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Abstract

We extend the Bargmann tranform to the magnetic pseudodifferential calculus, using gauge-covariant families
of coherent states. We also introduce modulation mappings, a first step towards adapting modulation spaces to
the magnetic case. 1

Introduction

Recent publications [19, 24, 25, 27, 17, 2] introduced and developed a mathematical formalism for the quantiza-
tion of physical systems with variable magnetic fields. We would like now to complete the picture, sketching the
connection with coherent states, the Bargmann transform and a suitable version of the modulation mapping.

Classically, the magnetic field changes the geometry of the phase-space. This is realized by a modification
of the standard symplectic form and, consequently, of the Poisson algebra structure of the smooth functions
on phase-space, interpreted as classical observables. Correspondingly, at the quantum level, one introduces
[19, 24, 26] algebras of observables defined only in terms of the magnetic field, no choice of a vector potential
being needed. The main new object is a composition law on symbols defined by fluxes of the magnetic field
through triangles.

To get self-adjoint operators and a Hilbert space theory, the resulting algebras are represented in Hilbert
spaces; this is done by choosing vector potentials defining the magnetic field. In such a way one gets essentially
a new pseudodifferential calculus ([24, 17, 18]), seen as a functional calculus for the family of non-commuting
operators composed of positions and magnetic momenta. When no magnetic field is present, it coincides with
the Weyl quantization. One of its main virtue is gauge-covariance: equivalent choices of vector potentials lead
to unitarily equivalent representations. We stress that this property is not shared by doing a minimal coupling
modification of the symbol in the usual Weyl calculus.

Both the intrinsic and the represented version admit C∗-algebraic reformulations ([27, 24]). They were useful
in the spectral analysis of magnetic Schrödinger operators, cf. [28, 23] for instance.

One of the purposes of this article is to define and study a modulation mapping in the setting of the magnetic
quantum formalism. The main application of this magnetic modulation mapping would be inducing useful new
function spaces on Ξ from known function spaces on Ξ× Ξ. This will be done in a future publication.

Modulation spaces are Banach function spaces introduced long ago by H. Feichtinger [5, 6]. By definition,
they involve norm estimates on a certain family of transformations of the function one studies, defined on Rn or
on a locally compact abelian group. Modulation spaces evolved especially in connection with Time Frequency
Analysis, Gabor Frames and Signal Processing Theory. In [30], J. Sjöstrand discovered the importance of one
of these spaces in the theory of pseudodifferential operators, cf. also [31]. Then the interconnection between
modulation spaces and pseudodifferential theory developed considerably, as a result both of ”the Vienna school”
and other researchers. We cite, without any claim of completeness, [3, 4, 7, 9, 10, 11, 12, 14, 16, 32]. Other
important works are cited in these articles.

∗Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago Chile. Email: Marius.Mantoiu@imar.ro
†Institute of Mathematics Simion Stoilow of the Romanian Academy, P.O. Box 1-764, Bucharest, RO-70700, Romania. Email:

Radu.Purice@imar.ro
12000 Mathematics Subject Classification: 35S05, 47L15, 47L65, 47L90
Key Words: Magnetic field, pseudodifferential operator, phase space, modulation mapping, crossed product algebra, coherent

states, Bargmann transform

1



To define modulation spaces, one introduces first a transformation (the Short Time Fourier Transform) from
functions defined on the phase space Ξ = R2N to functions defined on Ξ×Ξ; we are going to indicate in Section
2 a magnetic analog of this transformation. Since we are mainly interested in its behavior with respect to
symbol composition, we deviate to a certain extent from the standard approach; so our definition could have
some interest even in the non-magnetic case. We show that this transformation is isometric between L2-spaces
and it transforms the magnetic analog of the Weyl composition law into the multiplication in a typical crossed
product algebra, which can also be seen as the Kohn-Nirenberg composition for symbols defined in Ξ× Ξ.

In Section 3 we show that our modulation mapping is an intrinsic counter-part of the transformation sending
operators from the Schrödinger representation to the magnetic Bargmann representation. This one is induced
by a proper choice of a family of coherent states; for the standard case as well as for many generalizations we
refer to [1, 8, 15, 22] and to the references therein. Our result says that magnetic Weyl operators can be seen as
representations of a crossed product algebra or as usual Kohn-Nirenberg operators defined in R2N . The symbols
of these Kohn-Nirenberg operators are computed from the magnetic Weyl symbol by applying the magnetic
modulation mapping followed by a partial Fourier transform.
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1 Recall of the magnetic Weyl calculus

In this Section we recall the structure of the observable algebras of a particle in a variable magnetic field. We
follow the references [24], [26] and [17], which contain further details and technical developments.

The physical system we consider consists in a spin-less particle moving in the euclidean space X := RN

under the influence of a magnetic field. We denote by X ∗ the dual space of X . The duality is given simply
by X × X ∗ 3 (x, ξ) 7→ x · ξ. The phase space Ξ := T ∗X ≡ X × X ∗, containing points X = (x, ξ), Y = (y, η),
Z = (z, ζ), is endowed with the standard symplectic form

σ(X,Y ) ≡ σ[(x, ξ), (y, η)] := y · ξ − x · η.

The magnetic field is a continuous closed 2-form B on X (dB = 0), given by matrix-component functions
Bjk = −Bkj : X → R, j, k = 1, . . . , N. It defines quantum observable composition in terms of its fluxes through
triangles. If a, b, c ∈ X , then we denote by < a, b, c > the triangle in X of vertices a, b and c and set

ΓB(< a, b, c >) :=
∫

<a,b,c>

B

for the flux of B through it (invariant integration of a 2-form through a 2-simplex). Then the formula

(
f#Bg

)
(X) := π−2N

∫

Ξ

dY

∫

Ξ

dZ exp [−2iσ(X − Y,X − Z)]× (1.1)

× exp
[−iΓB(< x− y + z, y − z + x, z − x + y >)

]
f(Y )g(Z)

defines a formal associative composition law on functions f, g : Ξ → C.
The formula (1.1) makes sense and have nice properties under various circumstances. For example, if the

components Bjk belong to C∞pol(X ), the class of smooth functions on X with polynomial bounds on all the
derivatives, then the Schwartz space S(Ξ) is stable under #B . The dual of S(Ξ) being denoted by S∗(Ξ)
(tempered distributions), one also has

#B : S(Ξ)× S∗(Ξ) → S∗(Ξ) and #B : S∗(Ξ)× S(Ξ) → S∗(Ξ).

Denoting by MB(Ξ) the largest subspace of S∗(Ξ) for which

#B : S(Ξ)×MB(Ξ) → S(Ξ) and #B : MB(Ξ)× S(Ξ) → S(Ξ),
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it can be shown that MB(Ξ) is an involutive algebra under #B and under complex conjugation, for which

#B : S∗(Ξ)×MB(Ξ) → S∗(Ξ) and #B : MB(Ξ)× S∗(Ξ) → S∗(Ξ).

This is quite a large class of distributions, containing all the bounded measures as well as the class C∞pol,u(Ξ) of
all smooth functions for which all the derivatives are bounded by some polynomial (depending on the function,
but not on the order of the derivative). In addition, if we assume that all the derivatives of the functions Bjk

are bounded, the Hörmander classes of symbols Sm
ρ,δ(Ξ) composes in the usual way under #B .

Being a closed 2-form in X = RN , the magnetic field is exact: it can be written as B = dA for some
continuous 1-form A (called vector potential). Vector potentials enter by their circulations

ΓA([x, y]) :=
∫

[x,y]

A

through segments [x, y] := {tx + (1− t)y | t ∈ [0, 1]}. For a vector potential A with dA = B, let us define

[
OpA(f)u

]
(x) := (2π)−N

∫

X

∫

X∗
dy dξ exp [i(x− y) · ξ] exp

[−iΓA([x, y])
]
f

(
x + y

2
, ξ

)
u(y). (1.2)

For A = 0 one recognizes the Weyl quantization, associating to functions or distributions on Ξ linear operators
acting on function spaces on X .

The space L2(Ξ) is a ∗-algebra under #B and complex conjugation and OpA is an isomorphism of L2(Ξ) on
the Hilbert space B2(H) of all the Hilbert-Schmidt operators on H = L2(X ).

Suitably interpreted (by using duality arguments), OpA defines a representation of the ∗-algebra MB(Ξ) by
linear continuous operators : S(X ) → S(X ), i.e.

OpA(f#Bg) = OpA(f)OpA(g) and OpA(f) = OpA(f)∗

for any f, g ∈MB(Ξ). In addition, OpA restricts to an isomorphism from S(Ξ) to B[S∗(X ),S(X )] and extends
to an isomorphism from S∗(Ξ) to B[S(X ),S∗(X )] (we set B(R, T ) for the family of all linear continuous operators
between the topological vector spaces R and T ).

An important property of (1.2) is gauge covariance: if A′ = A + dρ defines the same magnetic field as A,
then OpA′(f) = eiρOpA(f)e−iρ. Such a property would not hold for the wrong quantization, appearing in the
literature

[OpA(f)u] (x) := (2π)−N

∫

X

∫

X∗
dy dξ exp [i(x− y) · ξ] f

(
x + y

2
, ξ −A

(
x + y

2

))
u(y).

To justify (1.2) we define a family (eX)X∈Ξ of functions that will play an important role in the sequel

eX(Z) := exp{−iσ(X,Z)}, Z ∈ Ξ. (1.3)

Actually they are elements of C∞pol,u(Ξ) ⊂MB(Ξ). One checks easily that

eX #BeY = ΩB(X,Y )#B eX+Y , (1.4)

where ΩB : Ξ× Ξ → C(X , U(1)) is the 2-cocycle defined by the canonical symplectic form and by the magnetic
field B:

ΩB(X, Y )(z) ≡ ΩB(X,Y ; z) := exp
[

i

2
σ(X, Y )

]
ωB(X,Y ; z), (1.5)

with
ωB(X, Y ; z) := exp

[−iΓB(< z, z + x, z + x + y >)
]
. (1.6)

Suitable functions f : Ξ → C can be expressed as

f(Y ) = (2π)−N

∫

Ξ

dX (Ff)(X)e−iσ(X,Y ) = (2π)−N

∫

Ξ

dX (Ff)(X)eX(Y ),

where Ff is the symplectic Fourier transform of f , so a good quantization should have the property

OpA(f) = (2π)−N

∫

Ξ

dX (Ff)(X)OpA(eX). (1.7)
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Thus, the problem is to justify a choice for the operators opA(X) := OpA(eX) acting in H = L2(X ).
In the presence of a magnetic field B = dA, a basic family of self-adjoint operators is (Q1, . . . , QN ; ΠA

1 , . . . , ΠA
N ),

where Qj is the operator of multiplication by the coordinate function xj and ΠA
j := −i∂j −Aj is the j′th com-

ponent of the magnetic momentum. They satisfy the commutation relations

i[Qj , Qk] = 0, i[ΠA
j , Qk] = δjk, i[ΠA

j ,ΠA
j ] = Bjk.

One gets (1.2) as a consequence of (1.7) admitting that the quantization of the function X 7→ eY (X) should be
the unitary operator

opA(y, η) := OpA
(
e(y,η)

)
= exp

[−iσ((y, η), (Q, ΠA))
]

= exp
[−i(Q · η − y ·ΠA)

]
, (1.8)

given by the explicit formula

[opA(y, η)u](x) = e−i(x+ y
2 )·ηe−iΓA ([x,x+y])u(x + y), x, y ∈ X , η ∈ X ∗, u ∈ H.

As a consequence of (1.4), one has

opA(X) opA(Y ) = ΩB(X, Y ;Q) opA(X + Y ), ∀X, Y ∈ Ξ, (1.9)

where ΩB(X, Y ; Q) is the operator of multiplication by the function z 7→ [ΩB(X,Y )](z) ≡ ΩB(X,Y ; z) given at
(1.5) and (1.6).

The operator norm ‖ · ‖ on B (H) being relevant to Quantum Mechanics, we pull it back to symbols (the
nicer, completely intrinsic approach can be found in [27], [26]). So let us set

‖ · ‖B : S(Ξ) → R+, ‖ f ‖B=‖ OpA(f) ‖ .

By gauge covariance, it is clear that ‖ · ‖B only depends on the magnetic field B and not on the vector
potential A. We denote by AB(Ξ) the completion of S(Ξ) under ‖ · ‖B . It is a C∗-algebra that can be identified to
a vector subspace of S∗(Ξ) and OpA : AB(Ξ) → B(H) is a faithful ∗-representation, with OpA

[
AB(Ξ)

]
= K (H),

the C∗-algebra of compact operators in H.
Many other useful C∗-algebras can be defined in this manner. An important one is CB(Ξ), defined such that

OpA : CB(Ξ) → B(H) be an isomorphism. The ”magnetic version” of the Calderon-Vaillancourt theorem, proved
in [17], says that if Bjk ∈ BC∞(X ), j, k = 1, . . . , N , then the Fréchet space BC∞(Ξ) of smooth functions on
Ξ having bounded derivatives of any order is continuously embedded in CB(Ξ). We note that L2(Ξ) and AB(Ξ)
are ∗-ideals in CB(Ξ).

We set
ΘB

Z (f) := e−Z #Bf #BeZ (1.10)

for the family of magnetic translations in phase-space, introduced in [18] and used for a Beals-type character-
ization of magnetic pseudodifferential operators by commutators. They are automorphisms of the ∗-algebras
L2(Ξ),AB(Ξ), CB(Ξ), MB(Ξ) and reduce, for B = 0, to the usual translations [ΘZ(f)] (X) := f (X + Z).

We shall need an explicit form of ΘB
Z , obtained in [18]. For this we define the following commutative mixed

product (a mixture between point-wise multiplication in the first variable and convolution in the second):

(F ? g)(x, ξ) :=
∫

X ′
dη F (x, ξ − η) g(x, η). (1.11)

Proposition 1.1. For any 3 points x, y, z ∈ X let us define the parallelogram

P(x; y, z) := {x + sy + tz | s ∈ [−1/2, 1/2], t ∈ [−1, 0]},
having edges parallel to the vectors y and z, respectively. We consider the distribution

ΩB [P(x; y, z)] = exp
{−iΓB [P(x; y, z)]

}
= exp



−i

N∑

j,k=1

yjzk

∫ 1/2

−1/2

ds

∫ 0

−1

dtBjk(x + sy + tz)



 (1.12)

and its Fourier transform with respect to the second variable:

Ω̃B
P [z](x, ξ) := (2π)−N

∫

X
dy e−iy·ξΩB [P(x; y, z)]. (1.13)

For Z = (z, ζ) ∈ Ξ and f ∈ L1(Ξ) we have

ΘB
Z (f) = Ω̃B

P [z] ? ΘZ [f ]. (1.14)
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More generally, we set
ΘB

Y,Z(f) := e−Y #Bf #BeY−Z , (1.15)

which makes sense for every f ∈MB(Ξ). We have ΘB
Y,0 = ΘB

Y .

2 Modulation mappings

We only assume that B has continuous components. On functions defined on Ξ or on Ξ × Ξ, respectively, we
will use the ”real” scalar products

〈f, g〉 :=
∫

Ξ

dXf(X)g(X), 〈〈F,G〉〉 :=
∫

Ξ

∫

Ξ

dXdY F (X,Y )G(X,Y ).

Definition 2.1. The magnetic modulation mapping MB
h : L2(Ξ) → L2(Ξ× Ξ) associated to h ∈ L2(Ξ) is

[
MB

h (f)
]
(X, Y ) :=

〈
e−X#Bf#BeX−Y , h

〉
= 〈ΘB

X,Y [f ], h〉. (2.1)

Remark. By using the formula (2.4), one can also write
[
MB

h (f)
]
(X,Y ) =

〈
h#Be−X#Bf, eX−Y

〉
=

[
F

(
h#Be−X#Bf

)]
(X − Y ).

In the case B = 0 one gets

[Mh(f)] (X, Y ) = 〈e−X#f#eX−Y , h〉 = exp
[

i

2
σ(X, Y )

]
〈ΘX(f)#e−Y , h〉 , (2.2)

which is different from the standard choice (the Short Time Fourier Transform)

[Vh(f)] (X, Y ) = 〈e−Y ΘX(f), h〉 .
The main difference is the replacement of point-wise multiplication by the Weyl product, and this might be an
advantage for studying the algebraic properties of the modulation mapping.

The next orthogonal relations justify formally Definition 2.1

Theorem 2.2. For f, g, h, k ∈ L2(Ξ), one has
〈〈

MB
h (f),MB

k (g)
〉〉

=
〈
h, k

〉 〈
f, g

〉
. (2.3)

In particular, 1
‖h‖M

B
h is an isometry.

The proof will use several properties which are gathered in the next Lemma:

Lemma 2.3. (a) For any f1, f2, f3 ∈ L2(Ξ)
〈
f1#Bf2, f3

〉
=

〈
f1, f2#Bf3

〉
=

〈
f2, f3#Bf1

〉
. (2.4)

The same is true if one of the three functions is replaced by eX , for some X ∈ Ξ.

(b) One has in weak sense ∫

Ξ

dZ |eZ〉〈e−Z | = 1. (2.5)

(c) For any f, g ∈ L1(Ξ)
∫

Ξ

∫

Ξ

dY dZ
[
ΘB

Z (f)
]
(Y ) g(Y ) =

∫

Ξ

dZf(Z)
∫

Ξ

dY g(Y ). (2.6)

Proof. (a) We proved in [24] the case f1, f2, f3 ∈ S(Ξ). For the other cases one rewrites the proof more carefully
or uses an approximation argument.

(b) One has for f, g ∈ L2(Ξ)
∫

Ξ

dZ 〈f, eZ〉〈e−Z , g〉 = (2π)2N

∫

Ξ

dZ (Ff)(Z) (Fg)(−Z) =
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= (2π)2N

∫

Ξ

dZ (Ff)(Z) (Fg)(Z) =
∫

Ξ

dZ f(Z) g(Z) = 〈f, g〉.

(c) We apply Proposition 1.1 and use the Fourier inversion formula:
∫

Ξ

∫

Ξ

dY dZ
[
ΘB

Z (f)
]
(Y ) g(Y ) =

∫

Ξ

∫

Ξ

dY dZ
[(

Ω̃B
P [z]

)
? ΘZ(f)

]
(Y ) g(Y ) =

=
∫

Ξ

∫

Ξ

dY dZ

∫

X∗
dξ

(
Ω̃B
P [z]

)
(y, ξ) [ΘZ(f)] (y, η − ξ) g(Y ) =

= (2π)−N

∫

X
dy

∫

X
dz

∫

X∗
dη

∫

X∗
dζ

∫

X
dx

∫

X∗
dξ e−ix·ξ ΩB [P(y; x, z)] f(y − z, η − ξ − ζ) g(y, η) =

= (2π)−N

∫

X
dy

∫

X
dz

∫

X∗
dη

∫

X∗
dζ

∫

X
dx

∫

X∗
dν eix·ζeix·(ν−η) ΩB [P(y; x, z)] f(y − z, ν) g(y, η) =

=
∫

X
dy

∫

X
dz

∫

X∗
dη

∫

X∗
dν ΩB [P(y; 0, z)] f(y − z, ν) g(y, η) =

∫

Ξ

dZf(Z)
∫

Ξ

dY g(Y ).

Proof. of the Theorem. Using Lemma 2.3 we compute
〈〈

MB
h (f),MB

k (g)
〉〉

=
∫

Ξ

∫

Ξ

dXdY
〈
e−X#Bf#BeX−Y , h

〉 〈
e−X#Bg#BeX−Y , k

〉
=

=
∫

Ξ

∫

Ξ

dXdY
〈
eY−X#Bf#BeX , h

〉 〈
e−X#Bg#BeX−Y , k

〉
=

=
∫

Ξ

∫

Ξ

dXdY
〈
f#BeX#Bh, eY−X

〉 〈
eX−Y , k#Be−X#Bg

〉
=

=
∫

Ξ

dX
〈
f#BeX#Bh, k#Be−X#Bg

〉
=

∫

Ξ

dX
〈
eX#Bh#Bk, e−X#Bg#Bf

〉
=

=
∫

Ξ

dX
〈
ΘB

X(h#Bk), g#Bf
〉

=
∫

Ξ

dX (h#Bk)(X)
∫

Ξ

dY (g#Bf)(Y ) =
〈
h, k

〉 〈
f, g

〉
.

Corollary 2.4. We have the inversion formula:
(
MB

k

)∗
MB

h =
〈
h, k

〉
id. (2.7)

The adjoint
(
MB

h

)∗ : L2(Ξ× Ξ) → L2(Ξ) is given explicitly by

(
MB

h

)∗
(G) :=

∫

Ξ

∫

Ξ

dXdY G(X, Y ) eX#Bh#BeY−X =
∫

Ξ

∫

Ξ

dXdY G(X, Y )
(
ΘB

X,Y

)−1
(h), (2.8)

Remark. The Theorem suggests defining

MB : L2(Ξ× Ξ) ∼= L2(Ξ)⊗ L2(Ξ) → L2(Ξ× Ξ), MB(f ⊗ h) := MB
h (f). (2.9)

One has MB
h = MB ◦ Jh, where for any h ∈ L2(Ξ) we set

Jh : L2(Ξ) → L2(Ξ× Ξ), Jh(f) := f ⊗ h. (2.10)

The adjoint is given by

J∗h : L2(Ξ× Ξ) → L2(Ξ), [J∗h(F )] (X) := 〈F (X, ·), h(·)〉 , (2.11)

and it satisfies
J∗kJh =< h, k > id, JhJ∗k = 1⊗ (|h >< k|) = 1⊗ Inth⊗k. (2.12)

While MB is an isomorphism, ‖ h ‖−1 Jh is only an isometry with range L2(Ξ)⊗ {h}.
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We turn now to the algebraic properties of the magnetic modulation mapping. On functions : Ξ × Ξ → C
we use the crossed product composition

(F ¦G)(X,Y ) :=
∫

Ξ

dZ F (X, Z) G(X − Z, Y − Z) (2.13)

and the involution F ∗(X,Y ) := F (X − Y,−Y ). The ”crossed product” feature can be seen if we write (2.13) as

(F ¦G)(Y ) :=
∫

Ξ

dZ F (Z)ΘZ [G(Y − Z)] .

This is an equality between functions defined on Ξ, so it must be evaluated on X ∈ Ξ by using notations as
[F (Z)](X) := F (X, Z). The action of Ξ on itself given by ΘZ(X) := X + Z is transferred to functions by
ΘZ(g) := g ◦ Θ−Z . For various function spaces on Ξ one can define C∗-dynamical systems and they generate
naturally crossed product C∗-algebras of functions or distributions defined on Ξ×Ξ. We refer to [33] for general
information on this topic; we are going to study the connection of crossed products with magnetic modulation
spaces in a further publication.

For the moment we only notice that L2(Ξ×Ξ) is a ∗-algebra with the structure indicated above. To see this,
one might recall the kernel multiplication

(K¦̃L)(X,Y ) :=
∫

Ξ

dZ K(X, Z)L(Z, Y )

and the involution K ∗̃(X,Y ) := K(Y, X) and perform the change of variables (X,Y ) 7→ (X, X − Y ).

Theorem 2.5. If h#Bh = h = h 6= 0, then MB
h : L2(Ξ) → L2(Ξ× Ξ) is an injective morphism of ∗-algebras.

Proof. We are going to use (2.4) and (2.5) to show that

MB
h (f) ¦MB

k (g) = MB
k #Bh

(
f#Bg

)
, (2.14)

and then take h = k. One has

[
MB

h (f) ¦MB
k (g)

]
(X, Y ) =

∫

Ξ

dZ
[
MB

h (f)
]
(X,Z)

[
MB

k (g)
]
(X − Z, Y − Z) =

=
∫

Ξ

dZ
〈
e−X#Bf#BeX−Z , h

〉 〈
eZ−X#Bg#BeX−Y , k

〉
=

=
∫

Ξ

dZ
〈
h#Be−X#Bf, eX−Z

〉 〈
eZ−X , g#BeX−Y #Bk

〉
=

=
〈
h#Be−X#Bf, g#BeX−Y #Bk

〉
=

=
〈
e−X#B(f#Bg)#BeX−Y , k#Bh

〉
=

[
MB

k #Bh(f#Bg)
]
(X,Y ).

For the involution: [
MB

h∗(f
∗)

]
(X, Y ) =

〈
e−X#Bf#BeX−Y , h

〉
=

〈eY−X#Bf#BeX , h〉 =
[
MB

h (f)
]
(X − Y,−Y ) =

[
MB

h (f)
]∗

(X,Y ).

The injectivity follows from Theorem 2.2.

Remark. One could also use the composition law

¤B : L2(Ξ× Ξ)× L2(Ξ× Ξ) → L2(Ξ× Ξ), (f ⊗ h)¤B(g ⊗ k) := (f#Bg)⊗ (k#Bh) (2.15)

and the usual involution on L2(Ξ× Ξ) given by complex conjugation. Then

MB :
(
L2(Ξ× Ξ),¤B

) → (
L2(Ξ× Ξ), ¦) (2.16)

is an isomorphism of ∗-algebras.
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3 Connections with the Bargmann transform

The magnetic analog of the Bagmann transform requires a suitable family of coherent states. The main idea
for introducing them will be to use the magnetic Weyl system (1.8) to propagate a given state, corresponding
to X = 0, to a family of states indexed by the points X of phase space. In order to insure gauge-covariance,
this state must have a good a priori dependence of the vector potential A. Of course this seems to fit the
group-theoretical strategy to generate coherent states, but we stress that (1.9) collapses to the definition of a
projective representation only in the very simple case of a constant magnetic field.

We note that with a proper implementation of Planck’s constant ~, one proves ([25]) convergence of the
quantum algebra of observables to the classical one in the sense of strict deformation quantization (cf. [29, 22]).
We intend to study in a future publication the dependence of coherent states and the associated Berezin-Toeplitz
operators on the Planck constant, in the framework of deformation quantization (cf. [20, 21, 22]).

Let us fix a unit vector, v ∈ H := L2(X ). For any choice of a continuous vector potential A generating the
magnetic field B and for any Y ∈ Ξ, we define the family of magnetic coherent vectors

vA ≡ vA(0) := eiΓA([0,Q])v, vA(Y ) := opA(−Y )vA.

Explicitly [
vA(Y )

]
(x) = ei(x− y

2 )·ηe−iΓA([x,x−y])eiΓA([0,x−y])v(x− y). (3.1)

Note that for the standard Gaussian v(x) = π−N/4e−x2/2 and for A = 0, one gets the usual coherent states of
Quantum Mechanics (see [1]). It is easy to show that in weak sense

∫

Ξ

dY

(2π)N
|vA(Y )〉〈vA(Y )| = 1. (3.2)

We are not going to prove this simple result, since it will not be needed in the sequel.
Since the pure state space of K(H) can be identified with P(H) (the family of all self-adjoint one-dimensional

projections in H) and considering the isomorphism OpA : AB(Ξ) → K(H), we introduce families of coherent
states on the two C∗-algebras:

Definition 3.1. For any Z ∈ Ξ we define

vA(Z) : K(H) → C, vB(Z) : AB(Ξ) → C

by [
vA(Z)

]
(S) := Tr

(∣∣vA(Z)
〉 〈

vA(Z)
∣∣ S

)
=

〈
vA(Z), S vA(Z)

〉
, ∀S ∈ K(H)

and [
vB(Z)

]
(f) :=

[
vA(Z)

] [
OpA(f)

]
=

〈
vA(Z),OpA(f) vA(Z)

〉
, ∀f ∈ AB(Ξ).

One can write
[
vB(Z)

]
(f) =

〈
vA, opA (Z) OpA(f)opA (−Z) vA

〉
=

〈
vA, OpA

(
eZ #Bf #Be−Z

)
vA

〉
.

Using (1.10) and setting vB := vB(0), one has vB(Z) = vB ◦ΘB
Z . The intrinsic notation vB(Z) is justified by a

straightforward computation based on Stokes’ Theorem, leading to

[
vB(Z)

]
(f) = (2π)−N

∫

X

∫

X

∫

X∗
dx dy dξ ei(x−y)·(ξ−ζ)f

(
x + y

2
, ξ

)
· (3.3)

· exp
{
i
[
ΓB(< y, x, x− z >) + ΓB(< y, x− z, 0 >) + ΓB(< y, 0, y − z >)

]}
v(x− z)v(y − z).

A convenient setting is obtained after making a unitary transformation, generalizing the classical Bargmann
transformation; the associated Bargmann-type space is a Hilbert space with reproducing kernel.

Definition 3.2. (a) The mapping UA
v : L2(X ) → L2

(
Ξ; dX

(2π)N

)
,

(UA
v u

)
(X) :=

〈
vA(X), u

〉
=

〈
v, opA(X)u

〉
(3.4)

is called the Bargmann transformation corresponding to the family of coherent states (vA(X))X∈Ξ.
(b) The subspace KA

v := UA
v L2(X ) ⊂ L2(Ξ) is called the Bargmann space corresponding to the family of

coherent states (vA(X))X∈Ξ.
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The proofs of the statements bellow are straightforward and not specific to our magnetic framework (see
[22], section II.1.5 for instance):

Proposition 3.3. (a) UA
v is an isometry with adjoint

(UA
v

)∗
: L2(Ξ) → L2(X ),

(UA
v

)∗
Φ :=

∫

Ξ

dX

(2π)N
Φ(X)vA(X)

and final projection PA
v := UA

v

(UA
v

)∗ ∈ P[L2(Ξ)], with PA
v L2(Ξ) = KA

v .
(b) The kernel of this projection

KA
v : Ξ× Ξ → C, KA

v (X, Y ) :=
〈
vA(X), vA(Y )

〉

is a continuous function and it is a reproducing kernel for KA
v :

Φ(X) =
∫

Ξ

dX

(2π)N
KA

v (X,Y )Φ(Y ), ∀X ∈ Ξ, ∀Φ ∈ KA
v .

(c) The Bargmann space is composed of continuous functions and contains all the vector KA
v (X, ·), X ∈ Ξ. The

evaluation maps KA
v 3 Φ → Φ(X) ∈ C are all continuous.

For various types of vectors u, v : Ξ → C we define the magnetic Wigner transform V A
u,v by

〈u,OpA(f)v〉 =:
∫

Ξ

dX f(X)V A
u,v(X). (3.5)

One gets easily V A
v,u = (2π)N/2 [(1⊗F)◦C] [γA · (u⊗v)], with γA(a, b) := e−iΓA([a,b]), which may also be written

V A
v,u(z, ζ) =

∫

X
dy ei y·ζ γA

(
z +

y

2
, z − y

2

)
u

(
z +

y

2

)
v

(
z − y

2

)
. (3.6)

It follows that u, v ∈ L2(X ) =⇒ V A
u,v ∈ L2(Ξ). By a direct computation one gets |u >< v| = OpA

(
V A

u,v

)
,

which describes all the rank-one operators in H. This suggests studying the modulation mapping MB
h in the

particular case in which h is the Wigner transform h(B, v) := V A
vA,vA , given explicitly by

[h(B, v)] (z, ζ) =
∫

X
dy ei y·ζ exp

[
iΓB

(〈
0, z +

y

2
, z − y

2

〉)]
v

(
z +

y

2

)
v

(
z − y

2

)
. (3.7)

Let us also set UA
v [T ] := UA

v T
(UA

v

)∗. We denote by REP the Schrödinger representation of L2(Ξ × Ξ) in
L2(Ξ) given by

[REP (F )Φ](X) :=
∫

Ξ

dY F (X, X − Y )Φ(Y ).

Proposition 3.4. One has
REP ◦MB

h(B,v) = UA
v ◦OpA. (3.8)

Proof. For any f ∈ L2(Ξ) we have

UA
v OpA(f)

(UA
v

)∗
Φ =

〈
vA(X), OpA(f)

(UA
v

)∗
Φ

〉
=

〈
vA(X), OpA(f)

∫

Ξ

dY

(2π)N
Φ(Y )vA(Y )

〉
=

=
∫

Ξ

dY

(2π)N
Φ(Y )

〈
vA(X), OpA(f)vA(Y )

〉
=

∫

Ξ

dY

(2π)N
Φ(Y )

〈
vA, OpA

(
e−X#Bf#BeY

)
vA

〉
=

=
∫

Ξ

dY

(2π)N

[
MB

h(B,v)(f)
]
(X,X − Y )Φ(Y ) =

(
[( REP ◦MB

h(B,v) )(f)] (Φ)
)

(X).

Remark. We can further compose MB
h(B,v) with a partial Fourier transformation 1⊗F : L2(Ξ×Ξ) → L2(Ξ×Ξ).

Since OP := REP ◦ (1 ⊗ F) is essentially the Kohn-Nirenberg pseudodifferential calculus in R2N , one gets a
nice interpretation for the operator OpA(f): its magnetic Bargmann transform associated to (A, v) is a usual
pseudodifferential operator with symbol (1⊗ F) ◦MB

h(B,v). This can also be considered a nice interpretation of
the magnetic modulation mapping.
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[12] K. Gröchenig: A Pedestrian Approach to Pseudodifferential Operators in C. Heil editor, Harmonic Analysis
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