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Abstract

We consider the billiard dynamics in a cylinder-like set that is tes-
sellated by countably many translated copies of the same d-dimensional
polytope. A random configuration of semidispersing scatterers is placed
in each copy. The ensemble of dynamical systems thus defined, one for
each global choice of scatterers, is called quenched random Lorentz tube.
For d = 2 we prove that, under general conditions, almost every system
in the ensemble is recurrent. We then extend the result to more exotic
two-dimensional tubes and to a fairly large class of d-dimensional tubes,
with d ≥ 3.

Mathematics Subject Classification: 37D50, 37A40, 60K37, 37B20.

1 Introduction

This paper concerns the dynamics of a particle in certain d-dimensional systems
which are infinitely extended in one dimension. More precisely, we will study
dynamical systems in which a point particle moves in a cylinder (or similar set)
T ⊂ Rd, which contains a countable number of convex scatterers, see the ex-
ample in Fig. 1. The motion of the particle is free until it collides with either the
boundary of T or a scatterer, both of which are thought to have infinite mass.
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The collisions are totally elastic, so they obey the usual Fresnel law: the angle
of reflection equals the angle of incidence.

Figure 1: A simple Lorentz tube.

In the taxonomy of dynamical systems, these models belong to the class of
semidispersing billiards. In particular, they are extended semidispersing billiards,
which very much resemble a Lorentz gas. We thus call them effectively one-
dimensional Lorentz gases or, more concisely, Lorentz tubes (LTs).

Systems like these find application in the sciences as models for the dynamics
of particles (e.g., gas molecules) in narrow tubes (e.g., carbon nanotubes). A very
minimal list of references, from the more experimental to the more mathematical,
includes [H&al], [ACM], [LWWZ], [AACG], [FY], [F]. (See further references in
those papers.) An interesting fact is that both experimentalists and theoreticians
seem to have a primary interest — sometimes for different reasons — in the same
question, namely the diffusion properties of these gases. As we discuss below,
this is our case as well, although the results we present in this note must be
considered preliminary in this respect.

In order to avoid technical complications, we specialize most of our discussion
to the case d = 2, that is, we consider planar billiards. Nonetheless, at the cost
of working harder on some proofs, the general ideas are applicable in higher
dimension as well, as we show at the end of the article.

From a mathematical viewpoint, LTs are interesting because they are among
the very few extended dynamical systems, with a certain degree of realism, that
mathematicians can prove something about. By the ill-defined expression ex-
tended dynamical system we generally mean a dynamical system on a non-
compact phase space whose physically relevant (invariant) measure is infinite.
For such systems, the very fundamentals of ordinary ergodic theory do not work
[A]: for example, the Poincaré Recurrence Theorem fails to hold and one does
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not know whether the system is totally recurrent (almost every point returns arbi-
trarily close to its initial condition), totally transient (almost every point escapes
to infinity), or mixed.

In fact, as it turns out, recurrence is not just the most basic property one
wants to establish in order to even consider studying the chaotic features of
an extended dynamical system (it is sometimes said that, if ergodicity is the
first of a whole hierarchy of stochastic properties that a dynamical system can
possess, recurrence is the zeroeth property); for a Lorentz gas at least, a number
of stronger ergodic properties follow from recurrence: for example, ergodicity
of the extended dynamical system, K-mixing of the first-return map to a given
scatterer, etc. [L1].

Let us briefly explain our two-dimensional model. We consider the connected
set T ⊂ R2 tessellated by the repetition, under the action of Z, of a given
fundamental domain C, which we assume to be a polygon. In each copy of C,
henceforth referred to as cell, we place a random configuration of convex scat-
terers, according to some rule that we specify later. Given a global configuration
of scatterers, we consider the billiard dynamics in the complement (to T ) of the
union of all the scatterers.

So, each model just described does not correspond to one dynamical system,
but to an ensemble of dynamical systems. In other words, we have a quenched
random dynamical system, in the sense that first a system is picked from a
random family and then its (deterministic) dynamics is observed. This contrasts
with random dynamical systems, such as the random billiard channels of [FY],
[F], in which a new random map is applied at every iteration of the dynamics.

Quenched random LTs are a bit more realistic and understandably harder to
study than random LTs, which are in turn harder than periodic LTs (when the
configuration of scatterers is the same in every cell). The same can be said
of Lorentz gases which are infinitely extended in both dimensions [L2]. In fact,
while recurrence, the Central Limit Theorem (CLT) and several strong stochastic
properties are known for periodic Lorentz gases — at least under the so-called
finite horizon condition — very little is known for random or quenched random
Lorentz gases (although results were established for toy versions: [L3], [ALS],
[L4]).

As it turns out, when the effective dimension ν equals 2, recurrence and
the CLT go hand in hand, as a remarkable theorem by Schmidt (Theorem 3.5
below) shows [S, L2]. This provides another strong motivation for the study of
the diffusive properties of these gases, cf. also [CD].

This paper’s main result is the almost sure recurrence of our quenched ran-
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dom LTs, under very mild geometrical conditions which include the finite-horizon
condition. Almost sure recurrence means that almost every LT in the ensemble
is Poincaré recurrent. To our knowledge, this is the first time that recurrence is
proved for the typical element of a fairly general class of Lorentz gases (albeit
effectively one-dimensional). The main ingredient of the proof is the above-
mentioned theorem by Schmidt, which is particularly powerful for ν = 1.

The exposition is organized as follows: In Section 2 we give a detailed defini-
tion of our LTs and state some of their properties. Then in Section 3 we introduce
the tools that we use to prove almost sure recurrence, namely Schmidt’s Theo-
rem and an ergodic dynamical system endowed with a suitable one-dimensonal
cocycle. The latter objects are presented in Section 4, where the main proof of
the article is also given. Finally, in Sections 5 and 6, we discuss generalizations
of our result; in particular, Section 6 contains a set of sufficient conditions for a
d-dimensional quanched random LT to be almost surely recurrent.

Acknowledgments. We thank Gianluigi Del Magno and Nikolai Chernov for
some illuminating discussions.

2 Preliminaries and main assumptions

We present the system in detail. Let C0 be a closed polygon embedded in R2,
such that two of its sides, denoted G1 and G2, are parallel and congruent. Then
call τ the translation of R2 that takes G1 into G2, and define Cn := τn(C0),
with n ∈ Z. Each Cn is called a cell and T :=

⋃
n∈ZCn is called the tube, see

Figs. 1-2.

In every cell Cn there is a configuration of closed, pairwise disjoint, piecewise
smooth, convex sets On,i ⊂ Cn (i = 1, . . . , N) which we call scatterers. (Note
that someOn,i might be empty, so different cells might have a different number of
scatterers.) Each On,i = On,i(`n) is indeed a function of the random parameter
`n ∈ Ω, where Ω is a measure space whose nature is irrelevant. The sequence
` := (`n)n∈Z ∈ ΩZ, which thus describes the global configuration of scatterers
in the tube T , is a stochastic process obeying the probability law Π. We assume
that

(A1) Π is ergodic for the left shift σ : ΩZ −→ ΩZ.



Lorentz tubes 5

Figure 2: A less trivial Lorentz tube.

For each realization ` of the process, we consider the billiard in the table
Q` := T \

⋃
n∈Z
⋃N
i=1On,i(`n). This is the dynamical system (Q` × S1, φt`,m`),

where S1 is the unit circle in R2 and φt` : Q` × S1 −→ Q` × S1 is the billiard
flow, whereby (qt, vt) = φt`(q, v) represents the position and velocity at time t of a
point particle with initial conditions (q, v), undergoing free motion in the interior
of Q` and Fresnel collisions at ∂Q`. (Notice that in this Hamiltonian system the
conservation of energy corresponds to the conservation of speed, which is thus
conventionally fixed to 1.)

Evidently, the above definition is a bit ambiguous since φt` is discontinuous
and there is a set of initial conditions for which it is not even well defined. We
thus declare that t 7→ φt` is right-continuous (i.e., if t is a collision time, vt is the
post-collisional velocity) and that a material point that hits a non-smooth part
of ∂Q` stays trapped there forever (assumption (A2) below ensures that this can
only happen to a negligible set of trajectories).

Finally, m` is the Liouville invariant measure which, as is well known, is the
product of the Lebesgue measure on Q` and the Haar measure on S1.

We call this system the LT corresponding to the realization `, or simply the
LT `. In the reminder, whenever there is no risk of ambiguity, we drop the
dependence on ` on all the notation.

The following are our assumptions on the geometry of the LT:
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(A2) There exist a positive integer K such that, for Π-a.e. realization ` ∈ ΩZ,
∂On,i is made up of at most K compact connected C3 pieces, which
may intersect only at their endpoints. These points will be referred to as
vertices.

Denoting, as we will do throughout the paper, x := (q, v), let γ(x) be the
first time at which the point with initial conditions x hits a non-flat part of the
boundary (so this is not exactly the usual free flight function!). Also, if q is a
smooth point of ∂Q, let k(q) be the curvature of ∂Q at q. We have:

(A3) There exist two positive constants γm < γM such that, for a.e. ` and all
x = (q, v) with q ∈ ∂Q,

γm ≤ γ(x) ≤ γM .

(A4) There exists a positive constant km such that, for a.e. `, given a smooth
point q of the boundary, either ∂Q is totally flat at q or

k(q) ≥ km.

In the language of billiards, a singular trajectory is a trajectory which, at some
time, hits the boundary of the table tangentially or in a vertex. It follows that
a finite segment of a non-singular trajectory depends continuously on its initial
condition. Also notice that, by (A2), the set of all singular trajectories is a
countable union of smooth curves in Q × S1 and thus has measure zero. The
next assumption is meant to exclude pathological situations:

(A5) For a.e. ` and all i, j ∈ {1, 2}, there is a non-singular trajectory entering
C0 through Gi and leaving it through Gj.

A convenient way to represent a continuous-time dynamical system is to select
a suitable Poincaré section and consider the first-return map there. For billiards,
the section is customarily taken to be the set of all pairs (q, v) ∈ ∂Q×S1, where
v is a post-collisional unit vector at q (hence an inner vector relative to Q). Here
we slightly modify this choice.

For n ∈ Z and j ∈ {1, 2}, denote by Gj
n := τn(Gj) the side of Cn corre-

sponding to Gj in C0 (G1
n and G2

n may be called the gates of Cn, whence the
notation). Let oj be the inner normal to Gj

n, relative to Cn. Notice that, under
our hypotheses, o2 = −o1. Define

N j
n :=

{
(q, v) ∈ Gj

n × S1 | v · oj > 0
}
. (2.1)
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The cross section we use is

M :=
⋃
n∈Z

⋃
j=1,2

N j
n , (2.2)

whose corresponding Poincaré map we denote T = T`. In other words, we only
consider those times at which the particle crosses one of the gates. Another way
to say this is, the particle experiences a collision with a “transparent wall”. This
expression is not completely absurd, as the crossing of Gj

n can be realized as
a hard (i.e., standard) collision against Gj

n, instantaneously followed by another
hard collision at the same point. It is clear the second collision has the sole effect
of reversing (once more) the tangential component of the particle’s velocity,
which is evidently irrelevant as far as the differential of the map is concerned.
In any case, it is well known in the field of billiards [CM] that transparent walls
have practically the same properties as bouncing walls. For example, the invariant
measure on the cross section, induced by the Liouville measure for the flow, has
the same expression: dµ(q, v) = (v · oq) dqdv, where oq is the normal to the
(transparent or bouncing) wall at q, directed towards the outgoing side (in our
case, oq = oj whenever q ∈ N j

n).
So we end up with the dynamical system (M, T`, µ), whose invariant measure

is infinite and σ-finite. Notice that, by design, the only object that depends on
the random configuration is the map T`.

In order to discuss the hyperbolic properties of this system, we need to intro-
duce its local stable and unstable manifolds (LSUMs). Since our exposition does
not require a rigorous definition of these objects, we shall refrain from providing
one, and point the interested reader to the existing literature, e.g., [CM]. Here
we just mention that, in our system, a local stable manifold (LSM) W s(x) is a
smooth curve containing x and whose main property is that, for all y ∈ W s(x),
limn→+∞ dist(T nx, T ny) = 0, where dist is the natural Riemannian distance in
M (with the convention that, if x and y belong to different connected compo-
nents of M, dist(x, y) =∞). A local unstable manifold (LUM) W u(x) has the
analogous property for the limit n→ −∞.

The system has a hyperbolic structure à la Pesin, in the following sense:

Theorem 2.1 For µ-a.e. x ∈ M there is a LSM W s(x) and a LUM W u(x).
The corresponding two foliations — more correctly, laminations — can be chosen
invariant, namely TW s(x) ⊂ W s(Tx) and T−1W u(x) ⊂ W u(T−1x). Also,
when endowed with a Lebesgue-equivalent 1-dimensional transversal measure,
they are absolutely continuous w.r.t. µ.
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The next theorem is the core technical result for all the proofs that follow.
It is not by chance that, in the field of hyperbolic billiards, this is called the
fundamental theorem.

Theorem 2.2 Given n ∈ Z, j ∈ {1, 2} and a full-measure A ⊂ N j
n , there exists

a full-measure B ⊂ N j
n such that all pairs x, y ∈ B are connected via a polyline

of alternating LSUMs whose vertices lie in A. This means that, for x, y ∈ B,
there is a finite collection of LSUMs, W s(x1), W u(x2), W s(x3), . . ., W u(xm),
with x1 = x, xm = y, and such that each LSUM intersect the next transversally
in a point of A.

The above theorems are proved in [L2] for Lorentz gases that are effectively
two-dimensional and whose scatterers are smooth, i.e., K = 1 in (A2). The
first of the two differences is absolutely inconsequential. The second affects the
singularity set of T , that is, the set of all x ∈ M whose trajectory, up to the
next crossing of a transparent wall, is singular. It is a well-known and easily
derivable fact that, in each component N j

n of the cross section, the singularity
set is a union of smooth curves, each of which is associated to a specific source
of singularity within the cell Cn (a tangential scattering, a vertex, the endpoint of
a gate) and an itinerary of visited scatterers before that. Since both the number
of scatterers in each cell and the number of vertices per scatterer are bounded,
there can only be a finite number of singularity lines in each N j

n . With this
provision, the proofs of [L2] work in this case as well.

(In truth, the actual proofs are found in [L1], where the existence of a hyper-
bolic structure and the fundamental theorem are shown for the standard billiard
cross section. In [L2] these are extended to the transparent cross section. The
idea behind the results of [L1] is this: Assumptions (A2)-(A4) guarantee that
the geometric features of the LT are “uniformly good”. Then a refinement of
a standard trick ensures that most orbits of the system do not approach the
singularity set too fast, so that, in the construction of the hyperbolic structure,
one can practically neglect them. As for the fundamental theorem, all the local
arguments in the classical proofs of Sinai and followers for compact billiards apply
— notice that we have uniform hyperbolicity and no cusps, namely, zero-angle
corners. The global arguments have to do essentially with controlling the neigh-
borhoods of certain portions of the singularity set, which can be done with the
above-mentioned trick. More technical details in the final part of Section 6.)
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3 Recurrence

We are interested in the recurrence and ergodic properties of the LTs defined
earlier. To this goal, let us recall some definitions that may not be obvious for
infinite-measure dynamical systems.

Definition 3.1 The measure-preserving dynamical system (M, T, µ) is called
(Poincaré) recurrent if, for every measurable A ⊆M, the orbit of µ-a.e. x ∈ A
returns to A at least once (and thus infinitely many times, due to the invariance
of µ).

Definition 3.2 The measure-preserving dynamical system (M, T, µ) is called
ergodic if every A ⊆Mmeasurable and invariant mod µ (that is, µ(T−1A4A) =
0), has either zero measure or full measure (that is, µ(M\ A) = 0).

If the system in question is an LT as introduced in Section 2 (T = T` for
some ` ∈ ΩZ), it is proved in [L1, L2] that

Theorem 3.3 (M, T`, µ) is ergodic if and only if it is recurrent.

Understandably, proving recurrence (and thus ergodicity) of every system
in the quenched random ensemble might be a daunting task. It is possible,
however, to prove it for a typical system. This will be achieved via a general
result by Schmidt [S] on the recurrence of commutative cocycles over finite-
measure dynamical systems. We state it momentarily.

Definition 3.4 Let (Σ, F, λ) be a probability-preserving dynamical system, and
f a measurable function Σ −→ Zν . The family of functions {Sn}n∈N, defined
by S0(ξ) ≡ 0 and, for n ≥ 1,

Sn(ξ) :=
n−1∑
k=0

(f ◦ F k)(ξ)

is called a commutative, ν-dimensional, discrete cocycle or, more precisely, the
cocycle of f .

Theorem 3.5 Assume that (Σ, F, λ) is ergodic and denote by Qn the distribu-
tion of Sn/n

1/ν in Rν , relative to λ. If there exists a positive-density sequence
{nk}k∈N and a constant κ > 0 such that

Qnk
(B(0, ρ)) ≥ κρν
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for all sufficiently small balls B(0, ρ) ⊂ Rν (of center 0 and radius ρ), then the
cocycle {Sn} is recurrent, namely, for λ-a.e. ξ ∈ Σ,

lim inf
n→∞

Sn(ξ) = 0.

(Since the cocycle is discrete, the above is equivalent to the existence, for a.e.
ξ, of a subsequence {nj}j∈N such that Snj

(ξ) = 0, ∀j ∈ N.)

The above result is a slight weakening of the original theorem by Schmidt,
whose proof can be found in [S]. (In truth, the original formulation required F
to be invertible mod λ. The generalization to non-invertible measure-preserving
maps is an easy exercise which can be found, e.g., in [L3, App. A.2]).

In the following we will introduce a suitable probability-preserving dynamical
system and a 1-dimensional cocycle with the property that the recurrence of
the latter is equivalent to the Poincaré recurrence of Π-a.e. LT ` (we call this
situation almost sure recurrence of the quenched random LT; details in Section
4). Observe that, for ν = 1, the quantity Sn/n

1/ν is precisely the Birkhoff
average of f . Thus the ergodicity of (Σ, F, λ), which implies the law of large
numbers for {Sn}, is enough to apply Theorem 3.5.

4 The point of view of the particle

Recalling the gates and the transparent walls built in Section 2, we introduce yet
another cross-section:

N := N 1
0 ∪N 2

0 =: N 1 ∪N 2. (4.1)

Let us call µ0 the standard billiard measure for N , normalized to 1. If ω ∈ Ω
determines the configuration of scatterers in C0, we can define a map Rω : N −→
N as follows (cf. Fig. 3). Trace the forward trajectory of x := (q, v) ∈ N until
it crosses G1 or G2 for the first time (almost all trajectories do). This occurs at
a point q1 with velocity v1. If, for ε ∈ {−1,+1}, Cε is the cell that the particle
enters upon leaving C0, define

Rω x = Rω(q, v) := (τ−ε(q1), v1) ∈ N , (4.2)

e(x, ω) := ε. (4.3)
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R�(q,v) (q ,v )1 1

(q,v)

Figure 3: The definition of the map Rω.

We name e the exit function. From our earlier discussion on the transparent
cross sections, Rω preserves µ0.

We introduce the dynamical system (Σ, F, λ), where

• Σ := N × ΩZ.

• F (x, `) := (R`0x, σ
e(x,`0)(`)), defining a map Σ −→ Σ. Here `0 is the 0th

component of ` and σ is the left shift on ΩZ, introduced in (A1) (therefore
σε(`) = {`′n}n∈Z, with `′n := `n+ε).

• λ := µ0 × Π. Clearly, λ(Σ) = 1. Also, using that F is invertible, Rω

preserves µ0 for every ω ∈ Ω, and σ preserves Π, it can be seen that F
preserves λ. (This is ultimately a consequence of the fact that every LT
preserves the same measure.)

The idea behind this definition is that, instead of following a given orbit
from one cell to another, we every time shift the LT in the direction opposite
to the orbit displacement, so that the point always lands in C0. For this reason
the dynamical system just introduced is called the point of view of the particle.
Clearly, F : Σ −→ Σ encompasses the dynamics of all points on all realizations
of ΩZ.

Proposition 4.1 If the cocycle of the exit function e is recurrent, then the
quenched random LT is almost surely recurrent in the sense that, for Π-a.e.
` ∈ ΩZ, (M, T`, µ) is recurrent.
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Proof. Before starting the actual proof, we recall that an easy argument [L2,
Prop. 2.6] shows that the extended system (M, T`, µ) is either recurrent or totally
dissipative (i.e., transient): no mixed situations occur. Therefore, the existence
of one recurring set (i.e., a positive-measure set A such that µ-a.a. points of A
return there at some time in the future) is enough to establish the same property
for all measurable sets.

Now, calling {Sn} the cocycle of e, the hypothesis of Proposition 4.1 amounts
to saying that, for λ-a.e. (x, `) ∈ Σ, there exists n = n(x, `) such that Sn(x, `) =
0. That is, considering the LT `, T n` x ∈ N0 (recall that x ∈ N0 by construction).
Let us call such a pair (x, `) typical.

By Fubini’s Theorem, Π-a.a. ` ∈ ΩZ are such that (x, `) is typical for µ0-a.a.
x ∈ N . For such `, N0 = N is a recurring set of T`, therefore (M, T`, µ) is
recurrent. Q.E.D.

As it was mentioned at the end of Section 3, the recurrence of the cocycle
of e is implied by ergodicity of (Σ, F, λ). On the other hand,

Theorem 4.2 Under assumptions (A1)-(A5), the dynamical system (Σ, F, λ)
defined above is ergodic.

Proof. The proof can be divided in three steps:

1. Every ergodic component of (Σ, F, λ) is of the form
⋃2
j=1N j×Bj mod λ,

where Bj is a measurable set of ΩZ.

2. Π(Bj) ∈ {0, 1}.

3. There is only one ergodic component.

We now describe each step separately.

1. For a fixed `, consider the extended dynamical system (M, T`, µ), for which
Theorem 2.1 holds. Through the obvious isomorphism, copy those LSUMs
of the extended system which are included in N0 onto N × {`}. These
may be called LSUMs for the fiber N ×{`} (although (Σ, F, λ) cannot be
regarded as a bona fide hyperbolic dynamical system). By Theorem 2.2, in
each connected component of N ×{`}, namely, N 1×{`} and N 2×{`},
a.e. pair of points can be connected through a sequence of LSUMs for the
fiber, intersecting at typical points. Hence, via the usual Hopf argument
[CM], the whole N j × {`} lies the same ergodic component, at least
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for a.e. `. Therefore an F -invariant set in Σ can only come in the form
I =

⋃2
j=1N j × Bj. That Bj is measurable is a consequence of Lemma

A.1 in [L2].

2. If I as written above is F -invariant, then N 1 × B1 is F1-invariant, where
F1 is the first-return map of F onto N 1 × ΩZ. Consider a typical ` ∈ B1

in the following sense: for µ0-a.e. x ∈ N 1, the F1-orbit of (x, `) is entirely
included in N 1 ×B1; also, looking at (A5), the LT ` possesses a positive-
measure set of trajectories entering C0 through G1 and leaving it through
G2. This implies that there exists an x ∈ N 1 such that F (x, `) ∈ N 1×B1

and F (x, `) = (x′, σ(`)), for some x′. Hence σ(`) ∈ B1. Considering that
this happens for Π-a.a. ` ∈ B1, we obtain σ(B1) ⊆ B1 mod Π. (A1)
then implies that Π(B1) ∈ {0, 1}. The analogous assertion for B2 can be
proved by using F2, the first-return map onto N 2×ΩZ; the existence of a
non-singular trajectory going from G2 to G1, and σ−1 instead of σ.

3. It cannot happen that N 1 × ΩZ and N 2 × ΩZ are two different ergodic
components, because, via (A5), for Π-a.e. ` ∈ ΩZ there is a positive µ0-
measure of points x ∈ N 1 for which F (x, `) ∈ N 2 × ΩZ.

Q.E.D.

5 Extensions

If we look at the proof of Theorem 4.2, it is apparent that its key argument is
that each horizontal fiber N j×ΩZ is part of the same ergodic component. Once
that is known, one simply uses (A5) to show that a given ergodic component
invades the whole phase space, first for the map Fj and then for the map F
itself. The details of the dynamics are not relevant for this argument.

By Theorem 3.5, the ergodicity of the point of view of the particle implies the
recurrence of our cocycle, because the cocycle is one-dimensional. Thus, as long
as we deal with systems in which the position of the particle can be described,
in a discrete sense, by a one-dimensional cocycle, the foregoing arguments can
be used to prove the almost sure recurrence of a more general class of LTs.

In the present section we sketch the construction of some of these extensions.
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Same gates, different cells

There is no reason why all the cells Cn should be the same polygon. One can
easily consider random cells Cn in which the border too depends on the random
parameter `n. This can be devised by putting extra flat scatterers in a sufficiently
large cell in order to produce any desired shape; see Fig. 4. As long as each cell
has two opposite congruent gates and (A1)-(A5) are verified, all the previous
results continue to hold.

=

Figure 4: Realizing a randomly-shaped cell out of a standard cell.

In fact, one can allow for the distance between the gates to vary with `n as
well (in (4.2) simply replace τ−ε with the cell-dependent local translation τ−εω ).
An example of this type of LT is shown in Fig. 5.

Figure 5: An LT with different cells.
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Same cells, poly-gates

One can also define Gj to be the union of a finite number of sides Gji, with
i varying in some index set I, provided that there is a translation τ such that
τ(G1) = G2; see Fig. 6. However, in order for steps 2 and 3 of the proof of
Theorem 4.2 to hold, (A5) needs to be replaced by

(A5’) For a.e. `, all j, j′ ∈ {1, 2} and all i, i′ ∈ I, there is a non-singular trajectory
entering C0 through Gji and leaving it through Gj′i′ .

Figure 6: An LT with non-trivial gates.

From translation to general isometry

Another hypothesis that is not crucial is that G1 is mapped onto G2 via a
translation. One can imagine that Z acts upon the Lorentz tube via a general
isometry, for example a roto-translation, as in Fig. 7.

The only problem, in this case, is that, quite generally, the resulting tube will
have self-intersections. One can simply do away with it by disregarding the self-
intersections, e.g., by declaring that any two portions of the tube that intersect
in the plane actually belong to different sheets of a Riemann surface.

Random gates and random isometries

Assume that the fundamental domain is a polygon C such that p of its sides
(p ≥ 2) are congruent. In this case it is possible to randomize the choice of
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Figure 7: A spiraling LT.

the gates too. That is, one can let the random parameter `n decide which of
the p congruent sides of Cn will play the role of the “left” and “right” gates.
Moreover, `n can also prescribe how the right gate of Cn attaches to the left
gate of Cn+1; see Fig. 8.

In order to implement this idea, we need to slightly change our previous no-
tation. Let {Gj}pj=1 be a fixed ordering of the p congruent sides of C mentioned
above. For any such j, let N j denote the transparent, incoming, cross section
relative to Gj, as in (2.1). Then set N :=

⋃
j N j.

We assume that there exist two functions j1, j2 : Ω −→ {1, . . . , p} such that
j1(ω) 6= j2(ω), ∀ω. This is how ω specifies that Gj1 and Gj2 are the left and
right gates, respectively, of C.

In lieu of Rω, cf. (4.2), we use the more general map R` : N −→ N defined
as follows. For x = (q, v) ∈ N , let Gj be the first side of its kind that the
forward flow-trajectory of x hits within C, and denote by q1 and v1, respectively,
the hitting point in Gj and the precollisional velocity there (see Fig. 3).

• If j = j2(`0) then R` x := ξ`0 ◦ ρj2(`0),j1(`1)(q1, v1). Here ρj,j′ is the
transformation that rigidly maps the outer pairs (q1, v1) based in Gj onto
the inner pairs based in Gj′ (it is a rototranslation in the q variable); and
ξω : N −→ N , depending on the usual random parameter ω, is either the
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G

Figure 8: An LT with random gates (in this case p = 3, see
text).

identity or the transformation that flips all the segments Gj and changes
the v variable accordingly. So, through ξω, `n decides whether Cn and
Cn+1 have the same or opposite orientations (cf. Fig. 8). In this case, the
exit function is set to the value e(x, `0) := 1.

• If j = j1(`0) then, in accordance with the previous case, R` x := ξ`−1 ◦
ρj1(`0),j2(`−1)(q1, v1) (notice that ξ−1

ω = ξω). In this case, e(x, `0) := −1.

• For all the other j, R` x := (q1, v2), where v2 := v1 + 2(v1 · oj)oj is the
postcollisional velocity corresponding to a billiard bounce against Gj with
incoming velocity v1 (oj denoted the inner normal to Gj). For this last
case, e(x, `0) := 0.

6 Higher dimension

The most important generalization of the results of Section 4 is to d-dimensional
LTs. While it is true that the structure of the proof of Theorem 4.2 is rather
abstract and does not depend on the fine details of the system at hand, it is a
known and unfortunate fact that, in dimension bigger than 2, its main ingredient,
namely Theorem 2.2, becomes very hard to prove, even for periodic Lorentz gases.
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In fact, for d ≥ 3, if we exclude generic results that so far can claim no definite
examples [BBT], hyperbolicity and ergodicity are only known for algebraic Sinai
billiards, i.e, dispersing billiards on the torus given by a finite number of scatterers,
whose boundaries are made up of a finite number or compact pieces of algebraic
varieties [BCST].

Because the situation for finite-measure semidispersing billiards is less than
optimal, our ability to extend the previous results to the d-dimensional case will
also be less than optimal. In truth, we simply adapt the theorems of [BCST] to
our framework, much as a previous paper by one of us [L1] adapted the classical
results on two-dimensional semidispersing billiards to two-dimensional Lorentz
gases.

In order to describe our d-dimensional setup, we redefine all the objects that
were introduced in Section 2, not mentioning those whose redefinition is obvious.
Also, we modify and augment our assumptions.

The fundamental domain C is a d-dimensional polytope with two parallel
congruent faces, G1 and G2. As for the scatterers On,i, we replace (A2) with

(A2’) There exist a positive integer K such that, for Π-a.e. realization ` ∈ ΩZ,
∂On,i is made up of at most K compact, connected, subsets of algebraic
varieties (SSAVs), which may intersect only at their borders. These borders,
which thus have codimension larger than one, will be generically referred
to as edges.

(More restrictions will be imposed on On,i = On,i(`n) by assumptions (A6’)-
(A7’); cf. discussion below.) If q is a smooth point of ∂Q, let k(q) be the second
fundamental form of ∂Q at q. We substitute (A4) with

(A4’) There exists a positive constant km such that, for a.e. `, given a smooth
q ∈ ∂Q`, either the SSAV which q belongs to is a piece of a hyperplane or

k(q) ≥ km,

where the inequality is meant in the sense of the quadratic forms.

In analogy with Section 2, a singular trajectory is a trajectory which has tangential
collisions or collisions with the edges of ∂Q (in which case it ends there). With
this provision, (A5) reads the same for the d-dimensional case as well.

For d ≥ 3, it is a known fact that (A3)-(A4) are not enough to guarantee
uniform hyperbolicity, which thus must be explicitly assumed.
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(A6’) For every ε > 0, there exist a positive integer M such that, given any se-
quence of M successive collisions against dispersing parts of the boundary,
at least one of them is such that the angle of incidence (relative to the
normal at the collision point) is less then π/2− ε.

That the above implies uniform hyperbolicity is a consequence of the reflection
laws of geometrical optics, and it can be easily verified by looking at the expression
for the differential of the billiard map (found, e.g., in [BD]).

The last condition we impose is the most cumbersome to present — but it
is not really hard to check. We need to describe some of the features of the
dynamical system (M, T`, µ), the d-dimensional analogue of the homonymous
system introduced in Section 2.

It is common knowledge that semidispersing billiards give rise to discontinuous
maps. If x ∈ N j

n ⊂M is the initial condition of a singular trajectory that has a
tangential collision or hits an edge within the cell Cn, then, quite generally, x is
a discontinuity point of T`. We call such x a singular point for the map T`. (If x
is singular because of a tangential collision, it can be seen that the differential of
T` blows up at x, whence the term ‘singular’.) Let S = S` denote the set of all
singular points of T` and define Sj`,n := S`∩N j

n . Since the LT is algebraic in the
sense of (A2’), an easy adaptation of the results of [BCST] guarantees that, for
any `, S` is the union of countably many SSAVs. (The proof of the algebraicity
of the singularity set, in [BCST, §5.1], does not use in an essential way that the
scatterer configuration is periodic there.)

Condition (A2’) was specifically designed to ensure that Sj`,n comprises a
finite number of SSAVs and that this number is bounded above, uniformly in `,
n and j. For δ > 0, define

(Sj`,n)[δ] :=
{
x ∈ N j

n

∣∣ dist(x,Sj`,n) < δ
}
. (6.1)

The measures of these neighborhoods play a pivotal role in the proof of the
hyperbolic properties of billiards. The previous considerations and the results of
[BCST, §5.2] imply that, as δ → 0,

Leb((Sj`,n)[δ]) = O(δ), (6.2)

where Leb is the Lebesgue measure on M, corresponding to the distance dist.
(Notice that µ is absolutely continuous w.r.t. Leb.) The implicit constant in the
r.h.s. of (6.2) depends in general on ` and n (since j only takes two values, the
dependence on j can be forgotten). Here we require the bound to be uniform:
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(A7’) There exists a constant K ′ > 0 such that Leb((Sj`,n)[δ]) ≤ K ′δ, for Π-a.a.

` ∈ ΩZ, all n ∈ Z, j ∈ {1, 2}, and all sufficiently small δ.

By (6.2) it is not hard to generate examples of LTs satisfying (A7’). For
example, a small enough quenched random perturbation of a periodic algebraic
LT will work. Another easy example is the case where Ω is finite. In that case,
Sj`,n is completely determined by `n ∈ Ω and j ∈ {1, 2} and so is always one of
a finite number of sets. Therefore, (A7’) is implied by (6.2).

At any rate, we have:

Theorem 6.1 Under assumptions (A1), (A2’), (A3), (A4’), (A5), (A6’), (A7’),
the d-dimensional versions of Theorems 2.2 and 4.2 hold true. Hence the
quenched random LT is almost surely recurrent.

Of this theorem we shall not give a proof but rather an explanation that
should convince the reader familiar with hyperbolic billiards. The ideas are the
same as in [L1].

In order to verify local ergodicity, from which Theorem 2.2 and all the rest
follows, we use the technique of regular coverings, as in [KSS] or [LW]. This
technique requires a global argument (i.e., an estimate on objects outside the
neighborhood U under consideration) in one part only, the so-called tail bound.
The rest of the proof is local, thus unable to distinguish between a finite- and
an infinite-measure billiard: all the standard arguments apply there. In addition,
there is a prior result that needs a global argument: the existence and absolute
continuity of the LSUMs (for infinite-measure hyperbolic billiards we do not have
a version of Pesin’s theory, as in [KS]). We first discuss the latter and then the
former.

Initially, we need to prove that, for a.a. x ∈M, a constant C0 = C0(x) can
be found such that

dist
(
T−k` x,S ∪ ∂M

)
≥ C0 k

−3, (6.3)

for all positive integers k; cf. [L1, Lem. 3.2]. Without loss of generality, it is
sufficient to verify the above for a.a. x ∈ N 1

0 . Dropping the subscript ` from all
the notation, let us observe that, by construction, T−kx ∈ N j

n implies |n| ≤ k.
Therefore

dist(T−kx,S ∪ ∂M) ≤ k−3 (6.4)

is equivalent to

x ∈ T k
 ⋃
|n|≤k

⋃
j=1,2

(
Sjn ∪ ∂N j

n

)[k−3]

 . (6.5)
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By the invariance of µ and (A7’), the measure of the r.h.s. of (6.5) is bounded
by a constant times k−2, which is a summable series in k. By Borel-Cantelli,
the event (6.5), equivalently (6.4), may happen infinitely often in k only for a
negligible set of x, whence (6.3).

The other global argument that we outline is the one used for the tail bound,
that is, to prove that, for all x0 ∈M, there exists a neighborhood U0 of x0 such
that

µ

({
x ∈ U0

∣∣∣∣∣ distW s

(
x,
⋃

m>M ′

T−mS

)
< δ

})
= o(δ), (6.6)

as M ′ →∞. Here distW s(x, ·) is the Riemannian distance along W s(x). (Com-
pare (6.6) with the statement of Lemma 4.4 of [L1], noticing that here we use
T−1 and S, instead of T and S−, the latter denoting the singularity set of T−1.)
Once again, there is no loss of generality in choosing U0 ⊂ N 1

0 . Proceeding as
in [L1], (6.6) descends from the estimate

µ

x ∈ N 1
0

∣∣∣∣∣∣ distW s

x, ⋃
m>M ′

T−m
⋃
|n|≤k

⋃
j=1,2

Sjn

 < δ




≤ µ

 ⋃
m>M ′

x ∈M
∣∣∣∣∣∣ distW s

Tmx, ⋃
|n|≤m

⋃
j=1,2

Sjn

 < δcλm




≤
∞∑

m=M ′

µ

T−m
 ⋃
|n|≤m

⋃
j=1,2

(Sjn)[δcλm]


≤ δK ′c

∞∑
m=M ′

(4m+ 2)λm. (6.7)

In the first inequality above we have used the uniform hyperbolicity of T , which
is guaranteed by (A3), (A4’) and (A6’) (λ < 1 is the contraction rate and c is
a suitable constant). The third inequality follows from the invariance of µ and
(A7’).
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