concerned with irreducibility of representations of $\operatorname{QPS}_{n}(\Lambda)$. We formulate a sufficient condition for a representation of $\operatorname{QPS}_{n}(\Lambda)$ to be irreducible. As a corollary, we show that every quasi-Schrödinger representation of $\operatorname{QPS}_{n}(\Lambda)$ is irreducible.

In Section 5 we define a concept of Weyl representation of $\operatorname{QPS}_{n}(\Lambda)$ and prove that each Weyl representation of the CCR's with n degrees freedom produces a Weyl representation of $\operatorname{QPS}_{n}(\Lambda)$.

In Section 6 we show that every Weyl representation of $\operatorname{QPS}_{n}(\Lambda)$ on a separable Hilbert space with Λ regular is unitarily equivalent to a direct sum of a quasi-Schrödinger representation of $\operatorname{QPS}_{n}(\Lambda)$. This is a QPS version of the celebrated von Neumann uniqueness theorem on Weyl representations of the CCR's with n degrees of freedom [18].

In the last section, we consider representations of $\operatorname{QPS}_{n}(\Lambda)$ which are not unitarily equivalent to any direct sum of a quasi-Schrödinger representation of $\operatorname{QPS}_{n}(\Lambda)$. Concrete examples of such representations of $\operatorname{QPS}_{n}(\Lambda)$ are given.

In Appendix, we prove some general facts on self-adjoint operators by which generated strongly continuous one-parameter unitary groups obey Weyl type relations. They may have independent interests.

It would be interesting to develop operator theoretical or spectral analyses for operators constructed from representations of $\operatorname{QPS}_{n}(\Lambda)$. But, in the present paper, we do not investigate these aspects.

2 A Class of Self-Adjoint Representations of $\operatorname{QPS}_{n}(\Lambda)$ on $L^{2}\left(\mathbb{R}^{n}\right)$

In this section, we show that there exist self-adjoint representations of $\operatorname{QPS}_{n}(\Lambda)$ on $L^{2}\left(\mathbb{R}^{n}\right)$, the Hilbert space consisting of equivalence classes of square integrable Borel measurable functions on $\mathbb{R}^{n}=\left\{x=\left(x_{1}, \cdots, x_{n}\right) \mid x_{j} \in \mathbb{R}, j=1, \cdots, n\right\}$ (\mathbb{R} is the set of real numbers). This is done by using the Schrödinger representation of the CCR's with n degrees of freedom.

We denote by $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ the set of infinitely differentiable functions on \mathbb{R}^{n} with compact support.

Let $\left(L^{2}\left(\mathbb{R}^{n}\right), C_{0}^{\infty}\left(\mathbb{R}^{n}\right),\left\{q_{j}, p_{j}\right\}_{j=1}^{n}\right)$ be the Schrödinger representation of the CCR's with n degrees of freedom, namely, q_{j} is the multiplication operator by the j th variable x_{j} on $L^{2}\left(\mathbb{R}^{n}\right)$ and $p_{j}:=-i D_{j}$ with D_{j} being the generalized partial differential operator in x_{j} on $L^{2}\left(\mathbb{R}^{n}\right)$, so that

$$
\begin{align*}
& {\left[q_{j}, p_{k}\right]=i \delta_{j k}} \tag{2.1}\\
& {\left[q_{j}, q_{k}\right]=0, \quad\left[p_{j}, p_{k}\right]=0, \quad j, k=1, \cdots, n} \tag{2.2}
\end{align*}
$$

on the subspace $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
For linear operators L_{1}, \cdots, L_{M} on a Hilbert space $(M \in \mathbb{N})$, the domain of the sum $\sum_{m=1}^{M} L_{m}$ is defined by

$$
D\left(\sum_{m=1}^{M} L_{m}\right):=\cap_{m=1}^{M} D\left(L_{m}\right),
$$

as usual, unless otherwise stated.

Lemma 2.1 For all $a_{j}, b_{j} \in \mathbb{R}, j=1, \cdots, n, \sum_{j=1}^{n}\left(a_{j} p_{j}+b_{j} q_{j}\right)$ is essentially self-adjoint on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.

Proof. This fact may be well known. But, for completeness, we give a proof. Let $X:=\sum_{j=1}^{n}\left(a_{j} p_{j}+b_{j} q_{j}\right)$. Then $C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \subset D(X)$ and X is a symmetric operator. As is well known, the operator $N:=\sum_{j=1}^{n}\left(p_{j}^{2}+q_{j}^{2}\right)+1$ is self-adjoint with $N \geq 1$ and $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ is a core of N. It is easy to see that there exist constants $c, d>0$ such that

$$
\begin{aligned}
& \|X f\| \leq c\|N f\| \\
& |\langle X f, N f\rangle-\langle N f, X f\rangle| \leq d\left\|N^{1 / 2} f\right\|^{2}, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

Thus, by the Nelson commutator theorem (s.g., [14, Theorem X.37]), X is essentially self-adjoint on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.

For an n-tuple $L=\left(L_{1}, \cdots, L_{n}\right)$ of linear operators $L_{j}, j=1, \cdots, n$, on a Hilbert space and an $n \times n$ matrix $A=\left(A_{j k}\right)_{j, k=1, \cdots, n}$, we define the n-tuple $A L=\left((A L)_{1}, \cdots,(A L)_{n}\right)$ of linear operators by

$$
\begin{equation*}
(A L)_{j}:=\sum_{k=1}^{n} A_{j k} L_{k} \tag{2.3}
\end{equation*}
$$

We say that the parameter $\Lambda=(\theta, \eta)$ is normal if there exist $n \times n$ real matrices A, B, C and D satisfying

$$
\begin{align*}
& A^{\mathrm{t}} D-B^{\mathrm{t}} C=I_{n} \tag{2.4}\\
& A^{\mathrm{t}} B-B^{\mathrm{t}} A=\theta \tag{2.5}\\
& C^{\mathrm{t}} D-D^{\mathrm{t}} C=\eta \tag{2.6}
\end{align*}
$$

where I_{n} is the $n \times n$ unit matrix and ${ }^{\mathrm{t}} A$ denotes the transposed matrix of A.
For a normal parameter Λ with (2.4)-(2.6), we can define a $(2 n) \times(2 n)$ matrix:

$$
G:=\left(\begin{array}{cc}
A & B \tag{2.7}\\
C & D
\end{array}\right)
$$

Let

$$
K(\Lambda):=\left(\begin{array}{cc}
\theta & I_{n} \tag{2.8}\\
-I_{n} & \eta
\end{array}\right), \quad J_{n}:=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

Then we have

$$
\begin{equation*}
G J_{n}{ }^{\mathrm{t}} G=K(\Lambda) \tag{2.9}
\end{equation*}
$$

Conversely, if a $(2 n) \times(2 n)$ real matrix G of the form (2.7) satisfies (2.9), then A, B, C and D obey relations (2.4)-(2.6).

Thus Λ is normal if and only if there exists a $(2 n) \times(2 n)$ real matrix G satisfying (2.9). In that case, we call G a generating matrix of Λ.

We remark that, for a normal parameter Λ, its generating matrices are not unique. For example, if G is a generating matrix of Λ, then, for all orthogonal matrix M commuting with $K(\Lambda), M G$ is a generating matrix of Λ too.

Suppose that Λ is normal with (2.4)-(2.6). We set

$$
\begin{equation*}
\mathbf{q}=\left(q_{1}, \cdots, q_{n}\right), \quad \mathbf{p}=\left(p_{1}, \cdots, p_{n}\right) \tag{2.10}
\end{equation*}
$$

and define

$$
\begin{equation*}
\hat{\mathbf{q}}:=A \mathbf{q}+B \mathbf{p}, \quad \hat{\mathbf{p}}:=C \mathbf{q}+D \mathbf{p} . \tag{2.11}
\end{equation*}
$$

Then, by Lemma 2.1, the operators \hat{q}_{j} and $\hat{p}_{j}(j=1, \cdots, n)$ are essentially self-adjoint on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Hence their closures $\overline{\hat{q}}_{j}$ and $\overline{\hat{p}}_{j}$ are self-adjoint ${ }^{1}$. Moreover, we have the following result:

Theorem 2.2 The set $\left(L^{2}\left(\mathbb{R}^{n}\right), C_{0}^{\infty}\left(\mathbb{R}^{n}\right),\left\{\overline{\hat{q}}_{j}, \overline{\hat{p}}_{j}\right\}_{j=1, \cdots, n}\right)$ is a self-adjoint representation of $\operatorname{QPS}_{n}(\Lambda)$.

Proof. It is easy to see that \hat{q}_{j} and \hat{p}_{j} leave $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ invariant. Then, by direct computations using (2.1) and (2.2), we have

$$
\left[\hat{q}_{j}, \hat{q}_{k}\right]=i \sum_{\ell=1}^{n}\left(A_{j \ell} B_{k \ell}-B_{j \ell} A_{k \ell}\right)=i\left(A^{\mathrm{t}} B-B^{\mathrm{t}} A\right)_{j k}
$$

on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. By (2.5), the right hand side is equal to $i \theta_{j k}$ on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Similarly one can prove the other cases.

We call the representation $\left(L^{2}\left(\mathbb{R}^{n}\right), C_{0}^{\infty}\left(\mathbb{R}^{n}\right),\left\{\overline{\hat{q}}_{j}, \overline{\hat{p}}_{j}\right\}_{j=1, \cdots, n}\right)$ the quasi-Schrödinger representation of $\operatorname{QPS}_{n}(\Lambda)$ with generating matrix G of the form (2.7).

Remark 2.3 One can write

$$
\left(\begin{array}{c}
\hat{q}_{1} \tag{2.12}\\
\vdots \\
\hat{q}_{n} \\
\hat{p}_{1} \\
\vdots \\
\hat{p}_{n}
\end{array}\right)=G\left(\begin{array}{c}
q_{1} \\
\vdots \\
q_{n} \\
p_{1} \\
\vdots \\
p_{n}
\end{array}\right)
$$

on $\cap_{j=1}^{n} D\left(q_{j}\right) \cap D\left(p_{j}\right)$. Equation (2.9) is rewritten as follows:

$$
\begin{equation*}
G J_{n}{ }^{\dagger} G=J_{n}+\delta(\Lambda) \tag{2.13}
\end{equation*}
$$

with

$$
\delta(\Lambda):=\left(\begin{array}{ll}
\theta & 0 \tag{2.14}\\
0 & \eta
\end{array}\right) .
$$

[^0]Hence ${ }^{\mathrm{t}} G$ is symplectic if and only if $\delta(\Lambda)=0$ (i.e., $\theta=\eta=0$). Therefore the matrix $\delta(\Lambda)$ represents a difference from the symplectic relation. Note that the diagonal element θ (resp. η) of $\delta(\Lambda)$ gives the non-commutativity of \hat{q}_{j} 's (resp. \hat{p}_{k} 's) $(j, k=1, \cdots, n)$.

2.1 The Schrödinger representation of QPS

It may be interesting to consider a special case of Λ. Let $a \geq 0, b \geq 0$ be constants and

$$
\begin{equation*}
\xi:=\frac{1}{\sqrt{1+\frac{a b}{4}}} . \tag{2.15}
\end{equation*}
$$

Let γ be an $n \times n$ real anti-symmetric matrix satisfying

$$
\begin{equation*}
\gamma^{2}=-I_{n} \tag{2.16}
\end{equation*}
$$

Then the parameter

$$
\begin{equation*}
\Lambda_{\mathrm{S}}:=\left(\xi^{2} a \gamma, \xi^{2} b \gamma\right) \quad\left(\text { the case } \theta=\xi^{2} a \gamma, \eta=\xi^{2} b \gamma\right) \tag{2.17}
\end{equation*}
$$

is normal, since the matirix

$$
G_{\mathrm{S}}:=\left(\begin{array}{cc}
\xi I_{n} & -\frac{1}{2} \xi a \gamma \tag{2.18}\\
\frac{1}{2} \xi b \gamma & \xi I_{n},
\end{array}\right)
$$

is a generating matrix of Λ_{S}, as is easily checked. We denote $\overline{\hat{q}}_{j}$ and $\overline{\hat{p}}_{j}$ in the present case by $\hat{q}_{j}^{(\mathrm{S})}$ and $\hat{p}_{j}^{(\mathrm{S})}$ respectively:

$$
\begin{equation*}
\hat{q}_{j}^{(\mathrm{S})}:=\overline{\xi\left(q_{j}-\frac{1}{2} a(\gamma p)_{j}\right)}, \quad \hat{p}_{j}^{(\mathrm{S})}:=\overline{\left(p_{j}+\frac{1}{2} b(\gamma q)_{j}\right)}, \quad j=1, \cdots, n . \tag{2.19}
\end{equation*}
$$

As is seen, this representation is simple. We call this self-adjoint representation $\left(L^{2}\left(\mathbb{R}^{n}\right)\right.$, $\left.C_{0}^{\infty}\left(\mathbb{R}^{n}\right),\left\{\hat{q}_{j}^{(\mathrm{S})}, \hat{p}_{j}^{(\mathrm{S})}\right\}_{j=1, \cdots, n}\right)$ of $\operatorname{QPS}_{n}\left(\Lambda_{\mathrm{S}}\right)$ the Schrödinger representation of $\operatorname{QPS}_{n}\left(\Lambda_{\mathrm{S}}\right)$.

Example 2.4 Consider the case $n=2$ and let ϵ be the 2×2 matrix defined by (1.5). Define operators \hat{q}_{j} and $\hat{p}_{j}(j=1,2)$ on $L^{2}\left(\mathbb{R}^{2}\right)$ as follows:

$$
\hat{q}_{j}:=q_{j}(j=1,2), \quad \hat{p}_{1}: \overline{=\overline{p_{1}+\frac{B}{2} q_{2}}, \quad \hat{p}_{2}:=\overline{p_{2}-\frac{B}{2} q_{1}}, ~}
$$

where $B \in \mathbb{R} \backslash\{0\}$ is a constant. Then we have

$$
\left[\hat{q}_{j}, \hat{q}_{k}\right]=0, \quad\left[\hat{p}_{j}, \hat{p}_{k}\right]=i B \epsilon_{j k}, \quad\left[\hat{q}_{j}, \hat{p}_{k}\right]=i \delta_{j k}, \quad j, k=1,2,
$$

on $C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$. Hence the set $\left\{\hat{q}_{j}, \hat{p}_{j}\right\}_{j=1}^{2}$ in the present example is the Schrödinger representation of $\operatorname{QPS}_{2}(0, B \epsilon)$ (the case $\Lambda=(0, B \epsilon)$). As is well known, this representation appears in the two dimensional quantum system with a constant magnetic field B.

2.2 Reconstruction of the Schrödinger representation of the CCR's with n degrees of freedom

In this subsection, we consider reconstruction of q_{j} and p_{j} in terms of \hat{q}_{j} and \hat{p}_{j}. By (2.12), this problem may be reduced by the invertibility of the matrix G. From this point of view, we introduce a class of parameters Λ.

We say that Λ is regular if it is normal and has an invertible generating matrix. It follows from (2.9) that, if Λ is regular, then every generating matrix of Λ is invertible.

The next lemma characterizes the regularity of Λ :
Lemma 2.5 Let Λ be normal with a generating matrix G given by (2.7). Then Λ is regular if and only if $I_{n}+\theta \eta$ and $I_{n}+\eta \theta$ are invertible. In that case, G is invertible and

$$
{ }^{\mathrm{t}}\left(G^{-1}\right) J_{n} G^{-1}=-\left(\begin{array}{cc}
\left(I_{n}+\eta \theta\right)^{-1} \eta & -\left(I_{n}+\eta \theta\right)^{-1} \tag{2.20}\\
\left(I_{n}+\theta \eta\right)^{-1} & \left(I_{n}+\theta \eta\right)^{-1} \theta
\end{array}\right) .
$$

Proof. Throughout the proof, we set $K=K(\Lambda)$.
Suppose that Λ is regular. Then (2.9) implies that K is invertible. Let

$$
M_{1}:=\left(\begin{array}{cc}
\eta & -I_{n} \\
I_{n} & 0
\end{array}\right), \quad M_{2}:=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & \theta
\end{array}\right) .
$$

Then M_{1} and M_{2} are invertible. Hence $K M_{1}$ and $K M_{2}$ are invertible. On the other hand, by direct computations, we have

$$
K M_{1}=\left(\begin{array}{cc}
I_{n}+\theta \eta & -\theta \\
0 & I_{n}
\end{array}\right), \quad K M_{2}=\left(\begin{array}{cc}
I_{n} & 0 \\
\eta & I_{n}+\eta \theta
\end{array}\right) .
$$

For a square matrix M, we denote by $\operatorname{det} M$ the determinant of M. Then we have $0 \neq \operatorname{det}\left(K M_{1}\right)=\operatorname{det}\left(I_{n}+\theta \eta\right), 0 \neq \operatorname{det}\left(K M_{2}\right)=\operatorname{det}\left(I_{n}+\eta \theta\right)$, Thus $I_{n}+\theta \eta$ and $I_{n}+\eta \theta$ are invertible.

Conversely, suppose that $I_{n}+\theta \eta$ and $I_{n}+\eta \theta$ are invertible. By direct computations, we have

$$
K\left(\begin{array}{cc}
\eta & -I_{n} \\
I_{n} & \theta
\end{array}\right)=\left(\begin{array}{cc}
I_{n}+\theta \eta & 0 \\
0 & I_{n}+\eta \theta
\end{array}\right) .
$$

Hence

$$
\operatorname{det} K \operatorname{det}\left(\begin{array}{cc}
\eta & -I_{n} \\
I_{n} & \theta
\end{array}\right)=\operatorname{det}\left(I_{n}+\theta \eta\right) \operatorname{det}\left(I_{n}+\eta \theta\right) \neq 0,
$$

Therefore $\operatorname{det} K \neq 0$, implying that K is invertible. Then, by (2.9), $\operatorname{det} G \neq 0$. Hence G is invertible. Hence Λ is regular. Using (2.9) and $J_{n}^{-1}=-J_{n}$, we have

$$
\left({ }^{\mathrm{t}} G\right)^{-1} J_{n} G^{-1}=-K^{-1} .
$$

It is easy to see that

$$
K^{-1}=\left(\begin{array}{cc}
\left(I_{n}+\eta \theta\right)^{-1} \eta & -\left(I_{n}+\eta \theta\right)^{-1} \\
\left(I_{n}+\theta \eta\right)^{-1} & \left(I_{n}+\theta \eta\right)^{-1} \theta
\end{array}\right) .
$$

Thus (2.20) holds.
Let Λ be regular with a generating matrix G. Then we can write

$$
G^{-1}=\left(\begin{array}{ll}
F_{1} & F_{2} \tag{2.21}\\
F_{3} & F_{4}
\end{array}\right)
$$

where F_{1}, F_{2}, F_{3} and F_{4} are $n \times n$ real matrices.
Let

$$
\begin{equation*}
\hat{\mathbf{q}}:=\left(\hat{q}_{1}, \cdots, \hat{q}_{n}\right), \quad \hat{\mathbf{p}}:=\left(\hat{p}_{1}, \cdots, \hat{p}_{n}\right) . \tag{2.22}
\end{equation*}
$$

Theorem 2.6 The following equations hold:

$$
\begin{equation*}
\mathbf{q}=F_{1} \hat{\mathbf{q}}+F_{2} \hat{\mathbf{p}}, \quad \mathbf{p}=F_{3} \hat{\mathbf{q}}+F_{4} \hat{\mathbf{p}} . \tag{2.23}
\end{equation*}
$$

on $\cap_{j=1}^{n} D\left(q_{j}\right) \cap D\left(p_{j}\right)$.
Proof. By (2.12), we have

$$
\binom{\mathbf{q}}{\mathbf{p}}=\left(\begin{array}{ll}
F_{1} & F_{2} \\
F_{3} & F_{4}
\end{array}\right)\binom{\hat{\mathbf{q}}}{\hat{\mathbf{p}}}
$$

on $\cap_{j=1}^{n} D\left(q_{j}\right) \cap D\left(p_{j}\right)$. Hence (2.23) on $\cap_{j=1}^{n} D\left(q_{j}\right) \cap D\left(p_{j}\right)$ follows.
Theorem 2.6 also implies relations of matrix elements of G^{-1} :

Corollary 2.7

$$
\begin{align*}
& F_{1} \theta^{\mathrm{t}} F_{1}+F_{2} \eta^{\mathrm{t}} F_{2}+F_{1}{ }^{\mathrm{t}} F_{2}-F_{2}{ }^{\mathrm{t}} F_{1}=0, \tag{2.24}\\
& F_{3} \theta^{\mathrm{t}} F_{3}+F_{4} \eta^{\mathrm{t}} F_{4}+F_{3}{ }^{\mathrm{t}} F_{4}-F_{4}{ }^{\mathrm{t}} F_{3}=0, \tag{2.25}\\
& F_{1} \theta^{\mathrm{t}} F_{3}+F_{2} \eta^{\mathrm{t}} F_{4}+F_{1}^{\mathrm{t}} F_{4}-F_{2}^{\mathrm{t}} F_{3}=I_{n} . \tag{2.26}
\end{align*}
$$

Proof. Using (2.23), one needs only to compute $\left[q_{j}, q_{k}\right]=0$ (resp. $\left[p_{j}, p_{k}\right]=0,\left[q_{j}, p_{k}\right]=$ $i)$ on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Then one obtains (2.24) (resp. (2.25), (2.26)).

We now apply Theorem 2.6 to the Schrödinger representation $\left\{\hat{q}_{j}^{(\mathrm{S})}, \hat{p}_{j}^{(\mathrm{S})}\right\}_{j=1}^{n}$ of $\operatorname{QPS}_{n}\left(\Lambda_{\mathrm{S}}\right)$:
Corollary 2.8 Let a, b, ξ and γ be as in Subsection 2.1. Suppose that

$$
\begin{equation*}
\chi:=1-\frac{1}{4} a b \neq 0 . \tag{2.27}
\end{equation*}
$$

Then

$$
\begin{align*}
q_{j} & =\frac{1}{\xi \chi}\left(\hat{q}_{j}^{(\mathrm{S})}+\frac{1}{2} a\left(\gamma \hat{p}^{(\mathrm{S})}\right)_{j}\right), \tag{2.28}\\
p_{j} & =\frac{1}{\xi \chi}\left(\hat{p}_{j}^{(\mathrm{S})}-\frac{1}{2} b\left(\gamma \hat{q}^{(\mathrm{S})}\right)_{j}\right), \quad j=1, \cdots, n, \tag{2.29}
\end{align*}
$$

on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.

Proof. In the present case, we have

$$
I_{n}+\theta \eta=I_{n}+\eta \theta=\left(1-\xi^{4} a b\right) I_{n}=\xi^{4} \chi^{2} \neq 0 .
$$

Hence $I_{n}+\theta \eta$ and $I_{n}+\eta \theta$ are invertible. By (2.18), we have

$$
G_{\mathrm{S}}^{-1}=\frac{1}{\xi \chi}\left(\begin{array}{cc}
I_{n} & \frac{1}{2} a \gamma \\
-\frac{1}{2} b \gamma & I_{n}
\end{array}\right) .
$$

Thus (2.28) and (2.29) follow.

3 General Correspondence Between a Representation of $\operatorname{QPS}_{n}(\Lambda)$ and a Representation of the CCR's with n Degrees of Freedom

3.1 Construction of a representation of $\operatorname{QPS}_{n}(\Lambda)$ from a representation of the CCR's with n degrees of freedom

The contents in Section 2 suggest a general method to construct a representation of $\operatorname{QPS}_{n}(\Lambda)$ from a representation of the CCR's with n degrees of freedom.

Let $\left(\mathcal{H}, \mathcal{D},\left\{Q_{j}, P_{j}\right\}_{j=1}^{n}\right)$ be a representation of the CCR's with n degrees of freedom, namely, \mathcal{H} is a Hilbert space, \mathcal{D} is a dense subspace of \mathcal{H} and Q_{j} and $P_{j}(j=1, \cdots, n)$ are symmetric operators on \mathcal{H} such that $\mathcal{D} \subset \cap_{j, k=1}^{n} D\left(Q_{j} Q_{k}\right) \cap D\left(P_{j} P_{k}\right) \cap D\left(Q_{j} P_{k}\right) \cap D\left(P_{k} Q_{j}\right)$ and $\left\{Q_{j}, P_{j}\right\}_{j=1}^{n}$ obeys the CCR's with n degrees of freedom on \mathcal{D} : for $j, k=1, \cdots, n$,

$$
\begin{equation*}
\left[Q_{j}, Q_{k}\right]=0, \quad\left[P_{j}, P_{k}\right]=0, \quad\left[Q_{j}, P_{k}\right]=i \delta_{j k} \tag{3.1}
\end{equation*}
$$

on \mathcal{D}. Let

$$
\mathbf{Q}=\left(Q_{1}, \cdots, Q_{n}\right), \quad \mathbf{P}=\left(P_{1}, \cdots, P_{n}\right) .
$$

Let Λ be normal and A, B, C, D be $n \times n$ real matrices obeying (2.4)-(2.6). By an analogy with (2.11), we define the n-tuples

$$
\begin{equation*}
\hat{\mathbf{Q}}:=\left(\hat{Q}_{1}, \cdots, \hat{Q}_{n}\right), \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\mathbf{P}}:=\left(\hat{P}_{1}, \cdots, \hat{P}_{n}\right), \tag{3.3}
\end{equation*}
$$

by

$$
\begin{equation*}
\hat{\mathbf{Q}}:=A \mathbf{Q}+B \mathbf{P}, \quad \hat{\mathbf{P}}:=C \mathbf{Q}+D \mathbf{P} . \tag{3.4}
\end{equation*}
$$

Theorem 3.1 The $\operatorname{set}\left(\mathcal{H}, \mathcal{D},\left\{\hat{Q}_{j}, \hat{P}_{j}\right\}_{j=1}^{n}\right)$ defined by (3.4) is a representation of $\operatorname{QPS}_{n}(\Lambda)$.
Proof. The symmetry of \hat{Q}_{j} and \hat{P}_{j} follows from the density of \mathcal{D} and the symmetry of Q_{j} and $P_{j}(j=1, \cdots, n)$. Commutation relations (1.1)-(1.3) can be proved by direct computations.

We remark that the representation $\left(\mathcal{H}, \mathcal{D},\left\{\hat{Q}_{j}, \hat{P}_{j}\right\}_{j=1}^{n}\right)$ of $\operatorname{QPS}_{n}(\Lambda)$ is not necessarily self-adjoint even in the case where all Q_{j} and $P_{j}(j=1, \cdots, n)$ are self-adjoint.

As in the case of quasi-Schrödinger representations of $\operatorname{QPS}_{n}(\Lambda)$ discussed in Section 2, we have the following fact:

Theorem 3.2 Let Λ be regular with generating matrix G given by (2.7) and F_{1}, F_{2}, F_{3} and F_{4} be as in (2.21). Then

$$
\begin{align*}
& \mathbf{Q}=F_{1} \hat{\mathbf{Q}}+F_{2} \hat{\mathbf{P}}, \tag{3.5}\\
& \mathbf{P}=F_{3} \hat{\mathbf{Q}}+F_{4} \hat{\mathbf{P}} . \tag{3.6}
\end{align*}
$$

on \mathcal{D}.

3.2 Construction of a representation of the CCR's with n degrees of dreedom from a representation of $\operatorname{QPS}_{n}(\Lambda)$

We next consider constructing a representation of the CCR's with n degrees of freedom from a representation of $\operatorname{QPS}_{n}(\Lambda)$. A method for that is suggested by Theorem 3.2.

Let $\left(\mathcal{H}, \mathcal{D},\left\{\hat{Q}_{j}, \hat{P}_{j}\right\}_{j=1}^{n}\right)$ be a representation of $\operatorname{QPS}_{n}(\Lambda)$ on a Hilbert space \mathcal{H} with \mathcal{D} dense in \mathcal{H}. Throughout this subsection, we assume the following:
(A) The parameter Λ is regular with generating matrix G given by (2.7).

Let F_{1}, F_{2}, F_{3} and F_{4} be as in (2.21). Then we can define $\mathbf{Q}(\Lambda)=\left(Q_{1}(\Lambda), \cdots, Q_{n}(\Lambda)\right)$ and $\mathbf{P}(\Lambda)=\left(P_{1}(\Lambda), \cdots, P_{n}(\Lambda)\right)$ by

$$
\begin{align*}
& \mathbf{Q}(\Lambda):=F_{1} \hat{\mathbf{Q}}+F_{2} \hat{\mathbf{P}}, \tag{3.7}\\
& \mathbf{P}(\Lambda):=F_{3} \hat{\mathbf{Q}}+F_{4} \hat{\mathbf{P}} \tag{3.8}
\end{align*}
$$

Theorem 3.3 Assume (A). Then $\left(\mathcal{H}, \mathcal{D},\left\{Q_{j}(\Lambda), P_{j}(\Lambda)\right\}_{j=1}^{n}\right)$ is a representation of the $C C R$'s with n degrees of freedom.

Proof. The symmetry of $Q_{j}(\Lambda)$ and $P_{j}(\Lambda)$ is obvious. By direct computations using (1.1)-(1.3) and (2.24)-(2.26), one can show that $Q_{j}(\Lambda)$'s and $P_{k}(\Lambda)$'s satisfy the CCR's with n degrees of freedom.

The next theorem shows that every representation of $\operatorname{QPS}_{n}(\Lambda)$ with condition (A) comes from a representation of the CCR's with n degrees of freedom:

Theorem 3.4 Assume (A). Let $\mathbf{Q}(\Lambda)$ and $\mathbf{P}(\Lambda)$ be defined by (3.7) and (3.8) respectively. Then

$$
\begin{equation*}
\hat{\mathbf{Q}}=A \mathbf{Q}(\Lambda)+B \mathbf{P}(\Lambda), \quad \hat{\mathbf{P}}=C \mathbf{Q}(\Lambda)+D \mathbf{P}(\Lambda) \tag{3.9}
\end{equation*}
$$

on \mathcal{D}.
Proof. Direct computations.

4 Irreducibility

For a Hilbert space \mathcal{H}, we denote by $\mathrm{B}(\mathcal{H})$ the set of all bounded linear operators B on \mathcal{H} with $D(B)=\mathcal{H}$. Let A be a linear operator on \mathcal{H}. We say that A strongly commutes with $B \in \mathrm{~B}(\mathcal{H})$ if $B A \subset A B$ (i.e., for all $\psi \in D(A), B \psi \in D(A)$ and $B A \psi=A B \psi$). For a set A of linear operators on \mathcal{H}, we define

$$
\begin{equation*}
\mathrm{A}^{\prime}:=\{B \in \mathrm{~B}(\mathcal{H}) \mid B A \subset A B, \forall A \in \mathrm{~A}\} . \tag{4.1}
\end{equation*}
$$

We call A^{\prime} the strong commutant of A .
We say that A is irreducible if $A^{\prime}=\{c I \mid c \in \mathbb{C}\}(\mathbb{C}$ is the set of complex numbers).
Lemma 4.1 Let S be a self-adjoint operator on a Hilbert space \mathcal{H} and $B \in \mathrm{~B}(\mathcal{H})$ such that $B S \subset S B$. Then, for all $t \in \mathbb{R}, B e^{i t S}=e^{i t S} B$.

Proof. Let $C^{\infty}(S):=\cap_{n=1}^{\infty} D\left(S^{n}\right)$. Then, for all $\psi \in C^{\infty}(S)$ and all $n \in \mathbb{N}, B \psi$ is in $D\left(S^{n}\right)$ and $B S^{n} \psi=S^{n} B \psi$. Let $E_{S}(\cdot)$ be the spectral measure of S and

$$
\mathcal{D}_{0}:=\cup_{a \geq 0} \operatorname{Ran}\left(E_{S}([-a, a])\right),
$$

where, for a linear operator $A, \operatorname{Ran}(A)$ denotes the range of A. Then it is easy to see that \mathcal{D}_{0} is a dense subspace of \mathcal{H} satisfying $\mathcal{D}_{0} \subset C^{\infty}(S)$. For all $\phi, \psi \in \mathcal{D}_{0}, t \in \mathbb{R}$ and $N \in \mathbb{N}$, we have

$$
\left\langle B^{*} \phi, \sum_{n=0}^{N} \frac{(i t S)^{n}}{n!} \psi\right\rangle=\left\langle\sum_{n=0}^{N} \frac{(-i t S)^{n}}{n!} \phi, B \psi\right\rangle .
$$

Employing spectral representations on S and the Lebesgue dominated convergence theorem to take the limit $N \rightarrow \infty$, we obtain $\left\langle B^{*} \phi, e^{i t S} \psi\right\rangle=\left\langle e^{-i t S} \phi, B \psi\right\rangle$, which implies that $B e^{i t S} \psi=e^{i t S} B \psi$. Since \mathcal{D}_{0} is dense, the operator equality $B e^{i t S}=e^{i t S} B$ follows.

Theorem 4.2 Assume (A) in Subsection 3.2. Let $\left(\mathcal{H}, \mathcal{D},\left\{Q_{j}, P_{j}\right\}_{j=1}^{n}\right)$ be a representation of the CCR's with n degrees of freedom. Suppose that, for each $j=1, \cdots, n, Q_{j}$ and P_{j} are essentially self-adjoint on \mathcal{D} and $\left\{\bar{Q}_{j}, \bar{P}_{j}\right\}_{j=1}^{n}$ is irreducible. Then the representation $\left(\mathcal{H}, \mathcal{D},\left\{\overline{\hat{Q}}_{j}, \overline{\hat{P}}_{j}\right\}_{j=1}^{n}\right)$ of $\operatorname{QPS}_{n}(\Lambda)$ given by (3.4) is irreducible.

Proof. Let $B \in \mathrm{~B}(\mathcal{H})$ such that $B \overline{\hat{Q}}_{j} \subset \overline{\hat{Q}}_{j} B, \quad B \overline{\hat{P}}_{j} \subset \overline{\hat{P}}_{j} B, j=1, \cdots, n$. Let

$$
R_{j}:=\sum_{k=1}^{n}\left(\left(F_{1}\right)_{j k} \overline{\hat{Q}}_{k}+\left(F_{2}\right)_{j k} \overline{\hat{P}}_{k}\right) .
$$

Then, $B R_{j} \subset R_{j} B$. This implies that $B \bar{R}_{j} \subset \bar{R}_{j} B$. On the other hand, by Theorem 3.2, we have $Q_{j} \mid \mathcal{D} \subset R_{j}$. By this fact and the essential self-adjointness of Q_{j} on \mathcal{D}, we have $\bar{Q}_{j}=\bar{R}_{j}$. Therefore $B \bar{Q}_{j} \subset \bar{Q}_{j} B$. Similarly we can show that $B \bar{P}_{j} \subset \bar{P}_{j} B$. It follows from the irreducibility of $\left\{\bar{Q}_{j}, \bar{P}_{j}\right\}_{j=1}^{n}$ that $B=c I$ with some $c \in \mathbb{C}$. Thus the desired result follows.

We can apply Theorem 4.2 to the quasi-Schrödinger representation $\left\{\overline{\hat{q}}_{j}, \overline{\hat{p}}_{j}\right\}_{j=1}^{n}$ of $\operatorname{QPS}_{n}(\Lambda)$ discussed in Section 2.

Theorem 4.3 Assume (A). Then the representation $\left(L^{2}\left(\mathbb{R}^{n}\right), C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right.$, $\left.\left\{\overline{\hat{q}}_{j}, \overline{\hat{p}}_{j}\right\}_{j=1}^{n}\right)$ of $\operatorname{QPS}_{n}(\Lambda)$ is irreducible.

Proof. We need only to apply Theorem 4.2 to the case where $\mathcal{H}=L^{2}\left(\mathbb{R}^{n}\right), \mathcal{D}=$ $C_{0}^{\infty}\left(\mathbb{R}^{n}\right), Q_{j}=q_{j}, P_{j}=p_{j}, \hat{Q}_{j}=\hat{q}_{j}$ and $\hat{P}_{j}=\hat{p}_{j}$. It is well known that q_{j} and p_{j} are essentially self-adjoint on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\left\{q_{j}, p_{j}\right\}_{j=1}^{n}$ is irreducible. Hence, in the present case, the assumption of Theorem 4.2 is satisfied.

5 Weyl Representations of $\operatorname{QPS}_{n}(\Lambda)$

5.1 Definition and a basic fact

As is well known, a Weyl representation of the CCR's with n degrees of freedom on a Hilbert space \mathcal{H} is defined to be a set $\left\{Q_{j}, P_{j}\right\}_{j=1}^{n}$ of $2 n$ self-adjoint operators on \mathcal{H} obeying the Weyl relations:

$$
\begin{align*}
e^{i t Q_{j}} e^{i s P_{k}} & =e^{-i s t \delta_{j k}} e^{i s P_{k}} e^{i t Q_{j}}, \tag{5.1}\\
e^{i t Q_{j}} e^{i s Q_{k}} & =e^{i s Q_{k}} e^{i t Q_{j}}, \tag{5.2}\\
e^{i t P_{j}} e^{i s P_{k}} & =e^{i s P_{k}} e^{i t P_{j}}, \quad j, k=1, \cdots, n, s, t \in \mathbb{R} . \tag{5.3}
\end{align*}
$$

Based on an analogy with Weyl representations of CCR's, we introduce a concept of Weyl representation of $\operatorname{QPS}_{n}(\Lambda)$.

Definition 5.1 Let $\left\{\hat{Q}_{j}, \hat{P}_{j}\right\}_{j=1}^{n}$ be a set of self-adjoint operators on a Hilbert space \mathcal{H}. We say that $\left\{\hat{Q}_{j}, \hat{P}_{j}\right\}_{j=1}^{n}$ is a Weyl representation of $\operatorname{QPS}_{n}(\Lambda)$ if

$$
\begin{align*}
& e^{i t \hat{Q}_{j}} e^{i s \hat{P}_{k}}=e^{-i s t \delta_{j k}} e^{i s \hat{P}_{k}} e^{i t \hat{Q}_{j}} \tag{5.4}\\
& e^{i t \hat{Q}_{j}} e^{i s \hat{Q}_{k}}=e^{-i s t \theta_{j k}} e^{i s \hat{Q}_{k}} e^{i t \hat{Q}_{j}}, \tag{5.5}\\
& e^{i t \hat{P}_{j}} e^{i s \hat{P}_{k}}=e^{-i s t \eta_{j k}} e^{i s \hat{P}_{k}} e^{i t \hat{P}_{j}}, \quad j, k=1, \cdots, n, s, t \in \mathbb{R} . \tag{5.6}
\end{align*}
$$

We call these relations the deformed Weyl relations with parameter Λ.
One can write relations (5.4)-(5.6) in simpler form. Let

$$
\hat{A}_{j}:= \begin{cases}\hat{Q}_{j} ; & j=1, \cdots, n \tag{5.7}\\ \hat{P}_{j-n} ; & j=n+1, \cdots, 2 n\end{cases}
$$

and

$$
\alpha_{j k}:= \begin{cases}\theta_{j k} ; & j, k=1, \cdots, n \tag{5.8}\\ \eta_{(j-n)(k-n)} ; & j, k=n+1, \cdots, 2 n \\ \delta_{j(k-n)} ; & j=1, \cdots, n ; k=n+1, \cdots, 2 n \\ -\delta_{k(j-n)} ; & j=n+1, \cdots, 2 n ; k=1, \cdots, n\end{cases}
$$

Then (5.4)-(5.6) are equivalent to the following relations:

$$
\begin{equation*}
e^{i t \hat{A}_{j}} e^{i s \hat{A}_{k}}=e^{-i s t \alpha_{j k}} e^{i s \hat{A}_{k}} e^{i t \hat{A}_{j}}, \quad j, k=1, \cdots, 2 n . \tag{5.9}
\end{equation*}
$$

For a linear operator A on a Hilbert space, we denote its spectrum by $\sigma(A)$.
Proposition 5.2 Let $\left\{\hat{Q}_{j}, \hat{P}_{j}\right\}_{j=1}^{n}$ be a Weyl representation of $\operatorname{QPS}_{n}(\Lambda)$. Then it is a self-adjoint representation of $\operatorname{QPS}_{n}(\Lambda)$. Moreover, for each $j=1, \cdots, n, \hat{Q}_{j}$ and \hat{P}_{j} are purely absolutely continuous with

$$
\begin{equation*}
\sigma\left(\hat{Q}_{j}\right)=\mathbb{R}, \quad \sigma\left(\hat{P}_{j}\right)=\mathbb{R}, \quad j=1, \cdots, n . \tag{5.10}
\end{equation*}
$$

Proof. By (5.9), we can apply the results described in Appendix of the present paper. In the present context, we need only to take $N=2 n, a_{j k}=\alpha_{j k}$ and $A_{j}=\hat{A}_{j}$. By Proposition A.4-(iii) and Corollary A.5, there exists a dense subsapce \mathcal{D}_{0} such that $\mathcal{D}_{0} \subset$ $\cap_{\ell_{j} \geq 0, j=1, \cdots, 2 n} D\left(\hat{A}_{1}^{\ell_{1}} \hat{A}_{2}^{\ell_{2}} \cdots \hat{A}_{2 n}^{\ell_{2 n}}\right)$ and

$$
\begin{equation*}
\left[\hat{A}_{j}, \hat{A}_{k}\right]=i \alpha_{j k} \tag{5.11}
\end{equation*}
$$

on \mathcal{D}_{0}. This implies (1.1)-(1.3) on \mathcal{D}_{0}. Thus the first half of the proposition holds. The second half follows from Proposition A.1.

Remark 5.3 The converse of Proposition 5.2 does not hold. As we shall show later, there exists a self-adjoint representation of $\operatorname{QPS}_{n}(\Lambda)$ which is not a Weyl one.

Proposition 5.4 The set $\left\{e^{i t \hat{Q}_{j}}, e^{i t \hat{P}_{j}} \mid t \in \mathbb{R}, j=1, \cdots, n\right\}$ is irreducible if and only if so is $\left\{\hat{Q}_{j}, \hat{P}_{j}\right\}_{j=1}^{n}$.

Proof. A simple application of Corollary A.8.

5.2 A review of Weyl representations of CCR's

We say that two self-adjoint operators A and B on a Hilbert space strongly commute if their spectral measures commute. A set $\left\{S_{1}, \cdots, S_{n}\right\}$ of self-adjoint operators on a Hilbert space is said to be strongly commuting if, for all $j, k=1, \cdots, n$ with $j \neq k, S_{j}$ and S_{k} strongly commute.

For an n-tuple $\mathbf{L}=\left(L_{1}, \cdots, L_{n}\right)$ of linear operators $L_{j}(j=1, \cdots, n)$ on a Hilbert sapce and $\mathbf{a} \in \mathbb{R}^{n}$, we define

$$
\mathbf{a} \cdot \mathbf{L}:=\sum_{j=1}^{n} a_{j} L_{j} .
$$

Let $\left\{Q_{j}, P_{j}\right\}_{j=1}^{n}$ be a Weyl representation of the CCR's with n degrees of freedom on a Hilbert space \mathcal{H} and define operators T_{j} as follows:

$$
T_{j}:= \begin{cases}Q_{j} ; & j=1, \cdots, n \tag{5.12}\\ P_{j-n} ; & j=n+1, \cdots, 2 n\end{cases}
$$

and

$$
\Delta_{j k}:= \begin{cases}0 ; & j, k=1, \cdots, n \tag{5.13}\\ 0 ; & j, k=n+1, \cdots, 2 n \\ \delta_{j(k-n)} ; & j=1, \cdots, n ; k=n+1, \cdots, 2 n \\ -\delta_{k(j-n)} ; & j=n+1, \cdots, 2 n ; k=1, \cdots, n\end{cases}
$$

Then (5.1)-(5.3) are equivalent to the following relations:

$$
\begin{equation*}
e^{i t T_{j}} e^{i s T_{k}}=e^{-i s t \Delta_{j k}} e^{i s T_{k}} e^{i t T_{j}}, \quad j, k=1, \cdots, 2 n . \tag{5.14}
\end{equation*}
$$

Hence we can apply the facts proved in Appendix of the present paper to prove the following lemma:

Lemma 5.5 For all $\mathbf{a} \in \mathbb{R}^{n}$ and $\mathbf{b} \in \mathbb{R}^{n}$, the operator

$$
\begin{equation*}
\phi_{\mathbf{a}, \mathbf{b}}:=\overline{\mathbf{a} \cdot \mathbf{Q}+\mathbf{b} \cdot \mathbf{P}} . \tag{5.15}
\end{equation*}
$$

is self-adjoint and

$$
\begin{equation*}
e^{i \phi_{\mathbf{a}, \mathbf{b}}}=e^{i \mathbf{a} \cdot \mathbf{b} / 2} e^{i \bar{a} \cdot \mathbf{Q}} e^{i \overline{\mathbf{b}} \cdot \mathbf{P}}=e^{i\langle\mathbf{a}, \mathbf{b}\rangle / 2}\left(\prod_{j=1}^{n} e^{i a_{j} Q_{j}}\right)\left(\prod_{j=1}^{n} e^{i b_{j} P_{j}}\right) . \tag{5.16}
\end{equation*}
$$

Proof. We need only to apply Theorem A. 6 with $N=2 n$ and $A_{j}=T_{j}$; for (5.16), we use also the strong commutativity of $\left\{Q_{j}\right\}_{j=1}^{n}$ (resp. $\left\{P_{j}\right\}_{j=1}^{n}$) which follows from(5.2) $\left(\right.$ resp. (5.3)) ${ }^{2}$.

Lemma 5.6 For all $\mathbf{a}, \mathrm{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R}^{n}$,

$$
\begin{equation*}
e^{i \phi_{\mathbf{a}, \mathbf{b}}} e^{i \phi_{\mathbf{c}, \mathbf{d}}}=e^{-i(\mathbf{a} \cdot \mathbf{d}-\mathbf{b} \cdot \mathbf{c})} e^{i \phi_{\mathbf{c}, \mathbf{d}}} e^{i \phi_{\mathbf{a}, \mathbf{b}}} . \tag{5.17}
\end{equation*}
$$

Proof. One needs only to use (5.16) and (5.1)-(5.3).

5.3 Construction of a Weyl representation of $\operatorname{QPS}_{n}(\Lambda)$ from a Weyl representation of the CCR's with n degrees of freedom

Theorem 5.7 Let $\left\{Q_{j}, P_{j}\right\}_{j=1}^{n}$ be a Weyl representation of the CCR's with n degrees of freedom. Let Λ be normal with a generating matrix G of the form (2.7) and and let \hat{Q}_{j} and \hat{P}_{j} be defined by (3.4). Then $\left\{\overline{\hat{Q}}_{j}, \overline{\hat{P}}_{j}\right\}_{j=1}^{n}$ is a Weyl representation of $\operatorname{QPS}_{n}(\Lambda)$.

Proof. By Lemma 5.6, we have

$$
e^{i t \overline{\hat{Q}}_{j}} e^{i s \overline{\hat{Q}}_{k}}=e^{-i s t\left(\left(A^{t} B\right)_{j k}-\left(B^{t} A\right)_{j k}\right)} e^{i s \overline{\hat{Q}}_{k}} e^{i t \overline{\hat{Q}}_{j}} .
$$

By (2.5), we have

$$
\left(A^{\mathrm{t}} B\right)_{j k}-\left(B^{\mathrm{t}} A\right)_{j k}=\theta_{j k} .
$$

Hence (5.5) holds. Similarly one can prove (5.4) and (5.5).
It is well known that the Schrödinger representation $\left\{q_{j}, p_{j}\right\}_{j=1}^{n}$ of the CCR's with n degrees of freedom is an irreducible Weyl representation. Hence Theorem 5.7 immediately leads us to the following fact:

Corollary 5.8 Let Λ be normal with a generating matrix G of the form (2.7). Then the representation $\left\{\overline{\hat{q}}_{j}, \overline{\hat{p}}_{j}\right\}_{j=1}^{n}$ of $\operatorname{QPS}_{n}(\Lambda)$ is an irreducible Weyl representation of $\operatorname{QPS}_{n}(\Lambda)$.

6 Uniqueness Theorems on Weyl Representations of $\operatorname{QPS}_{n}(\Lambda)$

In this section we prove that, for each regular parameter Λ, every Weyl representation of $\operatorname{QPS}_{n}(\Lambda)$ on a separable Hilbert space is unitarily equivalent to a direct sum of a quasi-Schrödinger representation $\left\{\overline{\hat{q}}_{j}, \overline{\hat{p}}_{j}\right\}_{j=1}^{n}$ of $\operatorname{QPS}_{n}(\Lambda)$.

[^1]Theorem 6.1 Assume (A). Let $\left\{\hat{Q}_{j}, \hat{P}_{j}\right\}_{j=1}^{n}$ be a Weyl representation of $\operatorname{QPS}_{n}(\Lambda)$ on a separable Hilbert space \mathcal{H}. Then there exist closed subspaces \mathcal{H}_{ℓ} such that the following (i)-(iii) hold:
(i) $\mathcal{H}=\oplus_{\ell=1}^{N} \mathcal{H}_{\ell}(N$ is a positive integer or $\infty)$.
(ii) For each $j=1, \cdots, n, \hat{Q}_{j}$ and \hat{P}_{j} are reduced by each $\mathcal{H}_{\ell}, \ell=1, \cdots, N$. We denote by $\hat{Q}_{j}^{(\ell)}$ (resp. $\hat{P}_{j}^{(\ell)}$) the reduced part of \hat{Q}_{j} (resp. \hat{P}_{j}) to \mathcal{H}_{ℓ}.
(iii) For each ℓ, there exists a unitary operator $U_{\ell}: \mathcal{H}_{\ell} \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
U_{\ell} \hat{Q}_{j}^{(\ell)} U_{\ell}^{-1}=\overline{\hat{q}}_{j}, \quad U_{\ell} \hat{P}_{j}^{(\ell)} U_{\ell}^{-1}=\overline{\hat{p}}_{j}, \quad j=1, \cdots, n, \tag{6.1}
\end{equation*}
$$

where $\left\{\overline{\hat{q}}_{j}, \overline{\hat{p}}_{j}\right\}_{j=1}^{n}$ is the quasi-Schrödinger representation of $\operatorname{QPS}_{n}(\Lambda)$ defined by (2.11).

Proof. We define $Q_{j}(\Lambda)$ and $P_{j}(\Lambda)$ by (3.7) and (3.8) respectively. For simplicity, we put $Q_{j}:=Q_{j}(\Lambda)$ and $P_{j}:=P_{j}(\Lambda)$ throughout the proof. Note that Q_{j} and P_{j} can be written as follows:

$$
Q_{j}=\sum_{k=1}^{2 n} c_{j k} \hat{A}_{k}, \quad P_{j}=\sum_{k=1}^{2 n} d_{j k} \hat{A}_{k}, \quad j=1, \cdots, n,
$$

where \hat{A}_{j} is defined by (5.7) and

$$
\begin{align*}
& c_{j k}:= \begin{cases}\left(F_{1}\right)_{j k} & ; k=1, \cdots, n \\
\left(F_{2}\right)_{j(k-n)} & ; k=n+1, \cdots, 2 n\end{cases} \tag{6.2}\\
& d_{j k}:= \begin{cases}\left(F_{3}\right)_{j k} & ; k=1, \cdots, n \\
\left(F_{4}\right)_{j(k-n)} & ; k=n+1, \cdots, 2 n\end{cases} \tag{6.3}
\end{align*}
$$

Hence, by an application of Theorem A.6, Q_{j} and P_{j} are essentially self-adjoint and

$$
\begin{align*}
& e^{i t \bar{Q}_{j}}=e^{i t^{2} \sum_{k<\ell}^{2 n} \alpha_{k \ell} c_{j k} c_{j \ell} / 2} e^{i t c_{j_{1}} \hat{A}_{1}} \cdots e^{i t c_{j(2 n)} \hat{A}_{2 n}}, \tag{6.4}\\
& e^{i t \bar{P}_{j}}=e^{i t^{2} \sum_{k<\ell}^{2 n} \alpha_{k \ell} d_{j k} d_{j \ell} / 2} e^{i t d_{j 1} \hat{A}_{1}} \cdots e^{i t d_{j(2 n)} \hat{A}_{2 n}}, \quad t \in \mathbb{R} . \tag{6.5}
\end{align*}
$$

Using (5.9), we have for all $t, s \in \mathbb{R}$

$$
e^{i t \overline{Q_{⿹}^{j}}} e^{i s \bar{Q}_{k}}=e^{-i t s \sum_{h, g=1}^{2 n} \alpha_{h g} c_{j h} c_{k g}} e^{i s \bar{Q}_{k}} e^{i t \bar{Q}_{j}} .
$$

But, by the anti-symmetry of $\alpha_{h g}$ in h and $g, \sum_{h, g=1}^{2 n} \alpha_{h g} c_{j h} c_{k g}=0$. Hence

$$
e^{i t \bar{Q}_{j}} e^{i s \bar{Q}_{k}}=e^{i s \bar{Q}_{k}} e^{i t \bar{Q}_{j}} .
$$

Similarly we can show that

$$
e^{i t \bar{P}_{j}} e^{i s \bar{P}_{k}}=e^{i s \bar{P}_{k}} e^{i t \bar{P}_{j}} .
$$

As for $e^{i t \overline{Q_{j}}} e^{i s \bar{P}_{k}}$, we have

$$
e^{i t \bar{Q}_{j}} e^{i s \bar{P}_{k}}=e^{-i t s M_{j k}} e^{i s \bar{P}_{k}} e^{i t \bar{Q}_{j}}
$$

where

$$
M:=F_{1} \theta^{\mathrm{t}} F_{3}+F_{1}{ }^{\mathrm{t}} F_{4}-F_{2}{ }^{\mathrm{t}} F_{3}+F_{2} \eta^{\mathrm{t}} F_{4} .
$$

By (2.26), $M=I_{n}$. Hence

$$
e^{i t \bar{Q}_{j}} e^{i s \bar{P}_{k}}=e^{-i t s \delta_{j k}} e^{i s \bar{P}_{k}} e^{i t \bar{Q}_{j}}
$$

Thus $e^{i t \bar{Q}_{j}}$ and $e^{i s \bar{P}_{k}}(s, t \in \mathbb{R}, j, k=1, \cdots, n)$ obey the Weyl relations with n degrees of freedom. Namely $\left\{\bar{Q}_{j}, \bar{P}_{j}\right\}_{j=1}^{n}$ is a Weyl representation of the CCR's with n degrees of freedom. Hence, by the von Neumann uniqueness theorem (e.g.,[13, Theorem VIII.14]), there exist closed subspaces \mathcal{H}_{ℓ} such that the following (i)-(iii) hold:
(i) $\mathcal{H}=\oplus_{\ell=1}^{N} \mathcal{H}_{\ell}$ (N is a positive integer or ∞).
(ii) For each $j=1, \cdots, n$ and all $t \in \mathbb{R}$, $e^{i t \bar{Q}_{j}}$ and $e^{i t \bar{P}_{j}}$ leave each \mathcal{H}_{ℓ} invariant $(\ell=1, \cdots, N)$.
(iii) For each ℓ, there exists a unitary operator $U_{\ell}: \mathcal{H}_{\ell} \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
U_{\ell} e^{i t \bar{Q}_{j}} U_{\ell}^{-1}=e^{i t q_{j}}, \quad U_{\ell} e^{i t \bar{P}_{j}} U_{\ell}^{-1}=e^{i t p_{j}}, \quad t \in \mathbb{R}, j=1, \cdots, n \tag{6.6}
\end{equation*}
$$

By (3.9) and (5.16), we have

$$
\begin{align*}
& e^{i t \hat{Q}_{j}}=e^{i t^{2} \sum_{h=1}^{n} A_{j h} B_{j h} / 2}\left(\prod_{h=1}^{n} e^{i t A_{j h} \bar{Q}_{h}}\right)\left(\prod_{h=1}^{n} e^{i t B_{j h} \bar{P}_{h}}\right), \tag{6.7}\\
& e^{i t \hat{P}_{j}}=e^{i t^{2} \sum_{h=1}^{n} C_{j h} D_{j h} / 2}\left(\prod_{h=1}^{n} e^{i t C_{j h} \bar{Q}_{h}}\right)\left(\prod_{h=1}^{n} e^{i t D_{j h} \bar{P}_{h}}\right), \quad t \in \mathbb{R} . \tag{6.8}
\end{align*}
$$

Hence $e^{i t \hat{Q}_{j}}$ and $e^{i t \hat{P}_{j}}$ leave \mathcal{H}_{ℓ} invariant $(\ell=1, \cdots, n)$. Therefore \hat{Q}_{j} and \hat{P}_{j} are reduced by each \mathcal{H}_{ℓ}. We denote the reduced part of \hat{Q}_{j} (resp. \hat{P}_{j}) to \mathcal{H}_{ℓ} by $\hat{Q}_{j}^{(\ell)}$ (resp. $\hat{P}_{j}^{(\ell)}$). Then, by (6.6)-(6.8), we have

$$
U_{\ell} e^{i t \hat{Q}_{j}^{(\ell)}} U_{\ell}^{-1}=e^{i t \overline{\hat{q}}_{j}}, \quad U_{\ell} e^{i t \hat{P}_{j}^{(\ell)}} U_{\ell}^{-1}=e^{i t \hat{\bar{p}}_{j}}
$$

Thus (6.1) follows.
Theorem 6.1 tells us that, under the assumption there, every Weyl representation $\left\{\hat{Q}_{j}, \hat{P}_{j}\right\}_{j=1}^{n}$ of $\operatorname{QPS}_{n}(\Lambda)$ is unitarily equivalent to a direct sum of the quasi-Schrödinger representation $\left\{\overline{\hat{q}}_{j}, \overline{\hat{p}}_{j}\right\}_{j=1}^{n}$, because the operator

$$
U:=\oplus_{\ell=1}^{N} U_{\ell}: \mathcal{H} \rightarrow \oplus^{N} L^{2}\left(\mathbb{R}^{n}\right)
$$

is unitary and

$$
U \hat{Q}_{j} U^{-1}=\oplus^{N} \overline{\hat{q}}_{j}, \quad U \hat{P}_{j} U^{-1}=\oplus^{N} \overline{\hat{p}}_{j} .
$$

Theorem 6.1 and the irreducibility of the representation $\left\{\overline{\hat{q}}_{j}, \overline{\hat{p}}_{j}\right\}_{j=1}^{n}$ (Corollary 5.8) immediately lead us to the following fact:

Corollary 6.2 Assume (A). Let $\left\{\hat{Q}_{j}, \hat{P}_{j}\right\}_{j=1}^{n}$ be an irreducible Weyl representation of $\operatorname{QPS}_{n}(\Lambda)$ on a separable Hilbert space \mathcal{H}. Then there exists a unitary operator $W: \mathcal{H} \rightarrow$ $L^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
W \hat{Q}_{j} W^{-1}=\overline{\hat{q}}_{j}, \quad W \hat{P}_{j} W^{-1}=\overline{\hat{p}}_{j}, \quad j=1, \cdots, n
$$

Applying this corollary to the case where $\left\{\hat{Q}_{j}, \hat{P}_{j}\right\}_{j=1}^{n}$ is a quasi-Schrödinger representation of $\operatorname{QPS}_{n}(\Lambda)$, we obtain the following result:

Corollary 6.3 Let Λ be regular. Let G and G^{\prime} be two generating matrices of Λ : G is given by (2.7) and

$$
G^{\prime}=\left(\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right),
$$

where $A^{\prime}, B^{\prime}, C^{\prime}$ and D^{\prime} are $n \times n$ real matrices. Let $\left\{\overline{\hat{q}}_{j}^{\prime}, \overline{\hat{p}}_{j}^{\prime}\right\}_{j=1}^{n}$ be the quasi-Schrödinegr representation of $\operatorname{QPS}_{n}(\Lambda)$ with generating matrix G^{\prime} :

$$
\hat{\mathbf{q}}^{\prime}:=A^{\prime} \mathbf{q}+B^{\prime} \mathbf{p}, \quad \hat{\mathbf{p}}^{\prime}=C^{\prime} \mathbf{q}+D^{\prime} \mathbf{p}
$$

Then there exists a unitary operator $V: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
V \overline{\hat{q}}_{j}^{\prime} V^{-1}=\overline{\hat{q}}_{j}, \quad V \overline{\hat{p}}_{j}^{\prime} V^{-1}=\overline{\hat{p}}_{j}, \quad j=1, \cdots, n . \tag{6.9}
\end{equation*}
$$

Corollary 6.3 shows that, for each regular parameter Λ, quasi-Schrödinger representations of $\operatorname{QPS}_{n}(\Lambda)$ are unique up to unitary equivalences.

7 Non-Quasi-Schrödinger Representations of QPS

From representation theoretic points of view, it is interesting to investigate if there exists a self-adjoint representation of $\operatorname{QPS}_{n}(\Lambda)$ which is not unitarily equivalent to any direct sum of a quasi-Schrödinger representation $\left\{\hat{q}_{j}, \hat{p}_{j}\right\}_{j=1}^{n}$ of $\operatorname{QPS}_{n}(\Lambda)$. In this section, we show that there exist such representations of $\operatorname{QPS}_{n}(\Lambda)$.

We say that a representation of $\operatorname{QPS}_{n}(\Lambda)$ is non-quasi-Schrödinger (resp. non-Schrödinger) if it is not unitarily equivalent to any direct sum of a quasi-Schrödinegr (resp. the Schrödinegr) representation $\left\{\hat{q}_{j}, \hat{p}_{j}\right\}_{j=1}^{n}\left(\right.$ resp. $\left.\left\{\hat{q}_{j}^{(\mathrm{S})}, \hat{p}_{j}^{(\mathrm{S})}\right\}_{j=1}^{n}\right)$ of $\operatorname{QPS}_{n}(\Lambda)\left(\right.$ resp. $\left.\operatorname{QPS}_{n}\left(\Lambda_{\mathrm{S}}\right)\right)$.

7.1 A general case

Let $\left(\mathcal{H}, \mathcal{D},\left\{Q_{j}, P_{j}\right\}_{j=1}^{n}\right)$ be a self-adjoint representation of the CCR's with n degrees of freedom on a Hilbert space \mathcal{H} such that \mathcal{D} is dense in \mathcal{H} and a common core of Q_{j} and $P_{j}(j=1, \cdots, n)$. Let \hat{Q}_{j} and \hat{P}_{j} be defined by (3.4) $(j=1, \cdots, n)$.

Theorem 7.1 Assume (A). Suppose that $\left\{Q_{j}, P_{j}\right\}_{j=1}^{n}$ is not unitarily equivalent to any direct sum of the Schrödinger representation $\left\{q_{j}, p_{j}\right\}_{j=1}^{n}$. Then the representation $\left\{\overline{\hat{Q}}_{j}, \overline{\hat{P}}_{j}\right\}_{j=1}^{n}$ of $\operatorname{QPS}_{n}(\Lambda)$ is non-quasi-Schrödinger.

Proof. We have (3.5) and (3.6) on \mathcal{D}. Since \mathcal{D} is a core of Q_{j} and P_{j} by the present assumption, we have

$$
\begin{align*}
Q_{j} & =\overline{\sum_{k=1}^{n}\left(\left(F_{1}\right)_{j k} \hat{Q}_{k}+\left(F_{2}\right)_{j k} \hat{P}_{k}\right)}, \tag{7.1}\\
P_{j} & =\overline{\sum_{k=1}^{n}\left(\left(F_{3}\right)_{j k} \hat{Q}_{k}+\left(F_{4}\right)_{j k} \hat{P}_{k}\right)} . \tag{7.2}
\end{align*}
$$

Now suppose that there exists a unitary operator $U: \mathcal{H} \rightarrow \oplus^{N} L^{2}\left(\mathbb{R}^{n}\right)(N \in \mathbb{N}$ or $N=\infty)$ such that

$$
U \overline{\hat{Q}}_{j} U^{-1}=\oplus^{N} \hat{q}_{j}, \quad U \overline{\hat{P}}_{j} U^{-1}=\oplus^{N} \hat{p}_{j} .
$$

Then, by (7.1) and (7.2), we have

$$
\begin{aligned}
& U Q_{j} U^{-1}=\bigoplus^{N} \overline{\sum_{k=1}^{n}\left(\left(F_{1}\right)_{j k} \hat{q}_{k}+\left(F_{2}\right)_{j k} \hat{p}_{k}\right)}=\oplus^{N} q_{j}, \\
& U P_{j} U^{-1}=\bigoplus^{N} \overline{\sum_{k=1}^{n}\left(\left(F_{3}\right)_{j k} \hat{q}_{k}+\left(F_{4}\right)_{j k} \hat{p}_{k}\right)}=\oplus^{N} p_{j} .
\end{aligned}
$$

But this contradicts the present assumption.

7.2 Non-Schrödinger representations of QPS

Examples of non-Schrödinger representations of $\operatorname{QPS}_{n}\left(\Lambda_{\mathrm{S}}\right)$ can be constructed from those of CCR's with n degrees of freedom. For simplicity, we consider the case $n=2$ here and we take Λ_{S} as

$$
\Lambda_{\mathrm{S}}=\left(\xi^{2} a \epsilon, \xi^{2} b \epsilon\right),
$$

where ϵ is given by (1.5), $a>0, b>0$ and ξ is defined by (2.15). Let ($\mathcal{H}, \mathcal{D},\left\{Q_{j}, P_{j}\right\}_{j=1}^{2}$) be a self-adjoint representation of the CCR's with two degrees of freedom on a Hilbert space \mathcal{H} with \mathcal{D} dense in \mathcal{H}. Suppose that \mathcal{D} is a common core of Q_{j} and $P_{j}, j=1,2$ such
that Q_{1} (resp. Q_{2}) strongly commutes with P_{2} (resp. P_{1}). Then, by functional calculus of strongly commuting self-adjoint operators (e.g., [16, Theorem 9.1.2]), the operators

$$
\begin{array}{ll}
\hat{Q}_{1}:=\xi\left(Q_{1}-\frac{1}{2} a P_{2}\right), & \hat{Q}_{2}:=\xi\left(Q_{2}+\frac{1}{2} a P_{1}\right), \\
\hat{P}_{1}:=\xi\left(P_{1}+\frac{1}{2} b Q_{2}\right), & \hat{P}_{2}:=\xi\left(P_{2}-\frac{1}{2} b Q_{1}\right) .
\end{array}
$$

are essentially self-adjoint. Hence $\left\{\overline{\hat{Q}}_{j}, \overline{\hat{P}}_{j}\right\}_{j=1,2}$ is a self-adjoint representation of $\operatorname{QPS}_{2}\left(\Lambda_{\mathrm{S}}\right)$.
Corollary 7.2 Suppose that one of the following conditions holds:
(i) $\left(Q_{1}, P_{1}\right)$ is not a Weyl representation of the CCR with one degree of freedom.
(ii) $\left(Q_{2}, P_{2}\right)$ is not a Weyl representation of the CCR with one degree of freedom.
(iii) The operators Q_{1} and Q_{2} are not strongly commuting.
(iv) The operators P_{1} and P_{2} are not strongly commuting.

Then $\left\{\overline{\hat{Q}}_{j}, \overline{\hat{P}}_{j}\right\}_{j=1}^{2}$ is a non-Schrödinger representation of $\operatorname{QPS}_{2}\left(\Lambda_{\mathrm{S}}\right)$.
Proof. In each case of (i)-(iv), $\left\{Q_{j}, P_{j}\right\}_{j=1}^{2}$ is not a Weyl representation of the CCR'S with two degrees of freedom. Thus, by Theorem 7.1, the desired result follows.

Example 7.3 We consider the case where $\mathcal{H}=L^{2}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{aligned}
& Q_{1}:=\overline{q_{1}+\exp \left(-\sqrt{2 \pi} p_{1}\right)}, \quad P_{1}:=\overline{p_{1}+\exp \left(-\sqrt{2 \pi} q_{1}\right)}, \\
& Q_{2}:=q_{2}, \quad P_{2}:=p_{2}
\end{aligned}
$$

For $n \in\{0\} \cup \mathbb{N}, r>0$ and $c \in \mathbb{C}$, we define a function $f_{n, r, c}$ on \mathbb{R} by $f_{n, r, c}\left(x_{1}\right):=$ $x_{1}^{n} e^{-r x_{1}^{2}+c x_{1}}, x_{1} \in \mathbb{R}$. Let \mathcal{D} be the linear span of $\left\{f_{n, r, c} \otimes g \mid n \in\{0\} \cup \mathbb{N}, r>0, c \in\right.$ $\left.\mathbb{C}, g \in C_{0}^{\infty}(\mathbb{R})\right\}$. Then Q_{j} and $P_{j}(j=1,2)$ are essentially self-adjoint on \mathcal{D} and $\left(L^{2}\left(\mathbb{R}^{2}\right), \mathcal{D},\left\{Q_{j}, P_{j}\right\}_{j=1}^{2}\right)$ is a self-adjoint representation of the CCR's with two degrees of freedom [6]. It is obvious that Q_{1} (resp. Q_{2}) strongly commutes with P_{2} (resp. P_{1}). Fuglede [6] proved that $\left\{Q_{1}, P_{1}\right\}$ is not a Weyl representation. Hence condition (i) in Corollary 7.2 holds. Thus the corresponding representation $\left\{\overline{\hat{Q}}_{j}, \overline{\hat{P}}_{j}\right\}_{j=1}^{2}$ of $\operatorname{QPS}_{2}\left(\Lambda_{\mathrm{S}}\right)$ is non-Schrödinger.

Example 7.4 Let $\alpha_{1}, \cdots, \alpha_{N}(N \in \mathbb{N})$ be mutually distinct points in the complex plane \mathbb{C} and $f(z)$ be a holomorphic function on $\mathbb{C} \backslash\left\{\alpha_{n} \mid n=1, \cdots, N\right\}$ with possible poles at
$\alpha_{n}, n=1, \cdots, N$. Let a_{n} be the point in \mathbb{R}^{2} corresponding to α_{n} and $S:=\left\{a_{n} \mid n=\right.$ $1, \cdots, N\}$. Then one can define functions $A_{1}(x)$ and $A_{2}(x)$ on $M:=\mathbb{R}^{2} \backslash S$ by

$$
A_{1}(x):=\operatorname{Im} f\left(x_{1}+i x_{2}\right), \quad A_{2}(x):=\operatorname{Re} f\left(x_{1}+i x_{2}\right), \quad x=\left(x_{1}, x_{2}\right) \in M
$$

where, for $z \in \mathbb{C}, \operatorname{Re} z(\operatorname{resp} . \operatorname{Im} z)$ denotes the real (resp. imaginary) part of z. By the Cauchy-Riemann equation, we have

$$
\begin{equation*}
B(x):=\partial_{1} A_{2}(x)-\partial_{2} A_{1}(x)=0, \quad x \in M, \tag{7.3}
\end{equation*}
$$

where $\partial_{j}:=\partial / \partial x_{j}, j=1,2$. Since the Lebesgue measure of S is zero, each function A_{j} defines a self-adjoint multiplication operator on $L^{2}\left(\mathbb{R}^{2}\right)$; we denote it by the same symbol A_{j}. We can prove that, for all $\lambda \in \mathbb{R} \backslash\{0\}$, the operators

$$
P_{1}:=p_{1}-\lambda A_{1}, \quad P_{2}:=p_{2}-\lambda A_{2}
$$

are essentially self-adjoint on $C_{0}^{\infty}(M)$ ([1, Proposition 2.1]).
Let

$$
Q_{1}=q_{1}, \quad Q_{2}:=q_{2}
$$

acting in $L^{2}\left(\mathbb{R}^{2}\right)$. Then $\left(L^{2}\left(\mathbb{R}^{2}\right), C_{0}^{\infty}(M),\left\{Q_{j}, \bar{P}_{j}\right\}_{j=1}^{2}\right)$ is a self-adjoint representation of the CCR's with two degrees of freedom. It is easy to see that Q_{1} (resp. Q_{2}) strongly commutes with \bar{P}_{2} (resp. \bar{P}_{1}).

By (7.3), the line integral

$$
\gamma_{n}:=\int_{\left|x-a_{n}\right|=\varepsilon}\left(A_{1}(x) d x_{1}+A_{2}(x) d x_{2}\right)
$$

along the circle $\left|x-a_{n}\right|=\varepsilon$ with center a_{n} and radius $\varepsilon>0$ (the orientation is taken to be anticlockwise) is independent of ε sufficiently small. It can be shown that, if there exists an n such that $\gamma_{n} \notin 2 \pi \mathbb{Z} / \lambda$ (\mathbb{Z} is the set of integers), then \bar{P}_{1} and \bar{P}_{2} are not strongly commuting [1, Theorem 5.4]. Hence condition (iv) in Corollary 7.2 holds in the present case. Thus the corresponding representation $\left\{\overline{\hat{Q}}_{j}, \hat{\hat{P}}_{j}\right\}_{j=1}^{2}$ of $\operatorname{QPS}_{2}\left(\Lambda_{\mathrm{S}}\right)$ is non-Schrödinger.

Physically this example appears in a two dimensional quantum system with perpendicular magnetic field B concentrated on the set S in the distribution sense. In this context, $\left(A_{1}, A_{2}\right)$ represents a vector potential of B. The condition $\gamma_{n} \notin 2 \pi \mathbb{Z} / \lambda$ for some n corresponds to the occurrence of the so-called Aharonov-Bohm effect. Therefore the non-Schrödinger representation of $\operatorname{QPS}_{2}\left(\Lambda_{\mathrm{S}}\right)$ is connected with a physically interesting and important situation.

In a series of papers ([1] and references therein), the present author showed that there appear self-adjoint representations of the CCR's with two degrees of freedom in two-dimensional quantum systems with singular magnetic fields (the example discussed
above is one of them) and that, in each case, there is a correspondence between the occurrence of the Aharonov-Bohm effect and a non-Schrödingerness of the representation under consideration. The result derived above can be extended to a more general case.

A Some Properties of Self-Adjoint Operators Satisfying Relations of Weyl Type

Let $N \geq 2$ be an integer and $A_{j}(j=1, \cdots, N)$ be self-adjoint operators on a Hilbert space \mathcal{H} satisfying relations of Weyl type:

$$
\begin{equation*}
e^{i t A_{j}} e^{i s A_{k}}=e^{-i t s a_{j k}} e^{i s A_{k}} e^{i t A_{j}}, \quad t, s \in \mathbb{R}, j, k=1, \cdots, N, \tag{A.1}
\end{equation*}
$$

where $a_{j k}$'s are real constants. It follows that

$$
\begin{equation*}
a_{j k}=-a_{k j}, \quad j, k=1, \cdots, N . \tag{A.2}
\end{equation*}
$$

The unitarity of $e^{i t A_{j}}$ and functional calculus imply that

$$
\exp \left(i s e^{i t A_{j}} A_{k} e^{-i t A_{j}}\right)=\exp \left(i s\left(A_{k}-t a_{j k}\right)\right), \quad s, t \in \mathbb{R}
$$

Hence we have the operator equality

$$
\begin{equation*}
e^{i t A_{j}} A_{k} e^{-i t A_{j}}=A_{k}-t a_{j k}, \quad t \in \mathbb{R}, j, k=1, \cdots, N . \tag{A.3}
\end{equation*}
$$

For a linear operator A on a Hilbert space, we denote the spectrum of A by $\sigma(A)$.
Proposition A. 1 Suppose that there exists a pair (j, k) such that $a_{j k} \neq 0$ (hence $\left.j \neq k\right)$. Then

$$
\begin{equation*}
\sigma\left(A_{j}\right)=\mathbb{R}, \quad \sigma\left(A_{k}\right)=\mathbb{R} \tag{A.4}
\end{equation*}
$$

Moreover, A_{j} and A_{k} are purely absolutely continuous.
Proof. By (A.3) and the unitary invariance of spectrum, we have $\sigma\left(A_{k}\right)=\sigma\left(A_{k}-t a_{j k}\right)$ for all $t \in \mathbb{R}$. Since $a_{j k} \neq 0$, this implies the second equation of (A.4). By (A.2), we have $a_{k j} \neq 0$. Hence, by considering the case of (j, k) replaced by (k, j), we obtain the first equation of (A.4).

Relation (A.3) means that $\left(A_{k}, A_{j}\right)$ is a weak Weyl representation of the CCR with one degree of freedom [2]. Hence A_{j} is purely absolutely continuous [2, 12, 17]. Similarly we can show that A_{k} is purely absolutely continuous.

Proposition A. 2 Let j and k be fixed. Then, for all $\psi \in D\left(A_{j}\right) \cap D\left(A_{j} A_{k}\right), \psi$ is in $D\left(A_{k} A_{j}\right)$ and

$$
\begin{equation*}
\left[A_{j}, A_{k}\right] \psi=i a_{j k} \psi \tag{A.5}
\end{equation*}
$$

Proof. By (A.3), we have for all $\psi \in D\left(A_{k}\right)$

$$
\begin{equation*}
A_{k} e^{-i t A_{j}} \psi=e^{-i t A_{j}}\left(A_{k} \psi-t a_{j k} \psi\right) \tag{A.6}
\end{equation*}
$$

Let $\psi \in D\left(A_{j} A_{k}\right) \cap D\left(A_{j}\right)$. Then the right hand side of (A.6) is strongly differentiable in t with

$$
\frac{d}{d t} e^{-i t A_{j}}\left(A_{k} \psi-t a_{j k} \psi\right)=-i e^{-i t A_{j}} A_{j}\left(A_{k} \psi-t a_{j k} \psi\right)-e^{-i t A_{j}} a_{j k} \psi
$$

Hence so is the left hand side of (A.6). This implies that $A_{j} \psi$ is in $D\left(A_{k}\right)$ and

$$
\frac{d}{d t} A_{k} e^{-i t A_{j}} \psi=-i A_{k} A_{j} e^{-i t A_{j}} \psi
$$

Hence, considering the case $t=0$, we obtain

$$
-i A_{k} A_{j} \psi=-i A_{j} A_{k} \psi-a_{j k} \psi
$$

Thus the desired result follows.
For each function $f \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ and each vector $\psi \in \mathcal{H}$, we define a vector ψ_{f} by

$$
\begin{equation*}
\psi_{f}:=\int_{\mathbb{R}^{N}} f\left(t_{1}, \cdots, t_{N}\right) e^{i t_{1} A_{1}} \cdots e^{i t_{N} A_{N}} \psi d t_{1} \cdots d t_{N} \tag{A.7}
\end{equation*}
$$

where the integral on the right hand side is taken in the strong sense. We introduce

$$
\begin{equation*}
\mathcal{D}_{0}:=\operatorname{Span}\left\{\psi_{f} \mid \psi \in \mathcal{H}, f \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)\right\} \tag{A.8}
\end{equation*}
$$

where $\operatorname{Span}\{\cdots\}$ denotes the subspace algebraically spanned by the vectors in the set $\{\cdots\}$. It is easy to see that \mathcal{D}_{0} is dense in \mathcal{H}.

For $f: \mathbb{R}^{N} \rightarrow \mathbb{C}$, we set

$$
\|f\|_{1}:=\int_{\mathbb{R}^{N}}\left|f\left(t_{1}, \cdots, t_{N}\right)\right| d t_{1} \cdots d t_{N} .
$$

Lemma A. 3 Let $f_{n}, f \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that $\left\|f_{n}-f\right\|_{1} \rightarrow 0(n \rightarrow \infty)$. Then $\left\|\psi_{f_{n}}-\psi_{f}\right\| \rightarrow$ $0(n \rightarrow \infty)$.

Proof. Since $e^{i t_{j} A_{j}}$ is unitary, we have

$$
\left\|\psi_{f_{n}}-\psi_{f}\right\| \leq\left\|f_{n}-f\right\|_{1}\|\psi\| .
$$

Thus the desired result follows.

Proposition A. 4

(i) For all $t \in \mathbb{R}$ and $j=1, \cdots, N$, $e^{i t A_{j}}$ leaves \mathcal{D}_{0} invariant.
(ii) For each $j=1, \cdots, N$ and all $\ell \in \mathbb{N}, \mathcal{D}_{0} \subset D\left(A_{j}^{\ell}\right)$ with

$$
\begin{equation*}
A_{j}^{\ell} \psi_{f}=(-i)^{\ell} \psi_{F_{j}^{e}(f)}, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) \tag{A.9}
\end{equation*}
$$

where $F_{j}: C_{0}^{\infty}\left(\mathbb{R}^{N}\right) \rightarrow C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is defined by

$$
\begin{equation*}
F_{j}(f):=-\partial_{j} f-i \sum_{k=1}^{j-1} a_{j k} t_{k} f, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) \tag{A.10}
\end{equation*}
$$

and F_{j}^{ℓ} is the ℓ times composition of F_{j}
(iii) For all $\ell_{1}, \cdots, \ell_{N} \in \mathbb{N} \cup\{0\}$, $\mathcal{D}_{0} \subset D\left(A_{1}^{\ell_{1}} A_{2}^{\ell_{2}} \cdots A_{N}^{\ell_{N}}\right)$ and

$$
\begin{equation*}
A_{1}^{\ell_{1}} A_{2}^{\ell_{2}} \cdots A_{N}^{\ell_{N}} \psi_{f}=\psi_{F_{1}^{\ell_{1}} \cdots F_{N}^{\ell_{N}}(f)}, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) \tag{A.11}
\end{equation*}
$$

Proof. (i) Let ψ_{f} be as above. Then we have

$$
e^{i t A_{j}} \psi_{f}=\int_{\mathbb{R}^{N}} f\left(t_{1}, \cdots, t_{N}\right) e^{i t A_{j}} e^{i t_{1} A_{1}} \cdots e^{i t_{N} A_{N}} \psi d t_{1} \cdots d t_{N} .
$$

By (A.1), we have

$$
e^{i t A_{j}} e^{i t_{1} A_{1}} \cdots e^{i t_{N} A_{N}}=e^{-i t \sum_{k=1}^{j-1} a_{j k} t_{k}} e^{i t_{1} A_{1}} \cdots e^{i t_{j-1} A_{j-1}} e^{i\left(t_{j}+t\right) A_{j}} e^{i t_{j+1} A_{j+1}} \cdots e^{i t_{N} A_{N}}
$$

Hence

$$
e^{i t A_{j}} \psi_{f}=\int_{\mathbb{R}^{N}} f\left(t_{1}, \cdots, t_{j-1}, t_{j}-t, t_{j+1}, \cdots, t_{N}\right) e^{-i t \sum_{k=1}^{j-1} a_{j k} t_{k}} e^{i t_{1} A_{1}} \cdots e^{i t_{N} A_{N}} \psi d t_{1} \cdots d t_{N} .
$$

We define $f_{j}^{(t)}: \mathbb{R}^{N} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
f_{j}^{(t)}\left(t_{1}, \cdots, t_{N}\right):=f\left(t_{1}, \cdots, t_{j-1}, t_{j}-t, t_{j+1}, \cdots, t_{N}\right) e^{-i t \sum_{k=1}^{j-1} a_{j k} t_{k}} \tag{A.12}
\end{equation*}
$$

It is easy to see that $f_{j}^{(t)}$ is in $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ and

$$
\begin{equation*}
e^{i t A_{j}} \psi_{f}=\psi_{f_{j}^{(t)}} \in \mathcal{D}_{0} \tag{A.13}
\end{equation*}
$$

Thus $e^{i t A_{j}}$ leaves \mathcal{D}_{0} invariant.
(ii) By (A.13), we have for $t \in \mathbb{R} \backslash\{0\}$

$$
\frac{\left(e^{i t A_{j}}-1\right) \psi_{f}}{t}=\psi_{\left(f_{j}^{(t)}-f\right) / t^{\prime}}
$$

It is easy to see that $\left\|\left(f_{j}^{(t)}-f\right) / t-F_{j}(f)\right\|_{1} \rightarrow 0(t \rightarrow 0)$. Hence, by Lemma A.3,

$$
\lim _{t \rightarrow 0} \frac{\left(e^{i t A_{j}}-1\right) \psi_{f}}{t}=\psi_{F_{j}(f)} .
$$

Therefore ψ_{f} is in $D\left(A_{j}\right)$ and $i A_{j} \psi_{f}=\psi_{F_{j}(f)}$. Hence (A.9) with $\ell=1$ holds. Then one can prove (A.9) by induction.
(iii) This easily follows from (ii).

Corollary A. 5 We have

$$
\begin{equation*}
\left[A_{j}, A_{k}\right]=i a_{j k}, \quad j, k=1, \cdots, N \tag{A.14}
\end{equation*}
$$

on \mathcal{D}_{0}.
Proof. This follows from Proposition A. 2 and Proposition A.4.

Theorem A. 6 For all $c_{j} \in \mathbb{R}, j=1, \cdots, N, \sum_{j=1}^{N} c_{j} A_{j}$ is essentially self-adjoint on \mathcal{D}_{0} and

$$
\begin{equation*}
e^{i t \overline{\sum_{j=1}^{N} c_{j} A_{j}}}=e^{i t^{2} \sum_{j<k}^{N} a_{j k} c_{j} c_{k} / 2} e^{i t c_{1} A_{1}} e^{i t c_{2} A_{2}} \cdots e^{i t c_{N} A_{N}} . \tag{A.15}
\end{equation*}
$$

Proof. For each $t \in \mathbb{R}$, we define an operator $U(t)$ by

$$
U(t):=e^{i t^{2} \sum_{j<k}^{N} a_{j k} c_{j} c_{k} / 2} e^{i t c_{1} A_{1}} e^{i t c_{2} A_{2}} \cdots e^{i t c_{N} A_{N}} .
$$

By using (A.1), one can show that $\{U(t)\}_{t \in \mathbb{R}}$ is a strongly continuous one-parameter unitary group. Hence, by the Stone theorem, there exists a unique self-adjoint operator A on \mathcal{H} such that

$$
U(t)=e^{i t A}, \quad t \in \mathbb{R}
$$

By Proposition A.4-(i), $U(t)$ leaves \mathcal{D}_{0} invariant. In the same manner as in the proof of Proposition A.4-(ii), (iii), one can show that, for all $\psi \in \mathcal{D}_{0}, U(t) \psi$ is strongly differentiable in t and

$$
\left.\frac{d U(t) \psi}{d t}\right|_{t=0}=i \sum_{j=1}^{N} c_{j} A_{j} \psi
$$

Hence \mathcal{D}_{0} is a core of A (e.g., [13, Theorem VIII.10]) and $A \psi=\sum_{j=1}^{N} c_{j} A_{j} \psi$. Thus the desired result follows.

Finally we give a remark on irreducibility of the set $\left\{e^{i t A_{j}} \mid t \in \mathbb{R}, j=1, \cdots, N\right\}$. There is a general fact on irreducibility of a set consisting of strongly continuous one-parameter unitary groups:

Proposition A. 7 Let S_{1}, \cdots, S_{N} be self-adjoint operators on a Hilbert space. Then the set $\left\{e^{i t S_{j}} \mid t \in \mathbb{R}, j=1, \cdots, N\right\}$ is irreducible if and only if so is $\left\{S_{j} \mid j=1, \cdots, N\right\}$.

Proof. Suppose that $\left\{e^{i t S_{j}} \mid t \in \mathbb{R}, j=1, \cdots, N\right\}$ is irreducible. Let $B \in \mathrm{~B}(\mathcal{H})$ be an operator such that $B S_{j} \subset S_{j} B, j=1, \cdots, N$. Then, by Lemma 4.1, we have $e^{i t S_{j}} B=$ $B e^{i t S_{j}}$ for all $t \in \mathbb{R}$ and $j=1, \cdots, N$. Hence $B=c I$ with some $c \in \mathbb{C}$. Thus $\left\{S_{j} \mid j=\right.$ $1, \cdots, N\}$ is irreducible.

Conversely, suppose that $\left\{S_{j} \mid j=1, \cdots, N\right\}$ is irreducible. Let $B \in \mathrm{~B}(\mathcal{H})$ be an operator such that $e^{i t S_{j}} B=B e^{i t S_{j}}$ for all $t \in \mathbb{R}$ and $j=1, \cdots, N$. For each $\psi \in \mathcal{H}$, we put $f_{\psi}(t):=e^{i t S_{j}} B \psi, g_{\psi}(t):=B e^{i t S_{j}} \psi$. Then we have $f_{\psi}(t)=g_{\psi}(t)$. Let ψ be in $D\left(S_{j}\right)$. Then $g_{\psi}(t)$ is strongly differentiable in t with $d g_{\psi}(t) / d t=i B S_{j} e^{i t S_{j}} \psi$. Hence $f_{\psi}(t)$ also is strongly differentiable in t, which implies that $B \psi \in D\left(S_{j}\right)$ and $d f_{\psi}(t) / d t=i e^{i t S_{j}} S_{j} B \psi$. Considering the case $t=0$, we obtain $B S_{j} \subset S_{j} B, j=1, \cdots, N$. Hence $B=c I$ with some $c \in \mathbb{C}$. Thus $\left\{e^{i t S_{j}} \mid t \in \mathbb{R}, j=1, \cdots, N\right\}$ is irreducible.

As a corollary of Proposition A.7, we have the following fact:
Corollary A. 8 The set $\left\{e^{i t A_{j}} \mid t \in \mathbb{R}, j=1, \cdots, N\right\}$ is irreducible if and only if so is $\left\{A_{j} \mid j=1, \cdots, N\right\}$.

Acknowledgement

This work is supported by the Grant-In-Aid No. 21540206 for Scientific Research from Japan Society for the Promotion of Science (JSPS).

References

[1] A. Arai, Representation-theoretic aspects of two-dimensional quantum systems in singular vector potentials: canonical commutation relations, quantum algebras, and reduction to lattice quantum systems, J. Math. Phys. 39 (1998), 2476-2498.
[2] A. Arai, Generalized weak Weyl relation and decay in quantum dynamics, Rev. Math. Phys. 17 (2005), 1-39.
[3] D. Bahns, S. Doplicher, K. Fredenhagen and G. Piacitelli, Field theory on noncommutative spacetimes: Quasiplanar Wick products, Phys. Rev. Lett. D 71 (2005), 025022(1-12).
[4] S. Dulat and K. Li, The Aharonov-Casher effect for spin-1 particles in noncommutative quantum mechanics, Eur. Phys. J C 54 (2008), 333-337.
[5] S. Doplicher, K. Fredenhagen and J. E. Roberts, The quantum structure of spacetime at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995), 187-220.
[6] B. Fuglede, On the relation $P Q-Q P=-i I$, Math. Scand. 20 (1967), 79-88.
[7] H. Grosse and M. Wohlgenannt, Induced gauge theory on a noncommutative space, Eur. Phys. J. C 52 (2007), 435-450.
[8] Y. Habara, A new approach to scalar field theory on noncommutative space, Prog. Theor. Phys. 107 (2002), 211-230.
[9] L. Jonke and S. Meljanac, Representations of non-commutative quantum mechanics and symmetries, Eur. Phys. J C 29 (2003), 433-439.
[10] K. Li and J. Wang, The topological AC effect on non-commutative phase space, Eur. Phys. J. C 50 (2007), 1007-1011.
[11] Y.-G. Miao, H. J. W. Müller-Kirsten and D. K. Park, Chiral bosons in noncommutative spacetime, J. High Energy Phys. 08 (2003), 038.
[12] M. Miyamoto, A generalized Weyl relation approach to the time operator and its connection to the survival probability, J. Math. Phys. 42 (2001), 1038-1052.
[13] M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press, New York, 1972.
[14] M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.
[15] L. R. Riberio, E. Passos, C. Furtado and J. R. Nascimento, Landau analog levels for dipoles in non-commutative space and phase space, Eur. Phys. J. C 56 (2008), 597-606.
[16] K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Birkhäuser, Basel, 1990.
[17] K. Schmüdgen, On the Heisenberg commutation relation. I, J. Funct. Anal. 50 (1983), 8-49.
[18] J. von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. 104 (1931), 570-578.
[19] J.-Z. Zhang, Consistent deformed bosonic algebra in noncommutative quantum mechanics, Int. J. Mod. Phys. A 23(2008), 1393-1403.

[^0]: ${ }^{1}$ For a closable linear operator T, we denote its closure by \bar{T}.

[^1]: ${ }^{2}$ An application of a criterion for strong commutativity of self-adjoint operators (e.g., [13, Theorem VIII.13]).

