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Abstract

Power series expansions naturally arise whenever solutions of ordinary differential equations are
studied in the regime of perturbation theory. In the case of quasi-periodic solutions the issue of
convergence of the series is plagued of the so-called small divisor problem. In this paper we review a
method recently introduced to deal with such a problem, based on renormalisation group ideas and
multiscale techniques. Applications to both quasi-integrable Hamiltonian systems (KAM theory) and
non-Hamiltonian dissipative systems are discussed. The method is also suited to situations in which
the perturbation series diverges and a resummation procedure can be envisaged, leading to a solution
which is not analytic in the perturbation parameter: we consider explicitly examples of solutions
which are only C

∞ in the perturbation parameter, or even defined on a Cantor set.

1 Introduction

Consider ordinary differential equations of the form

Dεu = εF (u, ωt), (1.1)

where u = (u1, . . . , un) ∈ R
n, ε ∈ R and ω ∈ R

m are parameters, called respectively the perturbation

parameter and the frequency vector of the forcing, F : A × T
m → R

n is a real analytic function, with
T = R/2πZ and A ⊂ R

n an open set, and Dε is a differential operator possibly depending on ε,

Dε = ∂i0t + a1ε∂
i1
t + a2ε

2∂i2t + . . . , i0, i1, i2, . . . ∈ N. (1.2)

In particular we shall consider explicitly the cases Dε = ∂2
t and Dε = ∂t+ε∂2

t . The case m = 0 is allowed
and corresponds to F = F (u). If m ≥ 1, we can assume without loss of generality that the vector ω has
rationally independent components.

We also assume that for ε = 0 the unperturbed equation

D0u = 0 (1.3)

admits a quasi-periodic solution u0 = u0(ωt), with ω ∈ R
p, p ≥ 0, possibly trivial (that is p = 0, which

gives a constant). For instance, if u is an angle, u ∈ T
n, and Dε = ∂2

t , one has u0 = c0 + Ωt, with
c0,Ω ∈ R

n; up to a linear change of coordinates, we can always write Ω = (ω, 0, . . . , 0), such that the
vector ω ∈ R

p, p ≤ n, has rationally independent components. If u ∈ R
n and, say, Dε = ∂t + ε∂2

t , one
has u0 = c0, where c0 ∈ R

n is a constant vector.

We are interested in quasi-periodic solutions to (1.1) with rotation vector (or frequency vector) ω =
(ω, ω) ∈ R

d, d = p+m, that is solutions of the form u = u(ωt, ε), with

u(ψ, ε) =
∑

ν∈Zd

eiν·ψuν(ε), (1.4)
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where ν · ψ = ν1ψ1 + . . . + νdψd denotes the standard scalar product. For m = 0 we have d = p and
ω = ω, while for p = 0 we have d = m and ω = ω. A suitable Diophantine condition will be assumed on
ω, for instance the standard Diophantine condition

|ω · ν| > γ|ν|−τ ∀ν ∈ Z
d \ {0}, (1.5)

where γ > 0 and τ ≥ d−1 are the Diophantine constant and the Diophantine exponent, respectively, and
|ν| = |ν1| + . . .+ |νd|. Weaker Diophantine conditions could be considered – see Section 12.1.

The operator Dε acts as a multiplication operator in Fourier space, that is

(Dεu)ν = δ(ω · ν, ε)uν , (1.6)

with δ(x, ε) = δ0(x)+εδ1(x)+ε
2δ2(x)+ . . .. For instance, if Dε = ∂2

t then δ(ω ·ν, ε) = δ0(ω ·ν) = (iω ·ν)2,
if Dε = ∂t + ε∂2

t then δ(ω · ν, ε) = iω · ν (1 + iεω · ν), and so on: we shall explicitly take δ(ω · ν, ε) to be a
polynomial in ε. In other words Dε can be expanded as

Dε =

k0∑

k=0

εkD(k), D(0) = D0, (1.7)

with k0 ∈ N and D(k) = ak∂
ik
t , so that δk(ω ·ν) = ak(iω ·ν)ik , for 1 ≤ k ≤ k0. The Diophantine condition

(1.5) implies
|δ0(ω · ν)| ≥ γ0|ν|−τ0 , γ0 = γi0 , τ0 = i0τ. (1.8)

The problem we address here is to find a quasi-periodic solution u(ωt, ε) to the full equation (1.1),
which continues the unperturbed solution u0(ωt), that is such that it reduces to u0(ωt) as ε → 0. This
means that we look for results holding for small values of the parameter ε. Hence (1.1) can be seen as a
perturbation of the equation (1.3), and this explains why ε is called the perturbation parameter.

More precisely we shall be interested in both the existence and stability of such quasi-periodic solu-
tions. In particular, our analysis accounts for the KAM theory for quasi-integrable Hamiltonian systems
(in a special case) and the existence of quasi-periodic attractors for strongly dissipative quasi-periodically
forced one-dimensional systems. We can also consider discrete systems, as opposite to the continuous
ones such as (1.1). We shall see that in both cases the existence of a quasi-periodic solution for the
dynamical system is reduced to existence of a solution for a suitable functional equation – see Section 3.2
for more insight. Extensions to more general systems will be briefly discussed in Section 12.

The method we shall follow uses renormalisation group ideas, and is based on techniques of multiscale
analysis which are typical of quantum field theory. The method is widely inspired to the original work
of Eliasson [29] and, even more, to its reinterpretation given by Gallavotti [32]. The deep analogy with
quantum field theory was stressed and used to full extend in subsequent papers; see for instance [46, 47].

For other renormalisation group approaches existing in the literature to the same kind of problems
considered in this review see for instance [65, 17, 60, 59].

2 Perturbation theory and formal solutions

As first attempt, we look for quasi-periodic solutions (1.4) to (1.1) in the form of formal power series in
the perturbation parameter ε,

u(ψ, ε) =

∞∑

k=0

εku(k)(ψ), u(k)(ψ) =
∑

ν∈Zd

eiν·ψu(k)
ν , k ≥ 1, (2.1)

where u(0) = u0 is such that D0u0 = 0. The power series expansion (2.1) will be referred to as the
perturbation series for the quasi-periodic solution. Perturbation series have been widely studied in the
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literature, especially in connection with problems of celestial mechanics [71]. They are sometimes called
the Lindstedt series or Lindstedt-Newcomb series, from the name of the astronomers who first studied
them in a systematical way.

If we expand also Dε according to (1.7), we obtain to all orders k ≥ 1

D0u
(k) = −

min{k,k0}∑

p=1

D(p)u(k−p) + [F (u, ωt)]
(k−1)

, (2.2)

where [F (u, ωt)](k) means that we take the Taylor expansion of the function u→ F (u, ·), then we expand
u in powers of ε according to (2.1), and we keep the coefficient of εk, that is

[F (u, ωt)]
(k)

=

∞∑

s=0

1

s!
∂suF (u0(ωt), ωt)

∑

k1,...,ks≥1
k1+...+ks=k

u(k1) . . . u(ks), (2.3)

which for k = 0 reads [F (u, ωt)](0) = F (u0(ωt), ωt).

If u0 = c0 + ωt (and hence p = n), we expand

F (u0, ωt) = F (c0 + ωt, ωt) =
∑

ν0∈Zd

eiν0·c0eiν0·ωtFν0 , (2.4)

where ν0 = (ν0, ν0), so as to obtain in Fourier space

δ0(ω · ν)u(k)
ν = −

min{k,k0}∑

p=1

δp(ω · ν)u(k−p)
ν + [F (u, ωt)]

(k−1)
ν , (2.5)

with

[F (u, ωt)]
(k)
ν =

∞∑

s=0

1

s!

∑

ν0,ν1,...,νs∈Z
d

ν0+ν1+...+νs=ν

(iν0)
s
Fν0e

iν0·c0

∑

k1,...,ks≥1
k1+...+ks=k

u(k1)
ν1 . . . u(ks)

νs
. (2.6)

By the analyticity assumption on the function F one has |Fν | ≤ Ξ0e
−ξ|ν| for suitable constants ξ,Ξ0 > 0.

If u0 = c0 one has ω = ω. In that case we Fourier expand F (u, ωt) only in the argument ωt,

F (u, ωt) =
∑

ν
0
∈Zm

eiν
0
·ωtFν

0
(u), (2.7)

and we still obtain (2.5), but with ν = ν and

[F (u, ωt)]
(k)
ν =

∞∑

s=0

1

s!

∑

ν
0
,ν

1
,...,νs∈Z

m

ν
0
+ν

1
+...+νs=ν

∂suFν0
(c0)

∑

k1,...,ks≥1
k1+...+ks=k

u(k1)
ν
1
. . . u(ks)

νs
. (2.8)

More generally, one expands

∂suF (u0, ωt) =
∑

ν0∈Zd

eiν0·ωtFs,ν0 , (2.9)

with coefficients Fs,ν bounded as |Fs,ν | ≤ s!Ξ0Ξ
s
1e

−ξ|ν| for suitable constants ξ,Ξ0,Ξ1 > 0, so that

[F (u, ωt)]
(k)
ν =

∞∑

s=0

1

s!

∑

ν0,ν1,...,νs∈Z
d

ν0+ν1+...+νs=ν

Fs,ν0
∑

k1,...,ks≥1
k1+...+ks=k

u(k1)
ν1 . . . u(ks)

νs
. (2.10)
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Then, to all order k ≥ 1 one obtains

u(k)
ν =

1

δ0(ω · ν)


−

min{k,k0}∑

p=1

δp(ω · ν)u(k−p)
ν + [F (u, ωt)]

(k−1)
ν


 , ν 6= 0, (2.11)

provided the compatibility condition

0 = [F (u, ωt)]
(k)
0 , (2.12)

holds for all k ≥ 0. Equations (2.11) formally provide a recursive definition of the coefficients u
(k)
ν , ν 6= 0,

in terms of the coefficients u
(k′)
ν′ of lower orders k′ < k. Indeed, the Diophantine condition (1.5) ensures

that no denominator can be zero, and the sum over the order and Fourier labels can be easily performed
(as we shall check explicitly later on – see Section 4). Thus, if the compatibility condition turns out to be

satisfied to all orders for a suitable choice of the coefficients u
(k)
0 , one has an algorithm which allows to

construct iteratively all the coefficients of the series (2.1). In that case, we say that the equations (1.1)
are formally solvable.

3 Examples

In this section we review some examples of physically relevant dynamical systems which can be written in
the form (1.1). Therefore, for all such systems the problem of existence of formal quasi-periodic solutions
is reduced to that of showing that (2.11) and (2.12) can be recursively solved. The strategy that we shall
follow in the next sections will be to show first that a formal power series solves those equations order
by order, and, then, to study the convergence of the series for ε small enough. We shall be able to prove
that either the series converges or it can be suitably resummed so as to give a well-defined function which
solves the equation (1.1).

3.1 Quasi-integrable Hamiltonian systems: maximal tori

Consider the Hamiltonian

H(α,A) =
1

2
A2 + εf(α), A2 = A ·A = A2

1 + . . .+A2
n, (3.1)

where (α,A) ∈ T
n × R

n are angle-action coordinates, and f : T
n → R is a real analytic function.

More generally we could consider Hamiltonians of the form

H(α,A) = H0(A) + εf(α,A), (3.2)

where H0 and f are both real analytic functions in T
n ×A, A ⊂ R

n being an open set, with H0 convex
and f periodic in the angles α. Existence and properties of quasi-periodic solutions for quasi-integrable

systems, that is systems described by Hamiltonians of the form (3.2), are the content of KAM theory

[61, 2, 68]; see [3] for a review.

The advantage of taking the Hamiltonian (3.1) is that the corresponding Hamilton equations lead to
a closed equation for α,

α̈ = −ε∂αf(α), (3.3)

which is the form (1.1) with u = α, m = 0, and Dε = ∂2
t (so that δ0(ω · ν) = (iω · ν)2, while δk(ω · ν) = 0

for all k ≥ 1).

We are interested in quasi-periodic solutions of the form (1.4) with d = p = n (and ω = ω). For ε = 0
we take as unperturbed solution u0(ωt) = α0 + ωt, with α0 ∈ T

d arbitrary and ω = ω ∈ R
d satisfying

the Diophantine condition (1.5).
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If we write, in agreement with (2.1),

α(ωt, ε) = α0 + ωt+
∞∑

k=1

εk
∑

ν∈Zn

eiω·νtα(k)
ν , (3.4)

we find to all orders k ≥ 1 – see (2.11) and (2.12) –

α(k)
ν =

1

(ω · ν)2
[∂αf(α)]

(k−1)
ν , ν 6= 0, (3.5a)

0 = [∂αf(α)]
(k−1)
0

, (3.5b)

where

[∂αf(α)]
(k)
ν =

∞∑

s=0

1

s!

∑

ν0,ν1,...,νs∈Z
n

ν0+ν1+...+νs=ν

(iν0)
s+1

fν0

∑

k1,...,ks≥1
k1+...+ks=k

α(k1)
ν1

. . .α(ks)
νs

. (3.6)

Thus, equation (3.5a) defines recursively the coefficients α
(k)
ν for all k ≥ 1 and all ν 6= 0, provided

equation (3.5b) is satisfied for all k ≥ 1.

The compatibility condition (3.5b) is automatically satisfied for k = 1, because [∂αf(α)]
(0)
ν = iνfν ,

which vanishes for ν = 0. It is a remarkable cancellation that the condition holds for all k ≥ 1 – see
Section 4.4 –, so implying that the perturbation series (3.4) is well-defined to all orders. The coefficients

α
(k)
0

, k ≥ 1, can be arbitrarily fixed; for instance one can set α
(k)
0

= 0 for all k ≥ 1 – see Section 4.4.
We shall see in Section 7 that for ε small enough the series converges to a function analytic in ψ = ωt.
As a consequence, there exists a quasi-periodic solution of the form (3.4), analytic both in ε and ψ, and
parameterised by α0 ∈ T

n: hence such a solution describes an n-dimensional invariant torus (maximal

KAM torus).

In this paper we confine ourselves to the Hamiltonian (3.1). Note that in the case (3.2) the unperturbed
solution is u0 = (α0 + ω(A0)t,A0), with ω(A) = ∂AH0(A), hence it is still of the form c0 + ωt with
n = 2p and ωi = 0 for i ≥ n + 1. However, strictly speaking the Hamilton equation are not of the form
(1.1), so the analysis should be suitably adapted – see [47].

We could also consider, instead of (3.3), the more general equation

α̈ = −ε∂αf(α, ωt), (3.7)

which reduces to (3.3) for m = 0. This is still a Hamiltonian system, with Hamiltonian

H(α, α,A, A) =
1

2
A ·A+ ω · A+ εf(α, α). (3.8)

The unperturbed solution to (3.7) is of the same form as before, but in that case we look for a quasi-
periodic solution with rotation vector ω = (ω, ω).

Then the angles α evolve trivially as α(t) = ωt, whereas equation (3.5a) has to be replaced with

α(k)
ν =

1

(ω · ν)2
∞∑

s=0

1

s!

∑

ν0,ν1,...,νs∈Z
d

ν0+ν1+...+νs=ν

(iν0)
s+1

fν0
∑

k1,...,ks≥1
k1+...+ks=k−1

α(k1)
ν1 . . .α(ks)

νs
, (3.9)

while the compatibility condition for ν = 0 reads

0 =

∞∑

s=0

1

s!

∑

ν0,ν1,...,νs∈Z
d

ν0+ν1+...+νs=0

(iν0)
s+1

fν0
∑

k1,...,ks≥1
k1+...+ks=k−1

α(k1)
ν1 . . .α(ks)

νs
. (3.10)

However, the differences with respect to the previous case are just minor ones, as one can easily work out
by himself.
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3.2 Discrete systems: the standard map

Beside continuous dynamical systems we can consider discrete dynamical systems (maps), such as the
standard map [21, 64] – also known as Chirikov-Greene-Taylor map.

The standard map is defined by the symplectic map from the cylinder to itself
{
x′ = x+ y + ε sinx,

y′ = y + ε sinx,
(3.11)

where (x, y) ∈ T × R.

For ε = 0 the motion is trivial: one has a simple rotation x′ = x + 2πω, while y is fixed to y = 2πω,
ω ∈ R. For ε 6= 0 one can look for solutions which are conjugate to a trivial rotation of some other
variable (KAM invariant curves), i.e. one can look for solutions of the form

x = α+ u(α, ε), y = 2πω + v(α, ε), (3.12)

with α → α′ = α + 2πω and the functions u, v depending analytically on their arguments. The number
ω will be called the rotation number.

The functions u, v are not independent from each other. One has v(α, ε) = u(α, ε)− u(α− 2πω, ε), as
it is straightforward to check: simply note that x′ = x+ y′ by (3.11) and express x′ and y′ in terms of α
through (3.12), using that α′ = α + 2πω. So one obtains a closed equation for the conjugating function

u,
Du(α, ε) ≡ u(α+ 2πω, ε) + u(α− 2πω, ε) − 2u(α, ε) = ε sin(α+ u(α, ε)). (3.13)

If such a solution exists and is analytic in ε, then it has to be possible to expand the function u as Taylor
series in ε and as Fourier series in α. So we are led to write, at least formally,

u(α, ε) =
∑

ν∈Z

∞∑

k=1

eiναεku(k)
ν . (3.14)

so implying, by calling [F (α, ε)]
(k)
ν the coefficient of the function F (α, ε) with Fourier label ν and Taylor

label k, according to (2.3),

δ0(ων)u
(k)
ν = [sin(α+ u(α, ε))]

(k−1)
ν , δ0(ων) = 2 [cos(2πων) − 1] . (3.15)

Note that, for ων small (mod. 1), δ0(ων) ∼ ‖ων‖2, if ‖x‖ = minp∈Z |x−p| denotes the distance of x from
the nearest integer. By explicitly writing sinα =

∑
ν0=±1(2i)−1ν0e

iν0α and Taylor expanding sin(α + u)
in u around u = 0, one finds, from (3.13),

u(1)
ν = − iν

2δ0(ων)
, (3.16a)

u(k)
ν =

1

δ0(ων)

∞∑

s=0

∑

ν0+ν1+...+νs=ν
k1+...+ks=k−1

−(iν0)
s+1

s!2
u(k1)
ν1 . . . u(ks)

νs
, k > 1, (3.16b)

for ν 6= 0. It is easy to check that for all k ≥ 1 one has u
(k)
ν = 0 if |ν| > k, and one can choose u

(k)
0 = 0.

Then (3.16) can be iterate by taking into account that kj < k for any j = 1, . . . , s.

When working in Fourier space, the recursive equations (3.16) look very similar to the equations
(3.5a) for continuous systems, with n = 2. Then, one could be tempted to write the standard map as the
stroboscopic map of a continuous system. However, it turns out that, formally, one should consider the
singular system (known in physics as the kicked rotator) with Hamiltonian

H(α,A) = 2πA1 +
A2

2

2
+ 2πε

∑

n∈Z

δ(α1 − 2πn) (cosα2 − 1) , (3.17)
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where δ is the delta function, and set x = α2 and y = A2 − (ε/2) sinα2 [34]. Therefore the corresponding
Hamilton equations cannot be in the class (1.1), where smoothness was required. Nonetheless, as we have
seen, in Fourier space the analysis is essentially the same.

3.3 Quasi-integrable Hamiltonian systems: lower dimensional tori

Consider the Hamiltonian

H(α,β,A,B) =
1

2
A2 +

1

2
B2 + ε f(α,β), (3.18)

where (α,A) ∈ T
r×R

r and (β,B) ∈ T
s×R

s are angle-action coordinates, with r+s = n, and f : T
n → R

is a real analytic function.

We can also consider the same Hamiltonian as (3.1), but assume that ω is a resonant vector, that is
that there exist s integer vectors ν1, . . . ,νs such that ω·ν1 = . . . = ω·νs = 0. If this happens, it is possible
to perform a linear change of coordinates such that in the new coordinates ω = (ω1, . . . , ωr, 0, . . . , 0), with
(ω1, . . . , ωr) satisfying a Diophantine condition in R

r. Of course the corresponding Hamiltonian would
be slightly more complicated than (3.18). For simplicity’s sake we shall confine ourselves to (3.18), and
study the problem of existence of a quasi-periodic solution with rotation vector ω = (ω1, . . . , ωr) which
for ε = 0 reduces to u0 = (α0 + ωt,β0,A0,0), with A0 = ω.

In terms of the angles (α,β) the Hamilton equations become
{
α̈ = −ε∂αf(α,β),

β̈ = −ε∂βf(α,β),
(3.19)

so that the unperturbed solution is (α0 + ωt,β0), which is of the form u0 = c0 + Ωt, with Ω =
(ω1, . . . , ωr, 0, . . . , 0) = (ω,0). Hence we look for solutions of the form (1.4) with d = p = r.

Since β is expected to remain close to β0, we Fourier expand f only in the angle α, so writing

f(α,β) =
∑

ν∈Zd

eiν·αfν(β). (3.20)

Therefore, (3.19) gives, in Fourier space,
{

(ω · ν)
2
α

(k)
ν = [∂αf(α,β)]

(k−1)
ν ,

(ω · ν)
2
β(k)

ν = [∂βf(α,β)]
(k−1)
ν

,
(3.21)

with

[∂αf(α,β)](k)ν =
∞∑

p,q=0

1

p!q!

∑

ν0,ν1,...,νp+q∈Z
n

ν0+ν1+...+νp+q=ν

(iν0)
p+1 ∂qβfν0

(β0)
∑

k1,...,kp+q≥1
k1+...+kp+q=k

α(k1)
ν1

. . .α
(kp)
νp β(kp+1)

νp+1
. . .β(kp+q)

νp+q
, (3.22)

and an analogous expression holding for [∂βf(α,β)]
(k)
ν

– with (iν0)
p
∂q+1

β instead of (iν0)
p+1

∂qβ.

Again for ν = 0 we require both

[∂αf(α,β)]
(k)
0

= 0, [∂βf(α,β)]
(k)
0

= 0, (3.23)

for all k ≥ 0. We shall see that the first compatibility condition is automatically satisfied for all values of

α0 and α
(k)
0

, k ≥ 1, while the second one requires β0 and β
(k)
0

, k ≥ 1, to be suitably fixed. This is clear
already to first order, where we obtain

{
(ω · ν)2α

(1)
ν = iνfν(β0),

(ω · ν)
2
β(1)

ν = ∂βfν(β0),
(3.24)
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so that for ν = 0 the first equation trivially holds, whereas the second one fixes β0 to be such that
∂βf0(β0) = 0, i.e. β0 must be a stationary point for the function f0(β0) (such a point always exists).

Moreover to higher orders one has

[∂βf(α,β)](k)
0

= ∂2
βf0(β0)β

(k)
0

+ Φk, (3.25)

for a suitable function Φk depending only on the coefficients of order strictly less than k – see Section
4.4 for details. Thus, if we further assume that the matrix ∂2

βf0(β0) be nonsingular (nondegeneracy

condition), then we can impose the compatibility conditions [∂βf(α,β)]
(k)
0

= 0 by suitably fixing the

corrections β
(k)
0

, k ≥ 1, to the constant part of the β angles.

In Section 4 we shall see that, at least formally, a quasi-periodic solution parameterised by α0 ∈ T
r

exists for suitable values of β0. We shall see in Section 8 that, even if the formal series is divergent,
however it can be suitably resummed for ε small enough so as to be given a meaning as a well-defined
function analytic in ψ = ωt: hence the latter describes a lower-dimensional torus. If the matrix ∂2

βf0(β0)
is positive definite we shall say that the lower-dimensional torus is hyperbolic if ε < 0 and elliptic if ε > 0;
in the latter case we shall see that the torus exists only for some values of ε, more precisely for ε defined
in a Cantor set with Lebesgue density point at the origin (Cantorisation) – see Section 10.

3.4 Strongly dissipative quasi-periodically forced systems

Consider a one-dimensional system subject to a mechanical force g, in the presence of dissipation and of
a quasi-periodically forcing. The equation describing the system is the ordinary differential equation

ẍ+ γẋ+ g(x) = f(ωt), (3.26)

where x ∈ R, γ > 0 is the dissipation coefficient and ω ∈ R
m is the frequency vector of the forcing. We

assume that both g : A → R and f : T
m → R are real analytic functions, with A ⊂ R an open set.

If the dissipation is large enough, it is natural to rewrite (3.26) in terms of the small parameter
ε = 1/γ, so as to obtain the equation

ẋ+ εẍ+ εg(x) = εf(ωt), (3.27)

which is of the form (1.1) with n = 1, u = x, Dε = ∂t + ε∂2
t , and F (u, ωt) = −g(u)+ f(ωt). In particular

one has δ0(ω · ν) = iω · ν, δ1(ω · ν) = (iω · ν)2, a1 = 1, and δk(ω · ν) = ak = 0 for all k ≥ 2.

We look for quasi-periodic solutions x(ωt, ε) which are analytic in ψ = ωt and continue the unper-
turbed solutions x0 = c0, with c0 constant. Such solutions (if any) are called response solutions, as they
have the same frequency vector as the forcing. Thus, ω = ω and d = m, so that, if we write

x(ωt, ε) = c0 +

∞∑

k=1

εk
∑

ν∈Zm

eiν·ωtx(k)
ν , (3.28)

then we obtain
iω · ν x(k)

ν + (iω · ν)2 x(k−1)
ν + [g(x)](k−1)

ν = fνδk,1 (3.29)

for k ≥ 1, while x
(0)
0 = c0 and x

(0)
ν = 0 for ν 6= 0.

The first order equation gives {
iω · ν x(1)

ν = fν , ν 6= 0

g(c0) = f0,
(3.30)
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which fixes the value of c0 (of course f0 must belong to the range of g). The unperturbed solution can be
seen as a quasi-periodic solution in the extended phase space (x, ψ) ∈ R×T

m, where it looks like (c0, ωt),
so that the full solution is of the form (c0 +X(ωt, c0, ε), ωt).

If ∂xg(c0) 6= 0, then to higher orders one has the compatibility conditions

[g(x)](k)0 = ∂xg(c0)x
(k)
0 +Gk(c0, x

(1), . . . , x(k−1)) = 0, k ≥ 1, (3.31)

for a suitable function Gk depending only on the coefficients of orders k′ < k. An explicit calculation
gives

Gk(c0, x
(1), . . . , x(k−1)) =

∞∑

s=2

1

s!
∂sxg(c0)

∑

ν
1
,...,νs∈Z

m

ν
1
+...+νs=0

∑

k1,...,ks≥1
k1+...+ks=k

x(k1)
ν
1
. . . x(ks)

νs
. (3.32)

Thus, (3.31) can be used to fix the corrections x
(k)
0 , k ≥ 1, to the constant part of the solution x(ωt, ε).

We shall see in Section 9 that, under the nondegeneracy condition ∂xg(c0) 6= 0, the series (3.28) can
be resummed for ε small enough into a function which depends analytically on ψ = ωt.

4 Diagrammatic representation and tree formalism

We have to study the recursive equations (2.11) and (2.12), with [F (u, ωt)]
(k−1)
ν given by (2.10). This

will be done through a diagrammatic formalism, known as the tree formalism.

Let us assume that one can decompose u = (ũ, û), with ũ ∈ R
en and û ∈ R

bn, ñ + n̂ = n, and,

accordingly, F = (F̃ , F̂ ), so that for ν = 0 one has

[F̃ (u, ωt)]
(k)
0 = 0̃, (4.1a)

[F̂ (u, ωt)]
(k)
0 = A û

(k)
0 + Φk, (4.1b)

for a suitable nonsingular matrix A and a suitable vector Φk (0̃ is the null vector in R
en). We shall see

that in all cases considered in Section 3 this holds true – see Section 4.4 below.

We first introduce the trees (see also [11, 56, 57]) as the main combinatorial and graphical objects that
we shall use in the forthcoming analysis. Then we shall provide some rules how to associate numerical

values to the trees, so as to represent the coefficients u
(k)
ν in terms of trees.

4.1 Trees

A connected graph G is a collection of points (nodes) and lines connecting all of them. Denote by N(G)
and L(G) the set of nodes and the set of lines, respectively. A path between two nodes is the minimal
subset of L(G) connecting the two nodes. A graph is planar if it can be drawn in a plane without graph
lines crossing.

A tree is a planar graph G containing no closed loops. Consider a tree G with a single special node
v0: this introduces a natural partial ordering on the set of lines and nodes, and one can imagine that
each line carries an arrow pointing toward the node v0. We add an extra oriented line ℓ0 exiting the
special node v0; the added line will be called the root line and the point it enters (which is not a node)
will be called the root of the tree. In this way we obtain a rooted tree θ defined by N(θ) = N(G) and
L(θ) = L(G)∪ ℓ0. A labelled tree is a rooted tree θ together with a label function defined on the sets L(θ)
and N(θ).

We call equivalent two rooted trees which can be transformed into each other by continuously de-
forming the lines in the plane in such a way that the lines do not cross each other. We can extend the
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notion of equivalence also to labelled trees, by considering equivalent two labelled trees if they can be
transformed into each other in such a way that the labels also match. In the following we shall deal
mostly with nonequivalent labelled trees: for simplicity, where no confusion can arise, we call them just
trees.

Given two nodes v, w ∈ N(θ), we say that w ≺ v if v is on the path connecting w to the root line.
We can identify a line ℓ through the node v it exits by writing ℓ = ℓv.

We call internal nodes the nodes such that there is at least one line entering them, and end nodes the
nodes which have no entering line. We denote by V (θ) and E(θ) the set of internal nodes and end nodes,
respectively. Of course N(θ) = V (θ) ∪ E(θ).

The number of unlabelled trees (i.e. of rooted trees with no labels) with N nodes – and hence with
N lines – is bounded by 22N , which is a bound on the number of random walks with 2N steps [48]. An
example of unlabelled tree is represented in Figure 1.

θ =

Figure 1: An example of unlabelled tree.

For each node v denote by S(v) the set of the lines entering v and set sv = |S(v)|; here and henceforth,
given a set A, with denote by |A| its cardinality. Hence sv = 0 if v is an end node, and sv ≥ 1 if v is an
internal node. One has ∑

v∈N(θ)

sv =
∑

v∈V (θ)

sv = |N(θ)| − 1; (4.2)

this can be easily checked by induction on the number of nodes of the tree.

4.2 Labels

We associate with each node v ∈ N(θ) a mode label νv ∈ Z
d, and with each line ℓ ∈ L(θ) a momentum

label νℓ ∈ Z
d, with the constraints that νv 6= 0 if v ∈ E(θ) and

νℓv =
∑

w∈N(θ)
w�v

νw = νv +
∑

ℓ∈S(v)

νℓ, (4.3)

which represents a conservation rule for each node.

We also associate with each node v ∈ N(θ) an order label kv ∈ {0, 1, . . . , k0}, such that kv = 0 if
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νℓv = 0 and kv ≥ 1 if νℓv 6= 0. We set

k(θ) =
∑

v∈N(θ)

kv, ν(θ) =
∑

v∈N(θ)

νv, (4.4)

which are called the order and the momentum of θ, respectively; note that ν(θ) is the momentum of the
root line of θ.

Finally we associate with each node v ∈ V (θ) a badge label ρv ∈ {0, 1}, such that kv ∈ {0, 1} if ρv = 1,
while νℓv 6= 0, νv = 0, and sv = 1 if ρv = 0.

Call Tk,ν the set of all trees θ with order k and momentum ν, with the constraint that if a line ℓ ∈ L(θ)
has νℓ = 0 and exits a node v with νv = 0 then sv ≥ 2. It is easy to check that there exists a positive
constant κ such that k(θ) ≤ κ|N(θ)|; simply use that sv 6= 1 when kv = 0.

4.3 Diagrammatic rules

We want to show that trees naturally arise when studying the equations (2.11). Let u
(k)
ν be represented

with the graph element in Figure 2 as a line with label ν exiting from a ball with label (k).

=u
(k)
ν

ν

(k)

Figure 2: Graph element.

Then we can represent (2.11) graphically as depicted in Figure 3. Simply expand [F (u, ωt)]
(k)
ν as in

(2.10) and represent each factor u
(ki)
νi on the right hand side as a graph element according to Figure 2.

The lines of all such graph elements enter the same node v0. This is a graphical expedient to recall the
conservation rule: the momentum ν of the root line is the sum of the mode label ν0 of the node v0 plus
the sum of the momenta of the lines entering v0. Note that kv0 ≥ 1 as ν 6= 0 in (2.11).

ν

(k)

= ν ν0

ν1

(k1)

ν2

(k2)

νs (ks)

Figure 3: Graphical representation of the recursive equations.

We represent also (2.12) as in Figure 3, with the only difference that now kv0 = 0 and hence sv0 ≥ 2
(recall the definition of Tk,ν at the end of Section 4.2).

Given any tree θ ∈ Tk,ν we associate with each node v ∈ N(θ) a node factor Fv and with each line
ℓ ∈ L(θ) a propagator Gℓ, by setting

Fv :=

{
(sv!)

−1Fsv,νv , ρv = 1,

−δkv(ω · νℓv )1, ρv = 0,
Gℓ :=

{
δ−1
0 (ω · νℓ)1, νℓ 6= 0,

G, νℓ = 0,
(4.5)
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where 1 is the n× n identity, and G is the n× n matrix of the form

G =

(
0 0
0 −A−1

)
, (4.6)

where the null matrices 0 are ñ × ñ, ñ × n̂, and n̂ × ñ, respectively, while A is the invertible matrix
appearing in (4.1b). Define the value of the tree θ as

Val(θ) :=
( ∏

v∈N(θ)

Fv

)( ∏

ℓ∈L(θ)

Gℓ

)
. (4.7)

The propagators Gℓ are matrices, whereas each Fv is a tensor with sv+1 indices, which can be associated
with the sv + 1 lines entering or exiting v. In (4.7) the indices of the tensors Fv must be contracted: this
means that if a node v is connected to a node v′ by a line ℓ then the indices of Fv and Fv′ associated
with ℓ are equal to each other, and eventually one has to sum over all the indices except that associated
with the root line.

The node factors in (4.5) are bounded as maxj1,...,jsv+1
|(Fv)j1...jsv+1

| ≤ Ξ0Ξ
sv
1 e−ξ|νv| if ρv = 1, while

one has sv = 1 and |δ−1
0 (ω · νℓv )|maxj1,j2 |(Fv)j1,j2 | ≤ |ω · νℓv |(ikv−i0)τ if ρv = 0. As to the propagators

one has ‖Gℓ‖ ≤ γ−1
0 |νℓ|τ0 for νℓ 6= 0 and ‖Gℓ‖ ≤ ‖A−1‖ for νℓ = 0, where ‖ ·‖ denotes – say – the uniform

norm.

By iterating the graphical representation in Figure 3 until only graph elements with k = 1 appear,
one finds

u(k)
ν =

∑

θ∈Tk,ν

Val(θ), k ≥ 1. (4.8)

The tree expansion (4.8) makes sense since all node factors and propagators are finite quantities, and
the sum over the labels can be performed. Except the mode labels, the last assertion is trivial for all
other labels (as they can assume only a finite number of values). Finally, the sum over the mode labels
is controlled by the exponential decay e−ξ|νv| of the Fourier coefficients Fνv of the node factors.

The study of the convergence of the perturbation series is made difficult by the product of propagators
in (4.7). Indeed, the denominators δ0(ω · ν) can be arbitrarily close to zero for ν large enough. This
problem is usually referred to as the small divisor problem.

4.4 Compatibility conditions

Now, we show that (4.1) holds for all the models considered in Section 3. Note that to prove (4.1) is
not a purely technical problem: for the very models of Section 3, quasi-periodic solutions in the form of
formal power series or even quasi-periodic solution tout court can fail to exist, if one weaken too much
the assumptions – see also Section 12.2.

Let us start from the model in Section 3.1; recall that d = p = n in such a case. We have already
checked that (3.10) trivially holds for k = 1. Then we can prove by induction that for all k ≥ 2 the

compatibility condition (3.10) holds and one can set α
(k)
0

= 0. The proof proceeds as follows. By using

(4.8) we express [F (u, ωt)]
(k)
0 according to (2.6) as sum of trees in which all lines except the root line

have nonzero momenta, by the inductive hypothesis. Given a tree θ consider together all trees which can
be obtained from θ by detaching the root line and attaching it to any other node; see Figure 4.

In that way, we obtain as many trees as nodes of θ; call F(θ) the set of all such trees. Of course,
all arrows must point toward the root, so that the trees θ′ ∈ F(θ) have all the same mode labels (by
construction), but they can have different momenta. On the other hand, since ν = 0, a line ℓ ∈ L(θ′)
either has the same momentum νℓ as in θ (if the arrow has not been reverted) or has momentum −νℓ (if
the arrow has been reverted). Since δ0(νℓ) = δ0(−νℓ), this means that the corresponding propagator Gℓ
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θ = θ′ =
v0

v1

v0

v1

v1

v0

=

Figure 4: An example of tree θ
′ obtained from θ by detaching the root line from the node v0 and reattaching it

to the node v1. The arrow of the line connecting the nodes v0 and v1 is reverted so as to point toward the new
location of the root. One can always stretch the lines so as to make all arrows go right to left, as in the last graph.

does not change. The combinatorial factors of the trees θ′ ∈ F(θ) are in general different from those of
θ (because the values of sv, v ∈ N(θ′), can change), but if we sum together all nonequivalent trees we
realise (with a little effort: one must perform the computation to convince himself that the assertion is
true!) that we obtain a common value times a factor iνv0 , if v0 is the node which the root line is attached
to. Therefore, since

ν =
∑

v0∈N(θ)

νv0 = 0, (4.9)

the sum of all the tree values gives zero. This implies (4.1) with ñ = n and n̂ = 0, and the coefficient

α
(k)
0

is left arbitrary, and it can be chosen to be zero.

In fact, the argument above does not depend on the value of the coefficients α
(k)
0

, which therefore
can be arbitrarily chosen; in particular they can and will arbitrarily fixed to be zero. This was ex-

pected: changing α
(k)
0

means changing the constant α0 in (3.4), which is arbitrary since it is the vector
parameterising the torus.

The case of the standard map – see Section 3.2 – can be discussed in the same way. We omit the
details.

In the case of the model in Section 3.3, the identity [∂αf(α,β)]
(k)
0

= 0 for k ≥ 2 can be proved as

above, by relying on the same cancellation mechanism. The compatibility condition [∂βf(α,β)]
(k)
0

= 0

for k ≥ 2 can be imposed by using (3.25) and fixing β
(k)
0

= −(∂2
βf0(β0))

−1Φk. This implies once more

(4.1) with ñ = r and n̂ = s. Again the coefficients α
(k)
0

can be arbitrarily set to be zero.

Finally for the model in Section 3.4 one can use (3.31) to obtain (4.1) with ñ = 0 and n̂ = n = 1.

5 Multiscale analysis

To be able to bound the tree value (4.7), we need to control the product of propagators. This will be
done through a multiscale analysis. To this aim, for each tree line we introduce a new label characterising
the size of the corresponding propagator, that we call the scale label.

Essentially, we say that ν ∈ Z
d \ {0} is on scale

{
n ≥ 1, if 2−nγ ≤ |ω · ν| < 2−(n−1)γ,

n = 0, if γ ≤ |ω · ν|,
(5.1)

where γ is the constant appearing in (1.5), and we say that a line ℓ has a scale label nℓ = n if νℓ is on
scale n.

As a matter of fact, in practice the sharp multiscale decomposition in (5.1) is a little annoying because,
as we shall see, we have to consider derivatives. Thus, it is actually more convenient to replace it with a
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smooth decomposition through C∞ compact support functions. Let ψ be a nondecreasing C∞ function
defined in R+, such that

ψ(x) =

{
1, for x ≥ γ,
0, for x ≤ γ/2,

(5.2)

and set χ(x) := 1 − ψ(x). For all n ∈ Z+ = N ∪ {0} define χn(x) := χ(2nx) and ψn(x) := ψ(2nx), and
set

Ξn(x) = χ0(|x|) . . . χn−1(|x|)χn(|x|), Ψn(x) = χ0(|x|) . . . χn−1(|x|)ψn(|x|), (5.3)

where Ψ0(x) is meant as Ψ0(x) = ψ0(|x|).
Then we change the definition of the propagator to be associated with each ℓ with νℓ 6= 0, by

associating with each such line ℓ a scale label nℓ ∈ Z+ and a propagator

Gℓ = G[nℓ](ω · νℓ), G[n](ω · ν) := Ψn(ω · ν) δ−1
0 (ω · ν)1, (5.4)

which replaces the previous definition in (4.5). If Ψn(x) 6= 0 then 2−n−1γ ≤ |x| ≤ 2−n+1γ, so that for any
each ℓ ∈ L(θ) one has either Gℓ = 0 or ‖Gℓ‖ ≤ γ−1

0 2(nℓ+1)i0 . For completeness we also associate a scale
label nℓ = −1 with each line ℓ with momentum νℓ = 0. Note that, while with the sharp decomposition
(5.1) a momentum ν identifies uniquely the scale n, on the contrary by using the smooth decomposition
for each momentum ν there are two possible (adjacent) values n such that G[n](ω · ν) 6= 0.

A tree expansion like (4.8) still holds, with the difference that now the trees θ ∈ Tk,ν carry also the
scale labels, and we have to sum also on these labels. The equality between the two expansions follows
immediately from the observation that

∑∞
n=0 Ψn(x) = 1 for all x ∈ R \ {0}.

If Nn(θ) denotes the number of lines ℓ ∈ L(θ) with scale nℓ = n, then we can bound in (4.7)

∏

ℓ∈L(θ)

‖Gℓ‖ ≤ γ−k0 2ki0
∞∏

n=0

2ni0Nn(θ), (5.5)

with i0 defined in (1.2), so that the problem is reduced to bounding Nn(θ).

The product of propagators gives problems when the small divisors “accumulate”. To make more
precise the idea of accumulation we introduce the notion of cluster. Once all lines of a tree θ have been
given their scale labels, for any n ≥ 0 we can identify the maximal connected sets of lines with scale not
larger than n. If at least one among such lines has scale equal to n we say that the set is a cluster on
scale n. Given a cluster T call L(T ) the set of lines of θ contained in T , and denote by N(T ) the set of
nodes connected by such lines. We define k(T ) =

∑
v∈N(T ) kv the order of the cluster T .

Any cluster has either one or no exiting line, and can have an arbitrary number of entering lines. We
call self-energy clusters the clusters which have one exiting line and only one entering line and are such
that both lines have the same momentum; the terminology is borrowed from quantum field theory. This
means that if T is a self-energy cluster and ℓ1 and ℓ2 are the lines entering and exiting T , respectively,
then νℓ1 = νℓ2 , so that ∑

v∈N(T )

νv = 0. (5.6)

By construction the scales of the lines ℓ1 and ℓ2 can differ at most by 1, and setting nT = min{nℓ1 , nℓ2},
by definition of cluster one has nℓ < nT for all ℓ ∈ L(T ).

We define the value of the self-energy cluster T whose entering line has momentum ν as the matrix

VT (ω · ν) :=
( ∏

v∈N(T )

Fv

)( ∏

ℓ∈L(T )

Gℓ

)
, (5.7)

where all the indices of the node factors must be contracted except those associated with the line ℓ1
entering T and with the line ℓ2 exiting T .
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We can extend the notion of self-energy cluster also to a single node, by saying that v is a self-energy
cluster if sv = 1 and the line entering v has the same momentum as the exiting line. In that case (5.7)
has to be interpreted as VT (ω · ν) = Fv: in particular it is independent of ω · ν if ρv = 1. If T consists of
only one node (and hence contains no line) we say that T is a cluster on scale −1.

The simplest self-energy cluster one can think of consists of only one node v, but then (5.6) implies
νv = 0. For the model in Section 3.1, the corresponding value is zero, and hence the simplest nontrivial
self-energy clusters contain at least two nodes. On the contrary for the models in Sections 3.3 and 3.4
one can also have clusters with only one node.

The reason why it is important to introduce the self-energy clusters is that if we could neglect them
then the product of small divisors would be controlled. Indeed, let us denote by Rn(θ) the number of
lines on scale n which do exit a self-energy cluster, and set N∗

n(θ) = Nn(θ) − Rn(θ). Then an important
result, known as the Siegel-Bryuno lemma, is that

N∗
n(θ) ≤ c 2−n/τK(θ), K(θ) :=

∑

v∈N(θ)

|νv|, (5.8)

for some constant c, where τ is the Diophantine exponent in (1.5). See Appendix A for a proof.

If no self-energy clusters could occur (so that Rn(θ) = 0) the Siegel-Bryuno lemma would allow us to
bound in (5.5)

∞∏

n=0

2ni0Nn(θ) =

∞∏

n=0

2ni0N
∗

n(θ) ≤ 2n0i0k
∞∏

n=n0+1

2ni0N
∗

n(θ) ≤ Ck1 exp
(
ξ(n0)K(θ)

)
, (5.9)

with C1 = 2n0i0 and

ξ(n0) := i0c

∞∑

n=n0+1

n2−n/τ . (5.10)

Since ξ(n0) → 0 as n0 → ∞ one can fix n0 in such a way that ξ(n0) ≤ ξ/4 (the constant ξ being defined
after (2.6)). Then, by extracting a factor e−ξ|νv |/2 from each node factor Fv, one could easily perform the

sum over the Fourier labels, so as to obtain an overall bound Ck2 e−ξ|ν|/2 on u
(k)
ν for a suitable constant

C2. This would imply the convergence of the perturbation series (2.1) for ε small enough, say for |ε| < ε0
for some ε0 > 0. However, there are self-energy clusters and they produce factorials, as the example in
Appendix A shows, so that we have to deal with them.

6 Resummation of the series

Let us come back to the equation (2.11). To simplify the analysis, let us initially assume that we are
using the sharp multiscale decomposition (5.1), so that each momentum fixes uniquely the corresponding
scale. If we take the tree expansion of the right hand side of (2.11), according to the diagrammatic rules
described in Section 4, we can distinguish between contributions in which the root line exits a self-energy
cluster T , that we can write as ∑

T :k(T )<k

VT (ω · ν)u(k−k(T ))
ν , (6.1)

and all the other contributions, that we denote by [F (u, ωt)]
(k−1)∗
ν . In (6.1) both the entering and exiting

lines of T have the same scale nT , and the sum is over all clusters T on scale < nT .

By writing (2.11) as

δ0(ω · ν)u(k)
ν = −

min{k,k0}∑

p=1

δp(ω · ν)u(k−p)
ν + [F (u, ωt)]

(k−1)
ν (6.2)
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we can shift the contributions (6.1) to the left hand side of (6.2), so as to obtain

δ0(ω · ν)u(k)
ν −

∑

T :k(T )<k

VT (ω · ν)u(k−k(T ))
ν = [F (u, ωt)](k−1)∗

ν . (6.3)

By summing over k and setting

M(ω · ν, ε) :=

∞∑

k=1

εk
∑

T :k(T )=k

VT (ω · ν), (6.4)

then (6.3) gives, formally,

D(ω · ν, ε)uν = [F (u, ωt)]
∗
ν . D(ω · ν, ε) := δ0(ω · ν)1−M(ω · ν, ε). (6.5)

The motivation for proceeding in this way is that, at the price of changing δ0(ω · ν) into D(ω · ν, ε), hence
of changing the propagators, lines exiting self-energy clusters no longer appear. Therefore, in the tree
expansion of the right hand side of the equation, we have eliminated the self-energy clusters, that is the
source of the problem of accumulation of small divisors.

Unfortunately the procedure described above has a problem: M(ω · ν, ε) itself is a sum of self-energy
clusters, which can still contain some other self-energy clusters on lower scales. So finding a good bound
for M(ω · ν, ε) could have the same problems as for the values of the trees.

To deal with such a difficulty we modify the prescription by proceeding recursively, in the following
sense. Let us start from the momenta ν which are on scale n = 0. Since the only self-energy clusters T
with nT = 0 are those (on scale −1) containing only one node, for such ν the matrix M(ω · ν, ε) is just
a constant. Next, we pass to the momenta ν which are on scale n = 1, and we consider (6.5) for such
ν; now all self-energy clusters T whose values contribute to M(ω · ν, ε) cannot contain any self-energy
clusters, because the lines ℓ ∈ L(T ) are on scale nℓ = 0. Then, we consider the momenta ν which are on
scale n = 2: again all the self-energy clusters contributing to M(ω · ν, ε) do not contain any self-energy
clusters, because the lines on scale n = 0, 1 cannot exit self-energy clusters by the construction of the
previous step, and so on. The conclusion is that we have obtained a different expansion for u(ωt, ε), that
we call a resummed series,

u(ωt, ε) =
∑

ν∈Zd

eiω·νtuν, uν =

∞∑

k=1

εku[k]
ν (ε), (6.6)

where the self-energy clusters do not appear any more in the tree expansion and the propagators must
be defined recursively, as follows. The propagator Gℓ of a line ℓ on scale nℓ = n and momentum νℓ = ν
is the matrix

Gℓ := G[n](ω · ν, ε) =
(
δ0(ω · ν)1−M[n−1](ω · ν, ε)

)−1

, (6.7)

with
M[n](ω · ν, ε) :=

∑

Ton scale≤n

εk(T ) VT (ω · ν), (6.8)

where the value VT (ω · ν) is written in accord with (5.7), with all the lines ℓ′ ∈ L(T ) on scales nℓ′ < n
and the corresponding propagators Gℓ′ expressed in terms of matrices M[nℓ′ ](ω · νℓ′ , ε) as in (6.7).

By construction, the new propagators depend on ε, so that the coefficients u
[k]
ν (ε) depend explicitly

on ε: hence (6.6) is not a power series expansion.
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If we use the smooth multiscale decomposition, then the algorithm above must be suitably modified.
We define recursively the propagators Gℓ = G[nℓ](ω · νℓ, ε) by setting for n ≥ 0

G[n](ω · ν, ε) = Ψn(ω · ν)
(
δ0(ω · ν)1−M[n−1](ω · ν, ε)

)−1

(6.9a)

M[n](x, ε) = M[n−1](x, ε) + Ξn(x)M
[n](x, ε), M [n](x, ε) =

∑

T∈Rn

εk(T ) VT (x), (6.9b)

where Rn is the set of self-energy clusters on scale n which do not contain any other self-energy clusters.

The matrices M[n](ω · ν, ε) are called the self-energies. The new propagators (6.9a) are called, by
exploiting once more the analogy with quantum field theory, the dressed propagators.

The coefficients u
[k]
ν (ε) still admit a tree expansion

u[k]
ν (ε) =

∑

θ∈T R

k,ν

Val(θ), Val(θ) :=
( ∏

v∈N(θ)

Fv

)( ∏

ℓ∈L(θ)

Gℓ

)
ν 6= 0, k ≥ 1, (6.10)

which replaces (4.8). In particular T R
k,ν is defined as the set of renormalised trees of order k and momentum

ν, where “renormalised” means that the trees do not contain any self-energy clusters.

Since for any tree θ ∈ T R
k,ν one has Nn(θ) = N∗

n(θ), we can bound the product of propagators according

to (5.5) and (5.9), provided the propagators on scale n can still be bounded proportionally to 2ni0 . In
general there is no reason why this should occur, because of the extra term M[n−1](ω · ν, ε) appearing in
(6.9a).

The discussion of such an issue depends on the particular model one is studying. We shall see in
the next sections what happens for the models considered in Section 3. We shall first consider cases in
which the dressed propagators can be essentially bounded as the old ones, and then cases in which this
is no longer true. By modifying further the resummation procedure described above, we shall see that
something can still be achieved also in these cases.

7 Cancellations and convergence of the series – maximal tori

Let us consider the matrix M[n](x, ε) introduced in (6.9b), and let us study its dependence on the first
argument x = ω · ν for the models of Section 3. As usual, let us consider first the model in Section 3.1.

It is a remarkable cancellation that M[n](x, ε) vanishes in x up to second order, that is M[n](x, ε) =
O(x2). The symmetry properties

M[n](x, ε) = (M[n](−x, ε))T = (M[n](x, ε))†, (7.1)

with T and † denoting transposition and adjointness, are essential for the proof (such properties are
trivially satisfied for n = 0, and can be proved by induction on n – see [47, 34] for more details).

Indeed, by using (7.1), the cancellation M[n](0, ε) = 0 can be proved as the cancellation [F (u, ωt)]
(k)
0 =

[∂αf(α)](k)
0

= 0 discussed in Section 4.4, with the exiting line of the self-energy clusters playing the role
of the root line. The first order cancellation requires ∂xM[n](0, ε) = 0, and this can be proved through
a similar cancellation mechanism: besides the exiting line one has to detach also the entering line and
reattach it to all the other nodes inside the self-energy clusters. If the function f in (3.1) is even in α,
then the first order cancellation follows also from parity properties [32].

Both the cancellations and the symmetry properties are only formal as far as we have not proved that
the self-energies are well-defined quantities. To this aim we need to control the product of propagators
in (5.7), with the propagators defined according to (6.9). An important ingredient of the analysis is that
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also for all self-energy clusters one can prove a bound like (5.8). More precisely, if we denote by Nn(T )
the number of lines ℓ ∈ L(T ) on scale n, for all n ≥ 0 and all T ∈ Rn one has

N∗
n′(T ) ≤ c′ 2−n

′/τK(T ), K(T ) :=
∑

v∈N(T )

|νv|, n′ ≤ n, (7.2)

for some constant c′. To prove (7.2) one first show that, for all n ≥ 0 and all T ∈ Rn, one has
∑

v∈N(T )

|νv| > c′′2n/τ , (7.3)

for some constant c′′, then one proceeds by induction on the order k(T ); see Appendix B for details.

Therefore, if we were able to prove for the dressed propagators an estimate like ‖G[n](x, ε)‖ ≤ 2/x2,
then we could use (7.2) and (7.3) to bound

∏

ℓ∈L(T )

‖Gℓ‖ ≤ γ−k0 23k
n∏

n′=0

22n′
N

∗

n′(T ), (7.4)

in such a way to obtain

|VT (ω · ν)| ≤ C
k(T )
2 e−ξK(T )/2, (7.5)

for a suitable constant C2, independent of T . In particular, this would ensure the well-definedness of the
self-energies. At this point, the cancellations would allow us to write, for some constant C and for all
n ≥ 0,

M[n](x, ε) = ε2x2M[n]
(x, ε),

∥∥∥M[n]
(x, ε)

∥∥∥ ≤ C, (7.6)

where we have taken into account also that VT (x) 6= 0 requires k(T ) ≥ 2 (cf. Section 5). In turn (7.6)
would implies that, for ε small enough,

∥∥∥G[n](x, ε)
∥∥∥ =

∥∥∥∥
(
x2 − ε2x2M[n−1]

(x, ε)
)−1

∥∥∥∥ ≤ 2

x2
. (7.7)

The bounds (7.7) on the propagators, the symmetry properties, and the cancellations are proved all
together, as follows. First note that, if the second order cancellation holds, one can write

ε2M[n]
(x, ε) =

∫ 1

0

dt (1 − t) ∂2
xM[n](tx, ε), (7.8)

so that the bound in (7.6) is essentially a bound on the second derivative of the self-energies. The case
n = 0 is easily checked. Then the proof proceeds by induction, by relying on the recursive definition
of M[n](x, ε) – see (6.9) and (5.7) –, and taking advantage of the smooth multiscale decomposition to
perform the derivatives. More precisely, we assume that both the cancellations – and hence the bounds
(7.6) – and the symmetry properties (7.1) hold for all n′ < n. This means that all the dressed propagators
of the lines on scales ≤ n are bounded according to (7.7), so that we can use the bound (7.5) to prove
that also M[n](x, ε) is well-defined. Then the cancellation mechanism described at the beginning of the
section shows that also at the step n the symmetry properties (7.1) and the cancellations leading to (7.6)
are satisfied; in particular also the propagators G[n+1](x, ε) are bounded proportionally to |x|2 according
to (7.7).

The conclusion is that the series in (6.6) for uν = αν converges for ε small enough. Therefore, the
function u(ωt, ε) = α(ωt, ε) is analytic in ε (notwithstanding that the expansion in ε is not a power
expansion), so that we can say a posteriori that the original power series (3.14) also converges. It is
straightforward to see that αν decays exponentially in ν, which implies that the function α(ψ, ε) is also
analytic in ψ.

The case of the standard map – see Section 3.2 – can be discussed in the same way. We do not repeat
the analysis and refer to [37, 10] for details.
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8 Summation of the divergent series – hyperbolic tori

Now we consider the model introduced in Section 3.3. In that case, one has

M[n](x, ε) =

(
0 0
0 ε∂2

βf0(β0)

)
+O(ε2), (8.1)

so that, already only keeping the first order terms, one realises that a cancellation like (7.6) cannot
expected to hold. Indeed, in order to study the convergence of the series (6.6), we need at least the
perturbation series (2.1) to be formally well-defined to all orders; in turn this requires matrix ∂2

βf0(β0)
to be nonsingular – see Sections 3.4 and 4.4 – and hence different from 0.

Let us assume first that the matrix ∂2
βf0(β0) is positive definite, that is that its eigenvalues a1, . . . , as

are positive, i.e ai > 0 for i = 1, . . . , s (in particular this means that β0 is a maximum point for the
function f0(β)).

We write both the self-energies and the propagators as block matrices,

M[n](x, ε) =

(
M[n]

αα(x, ε) M[n]
αβ(x, ε)

M[n]
βα(x, ε) M[n]

ββ(x, ε)

)
, G[n](x, ε) =

(
G

[n]
αα(x, ε) G

[n]
αβ(x, ε)

G
[n]
βα(x, ε) G

[n]
ββ(x, ε)

)
, (8.2)

where the four blocks are r × r, r × s, s× r, and s× s matrices, respectively.

Then, one can prove that the parity properties (7.1) still hold, and moreover, formally, one has the
cancellations

M[n]
αα(x, ε) = O(ε2x2), M[n]

αβ(x, ε) = M[n]
βα(x, ε) = O(ε2x). (8.3)

The proof of such assertions can be performed by induction, and follows the same pattern as described in
Section 7 – see [35, 34] for details. We have used the word “formally” because the cancellations hold as
far as the dressed propagators (6.9a) can be bounded essentially as the old ones (5.4) – a property that
we have not yet proved.

The main implication of (7.1) and (8.3) is that the eigenvalues λ
[n]
i (x, ε) of the self-energies M[n](x, ε)

are of the form

λ
[n]
i (x, ε) =

{
O(ε2x2), i = 1, . . . , r,

ai−rε+O(ε2), i = r + 1, . . . , d.
(8.4)

In particular, if ε < 0, the eigenvalues x2 −λ
[n]
i (x, ε) of the matrices δ0(ω · ν)1−M[n](x, ε) are such that

x2−λ[n]
i (x, ε) ≥ x2/2 for i = 1, . . . , r and x2−λ[n]

i (x, ε) ≥ x2 + |εai−r|/2 for i = r+1, . . . , d, provided ε is
small enough and the higher order corrections in (8.4) remain small. The last property is automatically
satisfied if the block matrices in (8.3) are dominated by the first nontrivial orders.

All the properties described above become rigorous if the dressed propagators G[n](x, ε) are bounded
proportionally to x−2 (more generally any power of |x| would suit), say

∥∥∥G[n](x, ε)
∥∥∥ ≤ 2

x2
. (8.5)

So, all we have to do is to prove together all the above properties (7.1) and (8.3), by induction. Indeed,
for n = 0 the properties are trivially satisfied, and at any step n, by the inductive hypothesis, the bounds
‖G[n′](x, ε)‖ ≤ 2/x2 are satisfied for all n′ ≤ n, so that both (7.1) and (8.3) hold for n, and in turn this
implies (8.4) and hence the bound (8.5) for n+ 1.

Therefore, the series (6.6) converges for ε small enough, even if analyticity is prevented because of
the condition ε < 0; then we say that the perturbation series (2.1) is a divergent series (in point of fact,
it is very likely that it does not converge, though there is no proof of that). The function is only C∞ in
ε at ε = 0 – such a result improves a previous one by Treshchëv [79], where C∞-smoothness in

√
ε was
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proved at ε = 0. In fact, one can say a little more about the dependence of the invariant torus on the
perturbation parameter ε in the complex ε-plane: the lower-dimensional torus turns out to be analytic
in the heart-shaped domain of Figure 5 [35].

Re ε

Im ε

Figure 5: Analyticity domain for the hyperbolic invariant torus.

As said in Section 3.3 the torus will be said hyperbolic in that case. This is a somewhat improper
terminology. Indeed, when studying lower-dimensional tori one usually considers Hamiltonians of the
form [53, 67, 28, 73]

H(α, q,A,p) =
1

2
A2 +

1

2
p2 +

s∑

i=1

λiq
2
i + εf(α, q), (8.6)

(or generalisations of its), with (α,A) ∈ T
r×R

r and (q,p) ∈ R
s×R

s. Thus, for ε = 0 the coordinates α
freely rotates with some rotation vector ω = (ω1, . . . , ωr), while the coordinates (q,p) moves around an
equilibrium point, which is elliptic if λi > 0 for all i = 1, . . . , s and hyperbolic if λi < 0 for all i = 1, . . . , s.
The numbers ω1, . . . , ωr are called the proper frequencies, while the numbers λ1, . . . , λs are called the
normal frequencies.

Then one can study the problem of persistence of lower-dimensional tori under perturbation, that is
for ε 6= 0. The Hamiltonian (3.18) can be interpreted as a Hamiltonian of the form (8.6) with λi = O(ε).
In that case one usually say that the lower-dimensional tori are parabolic. However, we can also interpret
the persisting tori, in the case ai > 0 and ε < 0, as degenerate hyperbolic tori, where “degenerate” refers
to the fact that the normal frequencies vanish at ε = 0.

Of course if the matrix ∂2
βf0(β0) is negative definite, the same result of persistence of hyperbolic

invariant tori holds for ε > 0. The case of indefinite (i.e. neither positive nor negative defined) matrices
will be considered at the end of Section 10.

9 Summation of the divergent series – dissipative systems

The discussion of the model (3.26) introduced in Section 3.4 proceeds very closely to the case of the
hyperbolic tori of Section 8. In that case n = 1, hence both the propagators and the self-energies are
scalar. One has, formally,

M[n](x, ε) = −(iεx)2 + M̃[n](x, ε), M̃[n](0, ε) = aε+O(ε2), a := ∂xg(c0) 6= 0. (9.1)

If for all n′ < n the dressed propagators G[n′](ω · ν, ε) can still be bounded proportionally to |x|−1 (as
the undressed ones), the terms O(ε2) are defined by a convergent series, so that

M̃[n](x, ε) = M̃[n](0, ε) + x

∫ 1

0

dt ∂xM̃[n](tx, ε), ∂xM̃[n](x, ε) = O(ε2), (9.2)
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and hence

δ0(x) −M[n−1](x, ε) = ix−M[n−1](x, ε) = ix (1 + iεx) − aε−O(ε2) −O(ε2x), x = ω · ν, (9.3)

and hence ∣∣∣G[n](x, ε)
∣∣∣ ≤

∣∣∣δ0(x) −M[n−1](x, ε)
∣∣∣ ≤ 2

|x| , (9.4)

for ε small enough. Actually one can prove that M̃[n](0, ε) is real for real ε [41], a property which becomes
essential to deal with the case in which the nondegeneracy condition a 6= 0 is not satisfied – see Section
12.2 below.

Again the properties (9.1) and (9.4) are proved together, by induction on n: for n = 0 they trivially

hold, and, by assuming that they are satisfied up to n − 1, one sees that the series defining M̃[n](x, ε)
converge, and hence (9.1) can be proved for n; see [42, 40, 41] for details.

One can study the dependence of the response solution on ε in the complex domain. Of course one
expects an obstruction to analyticity along the imaginary axis (so as it happened along the positive real
axis for the hyperbolic tori). In fact one can prove that the response solutions are analytic in two disks
tangent to the imaginary axis at the origin – see Figure 6 –; of course only the disk to the right is
physically relevant, as it corresponds to ε > 0 and hence to γ > 0.

Re ε

Im ε

Figure 6: Analyticity domain for the response solution.

An interesting remark is that, while the periodic case (d = p = 1) is trivial in the case of lower-
dimensional tori, this is no longer true for the model (3.26). Indeed, if one takes r = 1 in Section
3.3, then no small divisors appear, so that the perturbation series is easily proved to be convergent (in
particular analyticity in ε follows in that case). On the contrary if one takes d = m = 1 for the model
(3.26), one can still have arbitrarily large powers of |ν| because δ1(ω · ν)/δ0(ω · ν) = iω · ν: then, it is
straightforward to see that one can construct trees whose value grows like a factorial – see Appendix C.

This means that also in the case of periodic forcing, the response solution to (3.26) is not analytic in
ε. However, one can prove that such a solution is Borel summable [42, 43]; we recall in Appendix D the
definition of Borel summability – see also [14, 58, 78]. Note that an equation like (3.26) with periodic
forcing (and with g(x) = xµ for µ ∈ [1.5, 2.5]) naturally arises in electronic engineering, and is known as
the varactor equation [7].

It is proved in [43] that also in the case of quasi-periodic forcing, the response solution turns out to be
Borel summable if d = 2 and τ = 1 – that is in the case of frequency vectors with components whose ratio
is an irrational number of constant type [77]. A similar situation is encountered in the case of hyperbolic
tori: also in that case the function u(ωt, ε) is Borel summable if d = 2 and τ = 1 [25].
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10 Cantorisation – elliptic tori

Let us come back to the system of Section 3.3, still assuming that the eigenvalues a1, . . . , as of the matrix
∂2

βf0(β0) are all positive, but taking ε > 0. In that cases, already for n = −1 one has – see (6.8) and
(8.1) –

M[−1](x, ε) =

(
0 0
0 ε∂2

βf0(β0)

)
, (10.1)

so that the eigenvalues x2 − λ
[−1]
i (x, ε) of the matrix δ0(x)1−M[−1](x, ε) are

x2 − λ
[−1]
i (x, ε) =

{
x2, i = 1, . . . , r,

x2 − εai−r, i = r + 1, . . . , d.
(10.2)

Hence, for fixed ε, we have problems for all ν ∈ Z
r such that ω · ν is too close to some value ±√

aiε. So,

to give a meaning to G[0](x, ε) we must require some further Diophantine conditions, say

||ω · ν| − √
εai| > γ|ν|−τ ′ ∀ν ∈ Z

r \ {0}, (10.3)

for some Diophantine exponent τ ′ ≥ d. This can be achieved at the price of eliminating some values of
ε. Fixed ε0 > 0 small enough, the subset E′

−1 of values ε ∈ [0, ε0] for which all Diophantine conditions
(10.3) are satisfied has large Lebesgue measure in [0, ε0], in the sense that

lim
ε→0+

meas(E′
−1 ∩ [0, ε])

ε
= 1, (10.4)

provided τ ′ is chosen larger enough than τ , say τ ′ > τ + r; see Appendix E. The property (10.4) can be
stated by saying that E′

−1 has a Lebesgue density point at ε = 0.

For all values ε ∈ E′
−1 the propagators G[0](x, ε) = Ψ0(x) (δ0(x)1 −M[−1](x, ε))−1 can be formally

defined. At this point, one could hope to iterate the procedure. The main obstacle is that now the
dressed propagators are no longer bounded proportionally to the undressed one: indeed it may happen
that x2 − εai−r is much smaller than x2. So we have to modify the algorithm.

For simplicity, let us first reason once more by taking a sharp decomposition as initially done in
Section 5. Let us also assume, in the discussion below, the self-energies to be well-defined: we shall back
later to such an issue.

We say that ν 6= 0 is on scale 0 if |ω · ν| ≥ γ and on scale [≥ 1] otherwise: for ν on scale 0 we
define G[0](ω · ν, ε) as in (6.7), with n = 0 and M[−1](x, ε) given in (10.1). Given ν on scale [≥ 1]

we say that ν is on scale 1 if mini=1,...,d |(ω · ν)2 − λ
[−1]
i (ω · ν, ε)| ≥ (2−1γ)2, and on scale [≥ 2] if

mini=1,...,d |(ω · ν)2 − λ
[−1]
i (ω · ν, ε)| < (2−1γ)2. For ν on scale 1 we write G[1](x, ε) as in (6.7), with

n = 1 and M[0](x, ε) written according to (6.8). Call λ
[0]
i (x, ε) the eigenvalues of M[0](x, ε): given ν

on scale [≥ 2] we say that ν is on scale 2 if mini=1,...,d |(ω · ν)2 − λ
[0]
i (ω · ν, ε)| ≥ (2−2γ)2, and on scale

[≥ 3] if mini=1,...,d |(ω · ν)2 − λ
[0]
i (ω · ν, ε)| < (2−2γ)2. And so on: eventually we impose infinitely many

Diophantine conditions, i.e.

∣∣∣∣|ω · ν| −
√
|λ[n]
i (ω · ν, ε)|

∣∣∣∣ > 2−(n+1)/2γ|ν|−τ ′ ∀ν ∈ Z
r \ {0} (10.5)

for all i = 1, . . . , d and n ≥ −1.

Even if we are successful in imposing the conditions (10.5), the argument above is still incomplete,
and it needs a further modification. In order to bound the tree values and the self-energies we need a
bound on the number of lines of fixed scale, in the spirit of the Siegel-Bryuno lemma. This requires to
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compare the propagators of the lines entering and exiting clusters which are not self-energy clusters – see
the discussion at the end of Appendix F – and this leads to further Diophantine conditions,
∣∣∣∣|ω · (ν1−ν2)| ±

√
|λ[n]
i (ω ·ν1, ε)| ±

√
|λ[n]
j (ω ·ν2, ε)|

∣∣∣∣ > 2−(n+1)/2γ|ν1−ν2|−τ
′ ∀ν1 6=ν2 ∈ Z

r\{0}, (10.6)

for all i, j = 1, . . . , d and n ≥ −1. For any fixed ν this would mean to impose the conditions for all ν1
and ν2 such that ν1 − ν2 = ν. Unfortunately, these conditions are infinitely many, and for all of them we
would eliminate intervals of the same size: therefore we would left with a zero measure set. Of course, at

the step n = −1, there would be no difficulty, since the eigenvalues λ
[−1]
i (x, ε) are independent of x – see

(10.2) –, but already at the step n = 0 problems would arise.

So, instead of (10.5) and (10.6), we can try to impose the Diophantine conditions

∣∣∣∣|ω · ν| −
√
λ

[n]
i (ε)

∣∣∣∣ > 2−(n+1)/2γ|ν|−τ ′ ∀ν ∈ Z
r \ {0}, (10.7a)

∣∣∣∣|ω · ν| ±
√
λ

[n]
i (ε) ±

√
λ

[n]
j (ε)

∣∣∣∣ > 2(n+1)/2γ|ν|−τ ′ ∀ν ∈ Z
r \ {0}, (10.7b)

for all i, j = 1, . . . , d and n ≥ 0, for suitable numbers λ
[n]
i (ε) independent of ν. The advantage of (10.7)

with respect to (10.6) is that for any n we have to impose that the quantities ω · ν are far enough only
from a finite number of values, that is d values for (10.7a) and ≤ 4d2 values for (10.7b).

Thus, already for n = −1 we have to impose, besides the conditions (10.3), also the conditions (10.7b).
This leaves a subset E−1 ⊂ E′

−1. To prove that the set E−1 has still a Lebesgue density point at ε = 0,
we need a lower bound on all the derivatives d(

√
εai ± √

εaj)/dε, with i 6= j when the sign minus is
considered. This is easily obtained if we assume that the eigenvalues a1, . . . , as are distinct, i.e. that
there exists a0 > 0 such that |ai−aj| > a0 for all 1 ≤ i < j ≤ s; see Appendix E. Of course, this provides
a further assumption on the function f0(β).

To deal with the cases n ≥ 0 we define, iteratively,

λ
[n]
i (ε) =

{
0, i = 1, . . . , r,

λ
[n]
i (

√
λ

[n−1]
i (ε), ε), i = r + 1, . . . , d.

(10.8)

In this way we obtain both that the eigenvalues x2 − λ
[n]
i (x, ε) are bounded in terms of the quantities

x2 − λ
[n]
i (ε) and that the sequences {λ[n]

i (ε)}∞n=−1 converge exponentially fast for all i = r + 1, . . . , d,

that is |λ[n]
i (ε) − λ

[n−1]
i (ε)| ≤ K1e

−κ12
n/τ′

ε2 for suitable positive constants K1 and κ1; see Appendix F.

Again, in order to impose the conditions (10.7b) we need a lower bound on the derivatives d(

√
λ

[n]
i (ε)±√

λ
[n]
j (ε))/dε, but these can be discussed as in the case n = −1; see Appendix E.

The discussion above is correct as far as the self-energies are well-defined – which we have simply

assumed to be for the moment. For instance, only if this is the case, when we write λ
[n]
i (ε) = ai−rε+O(ε2)

for i = r + 1, . . . , d, we can really say that the high order terms are negligible with respect to the liner
ones. As in the case of maximal and hyperbolic tori, we prove by induction that the self-energies are well
defined. To this aim, we need bounds on the number of lines on scale n: one can prove that bounds of
the form (5.8) and (7.2) still holds, but with τ ′ instead of τ – since the Diophantine conditions involve
the Diophantine exponent τ ′; see Appendix F. Up to this difference, the strategy of the inductive proof
is exactly as in the previous cases.

The Diophantine conditions (10.7a) and (10.7b) are known as the first Melnikov conditions and second

Melnikov conditions, respectively. Each condition shrinks further the set of allowed values of ε: if En−1

is the set of allowed values found at the step n− 1, then imposing the conditions (10.7) leaves a subset
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En ⊂ En−1. At each step the set of values which are removed has measure proportional to a common
value times 2−(n+1)/2: it was to obtain this exponential factor that a factor 2−(n+1)/2 was introduced in
(10.7). Thus, eventually one is left with a set E∞, which is still of large measure. A closer inspection of
E∞ reveals that E∞ is a Cantor set (that is a perfect, nowhere dense set).

To make the argument above really rigorous one should take a smooth decomposition, such as that

considered in Section 5. Moreover, it turns out to be convenient to use functions λ
[n]
i (ε) which are

differentiable (in the sense of Whitney [72]) in ε, so that, instead of the minimum of the eigenvalues, one
should consider a smooth version of it – see Appendix F for details (see also [38, 45, 39]).

The assumptions on ∂2
βf0(β0) can be weakened by requiring that the eigenvalues a1, . . . , as are such

that ai 6= 0 for all i and ai − aj 6= 0 for all i 6= j. In this case lower-dimensional tori of mixed type can
be proved to exist [45, 39].

11 Stability and uniqueness

The quasi-periodic solutions describing the maximal tori are linearly stable [3]. An interesting problem
is that of uniqueness of solutions. In other words, one can wonder whether there are other quasi-periodic
solutions with the same rotation vector ω as the solution studied in the previous sections. Despite the
apparent simplicity of the problem, a proof of uniqueness has been given only recently [31].

The case of lower-dimensional tori is more difficult. In principle there could be other quasi-periodic
solutions with the same rotation vector, which either do not admit any perturbation expansion or admit
a different expansion or, even admitting the same expansion, are different. For instance, the resummed
expansion (6.6) a priori depends on the particular way the multiscale analysis is implemented, and by
slightly changing the procedure one could obtain a different solution: this would imply infinitely many
solutions which have the same formal perturbation series. In the case d = 2 and τ = 1 all such functions
coincide, because they are all Borel summable – see the last remark in Appendix D – but in general there
is no reason why this should happen. At the present moment the problem of uniqueness is still open.

In the case of the dissipative systems of Section 3.4 one expects, on the ground of physical con-
siderations, the response solution to be either attractive or repulsive (which means attractive for the
time-reverted dynamics). More precisely, under the further assumption that ∂xg(c0) > 0 the response
solution is expected to be asymptotically stable. Indeed, this is what happens.

The proof – very easy – proceeds as follows [4]. The analysis of Section 9 shows that there exists a
response solution x0(t) = x(ωt, ε) = c0 + O(ε). If we look for solutions of the form x = x0 + ξ: then
x(t) → x0(t) as t → ∞ (i.e. x0 is attracting) if and only if ξ(t) → 0 as t → ∞. The function ξ must
solves the differential equation

ξ̈ + γξ̇ + P (ξ, x0(t)) = 0, P (ξ, x) = g(x+ ξ) − g(x) = ∂xg(x) ξ +O(ξ2), (11.1)

which can be rewritten as a system of first order equations

{
ξ̇ = y,

ẏ = −γy − P (ξ, x0(t)).
(11.2)

If we define R(ξ, t) = P (ξ, x0(t))/P (ξ, c0) we have R(0, t) = 1+O(ε), so that 1/2 ≤ R(ξ, t) ≤ 2 uniformly
in t and ξ, for ε and ξ small enough. Then we can rescale time and variables by setting

τ(t) =

∫ t

0

dt′
√
R(ξ(t′), t′), ξ(t) = v(τ(t)), y(t) =

√
R(ξ(t), t)w(τ(t)), (11.3)
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which transforms the system (11.2) into

{
v′ = w,

w′ = −γ(v, t)w − P (v, c0),
(11.4)

with the prime denoting differentiation with respect to time τ and

γ(v, t) :=
1√
R

(
γ +

R′

2
√
R

)
. (11.5)

If we neglect the friction term γ(v, t)w in (11.4) we obtain an autonomous system with constant of motion

H(v, w) =
1

2
w2 +

∫ v

0

dv′ P (v′, c0) =
1

2
w2 +

1

2
∂xg(c0) v

2 +O(v3), (11.6)

so that the origin is a stable equilibrium point. Moreover γ(v, t) > 0 for ε small enough (recall that
γ = 1/ε), in a neighbourhood U of the origin. Hence we can apply Barbashin-Krasokvsky’s theorem
[62] (or Lasalle’s invariance principle [55]) to conclude that the origin is asymptotically stable and U is
contained in its basin of attraction.

In some cases, for instance if g(x) = x2p+1, p ∈ N, and f0 6= 0 (so that ∂xg(c0) > 0), the response
solution turns out to be a global attractor [4], but of course in general it is only locally attracting.

The problem of uniqueness, mentioned about the lower-dimensional tori, can be addressed also as
to such response solutions. Of course, the local attractiveness of the solution implies local uniqueness.
In other words, the response solution x(ωt, ε) is the only quasi-periodic solution which reduces to c0 as
ε→ 0.

12 Generalisations

In this last section, we review some possible directions one can follow to generalise the results described
in the previous sections. Some of the these generalisations are discussed in the literature, other are still
open problems.

12.1 Weaker Diophantine conditions

Instead of the standard Diophantine condition (1.5) one can consider weaker conditions, such as the
Bryuno condition [19]: a vector ω is said to satisfy the Bryuno condition if B(ω) <∞, where

B(ω) =
∞∑

n=1

1

2n
log

1

αn(ω)
, αn(ω) = inf{|ω · ν| : ν ∈ Z

d such that 0 < |ν| ≤ 2n}. (12.1)

All the results of the previous sections can be extended to rotation vectors satisfying the Bryuno condition:
see [39] for maximal and lower-dimensional tori, [9] for the standard map, and [40] for dissipative systems.

For d = 2 one can write ω = (ω1, ω2) = (1, α)ω1, where α = ω2/ω1 is the rotation number. One can
define the Bryuno function

B(α) =

∞∑

n=1

1

qn
log qn+1, (12.2)

where {qn}n∈Z are the denominators of the best approximants of α [77]. Then the function B(ω) is
equivalent to the Bryuno function B(α), in the sense that one has C−1 < B(ω)/B(α) < C for a universal
constant C [39].
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An open problem is whether such a condition can be further weakened. For d = 2 the Bryuno
condition is optimal: indeed, in the case of the standard map Davie [27] proved that if the rotation
number ω ∈ R does not satisfy the Bryuno condition then there is no invariant curve with that rotation
number ω. Such a result can be even strengthened by saying that the radius of convergence ρ(ω) of the
conjugating function and the function B(ω) are such that

C1e
−2B(ω) < ρ(ω) < C2e

−2B(ω), (12.3)

for suitable universal constants C1 and C2; see [27, 9] for a proof of the last statement. The proof of the
lower bound in (12.3) relies on deeper cancellations than those discussed in Section 7; see [9] for details.

Another Diophantine condition considered in the literature is the so-called Rüssmann condition [75,
76, 73], which has a somewhat intricate definition if compared to (12.1). For d = 2 such a condition is
equivalent to the Bryuno condition [76].

12.2 Degenerate perturbations

The dissipative systems introduced in Section 3.4 have been considered under the nondegeneracy condition

that ∂xg(c0) 6= 0 if g(c0) = f0. Such a condition can be removed, and the existence of a response
solution can be proved under the only condition that there exists a zero c0 of odd order to the equation
g(x) − f0 = 0; see [40], where it is also proved that there is no response solution reducing to c0 as ε→ 0
if c0 is a zero of even order.

Also in the case of lower-dimensional tori one can think of relaxing the nondegeneracy condition that
the matrix ∂2

βf0(β0) be nonsingular. In full generality, this case is very hard. The case s = 1 is already
nontrivial. In that case it has be proved that at least one lower-dimensional torus always persists [20].

A first difference with respect to the nondegenerate case considered in Section 3.3 is that a formal
power series in ε does not exist any longer. In [36] it is shown that, at least in some cases, a fractional
power series in ε can be envisaged. The situation is somewhat reminiscent of what happens in Melnikov

theory [66, 22, 54], when the subharmonic Melnikov function has degenerate zeroes of odd order: in that
case subharmonic solutions exist and are analytic in a fractional power of ε (Puiseux series [74, 18])
– cf. [44, 23]; see also [1, 70] for a similar situation in the case of limit cycles. In the case of lower-
dimensional tori, the fractional power series in ε do not converge, but they can be resummed in order to
give well-defined functions – see [36] for a complete discussion.

12.3 More general systems

One can also consider ordinary differential equations more general than (1.1), say of the form

Dεu = F0(u) + εF (u, ωt), (12.4)

with F0 real analytic. In that case one still assumes that the unperturbed equation D0(u) = F0(u) admits
a quasi-periodic solution u0(ωt).

The most general formulation of KAM theorem is within this class – see the Hamiltonian (3.2). The
analysis performed in the previous sections for the simplified Hamiltonians (3.1) and (3.18) can be ex-
tended to deal with these Hamiltonians; we refer to [47, 39] for details. If the perturbation depends
explicitly on the action variables, then the formal solubility of the Hamilton equations relies on a non-
degeneracy condition of the unperturbed Hamiltonian, such as the invertibility of the matrix ∂2

AH0(A)
(anisochronous condition). However, the KAM theorem can be extended also to isochronous systems

with H0(A) = ω ·A, by assuming a nondegeneracy condition on the perturbation, for instance that the
matrix

f0(A) =

∫

Td

dα

(2π)d
f(α,A) (12.5)
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is invertible [33]. A proof along the lines of the previous sections passes through the so-called translated

torus theorem [69] (also knows as theorem of the modifying terms or theorem of the counterterms), which
says that, for any analytic function f : T

n×R
n and any Diophantine vector ω ∈ R

n, there exists a vector
µ(ε,ω) analytic in ε, such that the equations

{
α̇ = ω + ε∂Af(α,A) + µ(ε,ω),

Ȧ = −ε∂αf(α,A),
(12.6)

admit a quasi-periodic solution with rotation vector ω which is analytic in ε. A proof of such a theorem by
using the tree formalism can be found in [8]. The theorem of the translated torus can be also formulated
in Cartesian coordinates; in that case the cancellation mechanisms leading to the convergence of the series
work in a rather different way [24].

In Section 3.1 we have considered only analytic Hamiltonians. A more general formulation of the KAM
theorem requires only finite smoothness [68, 72]. In certain cases, the tree formalism can be extended
to nonanalytic systems, such as some quasi-integrable systems of the form (3.3) with f in a class of Cp

functions for some finite p [12, 13]. However, up to exceptional cases, the method described here seems
to be intrinsically suited in cases in which the vector fields are analytic – from a physical point of view
this a quite reasonable assumption. The reason is that in order to exploit the expansion (2.3), we need
that F be infinitely many times differentiable and we need a bound on the derivatives. It is a remarkable
property that, as shown in Sections 8 and 9, the perturbation series can be given a meaning also in cases
where the solutions are not analytic in the perturbation parameter.

Equations of the form (12.4) also arise in problems of electronic engineering and theory of circuits,
usually with periodic forcing. Such systems are resistive and hence intrinsically dissipative. As examples
one can consider the saturating inductor circuit, described by the equation

G(ẋ) ẍ+ βx+ εγẋ = εf(ωt), G(v) =
α+ v2

1 + v2
, α > 1, β > 0, γ > 0, (12.7)

and the resonant injection-locked frequency divider, described by the equation
{
x′ = αy + βx

(
1 − x2

)
+ εx

(
1 − x2

)
f(ωt), α > β > 1,

y′ = −x− y,
(12.8)

with m = 1 (i.e. periodic forcing) in both cases. For both equations the dynamics at ε = 0 is known: the
first system (12.7) admits a constant of motion (although it is not Hamiltonian), while the second one
has a globally attracting limit cycle. By following the same approach as described in Sections 2 and 4,
one can study for ε 6= 0 the existence of periodic solutions whose period is rational with respect to the
period of the forcing – with the major simplification with respect to the previous analysis that no small
divisors appear. More precisely one can study the existence of subharmonic solutions for the equation
(12.7), and the frequency locking phenomenon for the equation (12.8). We refer to the literature [5, 6]
for details and results.

12.4 Partial differential equations

Finally, the analysis developed so far for ordinary differential equations, can be extended to partial
differential equations, such as the nonlinear wave equation

∂ttu− ∂xxu+ µu = u3, x ∈ [0, π], µ ≥ 0, (12.9)

and the nonlinear Schrödinger equation

i∂tu− ∂xxu+ µu = |u|2u, x ∈ [0, π], µ ≥ 0, (12.10)
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with periodic or Dirichlet boundary conditions. There exists a very wide literature about periodic and
quasi-periodic small amplitude solutions to nonlinear one-dimensional partial differential equations such
as (12.9) and (12.10), starting from the seminal work by Kuksin, Craig and Wayne [63, 80, 26]. Recently
results have been obtained also in higher space dimension [15, 16, 30], that is for x ∈ [0, π]D, D > 1, with
periodic boundary conditions.

By using the tree formalism, small amplitude periodic solutions have been proved to exist, in dimension
D = 1, both in the nonresonant case – µ in a suitable Cantor set [49] – and in the resonant case – µ = 0
[50, 51]. Results have been obtained also in the higher space dimensional case D > 1 [52]. We refer to
the original papers for a precise formulation of the results and the proofs.

A Proof of the Siegel-Bryuno lemma

The bound (5.8) follows from the fact that if N∗
n(θ) 6= 0 then N∗

n(θ) ≤ E(n, θ) := cK(θ)2−n/τ − 1, with
c = 22+1/τ . The last bound can be proved by induction on the order k(θ) as follows. Given a tree θ let
ℓ0 be its root line, let ℓ1, . . . , ℓs, s ≥ 0, be the lines on scales ≥ n which are the closest to ℓ0, and let
θ1, . . . , θs the trees with root lines ℓ1, . . . , ℓs, respectively – cf. Figure 7. By construction all lines ℓ in
the subgraph T have scales nℓ < n, so that if nℓ0 ≥ n then T is necessarily a cluster. Moreover, all trees
θ1, . . . , θs have orders strictly less than k(θ), so that, by the inductive hypothesis, for each i = 1, . . . , s
one has either N∗

n(θi) ≤ E(n, θi) or N∗
n(θi) = 0.

θ =

T

ℓ0

ℓ1

ℓ2

ℓs

θ1

θ2

θs

Figure 7: Construction for the proof of the Siegel-Bryuno lemma.

If either ℓ0 is not on scale n or it is on scale n but exits a self-energy cluster then N∗
n(θ) = N∗

n(θ1) +
. . . + N∗

n(θs) and the bound N∗
n(θ) ≤ E(n, θ) follows by the inductive hypothesis. If ℓ0 does not exit a

self-energy cluster and nℓ0 = n then N∗
n(θ) = 1 + N∗

n(θ1) + . . . + N∗
n(θs), and the lines ℓ1, . . . , ℓs enter

a cluster T with K(T ) = K(θ) − (K(θ1) + . . . + K(θs)). If s ≥ 2 the bound N∗
n(θ) ≤ E(n, θ) follows

once more by the inductive hypothesis. If s = 0 then N∗
n(θ) = 1; on the other hand for ℓ0 to be on

scale nℓ0 = n one must have |ω · νℓ0 | < 2−n+1γ, which, by the Diophantine condition (1.8), implies
K(θ) ≥ |νℓ0 | > 2(n−1)/τ , hence E(n, θ) > 1. If s = 1 call ν1 and ν2 the momenta of the lines ℓ0 and ℓ1,
respectively (in particular ν1 = νℓ0). By construction T cannot be a self-energy cluster, hence ν1 6= ν2.
Thus, by the Diophantine condition (1.5), one has

2−n+2γ ≥ |ω · ν1| + |ω · ν2| ≥ |ω · (ν1 − ν2)| >
γ

|ν1 − ν2|τ
, (A.1)

because nℓ0 = n and nℓ1 ≥ n, and hence

K(T ) ≥
∑

v∈N(T )

|νv| ≥ |ν1 − ν2| > 2(n−2)/τ , (A.2)

hence T must contain “many nodes”. In particular, one finds also in this case N∗
n(θ) = 1 + N∗

n(θ1) ≤
1+E(n, θ1) ≤ 1+E(n, θ)− cK(T )2−n/τ ≤ E(n, θ), where we have used that cK(T )2−n/τ ≥ 1 by (A.2),
provided c = 22+1/τ .
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The argument above shows that small divisors can accumulate only by allowing self-energy clusters.
That accumulation really occurs is shown by the example in Figure 8, where a tree θ of order k containing
a chain of p self-energy clusters is depicted. Assume for simplicity that k/3 is an integer: then if p = k/3
the subtree θ1 with root line ℓ is of order k/3. If the line ℓ entering the rightmost self-energy cluster Tp
has momentum ν, also the lines exiting the p self-energy clusters have the same momentum ν. Suppose
that |ν| ≈ Nk/3 and |ω · ν| ≈ γ/|ν|τ (this is certainly possible for some ν). Then the value of the tree θ
grows like ak1(k!)a2 , for some constants a1 and a2: a bound of this kind prevents the convergence of the
perturbation series.

θ = ν

T1 T2 Tp

ν ν ν ν

θ1
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

Figure 8: Example of tree with accumulation of small divisors.

B Siegel-Bryuno lemma for self-energies

We first prove (7.3). Call PT the path connecting the entering and exiting lines of T . If T ∈ Rn then
T contains at least a line on scale ≥ n. If there is one line ℓ /∈ PT on scale ≥ n, one has K(T ) ≥ |νℓ|
and γ|νℓ|−τ < |ω · νℓ| ≤ 2−n+1γ, so that K(T ) > 2(n−1)/τ . Otherwise, let ℓ be the line ℓ ∈ PT on

scale ≥ n which is closest to the line ℓ1 entering T . Call T̃ the subgraph of T consisting of all lines and
nodes of T preceding ℓ. By construction, all lines in T̃ have scale < n, and hence νℓ 6= νℓ1 , otherwise T̃
would be a self-energy cluster. Therefore one has γ|νℓ − νℓ1 |−τ < |ω · (νℓ − νℓ1)| < 2−n+2γ, which yields
K(T ) ≥ |νℓ − νℓ1 | > 2(n−2)/τ .

To prove (7.2) one considers a more general class of graphs. We say that T is a graph of class S(n, n′)
if it has one entering line and one exiting line both on scale ≥ n′ and all the lines contained in T are on
scale ≤ n. Define K(T ) and Nn(T ) as done in Section 7 for the self-energy clusters. We want to prove
the bound N∗

n′(T ) ≤ max{2K(T )2(3−n)/τ − 1, 0}. Let PT the path connecting the entering and exiting
lines of T , and let N(PT ) the set of nodes connected by lines of PT . If all the lines along PT have scale
< n′, then Nn′(T ) = Nn′(θ1) + . . .+ Nn′(θm), where θ1, . . . , θm are the trees contained in T which have
the root in a node v ∈ N(PT ). In that case the bound follows from (5.8). If there exists a line ℓ ∈ PT
on scale ≥ n′, call T1 and T2 the subgraphs of T such that L(T ) = {ℓ} ∪ L(T1) ∪ L(T2). Both T1 and
T2 are of class S(n, n′), so that, in the case in which both T1 and T2 contain lines on scale ≥ n′, by the
inductive hypothesis one finds Nn′(T ) ≤ 1 + Nn′(T1) + Nn′(T2) ≤ 2K(T )2(n−3)/τ − 1. If T1 contains no
line on scale ≥ n′ then one realises that one must have K(T1) > 2(n−2)/τ , and the same holds for T2, so
that the bound follows also in these cases. Finally, (7.2) follows from the previous bound by noting that
a self-energy cluster T ∈ Rn is a graph of class S(n, n′) for all n < n′.

C Accumulation of small divisors for dissipative systems

We want to construct for the model of Section 3.4 a tree θ whose value Val(θ) grows like a factorial.
Let θ be the tree with k nodes v1, . . . , vk, such that svi = kvi = 1 and ρvi = 0 for all i = 1, . . . , k − 1,
while svk

= 0 and ρvk
= kvk

= 1. Let νvk
= ν such that |ω · ν| ≈ γ/|ν|τ . The value of the labels

ρvi for i = 1, . . . , k − 1 implies that νvi = 0 for i = 1, . . . , k − 1, and hence all the lines have the same
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momentum ν. Then one has Val(θ) = (iω · ν)2(k−1)fν(iω · ν)−k = (iω · ν)k−2fν , which can be bounded by
(k − 2)!(2/ξ)kΞ0e

−ξ|ν|/2 for large k.

D Borel summability

Let f(ε) =
∑∞
n=1 anε

n a formal power series (which means that the sequence {an}∞n=1 is well-defined).
We say that f(ε) is Borel summable if

1. B(p) :=
∑∞
n=1 anp

n/n! converges in some circle |p| < δ,

2. B(p) has an analytic continuation to a neighbourhood of the positive real axis, and

3. g(ε) =
∫∞

0
e−p/εB(p) dp converges for some ε > 0.

Then the function B(p) is called the Borel transform of f(ε), and g(ε) is the Borel sum of f(ε). Moreover
if the integral defining g(ε) converges for some ε0 > 0 then it converges in the circle Re ε−1 > Re ε−1

0 .

A function which admits the formal power series expansion f(ε) is called Borel summable if f(ε) is
Borel summable; in that case the function equals the Borel sum g(ε).

A remarkable property of Borel summable functions is that if two functions f(ε) and g(ε) are both
Borel summable and admit the same power series expansion, then the two functions coincide.

E Excluded values of the perturbation parameter

Set a = min{a1, . . . , as} and A = max{a1, . . . , as}. In order to impose the Diophantine conditions (10.3)
we have to exclude all values of ε ∈ [0, ε0] such that

∣∣|ω · ν| − √
εai
∣∣ ≤ γ|ν|−τ ′

for some i = 1, . . . , s
and some ν 6= 0. Of course, we can confine ourselves to the vectors ν ∈ Z

r such that |ν| ≥ m0 :=
(γ/4

√
ε0A)−1/τ , because one has |ω · ν| > 4

√
ε0A and hence

∣∣|ω · ν| − √
εai
∣∣ > |ω · ν|/2 > γ|ν|−τ/2

for |ν| < m0. For all |ν| ≥ m0 we can introduce an interpolation parameter t ∈ [−1, 1] by setting
|ω · ν| −

√
ε(t, ν) ai = t γ|ν|−τ ′

, so that

∣∣∣∣
d

dt
ε(t, ν)

∣∣∣∣ ≤
γ

|ν|τ ′

2
√
ε(t, ν)√
ai

≤ γ

|ν|τ ′

2
√
ε0√
a

(E.1)

for all ε(t, ν) ∈ E′
−1. Therefore we have to exclude a set E′

−1 ⊂ [0, ε0] of measure

meas(E′
−1) =

∫

E′

−1

dε ≤
∑

ν∈Z
r

|ν|≥m0

∫ 1

−1

dt

∣∣∣∣
d

dt
ε(t, ν)

∣∣∣∣ ≤
∑

ν∈Z
r

|ν|≥m0

γ

|ν|τ ′

4
√
ε0√
a

≤ Cγ

(√
ε0A

γ

)(τ ′−r)/τ√
ε0√
a
, (E.2)

for some universal constant C. Hence meas(E′
−1) is much smaller than ε0 if ε0 is small and τ ′ > τ + r.

To impose the Diophantine conditions (10.7a) one can reason in the same way. One uses that λ
[n]
i (ε) =

ai−rε+ O(ε2) for i = r + 1, . . . , d (see Appendix F), which yields |λ[n]
i (ε)| ≤ 2ai−rε and |dλ[n]

i (ε)/dε| ≥
ai−r/2; here and henceforth the derivative is in the sense of Whitney. Again we have to consider only
the values ν ∈ Z

r such that |ν| ≥ m0. We define E′
n as the set of values ε ∈ [0, ε0] which do not satisfy

(10.7a) and for all |ν| ≥ m0 and t ∈ [−1, 1] we write |ω · ν| −
√
λ

[n]
i (ε(t, ν)) = t 2−(n+1)/2γ|ν|−τ ′

. Then

∣∣∣∣
d

dt
ε(t, ν)

∣∣∣∣ ≤ 2−(n+1)/2 γ

|ν|τ ′

4
√

2ε
√
ai−r

≤ 2−(n+1)/2 γ

|ν|τ ′

4
√

2ε0√
a

(E.3)
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for all ε(t, ν) ∈ E′
n, and hence

meas(E′
n) ≤ C2−(n+1)/2γ

(√
ε0A

γ

)(τ ′−r)/τ √
ε0√
a
, (E.4)

for some universal constant C. Therefore one has meas(E′
n) = 2−(n+1)/2o(ε0), provided τ ′ > τ + r.

To impose the Diophantine conditions (10.7b), the only difference is that we need a lower bound on

the derivatives d(

√
λ

[n]
i (ε)±

√
λ

[n]
j (ε))/dε, r+1 ≤ i, j ≤ d, with i 6= j when the sign minus is taken. One

easily realises that the conditions with the sign plus do not present any further difficulty with respect to
the first Melnikov conditions. Moreover, for ε small enough and r + 1 ≤ i 6= j ≤ d one has

∣∣∣∣
d

dε

(√
λ

[n]
i (ε) −

√
λ

[n]
j (ε)

)∣∣∣∣ ≥
a0

8
√
Aε

, a0 := min
1≤k 6=h≤s

|ak − ah| . (E.5)

To deduce (E.5) one uses that for i = r+ 1, . . . , d. one has λ
[−1]
i (ε) = ai−rε and λ

[n]
i (ε) = ai−rε+O(ε2),

n ≥ 0. By defining E′′
n as the set of values ε ∈ [0, ε0] which do not satisfy (10.7b), we obtain

meas(E′′
n) ≤ C2−(n+1)/2γ

(√
ε0A

γ

)(τ ′−r)/τ √
Aε0
a0

, (E.6)

for some universal constant C, so that once more meas(E′′
n) = 2−(n+1)/2o(ε0) for τ ′ > τ + r. The sets En

in Section 10 are defined as En = E′
n ∪ E′′

n.

F Multiscale analysis for elliptic tori

To extend the multiscale analysis to the case of elliptic tori, we slightly change the recursive definition of
propagators and self-energies. We set ∆[−1](x, ε) = x2 and

∆[n](x, ε) =

(
1

d

d∑

i=1

(
x2 − λ

[n−1]
i (ε)

)−2
)−1/2

, n ≥ 0, (F.1)

and define

Ξn(x, ε) =

n∏

p=0

χp(∆
[p−1](x, ε)), Ψn(x, ε) = ψn(∆

[n−1](x, ε))

n−1∏

p=0

χp(∆
[p−1](x, ε)), (F.2)

with the functions χn and ψn defined as in Section 5, with the only difference that in (5.2) γ and γ/2
are replaced with γ2 and γ2/4, respectively.

In terms of the quantities (F.1) and (F.2), the propagators Gℓ = G[nℓ](ω · νℓ, ε) are defined iteratively
as

G[n](x, ε) = Ψn(x, ε)
(
δ0(x)1 −M[n−1](x, ε)

)−1

(F.3a)

M[n](x, ε) = M[n−1](x, ε) + Ξn(x, ε)M [n](x, ε), M [n](x, ε) =
∑

T∈Rn

εk(T ) VT (x). (F.3b)

Finally the numbers λ
[n]
i (ε) are defined according to (10.8), where λ

[n]
i (x, ε) are the eigenvalues of the

matrix M[n](x, ε).
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If a line ℓ is on scale n and Gℓ 6= 0, then one has

min
1≤i≤d

∣∣∣(ω · ν)2 − λ
[p]
i (ε)

∣∣∣ ≤ 2−2pγ2, 0 ≤ p ≤ n− 2, (F.4a)

min
1≤i≤d

∣∣∣(ω · ν)2 − λ
[n−1]
i (ε)

∣∣∣ ≥ 1

4
√
d
2−2nγ2. (F.4b)

Therefore, setting ω · ν = x, if x > 0 one has

∣∣∣λ[n−1]
i (x, ε) − λ

[n−1]
i (ε)

∣∣∣ ≤ max
x

∣∣∣∂xλ[n−1]
i (x, ε)

∣∣∣
∣∣∣∣
√
λ

[n−2]
i (ε) − x

∣∣∣∣ , (F.5)

where ∂xλ
[n−1]
i (x, ε) = O(ε2) and

∣∣∣∣
√
λ

[n−2]
i (ε) − x

∣∣∣∣ ≤
|λ[n−2]
i (ε) − x2|

|
√
λ

[n−2]
i (ε) + x|

≤ 2−2(n−2)γ2

√
εa

, (F.6)

and hence ∣∣∣λ[n−1]
i (x, ε) − λ

[n−1]
i (ε)

∣∣∣ ≤ C ε02
−2n, (F.7)

for some positive constant C. Therefore (F.4b) and (F.7) imply

∣∣∣x2 − λ
[n−1]
i (x, ε)

∣∣∣ ≥
∣∣∣x2 − λ

[n−1]
i (ε)

∣∣∣−
∣∣∣λ[n−1]
i (x, ε) − λ

[n−1]
i (ε)

∣∣∣ ≥ 1

2

∣∣∣x2 − λ
[n−1]
i (ε)

∣∣∣ . (F.8)

The case x < 0 is discussed in the same way noting that λ
[n−1]
i (−x, ε) = λ

[n−1]
i (x, ε), because of (7.1).

Therefore the eigenvalues x2 − λ
[n]
i (x, ε) can be bounded from below by half the quantities x2 − λ

[n]
i (ε).

The property |λ[n]
i (ε)− λ

[n−1]
i (ε)| ≤ C1e

−κ12
n/τ′

ε2 mentioned after (10.8) follows from the expression
(F.3b) for M[n](x, ε) −M[n−1](x, ε), the bound (7.5) for the values of the self-energy clusters, and the
bound

∑
v∈N(T ) |νv| > c′′2n/τ

′

which holds for any T ∈ Rn.

Finally we want to show that the bounds

N∗
n(θ) ≤ c 2−n/τ

′

K(θ), N∗
n′(T ) ≤ c 2−n

′/τ ′

K(T ), T ∈ Rn, n′ ≤ n, (F.9)

hold with the multiscale analysis described above. One proceed as in Appendices A and B, with the
following changes. If the propagator of a line with momentum ν and scale n is non-zero, then (F.4) imply
|ν| ≥ 2(n−2)/τ ′

. When discussing the analogous of the case s = 1 in Appendix A, then (A.1) must be
replaced with

2−n+3γ ≥ |ω · ν1 + σ1

√
λ

[n−2]
i (ε) | + |ω · ν2 + σ2

√
λ

[n−2]
j (ε) |

≥ |ω · (ν1 − ν2) + σ1

√
λ

[n−2]
i (ε) − σ2

√
λ

[n−2]
j (ε) | ≥ γ

|ν1 − ν2|τ ′
, (F.10)

where the signs σ1, σ2 ∈ {±} and the labels i, j ∈ {1, . . . , d} are such that the first inequality is satisfied.
Analogously one discussed the case of the self-energy clusters.

In particular (F.10) explains why the second Melnikov conditions are necessary. Of course, if we had

used directly the eigenvalues λ
[n]
i (x, ε), instead of the quantities λ

[n]
i (ε), we would have require (10.6)

instead of (10.7b). We have already seen in Section 10 why this was not allowed.

Acknowledgments. I thank L. Corsi for her very careful comments on the manuscript.

32



References

[1] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Măıer, Theory of bifurcations of dynamic systems on a
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[75] H. Rüssmann, On the one-dimensional Schrödinger equation with a quasiperiodic potential, Nonlinear dy-
namics (Internat. Conf., New York, 1979), pp. 90–107, Ann. New York Acad. Sci. Vol. 357, New York
Academy of Sciences, New York, 1980.

[76] H. Rüssmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regul. Chaotic Dy-
nam. 6 (2001), 119–204.

[77] W.M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics Vol. 785, Springer, Berlin, 1980.

[78] A.D. Sokal, An improvement of Watson’s theorem on Borel summability, J. Math. Phys. 21 (1980), no. 2,
261–263.
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