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Abstract

We consider a class of continuous-time stochastic growth models on d-dimensional
lattice with non-negative real numbers as possible values per site. We remark that the
central limit theorem proven in our previous work [NY09a] can be extended to wider class
of models so that it covers the cases of potlatch/smoothing processes.
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1 Introduction

We write N∗ = {1, 2, ...}, N = {0} ∪ N∗, and Z = {±x ; x ∈ N}. For x = (x1, .., xd) ∈ Rd,
|x| stands for the `1-norm: |x| =

∑d
i=1 |xi|. For η = (ηx)x∈Zd ∈ RZd

, |η| =
∑

x∈Zd |ηx|. Let
(Ω,F , P ) be a probability space. We write P [X : A] =

∫
A X dP and P [X] = P [X : Ω] for a

random variable X and an event A.

1.1 The model

We go directly into the formal definition of the model, referring the reader to [NY09a, NY09b]
for relevant backgrounds. The class of growth models considered here is a reasonably ample
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subclass of the one considered in [Lig85, Chapter IX] as “linear systems”. We introduce a
random vector K = (Kx)x∈Zd such that

0 ≤ Kx ≤ bK1{|x|≤rK} a.s. for some constants bK , rK ∈ [0,∞), (1.1)

the set {x ∈ Zd ; P [Kx] 6= 0} contains a linear basis of Rd. (1.2)

The first condition (1.1) amounts to the standard boundedness and the finite range assump-
tions for the transition rate of interacting particle systems. The second condition (1.2) makes
the model “truly d-dimensional”.

Let τ z,i, (z ∈ Zd, i ∈ N∗) be i.i.d. mean-one exponential random variables and T z,i =
τ z,1 + ... + τ z,i. Let also Kz,i = (Kz,i

x )x∈Zd (z ∈ Zd, i ∈ N∗) be i.i.d. random vectors with
the same distributions as K, independent of {τ z,i}z∈Zd,i∈N∗ . We suppose that the process
(ηt) starts from a deterministic configuration η0 = (η0,x)x∈Zd ∈ NZd

with |η0| < ∞. At time
t = T z,i, ηt− is replaced by ηt, where

ηt,x =

{
Kz,i

0 ηt−,z if x = z,

ηt−,x + Kz,i
x−zηt−,z if x 6= z.

(1.3)

We also consider the dual process ζt ∈ [0,∞)Zd
, t ≥ 0 which evolves in the same way as

(ηt)t≥0 except that (1.3) is replaced by its transpose:

ζt,x =
{ ∑

y∈Zd Kz,i
y−xζt−,y if x = z,

ζt−,x if x 6= z.
(1.4)

Here are some typical examples which fall into the above set-up:

• The binary contact path process (BCPP): The binary contact path process (BCPP),
originally introduced by D. Griffeath [Gri83] is a special case the model, where

K =
{

(δx,0 + δx,e)x∈Zd with probability λ
2dλ+1 , for each 2d neighbor e of 0

0 with probability 1
2dλ+1 .

(1.5)

The process is interpreted as the spread of an infection, with ηt,x infected individuals at time
t at the site x. The first line of (1.5) says that, with probability λ

2dλ+1 for each |e| = 1, all
the infected individuals at site x− e are duplicated and added to those on the site x. On the
other hand, the second line of (1.5) says that, all the infected individuals at a site become
healthy with probability 1

2dλ+1 . A motivation to study the BCPP comes from the fact that
the projected process (ηt,x ∧ 1)x∈Zd , t ≥ 0 is the basic contact process [Gri83].

• The potlatch/smoothing processes: The potlatch process discussed in e.g. [HL81] and
[Lig85, Chapter IX] is also a special case of the above set-up, in which

Kx = Wkx, x ∈ Zd. (1.6)

Here, k = (kx)x∈Zd ∈ [0,∞)Zd
is a non-random vector and W is a non-negative, bounded,

mean-one random variable such that P (W = 1) < 1 (so that the notation k here is consistent
with the definition (1.7) below). The smoothing process is the dual process of the potlatch
process. The potlatch/smoothing processes were first introduced in [Spi81] for the case W ≡ 1
and discussed further in [LS81]. It was in [HL81] where case with W 6≡ 1 was introduced and
discussed. Note that we do not assume that kx is a transition probability of an irreducible
random walk, unlike in the literatures mentioned above.
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We now recall the following facts from [Lig85, page 433, Theorems 2.2 and 2.3]. Let Ft

be the σ-field generated by ηs, s ≤ t. Let (ηx
t )t≥0 be the process (ηt)t≥0 starting from one

particle at the site x: ηx
0 = δx. Similarly, let (ζx

t )t≥0 be the dual process starting from one
particle at the site x: ζx

0 = δx.

Lemma 1.1.1 We set

k = (kx)x∈Zd = (P [Kx])x∈Zd (1.7)

ηt = (e−(|k|−1)tηt,x)x∈Zd . (1.8)

Then,

a) (|ηt|,Ft)t≥0 is a martingale, and therefore, the following limit exists a.s.

|η∞| = lim
t→∞

|ηt|. (1.9)

b) Either
P [|η0

∞|] = 1 or 0. (1.10)

Moreover, P [|η0
∞|] = 1 if and only if the limit (1.9) is convergent in L1(P ).

c) The above (a)–(b), with ηt replaced by ζt are true for the dual process.

1.2 Results

We first introduce some more notation. For η, ζ ∈ RZd
, the inner product and the discrete

convolution are defined respectively by

〈 η, ζ 〉 =
∑
x∈Zd

ηxζx and (η ∗ ζ)x =
∑
y∈Zd

ηx−yζy (1.11)

provided the summations converge. We define for x, y ∈ Zd,

βx,y = P [(K − δ0)x(K − δ0)y] and βx =
∑
y∈Zd

βx+y,y (1.12)

If we simply write β in the sequel, it stands for the function x 7→ βx. Note then that

〈 β, 1 〉 =
∑

x,y∈Zd

βx,y = P [(|K| − 1)2]. (1.13)

We also introduce:
GS(x) =

∫ ∞

0
P 0

S(St = x)dt, (1.14)

where ((St)t≥0, P
x
S ) is the continuous-time random walk on Zd starting from x ∈ Zd, with

the generator

LSf(x) =
∑
y∈Zd

LS(x, y) (f(y) − f(x)) , with LS(x, y) =
kx−y + ky−x

2
for x 6= y, (1.15)

cf. (1.7). The set of bounded continuous functions on Rd is denoted by Cb(Rd).

Theorem 1.2.1 Suppose d ≥ 3. Then, the following conditions are equivalent:
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a) 〈 β,GS 〉 < 2.

b) There exists a bounded function h : Zd → [1,∞) such that

(LSh)(x) + 1
2δ0,x〈 β, h 〉 ≤ 0, x ∈ Zd. (1.16)

c) sup
t≥0

P [|ηt|2] < ∞.

d) lim
t→∞

∑
x∈Zd

f
(
(x − mt)/

√
t
)

ηt,x = |η∞|
∫

Rd

fdν in L2(P ) for all f ∈ Cb(Rd),

where m =
∑

x∈Zd xkx ∈ Rd and ν is the Gaussian measure with∫
Rd

xidν(x) = 0,

∫
Rd

xixjdν(x) =
∑
x∈Zd

xixjkx, i, j = 1, .., d. (1.17)

b’) There exists a bounded function h : Zd → [1,∞) such that

(LSh)(x) + 1
2h(0)βx ≤ 0, x ∈ Zd. (1.18)

c’) sup
t≥0

P [|ζt|2] < ∞.

d’) lim
t→∞

∑
x∈Zd

f
(
(x − mt)/

√
t
)

ζt,x = |ζ∞|
∫

Rd

fdν in L2(P ) for all f ∈ Cb(Rd).

The main point of Theorem 1.2.1 is that (a) implies (d) and (d’), while the equivalences
between the other conditions are byproducts.

Remarks: 1) Theorem 1.2.1 extends [NY09a, Theorem 1.2.1], where the following extra
technical condition was imposed:

βx = 0 for x 6= 0. (1.19)

For example, BCPP satisfies (1.19), while the potlatch/smoothing processes do not.
2) Let πd be the return probability for the simple random walk on Zd. We then have that

〈 β,GS 〉 < 2 ⇐⇒

{
λ > 1

2d(1−2πd) for BCPP,

P [W 2] < (2|k|−1)GS(0)
〈 GS∗k,k 〉 for the potlatch/smoothing processes.

(1.20)
cf. [Lig85, page 460, (6.5) and page 464, Theorem 6.16 (a)]. For BCPP, (1.20) can be seen
from that (cf. [NY09a, page 965])

βx,y =
1{x = 0} + λ1{|x| = 1}

2dλ + 1
δx,y, and GS(0) =

2dλ + 1
2dλ

1
1 − πd

.

To see (1.20) for the potlatch/smoothing processes, we note that 1
2(k + ǩ) ∗GS = |k|GS − δ0,

with ǩx = k−x and that

βx,y = P [W 2]kxky − kxδy,0 − kyδx,0 + δx,0δy,0.

Thus,

〈 β,GS 〉 = P [W 2]〈 GS ∗ k, k 〉 − 〈 GS , k + ǩ 〉 + GS(0)
= P [W 2]〈 GS ∗ k, k 〉 + 2 − (2|k| − 1)GS(0),
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from which (1.20) for the potlatch/smoothing processes follows.
3) It will be seen from the proof that the inequalities in (1.16) and (1.18) can be replaced
by the equality, keeping the other statement of Theorem 1.2.1.

As an immediate consequence of Theorem 1.2.1, we have the following

Corollary 1.2.2 Suppose either of (a)–(d) in Theorem 1.2.1. Then, P [|η∞|] = |η0| and for
all f ∈ Cb(Rd),

lim
t→∞

∑
x∈Zd

f
(
(x − mt)/

√
t
) ηt,x

|ηt|
1{ηt 6≡0} =

∫
Rd

fdν

in probability with respect to P ( · |ηt 6≡ 0, ∀t).

where m =
∑

x∈Zd xkx ∈ Rd and ν is the Gaussian measure defined by (1.17). Similarly,
either of (a),(b’),(c’),(d’) in Theorem 1.2.1 implies the above statement, with ηt replaced by
the dual process ζt.

Proof: The case of (η·) follows from Theorem 1.2.1(d). Note also that if P (|η∞| > 0) > 0,
then, up to a null set,

{ |η∞| > 0 } = { ηt 6≡ 0, ∀t },

which can be seen by the argument in [Gri83, page 701, proof of “Proposition”]. The proof
for the case of (ζ·) is the same. 2

2 The proof of Theorem 1.2.1

2.1 The equivalence of (a)–(c)

We first show the Feynman-Kac formula for two-point function, which is the basis of the proof
of Theorem 1.2.1. To state it, we introduce Markov chains (X, X̃) and (Y, Ỹ ) which are also
exploited in [NY09a]. Let (X, X̃) = ((Xt, X̃t)t≥0, P

x,ex

X, eX
) and (Y, Ỹ ) = ((Yt, Ỹt)t≥0, P

x,ex

Y,eY
) be

the continuous-time Markov chains on Zd × Zd starting from (x, x̃), with the generators

L
X, eX

f(x, x̃) =
∑

y,ey∈Zd

L
X, eX

(x, x̃, y, ỹ) (f(y, ỹ) − f(x, x̃)),

and L
Y,eY

f(x, x̃) =
∑

y,ey∈Zd

L
Y,eY

(x, x̃, y, ỹ) (f(y, ỹ) − f(x, x̃)),
(2.1)

respectively, where

L
X, eX

(x, x̃, y, ỹ) = (k − δ0)x−yδ
ex,ey + (k − δ0)

ex−eyδx,y + βx−y,ex−yδy,ey

and L
Y,eY

(x, x̃, y, ỹ) = L
X, eX

(y, ỹ, x, x̃)
(2.2)

It is useful to note that∑
y,ey

L
X, eX

(x, x̃, y, ỹ) = 2(|k| − 1) + βx−ex, (2.3)

∑
y,ey

L
Y,eY

(x, x̃, y, ỹ) = 2(|k| − 1) + 〈 β, 1 〉δx,ex. (2.4)

Recall also the notation (ηx
t )t≥0 and (ζx

t )t≥0 introduced before Lemma 1.1.1.
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Lemma 2.1.1 For t ≥ 0 and x, x̃, y, ỹ ∈ Zd,

P [ζy
t,xζey

t,ex] = P [ηx
t,yη

ex
t,ey]

= e2(|k|−1)tP y,ey

X, eX

[
e
X, eX,t

: (Xt, X̃t) = (x, x̃)
]

= e2(|k|−1)tP x,ex

Y,eY

[
e
Y,eY ,t

: (Yt, Ỹt) = (y, ỹ)
]
,

where e
X, eX,t

= exp
(∫ t

0 β
Xs− eXs

ds
)

and e
Y,eY ,t

= exp
(
〈 β, 1 〉

∫ t
0 δ

Ys,eYs
ds

)
.

Proof: By the time-reversal argument as in [Lig85, Theorem 1.25], we see that (ηx
t,y, η

ex
t,ey) and

(ζy
t,x, ζey

t,ex) have the same law. This implies the first equality. In [NY09a, Lemma 2.1.1], we
showed the second equality, using (2.4). Finally, we see from (2.2) – (2.4) that the operators:

f(x, x̃) 7→ L
X, eX

f(x, x̃) + βx−exf(x, x̃),

f(x, x̃) 7→ L
Y,eY

f(x, x̃) + 〈 β, 1 〉δx,exf(x, x̃)

are transpose to each other, and hence are the semi-groups generated by the above operators.
This proves the last equality of the lemma. 2

Lemma 2.1.2 ((Xt − X̃t)t≥0, P
x,0

X, eX
) and ((Yt − Ỹt)t≥0, P

x,0

Y,eY
) are Markov chains with the

generators:
L

X− eX
f(x) = 2LSf(x) + βx(f(0) − f(x))

and L
Y −eY

f(x) = 2LSf(x) + (〈 β, f 〉 − 〈 β, 1 〉f(x))δx,0,
(2.5)

respectively (cf. (1.15)). Moreover, these Markov chains are transient for d ≥ 3.

Proof: Let (Z, Z̃) = (X, X̃) or (Y, Ỹ ). Since (Z, Z̃) is shift-invariant, in the sense that
L

Z, eZ
(x + v, x̃ + v, y + v, ỹ + v) = L

Z, eZ
(x, x̃, y, ỹ) for all v ∈ Zd, ((Zt − Z̃t)t≥0, P

x,ex

Z, eZ
) is a

Markov chain. Moreover, the jump rates L
Z− eZ

(x, y), x 6= y are computed as follows:

L
Z− eZ

(x, y) =
∑
z∈Zd

L
Z, eZ

(x, 0, z + y, z) =

{
kx−y + ky−x + δy,0βx if (Z, Z̃) = (X, X̃),
kx−y + ky−x + δx,0βy if (Z, Z̃) = (Y, Ỹ ).

These prove (2.5). By (1.2), the random walk S· is transient for d ≥ 3. Thus, Z − Z̃ is
transient d ≥ 3, since L

Z− eZ
(x, ·) = 2LS(x, ·) except for finitely many x. 2

Proof of (a) ⇔ (b) ⇔ (c): (a) ⇒ (b): Under the assumption (a), the function h given below
satisfies conditions in (b):

h = 1 + cGS with c =
〈 β, 1 〉

2 − 〈 β,GS 〉
. (2.6)

In particular it solves (1.16) with equality.
(b) ⇒ (c): By Lemma 2.1.1, we have that

1) P [|ηx
t ||ηex

t |] = P x,ex

Y,eY

[
e
Y,eY ,t

]
, x, x̃ ∈ Zd,
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where e
Y,eY ,t

= exp
(
〈 β, 1 〉

∫ t
0 δ

Ys,eYs
ds

)
. By Lemma 2.1.2, (1.16) reads:

L
Y −eY

h(x) + 〈 β, 1 〉δx,0h(x) ≤ 0, x ∈ Zd (2.7)

and thus,
P x,0

Y,eY

[
e
Y,eY ,t

h(Yt − Ỹt)
]
≤ h(x), x ∈ Zd.

Since h takes its values in [1, sup h] with suph < ∞, we have

sup
x

P x,0

Y,eY

[
e
Y,eY ,t

]
≤ suph < ∞.

By this and (1), we obtain that

sup
x

P [|ηx
t ||η0

t |] ≤ sup h < ∞.

(c) ⇒ (a) : Let G
Y −eY

(x, y) be the Green function of the Markov chain Y − Ỹ (cf. Lemma
2.1.2). Then, it follows from (2.5) that

G
Y −eY

(x, y) = 1
2GS(y − x) + 1

2 (〈 β,GS 〉 − 〈 β, 1 〉GS(0))G
Y −eY

(x, 0). (2.8)

On the other hand, we have by (1) that for any x, x̃ ∈ Zd,

P x,ex

Y,eY

[
e
Y,eY ,t

]
= P [|ηx

t ||ηex
t |] ≤ P [|η0

t |2],

where the last inequality comes from Schwarz inequality and the shift-invariance. Thus,

P x,ex

Y,eY

[
e
Y,eY ,∞

]
≤ sup

t≥0
P [|η0

t |2] < ∞. (2.9)

Therefore, we can define h : Zd → [1,∞) by:

h(x) = P x,0

Y,eY

[
e
Y,eY ,∞

]
, (2.10)

which solves:
h(x) = 1 + G

Y −eY
(x, 0)〈 β, 1 〉h(0).

For x = 0, it implies that
G

Y −eY
(0, 0)〈 β, 1 〉 < 1.

Plugging this into (2.8), we have (a). 2

Remark: The function h defined by (2.10) solves (2.7) with equality, as can be seen by the
way it is defined. This proves (c) ⇒ (b) directly. It is also easy to see from (2.8) that the
function h defined by (2.10) and by (2.6) coincide.

2.2 The equivalence of (c) and (d)

To proceed from (c) to the central limit theorem (d), we will use the following variant of
[NY09a, Lemma 2.2.2]:
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Lemma 2.2.1 Let ((Zt)t≥0, P
x) be a continuous-time random walk on Zd starting from x,

with the generator
LZf(x) =

∑
y∈Zd

LZ(x, y)(f(y) − f(x)),

where we assume that ∑
x∈Zd

|x|2LZ(0, x) < ∞.

On the other hand, let Z̃ = ((Z̃t)t≥0, P̃
x) be the continuous-time Markov chain on Zd starting

from x, with the generator

L
eZ
f(x) =

∑
y∈Zd

L
eZ
(x, y)(f(y) − f(x)).

We assume that z ∈ Zd, D ⊂ Zd and a function v : Zd → R satisfy

LZ(x, y) = L
eZ
(x, y) if x 6∈ D ∪ {y},

D is transient for both Z and Z̃,
v is bounded and v ≡ 0 outside D,

et
def= exp

(∫ t
0 v(Z̃u)du

)
, t ≥ 0 are uniformly integrable with respect to P̃ z.

Then, for f ∈ Cb(Rd),

lim
t→∞

P̃ z
[
etf((Z̃t − mt)/

√
t)

]
= P̃ z [e∞]

∫
Rd

fdν,

where m =
∑

x∈Zd xLZ(0, x) and ν is the Gaussian measure with∫
Rd

xidν(x) = 0,

∫
Rd

xixjdν(x) =
∑
x∈Zd

xixjLZ(0, x), i, j = 1, .., d.

Proof: We refer the reader to the proof of [NY09a, Lemma 2.2.2], which works almost
verbatim here. The uniform integrability of et is used to make sure that lims→∞ supt≥0 |εs,t| =
0, where εs,t is an error term introduced in the proof of [NY09a, Lemma 2.2.2]. 2

Proof of (c) ⇔ (d): (c) ⇒ (d): Once (2.9) is obtained, we can conclude (d) exactly in the
same way as in the corresponding part of [NY09a, Theorem 1.2.1]. Since (c) implies that
limt→∞ |ηt| = |η∞| in L2(P ), it is enough to prove that

Ut
def.=

∑
x∈Zd

ηt,xf
(
(x − mt)/

√
t
)
−→ 0 in L2(P ) as t ↗ ∞

for f ∈ Cb(Rd) such that
∫

Rd fdν = 0. We set ft(x, x̃) = f((x − m)/
√

t)f((x̃ − m)/
√

t). By
Lemma 2.1.1,

P [U2
t ] =

∑
x,ex∈Zd

P [ηt,xηt,ex]ft(x, x̃) =
∑

x,ex∈Zd

η0,xη0,exP x,ex

Y,eY

[
e
Y,eY ,t

ft(Yt, Ỹt)
]
.

Note that by (2.9) and (c),

1) P x,ex

Y,eY

[
e
Y,eY ,∞

]
< ∞.
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Since |η0| < ∞, it is enough to prove that for each x, x̃ ∈ Zd

lim
t→∞

P x,ex

Y,eY

[
e
Y,eY ,t

ft(Yt, Ỹt)
]

= 0.

To prove this, we apply Lemma 2.2.1 to the Markov chain Z̃t
def.= (Yt, Ỹt) and the random

walk (Zt) on Zd × Zd with the generator

LZf(x, x̃) =
∑

y,ey∈Zd

LZ(x, x̃, y, ỹ) (f(y, ỹ) − f(x, x̃)) ,

where

LZ(x, x̃, y, ỹ) =


k

ey−ex if x = y and x̃ 6= ỹ,
ky−x if x 6= y and x̃ = ỹ,
0 if otherwise.

Let D = {(x, x̃) ∈ Zd × Zd ; x = x̃}. Then,

2) LZ(x, x̃, y, ỹ) = L
Y,eY

(x, x̃, y, ỹ) if (x, x̃) 6∈ D ∪ {(y, ỹ)}.

Moreover, by Lemma 2.1.2,

3) D is transient both for (Zt) and for (Z̃t).

Finally, the Gaussian measure ν ⊗ ν is the limit law in the central limit theorem for the
random walk (Zt). Therefore, by (1)–(3) and Lemma 2.2.1,

lim
t→∞

P x,ex

Y,eY

[
e
Y,eY ,t

ft(Yt, Ỹt)
]

= P x,ex

Y,eY

[
e
Y,eY ,∞

] (∫
Rd

fdν

)2

= 0.

(d) ⇒ (c):This can be seen by taking f ≡ 1. 2

2.3 The equivalence of (a),(b’),(c’)

(a) ⇒ (b’): Let h = 2 − 〈 β,GS 〉 + β ∗ GS . Then, it is easy to see that h solves (1.18) with
equality. Moreover, using Lemma 2.3.1 below, we see that h(x) > 0 for x 6= 0 by as follows:

(β ∗ GS)(x) − (β ∗ GS)(0) ≥
(

GS(x)
GS(0)

− 1
)

(β ∗ GS)(0) − 2
GS(x)
GS(0)

>

(
GS(x)
GS(0)

− 1
)

2 − 2
GS(x)
GS(0)

= −2.

Since h(0) = 2 and lim|x|→∞ h(x) = 2 − (β ∗ GS)(0) ∈ (0,∞), h is bounded away from both
0 and ∞. Therefore, a constant multiple of the above h satisfies the conditions in (b’).
(b’) ⇔ (c’): This can be seen similarly as (b) ⇔ (c) (cf. the remark at the end of section
2.1).
(c’) ⇒ (a) : We first note that

1) lim
|x|→∞

(β ∗ GS)(x) = 0,

since GS vanishes at infinity and β is of finite support. We then set:

h0(x) = P x,0

X,X̃
[eX,X̃,∞], h2(x) = h0(x) − 1

2
h0(0)(β ∗ GS)(x).
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Then, there exists positive constant M such that 1
M ≤ h0 ≤ M and

(LSh0)(x) = −1
2
h0(0)βx, for all x ∈ Zd.

By (1), h2 is also bounded and

(LSh2)(x) = (LSh0)(x) − 1
2
h0(0)LS(β ∗ GS)(x) = −1

2
h0(0)βx +

1
2
h0(0)βx = 0.

This implies that there exists a constant c such that h2 ≡ c on the subgroup H of Zd generated
by the set {x ∈ Zd ; kx + k−x > 0}, i.e.,

2) h0(x) − 1
2
h0(0)(β ∗ GS)(x) = c for x ∈ H.

By setting x = 0 in (2), we have

c = h0(0)(1 − 〈β,GS〉
2

).

On the other hand, we see from (1)–(2) that

0 <
1
M

≤ lim
|x|→∞
x∈H

h0(x) = c.

These imply 〈β,GS〉 < 2. 2

Lemma 2.3.1 For d ≥ 3,

(β ∗ GS)(x) ≥ GS(x)
GS(0)

((β ∗ GS)(0) − 2) + 2δ0,x x ∈ Zd.

Proof: The function βx can be either positive or negative. To control this inconvenience, we
introduce: β̃x =

∑
y∈Zd P [KyKx+y]. Since β̃x ≥ 0 and GS(x + y)GS(0) ≥ GS(x)GS(y) for all

x, y ∈ Zd, we have

1) GS(0)(GS ∗ β̃)(x) ≥ GS(x)(GS ∗ β̃)(0).

On the other hand, it is easy to see that

β = β̃ − k − ǩ + δ0, with ǩx = k−x.

Therefore, using 1
2(k + ǩ) ∗ GS = |k|GS − δ0,

2) β ∗ GS = (β̃ − k − ǩ + δ0) ∗ GS = β̃ ∗ GS − (2|k| − 1)GS + 2δ0.

Now, by (1), and (2) for x = 0,

(GS ∗ β̃)(x) ≥ GS(x)
GS(0)

(GS ∗ β̃)(0) =
GS(x)
GS(0)

(β ∗ GS(0) − 2) + (2|k| − 1)GS(x).

Plugging this in (2), we get the desired inequality. 2
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2.4 The equivalence of (c’) and (d’)

(d’) ⇒ (c’): This can be seen by taking f ≡ 1.
(c’) ⇒ (d’):By Lemma 2.1.1, Schwarz inequality and the shift-invariance, we have that

P x,ex

X, eX

[
e
X, eX,t

]
= P [|ζx

t ||ζ
ez
t |] ≤ P [|ζ0

t |2], for x, x̃ ∈ Zd,

where e
X, eX,t

= exp
(∫ t

0 β
Xs− eXs

ds
)
. Thus, under (c’), the following function is well-defined:

h0(x) def= P x,0

X,X̃
[eX,X̃,∞].

Moreover, there exists M ∈ (0,∞) such that 1
M ≤ h0 ≤ M and

(LSh0)(x) = −1
2
h0(0)βx, for all x ∈ Zd.

We set
h1(x) = h0(x) − 1

2M
.

Then, we have 0 < 1
2M ≤ h0 ≤ M and

LSh1(x) = LSh0(x) = −1
2
h0(0)βx = −1

2
h1(0)pβx, with p =

h0(0)
h1(0)

> 1.

This implies, as in the proof of (b) ⇒ (c) that

sup
t≥0

P x,ex

X, eX

[
ep

X, eX,t

]
≤ 2M2 < ∞ for x, x̃ ∈ Zd,

which guarantees the uniform integrability of e
X, eX,t

, t ≥ 0 required to apply Lemma 2.2.1.
The rest of the proof is the same as in (c) ⇒ (d). 2
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