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Abstract. Let UF be the Floquet operator of a time periodic
hamiltonian H(t). For each positive and discrete observable A
(which we call a probe energy), we derive a formula for the Laplace
time average of its expectation value up to time T in terms of its
eigenvalues and Green functions at the circle of radius e1/T . Some
simple applications are provided which support its usefulness.
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1. Introduction

Consider a general periodically driven quantum hamiltonian system

H(t) = H0 + V (t)

with period τ acting in a separable Hilbert space H and let UF denote
its Floquet operator, so that if ξ is the initial state (at time zero) of
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the system then Um
F ξ is this state at time mτ . Typically, the unper-

turbed hamiltonian H0 is assumed to have purely point spectrum so
that the same is true for e−iτH0 . What happens when H0 is perturbed
by V (t)? A natural physical question is if the expectation values of the
unperturbed energy H0 remain bounded when V (t) 6= 0. This ques-
tion is formulated based on many physical models, in particular on the
Fermi accelerator in which a particle can acquire unbounded energy
from collisions with a heavy periodically moving wall. Here quantum
mechanics is considered and, more precisely, if

sup
m∈N
|〈Um

F ξ,H0U
m
F ξ〉|

is finite or not, where ξ ∈ dom H0 ⊂ H, the domain of H0.
Motivated by models with hamiltonians as above H(t) = H0 +V (t),

one is suggested to probe quantum (in)stability through the behavior
of an “abstract energy operator” which we call a probe operator and
will be represented by a positive, unbounded, self-adjoint operator A :
dom A ⊂ H → H and with discrete spectrum,

Aϕn = λnϕn,

0 ≤ λn < λn+1, such that if Um
F ξ ∈ dom A for all m ∈ N, then, for

each m, the expectation value EA
ξ (m) = 〈Um

F ξ, AU
m
F ξ〉 is finite. It is

convenient to write EA
ξ (m) = +∞ if Um

F ξ does not belong to dom A.

We say the system is A-dynamically stable when EA
ξ (m) is a bounded

function of time m, and A−dynamically unstable otherwise (usually we
say just (un)stable). If the function EA

ξ (m) is not bounded one can ask

about its asymptotic behavior, that is, how does EA
ξ (m) behave as m

goes to infinity? Usually this is a very difficult question and sometimes
the temporal average of EA

ξ (m) is considered, as we will do in this work.
Quantum systems governed by a time periodic hamiltonian have

their dynamical stability often characterized in terms of the spectral
properties of the corresponding Floquet operator. As in the autonomous
case, the presence of continuous spectrum is a signature of unstable
quantum systems; this is a rigorous consequence of the famous RAGE
theorem [13], firstly proved for the autonomous case and then for time-
periodic hamiltonians [19, 26]. At first sight a Floquet operator with
purely point spectrum would imply stability, but one should be alerted
by examples with purely point spectrum and dynamically unstable
[17, 22, 15] in the autonomous case and, recently, also a time-periodic
model with energy instability [16] was found.

Dynamical stability of time-dependent systems was studied, e.g.,
in references [19, 7, 12, 25, 23, 10, 3, 1, 14, 21, 24, 20, 2]. In [1] it
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was proved that the applicability of the KAM method gives a uniform
bound at the expectation value of the energy for a class of time-periodic
hamiltonians considered in [18].

For hamiltonians H(t) = H0+V (t), not necessarily periodic, with H0

a positive self-adjoint operator whose spectrum consists of separated
bands {σj}∞j=1 such that σj ⊂ [λj,Λj], upper bounds of the type

〈U(t, 0)ψ,H0U(t, 0)ψ〉 ≤ cte t
1+α
nα

were obtained in [25] if the gaps λj+1−Λj grow like jα, with α > 0, and
if V (t) is strongly Cn with n ≥ [1+α

2α
] + 1. The proof is based on adia-

batic techniques that require smooth time dependence and therefore do
not apply to kicked systems. In [23, 3] upper bounds complementary
to those of [25] described above are obtained.

In [19, 7, 12, 14] stability results are obtained through topological
properties of the orbits ξ(t) = U(t, 0)ξ for ξ ∈ H, while in [21, 24, 20, 2]
lower bounds for averages of the type

1

T

T∑
m=1

〈Um
F ξ,H0U

m
F ξ〉 ≥ CT γ

are obtained for periodic hamiltonians H(t) = H0 + V (t) through di-
mensional properties of the spectral measure µξ associated with UF and
ξ (the exponent γ depends on the measure µξ).

In this work we study (in)stability of periodic time-dependent sys-
tems. As for tight-binding models (see [9] and references therein) we
consider the Laplace-like average of 〈Um

F ξ, AU
m
F ξ〉, that is,

2

T

∞∑
m=0

e−
2m
T 〈Um

F ξ, AU
m
F ξ〉,

where A is a probe energy, ξ is an element of dom A and UF is the
Floquet operator. The main technical reason for working with this ex-
pression for the time average is that it can be written in terms of (see
Theorem 1) the eigenvalues of A, i.e., Aϕj = λjϕj, and the matrix el-
ements 〈ϕj, Rz(UF )ξ〉 of the resolvent operator Rz(UF ) = (UF − z1)−1

(with z = e−iEe1/T ) with respect to the orthonormal basis {ϕj} of the
Hilbert space (here 1 denotes the identity operator). Lemma 1 relates
the long run of Laplace-like average with the usual Cesàro average. In
Section 2 we shall prove this abstract results and present some appli-
cations in Section 3.

Since our main results are for temporal Laplace averages of expecta-
tion values of probe energies (see Section 2), in practice we will think
of (in)stability in terms of (un)boundedness of such averages. Note
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that unbounded Laplace averages imply unboundedness of expectation
values of probe energies themselves.

2. Average Energy and Green Functions

Consider a time-dependent hamiltonian H(t) with H(t+ τ) = H(t)
for all t ∈ R, acting in the separable Hilbert space H. Suppose the
existence of the propagators U(t, s), so that the Floquet operator UF =
U(τ, 0) is at our disposal. Let A be a probe energy and λj, ϕj as in the
Introduction. Also, {ϕj}∞j=1 is an orthonormal basis of H.

The main interest is in the study of the expectation values, herein
defined by

EA
ξ (m) :=

{
〈Um

F ξ, AU
m
F ξ〉, if Um

F ξ ∈ dom A,
+∞, if Um

F ξ ∈ H \ dom A,

as function of time m ∈ N. Another quantity of interest is the time
dependence of the moment of this probe energy, which takes values in
[0,+∞] and is defined by

MA
ξ (m) :=

∞∑
j=1

λj |〈ϕj, Um
F ξ〉|

2 .

Our first remark is the equivalence of both concepts (under certain
circumstances).

Proposition 1. If Um
F ξ ∈ dom A for all m, then

EA
ξ (m) = MA

ξ (m), ∀m.

This holds, in particular, if dom A is invariant under the time evolution
Um
F and ξ ∈ dom A.

Proof. Since dom A ⊂ dom A
1
2 [13] one has Um

F ξ ∈ dom A
1
2 , for all m,

and so

MA
ξ (m) =

∞∑
j=1

|〈λ
1
2
j ϕj, U

m
F ξ〉|2 =

∞∑
j=1

|〈A
1
2ϕj, U

m
F ξ〉|2

=
∞∑
j=1

|〈ϕj, A
1
2Um

F ξ〉|2 = ‖A
1
2Um

F ξ‖2

= 〈A
1
2Um

F ξ, A
1
2Um

F ξ〉 = 〈Um
F ξ, AU

m
F ξ〉 = EA

ξ (m),

which is the stated result. �
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We introduce the temporal Laplace average of EA
ξ (see also the Ap-

pendix) by the following function of T > 0, which also takes values in
[0,+∞],

(1) LAξ (T ) :=
2

T

∞∑
m=0

e−
2m
T EA

ξ (m).

Under certain conditions, the next result shows that the upper β+ and
lower β− growth exponents of this average, that is, roughly they are
the best exponents so that for large T there exist 0 ≤ c1 ≤ c2 < ∞
with

c1 T
β− ≤ LAξ (T ) ≤ c2 T

β+

,

and the corresponding exponents for the temporal Cesàro average

CA
ξ (T ) =

1

T

T∑
m=0

EA
ξ (m)

are closely related; this follows at once by Lemma 1, which perhaps
could be improved to get equality also between lower exponents. Note
that, although not indicated, these exponents depend on the initial
condition ξ.

Lemma 1. If (h(m))∞m=0 is a nonnegative sequence, and h(m) ≤ Cmn

for some C > 0 and n ≥ 0, then β+
e = β+

d and β−e ≤ β−d , where

β+
e = lim sup

T→∞

log(
∑T

m=0 h(m))

log T
, β−e = lim inf

T→∞

log(
∑T

m=0 h(m))

log T
,

β+
d = lim sup

T→∞

log(
∑∞

m=0 e
− 2m

T h(m))

log T
, β−d = lim inf

T→∞

log(
∑∞

m=0 e
− 2m

T h(m))

log T
.

Proof. Note that for 0 ≤ m ≤ T we have e−2 ≤ e−
2m
T ≤ 1, and so

T∑
m=0

h(m) ≤
T∑

m=0

e2e−
2m
T h(m) ≤ e2

∞∑
m=0

e−
2m
T h(m).

Hence β±e ≤ β±d .
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On the other hand, for each ε > 0, denoting by dxe the smallest
integer larger or equal to x, one has

∞∑
m=0

e−
2m
T h(m) =

dT 1+εe∑
m=0

e−
2m
T h(m) +

∞∑
m=dT 1+εe+1

e−
2m
T h(m)

≤
dT 1+εe∑
m=0

h(m) + C
∞∑

m=dT 1+εe+1

e−
2m
T mn.

Now, for T large enough nT
2
< T 1+ε ≤ dT 1+εe. Thus

∞∑
m=dT 1+εe+1

e−
2m
T mn ≤

∫ ∞
dT 1+εe

e−
2t
T tndt.

Therefore, for each ε > 0 and T large enough

∞∑
m=0

e−
2m
T h(m) ≤

dT 1+εe∑
m=0

h(m) + C

∫ ∞
dT 1+εe

e−
2t
T tndt

≤
dT 1+εe∑
m=0

h(m) + C̃e−2T εT n.

Since e−2T εT n → 0 as T →∞, it follows that

β+
d = lim sup

T→∞

log
∑∞

m=0 e
− 2m

T h(m)

log T

≤ lim sup
T→∞

log
∑dT 1+εe

m=0 h(m)

log T

= lim sup
T→∞

log
∑dT 1+εe

m=0 h(m)

logdT 1+εe
logdT 1+εe

log T

≤ lim sup
T→∞

log
∑dT 1+εe

m=0 h(m)

logdT 1+εe
log(T + 1)1+ε

log T

= (1 + ε) lim sup
T→∞

log
∑dT 1+εe

m=0 h(m)

logdT 1+εe
≤ (1 + ε)β+

e .

As ε > 0 was arbitrary, β+
d ≤ β+

e . �

Recall that the Green functions Gξ
z(j) associated with the operators

A,UF at ξ ∈ H and z ∈ C, |z| 6= 1, are defined by the matrices elements
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of the resolvent operator Rz(UF ) = (UF −z1)−1 along the orthonormal
basis {ϕj}∞j=1, that is,

Gξ
z(j) := 〈ϕj, Rz(UF )ξ〉.

Note that Gξ
z(j) is always well defined since for |z| 6= 1 that resolvent

operator is bounded. Theorem 1 is the main reason for considering
the temporal averages LAξ (T ). It presents a formula that translates the
Laplace average of wavepackets at time T into an integral of the Green
functions over “energies” in the circle of radius e1/T in the complex
plane (centered at the origin). As T grows the integration region ap-
proaches the unit circle where the spectrum of UF lives and Rz(UF )
takes singular values, so that (hopefully) A-(in)stability can be quan-
titatively detected.

Theorem 1. Assume that Um
F ξ ∈ dom A for all m ≥ 0. Then

(2) LAξ (T ) =
1

πe−
2
T

1

T

∞∑
j=1

λj

∫ 2π

0

∣∣Gξ
z(j)

∣∣2 dE, z = e−iE+ 1
T .

Before the proof of this theorem, we underline that this formula, that
is, the expression on the right hand side of (2), is a sum of positive terms
and so it is well defined for all ξ ∈ H if we let it take values in [0,+∞];
hence, in principle it can happen that this formula is finite even for
vectors Um

F ξ not in the domain of A, where LAξ (T ) = +∞. The general
case, i.e., ∀ξ ∈ H , can then be gathered in the following inequality

(3) LAξ (T ) ≥ 1

πe−
2
T

1

T

∞∑
j=1

λj

∫ 2π

0

∣∣Gξ
z(j)

∣∣2 dE, z = e−iE+ 1
T ,

so that lower bound estimates for this formula always imply lower
bound estimates for the Laplace average.

Proof. (Theorem 1) First note that, by hypothesis, Um
F ξ ∈ dom A

1
2 for

each m ∈ N. Denote by µj the spectral measure of UF associated with
the pair (ϕj, ξ) and by F the Fourier transform F : L2[0, 2π]→ l2(Z).
By the spectral theorem for unitary operators

〈ϕj, UF ξ〉 =

∫ 2π

0

e−iE
′
dµj(E

′).

For each j let a(j) = (a(j)(m))m∈Z be the sequence

a(j)(m) =

{
0 if m < 0

e−
m
T

∫ 2π

0
e−iE

′mdµj(E
′) if m ≥ 0

.
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Since a(j) ∈ l1(Z) ∩ l2(Z) and F is a unitary operator, it follows that
‖a(j)‖l2(Z) = ‖F−1a(j)‖L2[0,2π] and also

(F−1a(j))(E) =
1√
2π

∞∑
m=−∞

eiEma(j)(m)

=
1√
2π

∞∑
m=0

eiEme−
m
T

∫ 2π

0

e−iE
′mdµj(E

′)

=
1√
2π

∫ 2π

0

( ∞∑
m=0

eim(E−E′)+ i
T

)
dµj(E

′)

=
1√
2π

∫ 2π

0

1

1− ei(E−E′+ i
T

)
dµj(E

′)

=
1√
2π

∫ 2π

0

dµj(E
′)

ei(E+ i
T

)(e−i(E+ i
T

) − e−iE′)

= − 1
√

2π ei(E+ i
T

)

∫ 2π

0

dµj(E
′)

e−iE′ − e−i(E+ i
T

)

= − 1
√

2π ei(E+ i
T

)
〈ϕj, Rz(UF )ξ〉

= − 1
√

2π eiEe−
1
T

Gξ
z(j),

with z = e−iE+ 1
T . Therefore

∣∣F−1a(j)
∣∣2 (E) =

1

2πe−
2
T

∣∣Gξ
z(j)

∣∣2 ,

and so

∥∥F−1a(j)
∥∥2

L2[0,2π]
=

1

2πe−
2
T

∫ 2π

0

|Gξ
z(j)|2dE.
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From such relation it follows that

LAξ (T ) =
∞∑
m=0

2

T
e−

2m
T MA

ξ (m)

=
∞∑
j=1

λj

∞∑
m=0

2

T
e−

2m
T |〈ϕj, Um

F ξ〉|2

=
∞∑
j=1

λj
2

T

∞∑
m=0

∣∣∣e−mT ∫ 2π

0

e−iE
′mdµj(E

′)
∣∣∣2

=
∞∑
j=1

λj
2

T

∥∥a(j)
∥∥2

l2(Z)

=
∞∑
j=1

λj
2

T

∥∥F−1a(j)
∥∥2

L2[0,2π]

=
1

πe−
2
T

1

T

∞∑
j=1

λj

∫ 2π

0

∣∣Gξ
z(j)

∣∣2 dE,
which is exactly the stated result. �

Theorem 1 clearly remains true if the eigenvalues λj of A have fi-
nite multiplicity. In this case, for each λj consider the corresponding
orthonormal eigenvectors ϕj1 , · · · , ϕjk , and one obtains

LAξ (T ) =
1

πe−
2
T

1

T

∞∑
j=1

λj

(
k∑

n=1

∫ 2π

0

|〈ϕjn , Rz(UF )ξ〉|2 dE

)
,

with z as before.

In case the initial condition is ξ = ϕ1, put η(z) := Rz(UF )ϕ1. Thus,
(UF − z)η(z) = ϕ1 and so UFη

(z) = zη(z) + ϕ1. Hence

〈ϕj, UFη(z)〉 = z〈ϕj, η(z)〉+ δj,1

and by denoting
Gz(j) := Gϕ1

z (j),

one concludes

Lemma 2.

Gz(j) =

{
1
z

(
〈ϕ1, UFη

(z)〉 − 1
)
, if j = 1

1
z
〈ϕj, UFη(z)〉, if j > 1

.
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In Section 3 we discuss some Floquet operators that are known in
the literature and analyze their Green functions through the equation

(UF − z1)η(z) = ϕ1.

3. Applications

This section is devoted to some applications of the formula obtained
in Theorem 1. In general it is not trivial to get expressions and/or
bounds for the Green functions of Floquet operators, so one of the main
goals of the applications that follow are to illustrate how to approach
the method we have just proposed.

3.1. Time-Independent Hamiltonians. As a first example and il-
lustration of the formula proposed in Theorem 1, we consider the spe-
cial case of autonomous hamiltonians. In this case H(t) = H0 for all t
and we assume that H0 is a positive, unbounded, self-adjoint operator
and with simple discrete spectrum, H0ϕj = χjϕj, so that {ϕj}∞j=1 is an
orthonormal basis ofH and 0 ≤ χ1 < χ2 < χ3 < · · · with χj →∞. For
q > 0 we can consider Hq

0 as our abstract energy operator A, so that its
eigenvalues are λj = χqj (since A and H0 have the same eigenfunctions,
we are justified in using the notation ϕj for the eigenfunctions of H0).
We take UF = e−iH0 (time t = 1) and for ξ ∈ H

Gξ
z(j) = 〈ϕj, Rz(H0)ξ〉 = 〈Rz(H0)ϕj, ξ〉 =

〈ϕj, ξ〉
e−iχj − z

.

Since dom Hq
0 is invariant under the time evolution e−itH0 , then for

z = e−iEe
1
T and ξ ∈ dom Hq

0 , we have

Lqξ(T ) := L
Hq

0
ξ (T ) =

1

πe−
2
T

1

T

∞∑
j=1

χqj

∫ 2π

0

∣∣Gξ
z(j)

∣∣2 dE
=

1

πe−
2
T

1

T

∞∑
j=1

χqj

∫ 2π

0

|〈ϕj, ξ〉|2

|e−iχj − z|2
dE(4)

=
1

πe−
2
T

1

T

∞∑
j=1

χqj |〈ϕj, ξ〉|
2

∫ 2π

0

dE

|e−iχj − z|2
.

Thus we need to calculate the integral Ij :=
∫ 2π

0
dE

|e−iχj−z|2
. Let γ be

the closed path in C given by γ(E) = eiE with 0 ≤ E ≤ 2π, αj = e
1
T eiχj
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and βj = e−
1
T eiχj , then

Ij =

∫ 2π

0

dE

(e−iχj − z)(eiχj − z)

=

∫ 2π

0

dE

(e−iχj − e−iEe 1
T )(eiχj − eiEe 1

T )

=

∫ 2π

0

dE

e
2
T (e−

1
T e−iχj − e−iE)(e−

1
T eiχj − eiE)

= − 1

e
2
T

∫ 2π

0

dE

e−iEe−
1
T e−iχj(eiE − αj)(eiE − βj)

= − 1

e
1
T e−iχj

1

i

∫ 2π

0

ieiEdE

(eiE − αj)(eiE − βj)

=
i

e
1
T e−iχj

∫
γ

dw

(w − αj)(w − βj)
.

As |αj| > 1 and |βj| < 1, βj is the unique pole in the interior of γ.
Thus, by using residues,

Ij =
i

e
1
T e−iχj

2πi
1

(βj − αj)
=

2π

e
2
T − 1

and Ij is independent of χj.
Therefore by (4) it follows that

Lqξ(T ) =
1

πe−
2
T

1

T

∞∑
j=1

χqj |〈ϕj, ξ〉|
2 2π

e
2
T − 1

=
2

e−
2
T

1

T

1(
e

2
T − 1

) ∞∑
j=1

χqj |〈ϕj, ξ〉|
2

=
2(

1− e− 2
T

) 1

T

∥∥∥H q
2
0 ξ
∥∥∥2

.

Since
(

1− e− 2
T

)
= 2

T
+O( 1

T 2 ), for large T it is found that

Lqξ(T ) ≈
∥∥∥H q

2
0 ξ
∥∥∥2

,

with (for ξ ∈ dom Hq
0)

lim
T→∞

Lqξ(T ) = 〈ξ,Hq
0ξ〉.

Then we conclude that the function

N 3 m 7→
〈
e−iH0mξ,Hq

0e
−iH0mξ

〉
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is bounded for ξ ∈ dom Hq
0 , which is (of course) an expected result (see

Proposition 1).

3.2. Lower Bounded Green Functions. As a first theoretical ap-
plication we get dynamical instability from some lower bounds of the
Green functions. See [9] for a similar result in the one-dimensional
discrete Schrödinger operators context; there, a relation to transfer
matrices allows interesting applications to nontrivial models, what is
not available in the unitary setting yet (and it constitutes of an impor-
tant open problem). As before, λj denote the increasing sequence of
positive eigenvalues of the abstract energy operator A, the ones we use
to probe (in)stability.

Let [·] denotes the integer part of a real number and | · | indicates
Lebesgue measure.

Theorem 2. Suppose that there exist K > 0 and α > 0 such that for
each 2N > 0 large enough there exists a nonempty Borel set J(N) ⊂ S1

such that

∣∣Gξ
z(j)

∣∣ ≥ K

Nα
, N ≤ j ≤ 2N,

holds for all z = e−iE+ 1
T with E ∈ JT (N) = {E ′′ ∈ S1 : ∃ E ′ ∈

J(N); |E ′′ −E ′| ≤ 1
T
} (the 1

T
−neighborhood de J(N)). Let δ > 0; then

for T large enough such that N(T ) = [T δ], one has

LAξ (T ) ≥ cte λ[T δ]T
δ(1−2α)−2.

Moreover, if λj ≥ cte jγ, γ ≥ 0, then

LAξ (T ) ≥ cte T δ(γ−2α+1)−2.
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Proof. By the formula in Theorem 1, or its more general version (3),

LAξ (T ) ≥ 1

πe−
2
T

1

T

∞∑
j=1

λj

∫ 2π

0

∣∣Gξ
z(j)

∣∣2 dE
≥ cte

T

2N(T )∑
j=N(T )

λj

∫ 2π

0

∣∣Gξ
z(j)

∣∣2 dE
≥ cte

T
λN(T )

2N(T )∑
j=N(T )

∫
JT (N)

∣∣Gξ
z(j)

∣∣2 dE
≥ cte

T
λN(T )

2N(T )∑
j=N(T )

K2

N(T )2α
|JT (N)|

=
cte

T
|JT (N)|λN(T )

K2

N(T )2α−1

=
cte

T
|JT (N)|λ[T δ]

1

[T δ]2α−1

≥ cte λ[T δ]T
δ(1−2α)−2;

we have used that |JT (N)| ≥ 1
T

. If λj ≥ cte jγ then

LAξ (T ) ≥ cte T δγT δ(1−2α)−2 = cte T δ(γ−2α+1)−2.

The proof is complete. �

The above theorem becomes appealing when the exponent of T is
greater than zero and instability is obtained, for instance when δ(γ −
2α + 1) > 2 in case λj ≥ cte jγ. However, up to now we have not yet
been able to find explicit estimates in models of interest; in any event,
we think it will be useful the future applications and so we point out
some speculations. First, note that it applies even if the set J(N) is a
single point! Nevertheless, we expect that Theorem 2 will be applied to
models whose Floquet operators have some kind of “fractal spectrum”
(usually singular continuous or uniformly Hölder continuous spectral
measures) and, somehow, α should be related to dimensional properties
of those spectra; indeed, this was our first motivation for the derivation
of this result and, in our opinion, such applications are among the most
interesting open problems left here.
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3.3. Rank-One Kicked Perturbations. Now consider

H(t) = H0 + κPφ
∑
n

δ(t− n2π),

with H0 as in Subsection 3.1, with eigenvectors {ϕj}∞j=1 and χj the
corresponding eigenvalues; Pφ(·) = 〈φ, ·〉φ where κ ∈ R and φ is a
normalized cyclic vector for H0, in the sense that ‖φ‖ = 1 and the
closed subspace spanned by {Hm

0 φ : m ∈ N} equals H . Let

φ =
∑
j

bjϕj.

In this case (see [8, 5])

UF = U0 (1 + αPφ) ,

with U0 = e−i2πH0 and α = (e−i2πκ−1). Note that φ ∈ dom Hq
0 , ∀q > 0,

and so for ξ ∈ dom Hq
0 ,

UF ξ = U0ξ + α〈φ, ξ〉U0φ

also belongs to dom Hq
0 ; a simple iteration process shows that Um

F ξ ∈
dom Hq

0 for all m ≥ 0 and we are justified in using the formula in
Theorem 1 to estimate Laplace averages.

We are interested in η(z) = Rz(UF )ϕ1. As |z| 6= 1 it follows that η(z)

belongs to the Hilbert space and so one can write

η(z) =
∞∑
j=1

ajϕj.

Note that aj = Gz(j) and we have

(5) UFη
(z) − zη(z) = ϕ1.

By the relation

UFη
(z) = U0η

(z) + αU0Pφη
(z)

=
∞∑
j=1

ajU0ϕj + αU0〈φ, η(z)〉φ

=
∞∑
j=1

aje
−i2πχjϕj + α〈φ, η(z)〉

∞∑
j=1

bje
−i2πχjϕj

=
∞∑
j=1

(aj + α〈φ, η(z)〉bj)e−i2πχjϕj,
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and (5) it follows that

∞∑
j=1

(aj + α〈φ, η(z)〉bj)e−i2πχjϕj − z
∞∑
j=1

ajϕj = ϕ1,

that is,

∞∑
j=1

[
aj(e

−i2πχj − z) + α〈φ, η(z)〉bje−i2πχj
]
ϕj = ϕ1,

and we get the equations

a1(e
−i2πχ1 − z) + α〈φ, η(z)〉b1e−i2πχ1 = 1,

aj(e
−i2πχj − z) + α〈φ, η(z)〉bje−i2πχj = 0 for j > 1.

Thus

(6) a1 =
1− α〈φ, η(z)〉b1e−i2πχ1

e−i2πχ1 − z
,

(7) aj = −α〈φ, η
(z)〉bje−i2πχj

e−i2πχj − z
, j > 1.

For the trivial case α = 0 or, equivalently, κ ∈ Z, one has

a1 =
1

e−i2πχ1 − z
,

aj = 0, j > 1,

and η(z) = ϕ1

e−i2πχ1−z . In this case the analysis of Lqϕ1
(T ) is reduced to∫ 2π

0

|a1|2dE =

∫ 2π

0

dE

|e−i2πχ1 − z|2
=

2π

e
2
T − 1

as calculate in Subsection 3.1. Thus Lqϕ1
(T ) ≈ ‖Hq

0ϕ1‖ for large T , as
expected.

Returning to the general case α 6= 0, note that

〈φ, η(z)〉 =
∞∑
j=1

bjaj

= b1

(1− α〈φ, η(z)〉b1e−i2πχ1

e−i2πχ1 − z

)
+
∞∑
j=2

bj
(−α)〈φ, η(z)〉bje−i2πχj

e−i2πχj − z

=
b1

e−i2πχ1 − z
− 〈φ, η(z)〉

∞∑
j=1

α|bj|2e−i2πχj
e−i2πχj − z

.
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So

〈φ, η(z)〉 =
b1

(e−i2πχ1 − z)

[
1 +

∞∑
j=1

α|bj|2e−i2πχj
e−i2πχj − z

]−1

.

By denoting

τ(z) = 1 +
∞∑
j=1

α|bj|2e−i2πχj
e−i2πχj − z

,

by (6) and (7) we finally obtain the relations

a1 =
1

e−i2πχ1 − z
− α|b1|2e−i2πχ1τ(z)−1

(e−i2πχ1 − z)2
,

aj = − αbjb1e
−i2πχjτ(z)−1

(e−i2πχ1 − z)(e−i2πχj − z)
, j > 1.

3.3.1. A Harmonic Oscillator. Now we present an application of the
above relations to a kicked harmonic oscillator with natural frequency

equals to 1; we will write Lqξ = L
Hq

0
ξ .

Proposition 2. Let H0 be a harmonic oscillator hamiltonian with ap-
propriate parameters so that its eigenvalues are integers j, j ≥ 1, and
UF = U0(1 + αPφ) as above. Then for any κ ∈ R and cyclic vector φ
for H0, there exists C > 0 so that, for T large enough,

Lqϕ1
(T ) ≤ C,

where ϕ1 is the harmonic oscillator ground state. Hence we have Hq
0-

dynamical stability.

Proof. We use the above notation; note that ϕ1 ∈ dom Hq
0 , ∀q > 0 and

Theorem 1 can be applied. In this case we have

τ(z) = 1 +
∞∑
j=1

α|bj|2

1− z
= 1 +

α

1− z
‖φ‖2 =

1− z + α

1− z
,

and so

a1 =
1

1− z
− α|b1|2

(1− z)(e−i2πκ − z)
,

aj = − αbjb1
(1− z)(e−i2πκ − z)

, j > 1.



QUANTUM ENERGY EXPECTATION 17

Now we evaluate Ij :=
∫ 2π

0
|aj|2dE. For j > 1 and γ(E) = eiE, 0 ≤

E ≤ 2π,∫ 2π

0

|aj|2dE =

∫ 2π

0

∣∣∣ αbjb1
(1− z)(e−i2πκ − z)

∣∣∣2dE
= |α|2|bj|2|b1|2

∫ 2π

0

dE∣∣∣(1− e−iEe 1
T )(e−i2πκ − e−iEe 1

T )
∣∣∣2

=
|α|2|bj|2|b1|2

ie
2
T e−i2πκ

∫
γ

wdw

(w − β1)(w − β2)(w − β3)(w − β4)
,

where β1 = e
1
T , β2 = e−

1
T , β3 = e

1
T ei2πκ and β4 = e−

1
T ei2πκ; only β2

and β4 are poles in the interior of γ. By residue, for j > 1,

Ij =
2π|α|2|bj|2|b1|2

e
2
T e−i2πκ

×(
β2

(β2 − β1)(β2 − β3)(β2 − β4)
+

β4

(β4 − β1)(β4 − β2)(β4 − β3)

)
=

2πα|bj|2|b1|2

(e
2
T − 1)(e−i2πκ − e 2

T )
− 2πα|bj|2|b1|2ei2πκ

(e
2
T − 1)(ei2πκ − e 2

T )

=
2πα|bj|2|b1|2

(e
2
T − 1)

(
1

e−i2πκ − e 2
T

− ei2πκ

ei2πκ − e 2
T

)
,

and for j = 1

I1 =

∫ 2π

0

∣∣∣ 1

1− z
− α|b1|2

(1− z)(e−i2πκ − z)

∣∣∣2dE
=

∫ 2π

0

dE

(1− z)(1− z)
− α|b1|2

∫ 2π

0

dE

(1− z)(1− z)(ei2πκ − z)

−α|b1|2
∫ 2π

0

dE

(1− z)(1− z)(e−i2πκ − z)

+|α|2|b1|4
∫ 2π

0

dE

(1− z)(1− z)(e−i2πκ − z)(ei2πκ − z)
;

evaluating the integrals we obtain

I1 =
2π

(e
2
T − 1)

− 2π|b1|2

(e
2
T − 1)

− 2π|b1|2

(ei2πκ − e 2
T )
− 2πα|b1|2

(e
2
T − 1)(e−i2πκ − e 2

T )

+
2πα|b1|4

(e
2
T − 1)

(
1

e−i2πκ − e 2
T

− ei2πκ

ei2πκ − e 2
T

)
,
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and after inserting this in the expression of the average energy we get

Lqϕ1
(T ) =

2

(1− e− 2
T )T

(
1− |b1|2 −

α|b1|2

(e−i2πκ − e 2
T )

)

− 2|b1|2

e−
2
T (ei2πκ − e 2

T )T

+
2α|b1|2

(1− e− 2
T )T

(
1

e−i2πκ − e 2
T

− ei2πκ

ei2πκ − e 2
T

)
〈φ,Hq

0φ〉.

Therefore, for large T there is a constant C(κ, b1) > 0 so that

Lqϕ1
(T ) ≤ C(κ, b1)

(
1 + 〈φ,Hq

0φ〉+
1

T

)
.

This completes the proof. �

For harmonic oscillators with eigenvalues ωj, ω 6= 1, the evaluations
of the resulting integrals are more intricate and were not carried out.

3.4. Kicked Perturbations by a V in L2(S1).

3.4.1. Kicked Linear Rotor. Consider

H(t) = ωp+ V (x)
∑
n∈Z

δ(t− n2π),

where p = −i d
dx

, ω ∈ R and V ∈ L2(S1). The Hilbert space is L2(S1);
this model was considered in [4, 10, 11] and references therein. The
Floquet operator is

UF = UV = e−i2πωpe−iV (x).

Denote by ϕj(x) = eijx/
√

2π, 0 ≤ x < 2π and j ∈ Z, be the eigen-
vectors of p2 whose eigenvalues are the square of integers j2; all eigen-
values have multiplicity 2 (the corresponding eigenvectors are ϕj and
ϕ−j), except for the null eigenvalue which is simple.

Consider the case ω = 1; then(
(UF − z)−1ϕ0

)
(x) =

1√
2π(e−iV (x) − z)

,

and so

Gϕ0
z (j) = 〈ϕj, Rz(UF )ϕ0〉 =

1

2π

∫ 2π

0

e−ijx

e−iV (x) − z
dx.
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Denote Ij :=
∫ 2π

0
|Gϕ0

z (j)|2dE. It follows that

Ij =
1

(2π)2

∫ 2π

0

∣∣∣ ∫ 2π

0

e−ijx

e−iV (x) − z
dx
∣∣∣2dE

=
1

(2π)2

∫ 2π

0

∫ 2π

0

e−ijxeijy
(∫ 2π

0

dE

(e−iV (x) − z)(eiV (y) − z)

)
dxdy.

For x, y ∈ S1 fixed denote Ixy :=
∫ 2π

0
dE

(e−iV (x)−z)(eiV (y)−z) . If γ(E) = eiE,

0 ≤ E ≤ 2π, one has

Ixy =

∫ 2π

0

dE

(e−iV (x) − e−iEe 1
T )(eiV (y) − eiEe 1

T )

=

∫ 2π

0

dE

e−iEe−iV (x)(eiE − eiV (x)e
1
T )e

1
T (e−

1
T eiV (y) − eiE)

= − 1

e
1
T e−iV (x)

1

i

∫
γ

dw

(w − eiV (x)e
1
T )(w − e− 1

T eiV (y))
,

and by residues

Ixy = − 2π

e
1
T e−iV (x)(e−

1
T eiV (y) − eiV (x)e

1
T )

=
2π

(e
2
T − e−iV (x)eiV (y))

.

Hence

Ij =
1

(2π)2

∫ 2π

0

∫ 2π

0

e−ijxeijy
2π

(e
2
T − e−iV (x)eiV (y))

dxdy

=
1

2π

∫ 2π

0

e−ijx
(∫ 2π

0

eijydy

(e
2
T − e−iV (x)eiV (y))

)
dx(8)

=
1

2π

∫ 2π

0

e−ijx

e−iV (x)

(∫ 2π

0

eijydy

(e
2
T eiV (x) − eiV (y))

)
dx.

The analytical evaluation of these integrals is not a simple task. As
an illustration, consider the particular potential V (x) = x; since by
Cauchy’s integral formula∫ 2π

0

eijydy

(e
2
T eix − eiy)

= −1

i

∫
γ

wj−1dw

(w − e 2
T eix)

= 0, if j ≥ 1,

and by residue theorem∫ 2π

0

eijydy

(e
2
T eix − eiy)

= −1

i

∫
γ

dw

w1−j(w − e 2
T eix)

=
2π

(e
2
T eix)1−j

, if j ≤ 0,

it is found that
Ij = 0 if j ≥ 1
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and

Ij =
1

2π

∫ 2π

0

e−ijx

e−ix
2π

(e
2
T eix)1−j

dx =
1

e
2
T

(1−j)

∫ 2π

0

dx =
2π

e
2
T

(1−j)
, if j ≤ 0.

Therefore, by (3) it follows that for any q > 0

Lp
2q

ϕ0
(T ) ≥ 1

πe−
2
T

1

T

∞∑
j=1

j2qI−j =
2

T

∞∑
j=1

j2qe−
2
T
j

and we conclude that (see the Appendix)

Lp
2q

ϕ0
(m) ≥ cte m2q

and also that the sequence m 7→ 〈Um
F ϕ0, p

2qUm
F ϕ0〉 is unbounded. This

behavior is expected since the spectrum of UF is absolutely continuous
in this case [4], but here we got the result explicitly without passing
through spectral arguments, although in a rather involved way; indeed,
a much simpler derivation is possible by direct calculating Um

F ϕ0 and
the corresponding expectation values.

For V (x) = kx with integer k ≥ 2, similar results are obtained, that
is

Ij =

{
0 if j = lk, l ≥ 1
2π

e2/T (1−l) if j = lk, l ≤ 0 ,

and so

Lp
2q

ϕ0
(T ) ≥ 2k2q

T

∞∑
l=1

l2qe−
2
T
l.

Therefore, we have the following lower bound for the Laplace average

Lp
2q

ϕ0
(m) ≥ C(k, q)m2q

(see Appendix). The same is valid if V (x) = kx with k denoting any
negative integer number.

3.4.2. Power Kicked Systems. Due to the difficulty in evaluating the
integrals in (8), in order to estimate Lp

2q

ϕ0
(T ) in some situations we take

an alternative way.
Consider the Kicked models in L2(S1) with Floquet operator

(9) UF = UV = e−i2πωf(p)e−iV (x),

corresponding to the hamiltonian

H(t) = ωf(p) + V (x)
∑
n∈Z

δ(t− 2πn),



QUANTUM ENERGY EXPECTATION 21

with p, V, ϕj as before and f(p) = pN for some N ∈ N. Let F :
L2(S1) → l2(Z) be the Fourier transform. Then FUVF−1 : l2(Z) →
l2(Z) and

FUVF−1 = Fe−i2πωf(p)e−iV (x)F−1 = Fe−i2πωf(p)F−1Fe−iV (x)F−1

where Fe−i2πωf(p)F−1 is represented by a diagonal matrix D whose
elements are

D(m,n) = e−i2πωf(n)δmn,

and Fe−iV (x)F−1 is represented by a matrix W whose elements are

W (m,n) = (Fρ)(m− n) = ρ̂(m− n),

where ρ(x) = 1√
2π
e−iV (x). Denote B = DW ; so

B(m,n) = e−i2πωf(n)ρ̂(m− n)

and

(10) UV = F−1BF .

Put η(z) = Rz(UV )ϕ0; then

UV η
(z) − zη(z) = ϕ0,

and using (10) we obtain

BFη(z) − zFη(z) = Fϕ0.

Thus, for each n ∈ Z,

(BFη(z))(n)− (zFη(z))(n) = (Fϕ0)(n),

so that

(11) e−i2πωf(n)
∑
j∈Z

ρ̂(n− j)Gϕ0
z (j)− zGϕ0

z (n) = δn0.

Tridiagonal Case In order to deal with the above equations, we try
to simplify them by supposing that V is such that ρ̂(m − n) = 0 if
|m− n| > 1. Then, for each n ∈ Z fixed (11) becomes

(12) e−i2πωf(n)
∑
|n−j|≤1

ρ̂(n− j)Gϕ0
z (j)− zGϕ0

z (n) = δn0
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and F−1UVF = B is tridiagonal and has the structure

B =



. . .
g(−1)ρ̂(0) g(−1)ρ̂(−1)
ρ̂(1) ρ̂(0) ρ̂(−1)

g(1)ρ̂(1) g(1)ρ̂(0) g(1)ρ̂(−1)
g(2)ρ̂(1) g(2)ρ̂(0)

. . .


where g(n) = e−i2πωf(n).

Now, a tridiagonal unitary operator U on l2(Z) is either unitarily
equivalent to a (bilateral) shift operator, or it is an infinite direct sum
of 2 × 2 and 1 × 1 unitary matrices, as shown in Lemma 3.1 of [6].
For proving this result it was only used that U is unitary and Uek =
αkek−1 +βkek + γkek+1, where {ek} is the canonical basis of l2(Z), that
is,

U =


. . . αk−1

βk−1 αk
γk−1 βk αk+1

γk βk+1

γk+1
. . .


It then follows that for all k ∈ Z

|αk|2 + |βk|2 + |γk|2 = 1,

γk−1βk−1 + βkαk = 0,

αkγk = 0.

Applying these relations to B = F−1UVF we obtain

• If ρ̂(−1) 6= 0 then ρ̂(1) = ρ̂(0) = 0 and |ρ̂(−1)| = 1.
• If ρ̂(1) 6= 0 then ρ̂(−1) = ρ̂(0) = 0 and |ρ̂(1)| = 1.
• If ρ̂(0) 6= 0 then ρ̂(1) = ρ̂(−1) = 0 and |ρ̂(0)| = 1.

The next step is to investigate these cases. If ρ̂(0) 6= 0 it reduces to
the autonomous case H(t) = H0 previously considered.

The cases ρ̂(−1) 6= 0 and ρ̂(1) 6= 0 are similar, so we only discuss
that ρ̂(1) 6= 0. For n ∈ Z fixed, equation (12) takes the form

(13) e−i2πωf(n)ρ̂(1)Gϕ0
z (n− 1)− zGϕ0

z (n) = δn0,

so we can write Gϕ0
z (n) in terms of Gϕ0

z (0) and Gϕ0
z (−1) for all n ∈ Z.

More precisely

Gϕ0
z (n) =

e−i2πω(f(n)+···+f(1))ρ̂(1)n

zn
Gϕ0
z (0) n ≥ 1,
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Gϕ0
z (−n) =

zn−1

e−i2πω(f(−n+1)+···+f(−1))ρ̂(1)n−1
Gϕ0
z (−1) n ≥ 2;

moreover, for n = 0 in (13) we obtain ρ̂(1)Gϕ0
z (−1) − zGϕ0

z (0) = 1, so
for z = e−iEe1/T and T > 1

1 ≤ |Gϕ0
z (−1)|+ |z||Gϕ0

z (0)|
= |Gϕ0

z (−1)|+ e1/T |Gϕ0
z (0)|

≤ e(|Gϕ0
z (−1)|+ |Gϕ0

z (0)|),

and there exists d > 0 so that

|Gϕ0
z (−1)|2 + |Gϕ0

z (0)| ≥ d > 0.

Therefore, by (3), for T > 1 one has

Lp
2q

ϕ0
(T ) ≥ 1

πe−
2
T

1

T

∞∑
n=1

n2q

(∫ 2π

0

|Gϕ0
z (n)|2dE +

∫ 2π

0

|Gϕ0
z (−n)|2dE

)

=
1

πe−
2
T

1

T

∞∑
n=1

n2q

(
1

e
2n
T

∫ 2π

0

|Gϕ0
z (0)|2dE

+e
2(n−1)
T

∫ 2π

0

|Gϕ0
z (−1)|2dE

)

≥ 1

πe−
2
T

1

T

∞∑
n=1

n2qe−
2n
T

∫ 2π

0

(
|Gϕ0

z (0)|2 + |Gϕ0
z (−1)|2

)
dE

≥ d
2

T

∞∑
n=0

(n+ 1)2qe−
2n
T ,

so that, by the discussion at the end of the Appendix,

Lp
2q

ϕ0
(m) ≥ C(m+ 1)2q

and 〈Um
V ϕ0, p

2qUm
V ϕ0〉 is unbounded. Hence we have instability.

Pentadiagonal Case Suppose now that V is such that ρ̂(m− n) = 0
if |m− n| > 2. Then for each n ∈ Z fixed, equation (11) becomes

(14) e−i2πωf(n)
∑
|n−j|≤2

ρ̂(n− j)Gϕ0
z (j)− zGϕ0

z (n) = δn0,

and F−1UVF is pentadiagonal and has a structure similar to the corre-
sponding operator in the previous case, just adding the elements whose
distance to the diagonal is 2. The elements in the new upper diagonal
are e−i2πωf(n)ρ̂(−2), and the new lower diagonal are e−i2πωf(n)ρ̂(2).
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For not repeating the tridiagonal case we suppose that either ρ̂(2) or
ρ̂(−2) is different from zero. If U is a pentadiagonal unitary operator
in l2(Z), that is, Uek = ζkek−2 + αkek−1 + βkek + γkek+1 + θkek+2, one
gets the matrix representation

U =



. . .
βk−2 αk−1 ζk
γk−2 βk−1 αk ζk+1

θk−2 γk−1 βk αk+1 ζk+2

θk−1 γk βk+1 αk+2

θk γk+1 βk+2

. . .


.

From this we obtain the following relations, for each k ∈ Z,

|ζk|2 + |αk|2 + |βk|2 + |γk|2 + |θk|2 = 1

ζkαk−1 + αkβk−1 + βkγk−1 + γkθk−1 = 0

βk−1θk−1 + αkγk + ζk+1βk+1 = 0

αk−1θk−1 + ζkγk = 0

ζkθk = 0.

Suppose that ρ̂(2) 6= 0. The case ρ̂(−2) 6= 0 is similar. Then by the
above relations we obtain ρ̂(−2) = ρ̂(−1) = ρ̂(0) = ρ̂(1) = 0, and so
(14) becomes

e−i2πωf(n)ρ̂(2)Gϕ0
z (n− 2)− zGϕ0

z (n) = δn0.

For n = 0 one gets ρ̂(2)Gϕ0
z (−2)− zGϕ0

z (0) = 1 and analogously to the
previous case

|Gϕ0
z (−2)|2 + |Gϕ0

z (0)|2 ≥ d > 0,

with z = e−iEe1/T and T > 1. Since for n ≥ 1

Gϕ0
z (2n) =

e−i2πω(f(2n)+f(2n−2)+···+f(2))ρ̂(2)n

zn
Gϕ0
z (0),

Gϕ0
z (−2n) =

zn−1Gϕ0
z (−2)

ρ̂(2)n−1e−i2πω(f(−2(n−1))+···+f(−2))
,
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we obtain

Lp
2q

ϕ0
(T ) ≥ 1

πe−
2
T

1

T

∞∑
n=1

(2n)2q

(∫ 2π

0

|Gϕ0
z (2n)|2dE +

∫ 2π

0

|Gϕ0
z (−2n)|2dE

)

=
1

πe−
2
T

1

T

∞∑
n=1

(2n)2q

(
1

e
2n
T

∫ 2π

0

|Gϕ0
z (0)|2dE

+e
2(n−1)
T

∫ 2π

0

|Gϕ0
z (−2)|2dE

)

≥ 1

πe−
2
T

1

T

∞∑
n=1

(2n)2qe−
2n
T

∫ 2π

0

(
|Gϕ0

z (0)|2 + |Gϕ0
z (−2)|2

)
dE

≥ d
2

m

∞∑
n=0

(2(n+ 1))2qe−
2n
T ,

hence
Lp

2q

ϕ0
(T ) ≥ C(2(m+ 1))2q,

and 〈Um
V ϕ0, p

2qUm
V ϕ0〉 is unbounded.

N-diagonal Case If V satisfies ρ̂(m − n) = 0 for |m − n| > N , we
suppose that either ρ̂(N) or ρ̂(−N) is different from zero. In case
ρ̂(N) 6= 0, by unitarity and the structure of F−1UVF we obtain that
ρ̂(N − 1) = · · · ρ̂(0) = ρ̂(−1) = · · · = ρ̂(−N) = 0, thus (11) becomes,
for each n ∈ Z,

e−i2πωf(n)ρ̂(N)Gϕ0
z (n−N)− zGϕ0

z (n) = δn0,

and so
|Gϕ0

z (−N)|2 + |Gϕ0
z (0)|2 ≥ d > 0,

with z = e−iEe1/T , T > 1. Moreover, for n ≥ 1

Gϕ0
z (nN) =

e−i2πω(f(nN)+f((n−1)N)+···+f(N))ρ̂(N)n

zn
Gϕ0
z (0)

and

Gϕ0
z (−nN) =

zn−1Gϕ0
z (−N)

ρ̂(N)n−1e−i2πω(f(−N(n−1))+···+f(−N))
.

Similarly to the previous cases we conclude that

Lp
2q

ϕ0
(T ) ≥ d

2

T

∞∑
n=0

(N(n+ 1))2qe−
2n
T .

Therefore we can stated the following result:
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Theorem 3. For Kicked systems in L2(S1) with

UV = e−i2πωf(p)e−iV (x)

as in (9), we obtain that FUVF−1 : l2(Z)→ l2(Z) is represented by the
matrix B with elements B(m,n) = e−i2πωf(n)ρ̂(m − n), where ρ(x) =

(2π)−
1
2 e−iV (x). If V satisfies ρ̂(m − n) = 0 for |m − n| > N ∈ N∗ and

either ρ̂(N) or ρ̂(−N) is different from zero, then V (x) = ±Nx + θ,
for some θ ∈ R, and FUVF−1 is unitarily equivalent to TN (the N th
power of T ) where T is the bilateral shift. Furthermore,

Lp
2q

ϕ0
(T ) ≥ d

2

T

∞∑
n=0

(N(n+ 1))2qe−
2n
T .

Proof. It is enough to prove that FUVF−1 is unitarily equivalent to
TN . Suppose that ρ̂(N) 6= 0 (the case for ρ̂(−N) 6= 0 is similar); then
by the above discussion we obtain

B(m,n) =

{
0 if m 6= n+N

e−i2πωf(n)ρ̂(N) if m = n+N
,

that is, Ben = e−i2πωf(n)ρ̂(N)en+N where {en} is the canonical basis
of l2(Z). Since |ρ̂(N)| = 1, write ρ̂(N) = e−iθ. Let W be the unitary
operator defined by

Wen = eiϑnen, n ∈ Z,
where ϑn are elements in [0, 2π). If ϑn satisfies for all n ∈ Z
(15) ϑn+N − ϑn = 2πωf(n) + θ,

it follows that W−1BW = TN . (15) is satisfied taking, for example,
ϑ0 = ϑ1 = · · · = ϑN−1 = 0 and the another ϑn obeying (15). �

Although Theorem 3 gives a nice illustration of the potential appli-
cations of our expression for the Laplace average, since it is one of the
few instances that such average can be explicitly estimated from be-
low, again it can be derived by more direct methods and one can also
conclude [4] that the spectrum of the corresponding Floquet operators
are absolutely continuous.

4. Conclusions

Although most of our applications of Theorem 1 give expected results
(sometimes known results that can be derived in simpler ways), we
believe that that formula is interesting and has a potential to be applied
to more sophisticated models as the Fermi accelerator. The difficulty is
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to get expressions or estimates for the Green functions, since calculating
the resolvent of an operator is not always an easy task; sometimes we
have the expressions for resolvent operators (e.g., for kicked systems)
but the resulting integrals can be too involved. We have not tried any
numerical approach to formula (2), which might be useful for some
specific models.

In the case of one-dimensional discrete Schrödinger operators, where
the hamiltonian is HV : l2(Z)→ l2(Z) defined by

(HV ξ)(n) = ξ(n+ 1) + ξ(n− 1) + V (n)ξ(n),

V a bounded sequence, a similar formula can be handled in some cases
by relating the resolvent RE+ i

T
(HV ) to transfer matrices. Then ade-

quate upper bounds of such transfer matrices, on some set of energies
E, result in lower estimates for the corresponding Green functions and
then transport properties are obtained for interesting models (see [9]
and references therein).

In [6] a class of Floquet operators displaying a pentadiagonal struc-
ture was introduced; for these models there is a transfer matrix formal-
ism. However, such transfer matrices are too complicated and analyti-
cal estimates seem far from trivial.

Anyway, the technique here is quite general, it asks no particular
regularity of the time-dependence and can be virtually applied to any
time-periodic system as soon as the time evolution is well posed. As
already said, the chief difficulty is related to suitable bounds of matrix
elements of the resolvents of unitary (Floquet) operators, a task harder
than we initially envisaged. Herein we put forward for consideration the
challenge of getting additional applications for the formula (2) deduced
for the Laplace averages, including an application of Theorem 2 to
physical models. It is also worth mentioning the question left open in
Lemma 1, that is, is it true that β−e = β−d ?

Appendix: Laplace Transform of Sequences

Let a = (an)n∈N be a sequence of positive real numbers. The Laplace
transform of a, denoted by fa, is the function defined by

(16) fa(s) =
∞∑
n=0

e−sna(n),

for s in a subset of R. It will also be denoted by fa(s) = L(a).
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We say the Laplace transform of a = (an) exists if the series in (16)

converges for some s. For example, if a(n) = en
2
, then the sum in (16)

diverges for all s ∈ R.

Examples.

(1) For the constant sequence a(n) = 1 it follows that

fa(s) =
∞∑
n=0

e−sn =
1

(1− e−s)
,

for s > 0. By using Taylor expansion, for small s one finds that
1

(1−e−s) ≈
1
s
, .

(2) Since
∑∞

n=0 z
n = 1

1−z , for z ∈ C, |z| < 1, it follows that

∞∑
n=0

(n+ k)(n+ k − 1) · · · (n+ 1)zn =
k!

(1− z)k+1
,

for k = 1, 2, 3, · · · , and z as above. Thus, the Laplace transform
of ak(n) = (n+ k)(n+ k − 1) · · · (n+ 1) is

fka (s) =
∞∑
n=0

e−snak(n) =
k!

(1− e−s)k+1
, s > 0.

For small s, fka (s) ≈ k!
sk+1 .

A sequence of complex numbers a = (an) is said to be exponential
of order σ0 (real) if there exists M > 0 so that |a(n)| ≤ Meσ0n, ∀n.
That is, a(n) does not increase faster than eσ0n as n→∞. If a = (an)
is exponential of order σ0 > 0, then

fa(s) =
∞∑
n=0

e−sna(n)

is convergent for any s > σ0.
Let V denote the set of positive sequences of exponential order σ0.

The Laplace transform L satisfies

L(ca) = cL(a), L(a+ b) = L(a) + L(b),

where c is a positive number and a and b are sequences in V . Moreover,
if a ∈ V and L(a) = 0, then

∑∞
n=0 e

−sna(n) = 0 and so a(n) = 0 for all
n, that is, a = 0. Thus L is injective on V .
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The Laplace average (1) is related to the Laplace transform of EA
ξ (n)

by

LAξ (T ) =
2

T

∞∑
n=0

e−
2n
T EA

ξ (n) =
2

T
fEAξ

(
2

T

)
.

If a(n) = 1 for all n, then

2

T
fa

(
2

T

)
=

2

T

1

(1− e−2/T )
≈ 2

T

1

2/T
= 1,

for T large enough. If a(n) = (n+ k)(n+ k − 1) · · · (n+ 1) ≈ nk, then

2

T
fa

(
2

T

)
=

2

T

k!

(1− e−2/T )k+1
≈ 2

T

k!

(2/T )k+1
= k!

(
T

2

)k
,

for large T . Hence, if EA
ξ (T ) grows like T k then the same law holds for

its average Laplace transform. We have a restricted converse, that is,
if LAξ (n) grows with a positive power of n then, by Lemma 1, its Cesàro
average is unbounded (with a rather similar behavior at large times)
and so is EA

ξ (n). These properties are repeated used in the text.
One should be aware that there are special situations of unbounded

positive sequences a(n) with bounded average Laplace transforms (so
that β+

e = β+
d = 0); an explicit example is a(n2) = n and a(n) = 0

for n /∈ {k2 : k ∈ N}. The same phenomenon is well known for Cesàro
averages and, by Lemma 1, such phenomena are connected.
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[10] De Bièvre S., Forni G.: Transport properties of kicked and quasi-periodic
hamiltonians. J. Stat. Phys. 90, 1201-1223 (1998).

[11] de Oliveira C. R.: Spectral properties of a simple hamiltonian model. J. Math.
Phys. 34, 3878–3886 (1993).

[12] de Oliveira C. R.: Some remarks concerning stability for nonstationary quan-
tum systems. J. Stat. Phys. 78, 1055–1066 (1995).

[13] de Oliveira C. R.: Intermediate Spectral Theory and Quantum Dynamics.
Basel: Birkhäuser, 2008.
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