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E-mail: gentile@mat.uniroma3.it

Abstract

We consider a class of ordinary differential equations describing one-dimensional quasi-
periodically forced systems in the presence of large damping. We give a fully constructive
proof of the existence of response solutions, that is quasi-periodic solutions which have the
same frequency vector as the forcing. This requires dealing with a degenerate implicit func-
tion equation: we prove that the latter has a unique solution, which can be explicitly deter-
mined. As a by-product we obtain an explicit estimate of the minimal size of the damping
coefficient.

1 Introduction

In this paper we continue the analysis started in [9, 10, 8] on the existence and properties of
quasi-periodic motions in one-dimensional strongly dissipative forced systems.

We consider one-dimensional systems with a quasi-periodic forcing term in the presence of
strong damping, described by ordinary differential equations of the form

εẍ+ ẋ+ εg(x) = εf(ωt), (1.1)

where g : R → R and f : Td → R are real analytic functions and T = R/2πZ. We call g(x)
the mechanical force, f(ωt) the forcing term, ω ∈ R

d the frequency vector of the forcing, and
γ = 1/ε > 0 the damping coefficient.

The function f is quasi-periodic in t, i.e.

f(ψ) =
∑

ν∈Zd

eiν·ψfν, ψ ∈ T
d, (1.2)

with average 〈f〉 = f0, and · denoting the scalar product in R
d. By the analyticity assumption

on f and g, one has |fν| ≤ Φe−ξ|ν| and |dsg(c0)/dx
s| ≤ s!Γs for suitable positive constants Φ, ξ,

and Γ.

A Diophantine condition is assumed on ω. Define the Bryuno function

B(ω) =
∞∑

n=0

1

2n
log

1

αn(ω)
, αn(ω) = inf{|ω · ν| : ν ∈ Z

d such that 0 < |ν| ≤ 2n}. (1.3)
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Assumption 1. The frequency vector ω satisfies the Bryuno condition B(ω) <∞.

The following assumption will be made on the functions g and f (for given force g(x) this
can read as a condition on the forcing term).

Assumption 2. There exists c0 ∈ R such that x = c0 is a zero of odd order n of the equation

g(x) − f0 = 0, (1.4)

that is g0 = n!−1dng/dxn(c0) 6= 0 and, if n > 1, dkg/dxk(c0) = 0 for k = 1, . . . , n − 1.

In [8] we proved the following result about the existence of quasi-periodic solutions with the
same frequency vector ω as the forcing (response solutions).

Theorem 1.1. Under Assumptions 1 and 2, for ε small enough there exists at least one quasi-
periodic solution x0(t) = c0 + u(ωt, ε), with frequency vector ω, reducing to c0 as ε tends to 0.
Such a solution is analytic in t.

Note that the condition ε > 0 could be eliminated: indeed, the proof in [8] works for all ε
small enough, and the request ε > 0 only aims to interpret γ = 1/ε as the damping coefficient.
Analyticity on t is not explicitly stated in [8], but follows immediately from the proof therein.

We also proved in [8] that the condition that c0 be a zero of odd order of (1.4) is a necessary
and sufficient condition for a quasi-periodic solution around c0 to exists.

However, as pointed out in [8], except for the non-degenerate case n = 1 (where the implicit
function theorem applies), in general the proof ultimately relies on continuity arguments, which
do not provide a quantitative constructive estimate on the maximal size of the perturbation
parameter ε. Moreover, the quasi-periodic solution was constructed in terms of two parameters,
that is ε and c: the latter is defined as the constant part of the quasi-periodic solution itself and
is fixed in terms of ε so as to solve a certain implicit function equation (the so-called bifurcation
equation). In particular, a quasi-periodic solution was showed to exist for any solution c(ε) to
the bifurcation equation, but the problem of studying how many such solutions exist and how
do they depend on ε was not investigated.

In this paper we show that for all odd n the bifurcation equation admits one and only one
solution. Furthermore, we explicitly construct the quasi-periodic solution in terms of the only
parameter ε, and we also give a quantitative estimate on the maximal size of ε. So, with respect
to [8], the proof of existence of the quasi-periodic solution is fully constructive.

We can summarise our results in the following statement.

Theorem 1.2. Under Assumptions 1 to 2 on the ordinary differential equation (1.1), there
exists an (explicitly computable) constant ε0 > 0 such that for all |ε| < ε0 there exists a quasi-
periodic solution x0(t) = c0 + u(ωt, ε), with frequency vector ω, such that u = O(ε) as ε → 0.
Such a solution is analytic in t and depends C∞-smoothly on ε.

The result solves a problem left as open in [8]. The problem remains whether other quasi-
periodic solutions exist.
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Numerical algorithms to construct response solutions of quasi-periodically forced dissipative
systems are provided in [3, 11, 12], based either on a generalised harmonic balance method or
on a fixed point method for a suitable Poincaré map. Also the method described in the present
paper is well suited for numerical implementations, and allows a completely rigorous control of
the approximation error for the solution. Moreover it applies also in degenerate cases where
one cannot apply directly the implicit function theorem (of course it requires for the damping
coefficient to be large enough).

2 The bifurcation equation

The existence of quasi-periodic solutions x0(t) has been proved in [8]. The proof proceeds as
follows. First of all, write

x0(t) = c0 + u(ωt, ε) = c+X(ωt; ε, c), X(ψ; ε, c) =
∑

ν∈Zd
∗

eiν·ψXν(ε, c), (2.1)

with Z
d
∗ = Z

d \ {0} (so that c is the average of x0 on the d-dimensional torus). The Fourier
coefficients Xν = Xν(ε, c) of the function X(ψ; ε, c) are obtained by solving the range equation

iω · ν (1 + iεω · ν)Xν + ε [g(c+X(·; ε, c)]ν = εfν, ν 6= 0, (2.2)

where

[g(c +X(·; ε, c)]ν =

∞∑

p=0

1

p!

dp

dxp
g(c)

∑

ν1,...,νp∈Zd
∗

ν1+...+νp=ν

Xν1
(ε, c) . . . Xνp(ε, c). (2.3)

The analysis in [8] shows that for all c close enough to c0 and all ε small enough there exists
a function X(ψ; ε, c) which solves (2.2). Moreover the map (ε, c) 7→ X(·; ε, c) is C∞ in a
neighbourhood of (0, c0), and

X(ψ; ε, c) = εX(1)(ψ) + o(ε), Ẋ(1)(ωt) = f(ωt). (2.4)

Then, for any solution c = c(ε) to the bifurcation equation

F (ε, c) := [g(c +X(·; ε, c)]0 − f0 = 0, (2.5)

there exists a quasi-periodic solution x0(t) = c(ε) +X(ωt; ε, c(ε)).

In principle, there could be several solutions to (2.5) when n > 1. On the contrary, we
shall prove that the solution to (2.5) is unique. Unfortunately, this does not implies that the
response solution c0 + u(ωt, ε) of Theorem 1.1 is the only quasi-periodic solution reducing to c0
as ε→ 0, because no result ensures that the function X(ψ; ε, c) which solves (2.2) at fixed c and
ε is unique.

We shall write c = c(ε) = c0 + ζ, with ζ = ζ(ε) such that ζ(0) = 0, so that (2.3) becomes

[g(c+X(·; ε, c)]ν =

∞∑

p=n

1

p!

dp

dxp
g(c0)

p∑

k=0

(
p
k

)
ζp−k

∑

ν1,...,νk∈Z
d
∗

ν1+...+νk=ν

Xν1
(ε, c) . . . Xνk

(ε, c). (2.6)
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Lemma 2.1. Let c = c(ε) a solution of the bifurcation equation (2.5). Then c = c0 +O(ε), and
c = c0 + o(ε) requires [(X(1)(·))n]0 = 0.

Proof. Assume that ζ/ε→ ∞ as ε→ 0. Then, by using (2.4), one has

[g(c +X(·; ε, c)]0 − f0 = g0
[
(ζ +X(·, ε, c))n

]
0

+O(ζn+1) = g0ζ
n +O(ζn+1) = 0,

which leads to a contradiction. Hence ζ = O(ε). On the other hand if [(X(1)(·))n]0 6= 0 and
ζ = o(ε) one has

[g(c +X(·; ε, c)]0 − f0 = g0
[
(ζ +X(·; ε, c))n

]
0

+O(εn+1) = g0ε
n[(X(1)(·))n]0 +O(εn+1) = 0,

which once more leads to a contradiction.

Note that a sufficient condition for [(X(1)(·))n]0 to vanish is that f in (1.2) is even.

The function F (ε, c), defined in (2.5), is C∞ in both ε and c; see [8]. In order to identify the
leading orders to F (ε, c), we consider the carrier

∆(F ) = {(k, j) ∈ Z+ ×Z+ : Fk,j 6= 0} , Fk,j =
dk

dεk
dj

dcj
F (0, c0), (2.7)

and draw the Newton polygon in the (k, j) plane; see [2] (see also [4]). If we denote by
{(k1, j1), (k2, j2)} the segment with endpoints (k1, j1) and (k2, j2) in the (k, j) plane, by con-
struction for n > 1 the Newton polygon consists of (cf. figure 1)

1. either the only segment {(0, n), (n, 0)}, if Fn,0 = [(X(1)(·))n]0 6= 0,

2. or the only segment {(0, n), (n − 1, 1)}, if Fk,0 = 0 for all k ≥ 0,

3. or the two segments {(0, n), (n − 1, 1)} and {(n − 1, 1), (p, 0)}, with p ≥ n + 1, if Fk,0 = 0
for all k ≤ p − 1 and Fp,0 6= 0.

j

k

j

k

j

k

n n n

n n−1 n−1

1 1

p

Figure 1: Newton polygon (corresponding to cases 1 to 3, respectively)

Therefore, in principle, a solution to the bifurcation equation F (ε, c) = 0 is

• either c = c0 + ζ1ε + o(ε) for some ζ1 6= 0, corresponding to the segment {(0, n), (n, 0)} if
[(X(1)(·))n]0 6= 0 (case 1) and to the segment {(0, n), (n − 1, 1)} if [(X(1)(·))n]0 = 0 (cases
2 and 3),
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• or c = c0 + ζ0ε
p−n+1 + o(εp−n+1) for some ζ0 6= 0, corresponding to the segment {(n −

1, 1), (p, 0)} (case 3),

• or c = c0 + ζ(ε), with ζ(ε) decaying to zero faster than any power of ε (case 2).

The case n = 1 should be discussed apart, but since it is much easier and moreover has
already been discussed in [9, 10], here we concentrate on n > 1.

Lemma 2.2. If [(X(1)(·))n]0 = 0 then the bifurcation equation (2.5) admits one and only one
solution c(ε) = o(ε). Moreover such a solution is smooth in ε, and it can be explicitly computed.

Proof. If [(X(1)(·))n]0 = 0 one has
[
(ζ + εX(1)(·))n

]
0

=
[
(ζ + εX(1)(·))n

]
0

−
[
(εX(1)(·))n

]
0

=
[
(ζ + εX(1)(·))n − (εX(1)(·))n

]
0

= nζ

[∫ 1

0
ds

(
εX(1)(·) + sζ

)n−1
]

0

= nζ

∫ 1

0
ds

[(
εX(1)(·) + sζ

)n−1
]

0

,

which is non-zero because n − 1 is even. Therefore, by using that ζ = O(ε) by Lemma 2.1, one
obtains

F (ε, c) = ζεn−1a+G(ε, c), a = g0n

∫ 1

0
ds

[(
X(1)(·) + sζε−1

)n−1
]

0

,

with a > 0 and G(ε, c) = O(εn+1). Furthermore either all derivatives of G(ε, c0) vanish at ε = 0
(and hence Fk,0 = 0 for all k ≥ 0) or

G(ε, c0) = bεp +O(εp+1), b = Fp,0,

for some p > n.

In both cases, there is no solution corresponding to the segment {(0, n), (n − 1, 1)}. Indeed,
the bifurcation equation can be written as

εn−1 (a0ζ + Γ(ε, ζ)) = 0, a0 =

[(
X(1)(·)

)n−1
]

0

,

with the function Γ(ε, ζ) which is C∞ in both ε and ζ. Hence we can apply the implicit function
theorem to deduce that for ε 6= 0 there is one and only one solution c = c0 + ζ(ε) to the
bifurcation equation, with ζ(ε) smooth in ε and such that ζ(ε) = G(ε, c0)/a0ε

n−1 + ζ̃(ε) and
ζ̃(ε)/ζ(ε) → 0 as ε → 0. Moreover one can explicitly estimate the interval U around ε = 0 in
which such a solution exists (again by using the implicit function theorem and the bounds in
[8])).

If Fk,0 = 0 for all k ≥ 0 then the only solution to the bifurcation equation is c = c0 + ζ(ε),
where ζ(ε) is a C∞ function which goes to zero faster than any power as ε tends to 0. If there
exists p ≥ n + 1 such that Fk,0 = 0 for k ≤ p and Fp,0 6= 0, the only solution is of the form
c = c0 + ζ0ε

p−n+1 + o(εp−n+1), where ζ0 is the (unique) solution of the equation aζ + b = 0.

In the case [(X(1)(·))n]0 6= 0 the following result holds.
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Lemma 2.3. If [(X(1)(·))n]0 6= 0 then all solutions of the bifurcation equation (2.5) are of order
ε and have multiplicity 1. In particular, there exists a constant a0 > 0 such that |ci(ε)− cj(ε)| >
a0|ε| for all pairs of such solutions ci(ε) and cj(ε).

Proof. If [(X(1)(·))n]0 6= 0 then the equation

[(
ζ + εX(1)(·)

)n]
0

= 0, (2.8)

with X(1) defined in (2.4), admits at least one non-zero real solution ζ1 of order ε. Thus, one
can write

(
ζ + εX(1)(·)

)n

=
(
ζ − ζ1 + ζ1 + εX(1)(·)

)n

=
n∑

k=0

(
n

k

)
(ζ − ζ1)

n−k
(
ζ1 + εX(1)(·)

)k
,

so that, by using that [(ζ1 + εX(1)(·))n]0 = 0, one has

[(
ζ + εX(1)(·)

)n]
0

= (ζ − ζ1)

n−1∑

k=0

(
n

k

)
(ζ − ζ1)

n−1−k

[(
ζ1 + εX(1)(·)

)k
]

0

.

For ζ = ζ1 one has

n−1∑

k=0

(
n

k

)
(ζ − ζ1)

n−1−k

[(
ζ1 + εX(1)(·)

)k
]

0

=

(
n

n − 1

)[(
ζ1 + εX(1)(·)

)n−1
]

0

> 0,

which shows that ζ1 is a simple root of the equation (2.8), and hence also of the bifurcation
equation (2.5).

The following result extends Lemma 2.2, and shows that the bifurcation equation admits a
unique solution for any f .

Lemma 2.4. The bifurcation equation (2.5) admits one and only one solution c(ε). One has
c(ε) = ζ1ε+O(ε2), with ζ1 6= 0 if [(X(1)(·))n]0 6= 0 and c(ε) = O(ε2) if [(X(1)(·))n]0 = 0.

Proof. By Lemma 2.2 we can confine ourselves to the case [(X(1)(·))n]0 6= 0. In that case we
know by Lemma 2.3 that all the solutions of the bifurcation equation are of order ε and separated
by order ε. Hence we can set ζ = ζ1ε+ ζ ′, with ζ ′ = o(ε), so that one has

∂

∂c
F (ε, c0 + ζ) = g0

∂

∂ζ

[(
ζ + εX(1)(·)

)n]
0

+O(εn+1)

= g0ε
nn

[(
ζ1 +X(1)(·)

)n−1
]

0

+O(εn+1),

which is strictly positive for ε > 0 small enough. Thus, at fixed ε, F (ε, c) is increasing in c: this
yields that the solution c = c(ε) of F (ε, c) = 0 is unique for ε small enough.
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3 Multiscale analysis and diagrammatic expansion

In this section we develop a diagrammatic representation for the quasi-periodic solution. There
are a few differences with respect to [8], as we expand simultaneously both X and c in terms
of the perturbation parameter ε. As in [8], the expansions we shall find are not power series
expansions. See also [5, 4] for analogous situations; note, however, that in our case, as in [7], no
fractional expansions arise.

We can summarise the results of the previous section as follows. The bifurcation equation
(2.5) admits a unique solution c(ε) = c0 + ζ(ε) such that ζ(0) = 0. Let X(1) the zero-average
function such that Ẋ(1) = f . If [(X(1)(·))n]0 6= 0 then one has ζ(ε) = ζ1ε + o(ε), where εζ1 is
the unique solution of the equation (2.8).

To make notation uniform we can set in the following ζ1 = 0 if [(X(1)(·))n]0 = 0. By defining

Pn(ζ) =
[(
ζ +X(1)(·)

)n]

0

, P ′
n(ζ) =

d

dζ
Pn(ζ), (3.1)

if [(X(1)(·))n]0 6= 0 one has P ′
n(ζ1) 6= 0 by Lemma 2.3, and if [(X(1)(·))n]0 = 0 one has P ′

n(ζ1) =
P ′

n(0) = n[(X(1)(·))n−1]0 6= 0 because n is odd. Set a = g0P
′
n(ζ1) in both cases; then a 6= 0.

In the following we give the diagrammatic rules in detail to make the exposition self-
contained, and we only stress where the main differences lie with respect to the expansion
of [8]. From a technical point of view, the diagrammatic analysis turns out a bit more involved,
as it requires further expansions, and hence more labels to be assigned to the diagrams. On the
other hand, eventually there is the advantage that one has a completely constructive algorithm
to determine the solution within any fixed accuracy and an explicitly computable value for the
maximal size of the allowed perturbation.

A graph is a connected set of points and lines. A tree θ is a graph with no cycle, such that
all the lines are oriented toward a unique point (root) which has only one incident line (root
line). All the points in a tree except the root are called nodes. The orientation of the lines in
a tree induces a partial ordering relation (�) between the nodes. Given two nodes v and w, we
shall write w ≺ v every time v is along the path (of lines) which connects w to the root.

We call E(θ) the set of end nodes in θ, that is the nodes which have no entering line, and
V (θ) the set of internal nodes in θ, that is the set of nodes which have at least one entering line.
Set N(θ) = E(θ) ∐ V (θ). With each end node v we associate a mode label νv ∈ Z

d. For all
v ∈ N(θ) denote with sv the number of lines entering the node v; for v ∈ V (θ) one has sv ≥ n.

With respect to [8] the mode label of the end nodes can be 0. This only occurs when ζ1 6= 0.
Hence we define E0(θ) = {v ∈ E(θ) : νv = 0} and E1(θ) = {v ∈ E(θ) : νv 6= 0}; we can set
E0(θ) = ∅ if ζ1 = 0. Define also L0(θ) = {ℓ ∈ L(θ) : ℓ exits a node v ∈ E0(θ)}. If |N(θ)| = 1
one requires E1(θ) = N(θ) and hence E0(θ) = ∅.

We denote with L(θ) the set of lines in θ. Since a line ℓ is uniquely identified with the node v
which it leaves, we may write ℓ = ℓv. With each line ℓ we associate a momentum label νℓ ∈ Z

d

and a scale label nℓ ∈ Z+ ∪ {−1}. We set nℓ = −1 when νℓ = 0 (note that νℓ = 0 was not
allowed in [8]).
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The modes of the end nodes and the momenta of the lines are related as follows: if ℓ = ℓv
one has

νℓ =
∑

w∈E(θ):w�v

νw. (3.2)

Given a tree θ we set Λ0(θ) = {ℓ ∈ L(θ) : νℓ = 0} \ L0(θ) = {ℓ ∈ L(θ) : νℓ = 0 and ℓ does not
exit an end node}, and define the order of θ as

k(θ) = |N(θ)| − n |Λ0(θ)| , (3.3)

and the total momentum of θ as ν(θ) = νℓ0 , if ℓ0 is the root line of θ.

We call equivalent two trees which can be transformed into each other by continuously
deforming the lines in such a way that they do not cross each other. Let Tk,ν be the set of
inequivalent trees of order k and total momentum ν, that is the set of inequivalent trees θ such
that k(θ) = k and ν(θ) = ν.

A cluster T on scale n is a maximal set of nodes and lines connecting them such that all the
lines have scales n′ ≤ n and there is at least one line with scale n. The lines entering the cluster
T and the possible line coming out from it (unique if existing at all) are called the external
lines of the cluster T . Given a cluster T on scale n, we shall denote by nT = n the scale of the
cluster. We call V (T ), E(T ), and L(T ) the set of internal nodes, of end nodes, and of lines of
T , respectively; the external lines of T do not belong to L(T ).

We call self-energy cluster any cluster T such that T has only one entering line ℓ2T and one
exiting line ℓ1T , and one has

∑
v∈E(T ) νv = 0 (and hence νℓ1

T
= νℓ2

T
by (3.2)). Set xT = ω · νℓ2

T
.

We call excluded a node v such that νℓv
= 0, sv = n, at least n − 1 lines entering v do

exit end nodes, and the other line ℓ′ entering v either also exits an end node or has momentum
νℓ′ = 0.

Let Tk,ν be the set of renormalised trees in Tk,ν, i.e. of trees in Tk,ν which contain neither
any self-energy clusters nor any excluded nodes. Define also Rn as the set of renormalised
self-energy clusters on scale n, i.e. of self-energy clusters on scale n which contain neither any
further self-energy clusters nor any excluded nodes.

Lemma 3.1. One has k(θ) ≥ 1 if ν(θ) 6= 0 and k(θ) ≥ 2 if ν(θ) = 0.

Proof. By induction on |N(θ)|. If |N(θ)| = 1 then N(θ) = E1(θ) and hence Λ0(θ) = ∅, so
that k(θ) = 1. If |N(θ)| > 1 let v0 be the last node of θ, that is the node which the root
line of θ exits, and let θ1, . . . , θs the trees with root in v0. Note that s ≥ n. Then one has
|N(θ)| = 1 + |N(θ1)| + . . . + |N(θs)|, while |Λ0(θ)| = |Λ0(θ1)| + . . . + |Λ0(θs)| if ν(θ) 6= 0 and
|Λ0(θ)| = 1+ |Λ0(θ1)|+ . . .+ |Λ0(θs)| if ν(θ) = 0. In the first case one has k = k(θ) = 1+k(θ1)+
. . .+ k(θs) ≥ 1+n. In the second case one has k = k(θ) = 1+ k(θ1)+ . . .+ k(θs)−n ≥ 1+ s−n,
so that k ≥ 1. Moreover k = 1 would be possible only if s = n and k(θ1) = . . . = k(θs) = 1.
However, in such a case the lines entering v0 would all exit end nodes and hence v0 would be an
excluded node. Thus, k ≥ 2 if ν(θ) = 0.

Lemma 3.2. There exists a positive constant κ such that |N(θ)| ≤ κk(θ) for any renormalised
tree θ. One can take κ = 3n.
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Proof. We give the proof for n > 1 (the case n = 1 being much easier; see [9]).

For k(θ) = 1 the bound is trivially satisfied. We prove that for all k ≥ 2, all ν ∈ Z
d and all

trees θ ∈ Tk,ν one has |N(θ)| ≤ ak(θ) − b, with a = 3n and b = 4n.

The proof is by induction on k. For k = 2 it is just a check: if ν 6= 0 one has N(θ) = 2,
while if ν = 0 one has N(θ) = 2 + n ≤ 2n for n > 1.

By assuming that the bound holds for all k < h, one has for θ ∈ Th,ν

|N(θ)| = s1 +

s0∑

i=1

|N(θi)|, |Λ0(θ)| ≤ 1 +

s0∑

i=1

|Λ0(θi)|,

where ℓ1, . . . , ℓs0
are the lines in Λ0(θ) closest to the root line of θ, θ1, . . . , θs0

are the trees with
root lines ℓ1, . . . , ℓs0

, respectively, and s1 is the number of nodes which precede the root line of
θ but not the root lines of θ1, . . . , θs0

. By using the definition of order (3.3) one has

h = k(θ) ≥ s1 − n +

s0∑

i=1

k(θi).

Note that k(θi) ≥ 2 by Lemma 3.2, and hence |N(θi)| ≤ ak(θi)− b by the inductive hypothesis.

If s0 = 0 then Λ0(θ) ≤ 1, so that |N(θ)| ≤ k(θ) + n = h+ n ≤ 3nh− 4n for n > 1 and h > 1.

If s0 ≥ 1 the inductive hypothesis yields

|N(θ)| ≤ s1 + a

s0∑

i=1

k(θi) − s0b

≤ ak(θ) − b−
(
(a− 1)s1 + (s0 − 1)b− an

)
.

Thus, the assertion follows if

(a− 1) s1 + (s0 − 1) b− an = a (s1 + s0 − n) + (b− a) (s0 − 1) − s1 − a ≥ 0.

A key remark is that s0 + s1 = n + 1 + p, with p ≥ 0, because the root line of θ exits a node
v0 ∈ V (θ), so that sv0

≥ n. Then we can rewrite

a (s1 + s0 − n) + (b− a) (s0 − 1) − s1 − a = ap− n − p− 1 + s0 + (b− a) (s0 − 1) .

If p = 0 then s1 + s0 = n + 1; this yields s0 ≥ 2 (otherwise v0 would be an excluded node), so
that ap− n − p− 1 + s0 + (b− a) (s0 − 1) ≥ 1 + (b− a) − n ≥ 1. If p ≥ 1 then ap− n − p− 1 +
s0 + (b− a) (s0 − 1) ≥ ap− n − p = np+ n (p− 1) + p (n − 1) ≥ 2n − 1.

Let ψ be a non-decreasing C∞ function defined in R+, such that

ψ(u) =

{
1, for u ≥ 1,
0, for u ≤ 1/2,

(3.4)
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and set χ(u) := 1 − ψ(u). For all n ∈ Z+ define χn(u) := χ(u/4αn(ω)) and ψn(u) :=
ψ(u/4αn(ω)), and set Ξ0(x) = χ0(|x|), Ψ0(x) = ψ0(|x|), and

Ξn(x) = χ0(|x|) . . . χn−1(|x|)χn(|x|), Ψn(x) = χ0(|x|) . . . χn−1(|x|)ψn(|x|), (3.5)

for n ≥ 1. Then we define the node factor as

Fv =





−
1

sv!

dsv

dxsv
g(c0), v ∈ V (θ),

fνv , v ∈ E1(θ),

ζ1, v ∈ E0(θ),

(3.6)

and the propagator as

Gℓ =





G[nℓ](ω · νℓ; ε, c0), νℓ 6= 0,

−
1

a
, νℓ = 0, ℓ ∈ Λ0(θ),

1, νℓ = 0, ℓ ∈ L0(θ),

(3.7)

with ζ1 and a defined before and after (3.1), respectively, and G[n](x; ε, c0) recursively defined
for n ≥ 0 as

G[n](x; ε, c) =
Ψn(x)

ix(1 + iεx) −M[n−1](x; ε, c)
, (3.8a)

M[n](x; ε, c) = M[n−1](x; ε, c) + Ξn(x)M [n](x; ε, c), M [n](x; ε, c) =
∑

T∈Rn

Val(T, x; ε, c), (3.8b)

where M[−1](x; ε, c0) = εg1(c0) = 0 and

Val(T, x; ε, c0) =
( ∏

ℓ∈L(T )

Gℓ

)( ∏

v∈N(T )

Fv

)
(3.9)

is called the value of the self-energy cluster T .

Note that, with respect to the analogous formulae (3.5) and (3.6) of [8], both Fv and Gℓ are
computed at c = c0. We prefer writing explicitly the dependence on c0 (even if not necessary,
as c0 is fixed once and for all as in Assumption 2) simply in order to use the same notations as
in [8].

Set
X

[k]
ν =

∑

θ∈Tk,ν

Val(θ; ε, c0), ν 6= 0, k ≥ 1, (3.10)

and
ζ [k] =

∑

θ∈Tk+n,0

Val(θ; ε, c0), k ≥ 2, (3.11)
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where the tree value Val(θ; ε, c0) is defined as

Val(θ, x; ε, c0) =
( ∏

ℓ∈L(θ)

Gℓ

)( ∏

v∈N(θ)

Fv

)
. (3.12)

Call Nn(θ) the number of lines ℓ ∈ L(θ) such that nℓ ≥ n, and Nn(T ) the number of lines
ℓ ∈ L(T ) such that nℓ ≥ n, and set

M(θ) =
∑

v∈E(θ)

|νv|, M(T ) =
∑

v∈E(T )

|νv|. (3.13)

Define the renormalised series

X(ψ; ε) =
∑

ν∈Zd
∗

eiν·ψXν, Xν =

∞∑

k=1

εkX
[k]
ν . (3.14)

and

ζ(ε) = εζ1 +

∞∑

k=2

εkζ [k]. (3.15)

In the next section we shall prove first that the series (3.14) and (3.15) converge, then that the
function x0(t) = c0 + ζ(ε) +X(ωt; ε) solves the equations

iω · ν (1 + iεω · ν)Xν + ε [g(c0 + ζ(ε) +X(·; ε)]ν = εfν, ν 6= 0, (3.16a)

[g(c0 + ζ(ε) +X(·; ε)]0 − f0 = 0, (3.16b)

and hence the equation (1.1).

4 Bounds

The proof of the convergence of the renormalised series proceeds as in [8]. We confine ourselves
to state the basic steps of the proof, without giving the details, except when the discussion
departs from [8].

Lemma 4.1. For any renormalised tree θ, one has Nn(θ) ≤ 2−(n−2)M(θ).

Proof. The same as the proof of Lemma 3.1 in [8].

Lemma 4.2. Assume there exists a constant C0 such that |G[n](x; ε, c0)| ≤ C0/αn(ω) for all
n ∈ Z+. Then there exists ε0 > 0 such that, for all all |ε| < ε0, the series (3.14) and (3.15)
converge. Moreover the series (3.14) is analytic in ψ.
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Proof. Let θ be a tree in Tk,ν and set K = |N(θ)|. One reasons as in [8] to prove that

|Val(θ; ε, c)| ≤ C̃K
0 D

K
0 α

−K
n0

(ω)e−ξM(θ)/2,

where D0 = max{Γ,Φ}, C̃0 = max{C0, a}, and n0 ∈ N such that

4

∞∑

n=n0+1

1

2n
log

1

αn(ω)
≤
ξ

2
.

By Lemma 3.2 one has K ≤ κk. The number of trees of order k with fixed mode labels is hence
bounded by Ck

2 for a suitable constant C2, and the sum over the mode labels can be performed
by using half the exponent in the dacaying factor e−ξM(θ)/2. This gives

∣∣∣X [k]
ν

∣∣∣ ≤ Cke−ξ|ν|/4,

for some constant C, which yields the convergence of the series (3.14) to a function analytic in
ψ. In the same way one obtains ∣∣∣ζ [k]

∣∣∣ ≤ Ck

with the same constant C, and this yields the convergence of the series (3.15).

Lemma 4.3. For any self-energy cluster T ∈ Rn such that Ξn(xT ) 6= 0, one has M(T ) ≥ 2n−1

and Np(T ) ≤ 2−(p−2)M(T ) for all p ≤ n.

Proof. The same as the proof of Lemma 3.3 of [8].

Lemma 4.4. Assume the propagators G[p](x; ε, c0) are differentiable in x and there exist con-
stants C0 and C1 such that |G[p](x; ε, c0)| ≤ C0/αp(ω) and |∂xG

[p](x; ε, c0)| ≤ C1/α
3
p(ω) for all

p < n. Then there exists ε0 > 0 such that, for all |ε| < ε0, the function x 7→ M [n](x; ε, c0) is
differentiable, and one has

∣∣∣M [n](x; ε, c0)
∣∣∣ ,

∣∣∣∂xM
[n](x; ε, c0)

∣∣∣ ≤ D1|ε|
2e−D22n

,

for some positive constants D1 and D2.

Proof. Proceed as in the proof of Lemma 3.4 of [8], by taking into account the differences already
pointed out in the proof of Lemma 4.2.

Lemma 4.5. Assume there exists a constant C0 such that |G[p](x; ε, c0)| ≤ C0/αp(ω) for all
p < n. Then one has (M[p](x; ε, c0))

∗ = M[p](−x; ε, c0) for all p ≤ n.

Proof. As the proof of Lemma 3.5 of [8].

Lemma 4.6. Let ε0 as in Lemma 4.1. For all n ∈ Z+ the function x 7→ M[n](x; ε, c0)) is
differentiable and one has |ix(1 + iεx) −M[n](x; ε, c0)| ≥ |x|/2 for all |ε| < ε0.
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Proof. As the proof of Lemma 3.6 of [8].

By collecting together the results above we can prove that the series (3.14) and (3.15) con-
verge. The proof proceeds as follows. Convergence holds if the hypotheses of Lemma 4.2 are
verified. So we have to prove that the propagators satisfy the bounds |G[n](x; ε, c0)| ≤ C0/αn(ω).
More precisely, we can prove by induction on n that the propagators satisfy the bounds

∣∣∣G[n](x; ε, c0)
∣∣∣ ≤

C0

αn(ω)
,

∣∣∣∂xG
[n](x; ε, c0)

∣∣∣ ≤
C1

α3
n(ω)

, (4.1)

for suitable constants C0 and C1. For n = 0 the check is trivial. Then we assume that the
bounds are satisfied up to scale n − 1, and we write G[n](x; ε, c0) according to (3.8). Now,
G[n](x; ε, c0) depends on the quantities M[p](x; ε, c0) with p < n, which in turn depend on the
propagators G[p′](x; ε, c0) with p′ ≤ p. Thus, by the inductive hypothesis we can apply Lemma
4.4 and Lemma 4.5 to deduce Lemma 4.6. This implies that also G[n](x; ε, c0) satisfies the
bounds (4.1). Smoothness in ε of the series is discussed in the same way, proving by induction
that the derivatives of the propagators satisfy the bounds |∂m

ε G
[n](x; ε, c0)| ≤ Km/α

m
n (ω) for all

m ≥ 1 and for suitable constants Km (we refer to [8] for further details).

Finally, by proceeding as in the proof of Lemma 3.7 of [8], we can prove that the function
x0(t) = c0 + ζ(ε) +X(ωt; ε) solves the equations (3.16). As far as equation (3.16a) is concerned
the proof proceeds as in the proof of Lemma 3.7 of [8]. To deal with equation (3.16b), we write
[g(c0 + ζ(ε) +X(·; ε)]0 according to (2.6) and expand X(·; ε) = X(·; ε) according to (3.14) and
(3.10). Then we obtain

g0P
′
n(ζ1)


ζk +

∑

θ∈Tk+n,0

Val(θ; ε, c0),


 k ≥ 2, (4.2)

which is identically zero if ζk is defined by (3.11).
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