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November 30, 2009

Abstract

For families of magnetic pseudodifferential operators defined by symbols and magnetic fields depending
continuously on a real parameter ε, we show that the corresponding family of spectra also varies continuously
with ε. 1

1 Introduction and main result

It is known [2, 18, 10, 6], that ”the spectrum of a Schrödinger operator with magnetic field B is continuous
in B” under some assumptions on the regularity of the magnetic field. Following some ideas in [3] and [4], we
would like to put this result in a more general (abstract) perspective.

In fact we shall consider classical Hamiltonians h : Ξ → R (not having a simple specific form), defined on
the phase space Ξ := X ×X ∗ ≡ Rn×Rn, smooth magnetic fields B (closed 2-forms with bounded derivatives of
any order) and quantum Hamiltonians HA ≡ OpA(h) defined by a choice of a vector potential A (with B = dA)
[14, 15, 12]. Our aim is to study the continuity properties of the spectrum σ(HA) as a subset of R when both
the symbol and the magnetic field B depend on a parameter ε belonging to some interval I.

The main obstacles are the general form of the symbols hε and the fact that HAε

is defined using the vector
potential Aε which can be rather bad behaved even for bounded and smooth magnetic fields Bε. To overcome
this, we work only with the magnetic symbol of the operators HAε

and we obtain affiliation [1, 9] of the classical
Hamiltonians hε to a certain (not locally trivial) continuous field [7] of twisted crossed-product C∗-algebras [20],
defined only in terms of the magnetic fields {Bε}ε∈I [16]. In this way, the problem is reduced to the study of
the continuity properties in ε of the magnetic symbols rε defining resolvent families of the operators HAε

. Then
the results in [22] directly imply the outer continuity of the spectrum (i.e. the ’stability of the spectral gaps’)
and the strong continuity in the regular representation (that we shall prove) implies the inner continuity of the
spectrum (i.e. the ’stability of spectral islands’).

To describe this result, we start recalling our version of covariant quantization in a magnetic field. Given
a continuous magnetic field B = dA defined by a vector potential A, we have the following quantization rule
[14, 11, 12]: [

OpA(f)u
]
(x) := (2π)−n

∫

X
dy

∫

X?

dη ei(x−y)·η λA(x, y) f

(
x + y

2
, η

)
u(y), (1.1)

with
λA(x, y) := e−i

∫
[x,y] A = e−i(y−x)·∫ 1

0 ds A(x+s(y−x)). (1.2)

This is first defined for f belonging to the Schwartz space S(Ξ) but extends to a topological isomorphism [14]

OpA : S ′(Ξ) → B
(S(X );S ′(X )

)
(1.3)

(with the dual Fréchet topology on S ′(Ξ) and the strong topology on B
(S(X );S ′(X )

)
). The main reason to

use (1.1) is gauge-covariance: equivalent choices of vector potentials lead to unitarily equivalent operators.
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Our quantization induces on the algebra of observables a composition law that only depends on the magnetic
field B [14, 11], requiring

OpA(f)OpA(g) =: OpA(f ]Bg) (1.4)

for any f, g ∈ S(Ξ). Explicitly we have

(
f ]Bg

)
(X) = π−2n

∫

Ξ

∫

Ξ

dY dZ e−2iσ(X−Y,X−Z)ΩB(x, y, z)f(Y )g(Z), (1.5)

where σ is the canonical symplectic form on Ξ and ΩB := exp {−iΓB} with ΓB(x, y, z) defined as the flux of
the magnetic field through the triangle < x− y − z, x + y − z, x− y + z >:

ΓB(x, y, z) := 4
n∑

j,k=1

yjzk

∫ 1

0

ds

∫ 1−s

0

dt Bjk

(
x− y − z + 2sy + 2tz

)
. (1.6)

Extending ]B by duality, we get the magnetic Moyal algebra

MB(Ξ) :=
{
f ∈ S ′(Ξ) | ∀g ∈ S(Ξ), f ]Bg ∈ S(Ξ), g ]Bf ∈ S(Ξ)

}

and the algebra of bounded observables

AB(Ξ) :=
(
OpA

)−1 [
B

(
L2(X )

)]
.

This second one will be a C∗-algebra isomorphic to B
(
L2(X )

)
; it depends on the magnetic field but not on the

vector potential, by gauge covariance.
Our aim is to show how our intrinsic observable algebra approach to the study of quantum Hamiltonians in

non-homogenuous magnetic fields allows for a proof of the continuity of the spectra with respect to very general
variations of the symbol and of the magnetic field.

Let us state the assumptions. We need Hörmander’s classes of symbols

Sm
ρ (Ξ) :=

{
f ∈ C∞(Ξ) | ∀(a, α) ∈ Nn × Nn, ∃Caα > 0,

∣∣(∂a
x∂α

ξ f)(x, ξ)
∣∣ ≤ Caα 〈ξ〉m−ρ|α|

}
,

where 〈ξ〉 := (1 + |ξ|2)1/2. Our previous results [14, 11] show that Sm
ρ (Ξ) ⊂ MB(Ξ) and S0

0(Ξ) ⊂ AB(Ξ).
On the symbol spaces (m ∈ IR, ρ = 1, 0) we have Fréchet structures defined by the families of semi-norms

indexed by N, M ∈ N
• ‖f‖(Ξ,1,m,N,M) := max

|a|≤N
max
|α|≤M

sup
(x,ξ)

∣∣∣〈ξ〉−m+|α| (
∂a

x∂α
ξ f

)
(x, ξ)

∣∣∣ , ∀f ∈ Sm
1 (Ξ),

• ‖f‖(Ξ,m,N,M) := max
|a|≤N

max
|α|≤M

sup
(x,ξ)

∣∣∣〈ξ〉−m (
∂a

x∂α
ξ f

)
(x, ξ)

∣∣∣, ∀f ∈ Sm
0 (Ξ).

We also recall that f ∈ Sm
1 (Ξ) is called elliptic (and we write f ∈ Sm

1,ell(Ξ)) if

|f(x, ξ)| ≥ C 〈ξ〉m for |ξ| big enough.

Hypothesis 1.1. Consider a family of Hamiltonians {hε}ε∈I with I ⊂ R a compact interval, such that

• hε ∈ Sm
1,ell(Ξ) with m > 0, for each ε ∈ I,

• the map I 3 ε 7→ hε ∈ Sm
1 (Ξ) is continuous for the Fréchet topology on Sm

1 (Ξ).

• there exist C ∈ IR such that hε ≥ −C, ∀ ε ∈ I.

Hypothesis 1.2. We are given a family of magnetic fields {Bε}ε∈I with the components Bε
jk ∈ BC∞(X ) such

that the map I 3 ε 7→ Bε
jk ∈ BC∞(X ) is continuous for the Fréchet topology on BC∞(X ).

It has been shown in [11] that real elliptic elements f of Sm
1 (Ξ) define self-adjoint operators OpA(f) in the

Hilbert space H := L2(X ), having as domain a suitable magnetic analog of the m’th order Sobolev space. The
semi-norms on BC∞(X ) can be obtained from the expressions above for ‖ · ‖(Ξ,m,N,M), by replacing Ξ with X
and by setting m = 0.

In order to state our main result we recall some notions of continuity of subsets [3, 4].

Definition 1.3. Let I be a compact interval and suppose given a family {σε}ε∈I of closed subsets of R.

1. The family {σε}ε∈I is called outer continuous at ε0 ∈ I if for any compact subset K of R such that
K ∩ σε0 = ∅, there exists a neighborhood V ε0

K of ε0 with K ∩ σε = ∅, ∀ε ∈ V ε0
K .
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2. The family {σε}ε∈I is called inner continuous at ε0 ∈ I if for any open subset O of R such that O∩σε0 6= ∅,
there exists a neighborhood V ε0

O ⊂ I of ε0 with O ∩ σε 6= ∅, ∀ε ∈ V ε0
O .

In [3] the sets σε are compact and K is only taken to be closed.

Theorem 1.4. Suppose given a compact interval I ⊂ R, a family of classical Hamiltonians {hε}ε∈I satisfying
Hypothesis 1.1 and a family of magnetic fields {Bε}ε∈I satisfying Hypothesis 1.2. Let us consider the family
of quantum Hamiltonians Hε := OpAε

(hε) for some choice of a vector potential Aε for Bε. Then the spectra
σε := σ(Hε) ⊂ R form an outer and inner continuous family at any point ε ∈ I.

Of course, if one only asks continuity conditions on the families {Bε}ε∈I and {hε}ε∈I at some point ε0 ∈ I,
the (outer and inner) continuity of the family of spectra will only be guaranteed at ε0.

Let us briefly comment upon the significance of Theorem 1.4:

• It extends the results in [8, 3] to the case of continuous models (with configuration space X = Rn) and
non-constant magnetic fields. We mention in this context that our objects are no longer elements of
a crossed product but only unbounded observables affiliated to twisted crossed-products with a rather
complicated (not locally compact) cohomology.

• It extends the known results [18, 10] to the class of elliptic symbols of any form and of any strictly
positive order. Notice that for Schrödinger type operators (hε(x, ξ) = ξ2 + V ε(x)) the condition that the
components of the magnetic field should be smooth may be very much weakened as we are going to show
in future publication.

• It is the first step in the study of the regularity of the spectral bands and gaps with respect to variation
of the magnetic field (see [3]).

Our paper is devoted to the proof of Theorem 1.4 and has the following structure. In the next Section we
present an abstract argument (following ideas and arguments in [3, 8]) relating the statement of Theorem 1.4
to the continuity of the symbols of the resolvents of the family {Hε}ε∈I in some special family of C∗-algebras,
reducing the proof of Theorem 1.4 to that of Theorem 2.7. The third Section is devoted to our main technical
result proving the affiliation of the family {Hε}ε∈I to a specific twisted crossed product C∗-algebra. In the 4-th
Section we use the results in [22] to prove that this last twisted crossed product C∗-algebra is in fact an algebra
of continuous sections in a field of C∗-algebras and this is shown to be equivalent to our Theorem 2.7, thus
finishing the proof of Theorem 1.4.
Acknowledgements: M. Măntoiu is partially supported by Núcleo Cientifico ICM P07-027-F ”Mathematical
Theory of Quantum and Classical Magnetic Systems” and by Chilean Science Foundation Fondecyt under the
Grant 1085162.

2 The abstract part of the proof

The abstract step in proving Theorem 1.4 is to show how the norm of the resolvent Rε(z) := (Hε − z1)−1 is
relevant for spectral continuity. In fact we have the following result.
Proposition 2.5. Suppose that {Hε}ε∈I is a family of self-adjoint operators in the Hilbert space H such that
for any z /∈ R the map

I 3 ε 7→
∥∥∥(Hε − z1)−1

∥∥∥ ∈ R+

is upper (resp. lower) semi-continuous in ε0 ∈ I. Then the spectra {σ(Hε)}ε∈I form an outer (resp. inner)
continuous family of closed sets at the point ε0 ∈ I.
Corollary 2.6. If for any z /∈ R the map

I 3 ε 7→
∥∥∥(Hε − z1)−1

∥∥∥ ∈ R+

is continuous, then the family {σ(Hε)}ε∈I is both outer and inner continuous.

Proof. For any z ∈ C \ R the functions κz(t) := (t− z)−1 belong to C0(R), i.e. they are continuous and small
at infinity. Due to the Stone-Weierstrass Theorem and the resolvent equation, their linear span is in fact an
algebra and is dense in C0(R) for the norm ‖ · ‖∞. Thus, for any χ ∈ C0(R) and for any δ > 0, there exist
N ∈ N, aj ∈ C and zj ∈ C \ R, with j ∈ {1, . . . , N}, such that

‖χ−
N∑

j=1

aj κzj‖∞ ≤ δ. (2.7)

By the functional calculus for self-adjoint operators we have Rε(z) = κz(Hε). We infer that for any χ ∈ C0(R)
the map I 3 ε 7→ ‖χ(Hε)‖ ∈ R+ has the same semi-continuity property as the map I 3 ε 7→ ‖Rε(z)‖ ∈ R+.
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Let us suppose now upper semi-continuity in ε0 and assume that σ (Hε0) ∩ K = ∅ for some compact set
K. By Urysohn’s Lemma, there exists χ ∈ C0(R)+ with χ|K = 1 and χ|σ(Hε0 ) = 0, so χ (Hε0) = 0. Choose a
neighborhood V of ε0 such that for ε ∈ V

‖ χ(Hε) ‖≤‖ χ(Hε0) ‖ +
1
2

=
1
2
.

If for some ε ∈ V there exists λ ∈ K ∩ σ (Hε), then

1 = χ(λ) ≤ sup
µ∈σε

χ(µ) = ‖ χ(Hε) ‖≤ 1
2
,

which is absurd.
Let us assume now lower semi-continuity in ε0. Suppose that there exist an open set O ⊂ R such that

σ (Hε0) ∩ O 6= ∅ and let λ ∈ σε ∩ O. By Urysohn’s Lemma there exist a positive function χ ∈ C0(R) with
χ(λ) = 1 and supp(χ) ⊂ O; thus ‖χ (Hε0) ‖ ≥ 1. Suppose moreover that for any neighborhood V ⊂ I of ε0 there
exists ε ∈ V such that σ (Hε) ∩ O = ∅ and thus χ (Hε) = 0. This clearly contradicts the lower semi-continuity
of ε 7→ ‖χ (Hε) ‖. We conclude thus the inner continuity condition. ¥

Proving the continuity of the map I 3 ε 7→ ‖Rε(z)‖ ∈ R+ for any z ∈ C \ R is the aim of the remaining

part of the article. Our approach will be to work intrinsically with the symbol rε
z =

(
OpAε

)−1

[Rε(z)]. Clearly

rε
z ∈ Aε(Ξ) ≡ ABε

(Ξ) (it depends on the parameter ε ∈ I both through the ε-dependence of the symbol hε

and through the ε-dependence of the product ]ε, which is Bε -dependent) and ‖rε
z‖ε = ‖Rε(z)‖ will be now an

ε-dependent norm. However, no vector potential is in view now. Our main technical result, Proposition 3.10,
proven in the next section allows us to control the inverse rε

z of hε− z1 in the Moyal algebra Mε(Ξ) := MBε

(Ξ)
with respect to the product ]ε ≡ ]Bε

for ε fixed (a problem of affiliation), to prove that it belongs in fact to
some smaller algebra and to control the ε-dependence of the norms of the elements rε

z ∈ Cε ⊂ Aε(Ξ). These
results will allow us to place ourselves in the setting of continuous fields of C∗-algebras. We shall prove the
following statement
Theorem 2.7. Suppose given a family of symbols {hε}ε∈I satisfying Hypothesis 1.1 and a family of magnetic
fields {Bε}ε∈I satisfying Hypothesis 1.2, then, for any choice of vector potentials {Aε}ε∈I associated to the
magnetic fields Bε (Bε = dAε) and for any z ∈ C \ R the map

I 3 ε 7→
∥∥∥∥
(
OpAε

(hε)− z1
)−1

∥∥∥∥ ∈ R+

is continuous.
Thus, by the discussion above, we conclude that our Theorem 1.4 is true.

The main tool in proving Theorem 2.7 will be to embed our symbol algebras depending on ε ∈ I as
”continuous sections in the fiber bundle”

∐
ε∈I Aε(Ξ) → I. We shall constantly use the notation BCu(X ) for

the abelian C∗-algebra of all bounded uniformly continuous complex functions on X . We shall construct these
”continuous sections” by considering the twisted crossed-products BCu(X ) oωε

θ X for each ε ∈ I (studied in
[?, 16]); here θ denotes the natural action of X on BCu(X ) by translations and ωε ≡ ωBε

is a group 2-cocycle
to be introduced below.

Let us consider the inverse partial Fourier transform

F− : S(Ξ) → S(X × X ),
[
F−f

]
(x, y) :=

∫

X∗
dξ eiξ·yf(x, ξ) (2.8)

(extended to S ′(Ξ) and L2(Ξ)). We can transport the Moyal product ]B to a bilinear associative product on
S(X × X ) and F−MB(Ξ) that we denote by ¦B :

φ ¦B ψ := F−
[
(Fφ) ]B(Fψ)

]
. (2.9)

A simple computation gives

[
φ ¦B ψ

]
(x, y) =

∫

X
dz φ(x + (z − y)/2, z) ψ(x + z/2, y − z)ωB(x− y/2; z, y − z), (2.10)

where
ωB(x; y, z) := exp{(−iγB(x, y, z))} ∈ C

(X ;U(1)
)

(2.11)

and γB(x, y, z) is the flux of B through the triangle < x, x + y, x + y + z >. The group C
(X ;U(1)

)
can be

identified with the group of all the unitary elements in the C∗-algebra BCu(X ).
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It is easy to see that the Banach space L := L1
(X ; BCu(X )

)
is contained in F−

[
AB(Ξ)

]
and is also a Banach

∗-algebra under the multiplication ¦B and the involution given by

φ∗(x; y) ≡ [φ∗(y)](x) := φ(x;−y).

Let CB be the closure of F
(
L
)

in AB
(
Ξ

)
(with the product ]B). We shall also consider the C∗-algebra

BB := F−CB (for the product ¦B), that will be contained in S ′(X ×X ). This C∗-algebra is exactly the twisted
crossed-product BCu(X )oωB

θ X associated to BCu(X ), the action θ by translations of X on BCu(X ) and the
2-cocycle ωB [20, 21, 16] and also the enveloping C∗-algebra of the Banach ∗-algebra L. Let us strengthen that
the two C∗-algebras BB and CB are isomorphic. The constructions above can be performed for any of the
magnetic fields Bε, ε ∈ I. We are going to use the abbreviations Cε := CBε

, Bε := BBε

.
In estimating some C∗-norms we shall need a special representation, the left regular representation

Πε : Bε → B
[
L2(X × X )

]
, Πε(φ)ψ := φ ¦ε ψ, ∀φ ∈ Bε, ∀ψ ∈ H := L2(X × X ). (2.12)

It really defines a representation, as one can easily notice using the results in [14].
We close this section by introducing a new algebra of ε-dependent symbols. We want to ’glue’ all the 2-

cocycles ωε(y, z) ∈ C(X ; U(1)) for ε ∈ I in a single 2-cocycle with values in a larger group C(I × X ; U(1)).
This obliges us to also enlarge the unital abelian algebra BCu(X ) to the unital abelian algebra BCu(I ×X ) =
C

(
I; BCu(X )

)
. Let us consider the natural action θ̃ by translations of X on C

(
I; BCu(X )

)
, given explicitely

by
[
θ̃(x)f

]
(ε, z) := f(ε, z + x), the 2-cocycle ω̃ : X × X → C(I ×X ; U(1)) given by

[ω̃(y, z)] (ε, x) := [ωε(y, z)] (x) (2.13)

and the following composition law (similar to (2.10)) on Cc

(
X ;C

(
I; BCu(X )

))
:

[
φ̃ ¦ ψ̃

]
(ε, x, y) :=

∫

X
dz φ̃(ε, x + (z − y)/2, z) ψ̃(ε, x + z/2, y − z) [ω̃(z, y − z)] (ε, x− y/2). (2.14)

Taking the closure of Cc

(
X ; C

(
I; BCu(X )

))
with respect to the norm

‖φ̃‖L̃ :=
∫

X
dx ‖φ̃(x)‖

C
(
I;BCu(X )

) =
∫

X
dx sup

ε∈I

∥∥∥
[
φ̃(x)

]
(ε)

∥∥∥
BCu(X )

=
∫

X
dx sup

ε∈I y∈X
sup

∣∣∣
[
φ̃(x)

]
(ε; y)

∣∣∣

we obtain the space L̃ = L1
(
X ; C

(
I; BCu(X )

))
that is a Banach algebra for the composition (2.14). Let us

consider its C∗-envelope that will be a crossed-product

B := C
(
I;BCu(X )

)
oω̃

θ̃
X .

We can then also define the isomorphic C∗-algebra C := F [B].
An important remark is that for any ε ∈ I we have a natural evaluation map

eε : Cc

(
X ; C

(
I; BCu(X )

)) → Cc

(X ;BCu(X )
)
, eε

(
φ̃
)
(x) :=

[
φ̃(x)

]
(ε) ∈ BCu(X ),

that extends by continuity to a contractive and surjective projection (that we shall denote by the same symbol)
eε : L̃ → L and to a contractive C∗-homomorphism eε : B → Bε.

3 An affiliation result

As mentioned in the Introduction, in this Section we prove the affiliation of our family of Hamiltonians {Hε}ε∈I

to a specific twisted crossed product C∗-algebra. Unfortunately, no one of the affiliation results we have proved
already (see [17], [13]) implies directly Proposition 3.10. Therefore we decided to give a full proof of the
statement. We shall mainly follow the arguments in [17], keeping trace of the ε-dependence and adding the
necessary technicalities in order to deal with x-dependent symbols.

We first need notations for the norms defining the Fréchet topologies on various spaces. For ϕ ∈ C∞pol(X ),
with p ∈ R and N ∈ N, we denote

‖ϕ‖(X ,p,N) := max
|a|≤N

sup
x∈X

∣∣∣〈x〉−p (
∂a

xϕ
)
(x)

∣∣∣ ;
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thus the family ‖ϕ‖(X ,N) := ‖ϕ‖(X ,0,N), with N ∈ N, defines the Fréchet topology on BC∞(X ); we also denote
by ‖ϕ‖∞ := ‖ϕ‖(X ,0) the usual norm on BC(X ). Associated to the above norms we can also consider

‖φ‖(X ,p,N),(X ,q,M) := max
|a|≤N

max
|b|≤M

sup
y∈X

sup
z∈X

∣∣∣〈y〉−p 〈z〉−q (
∂a

y∂b
zφ

)
(y, z)

∣∣∣ ,

for all φ ∈ C∞pol(X × X ), for p, q ∈ R and N,M ∈ N and

‖φ̃‖∞,(X ,p,N),(X ,q,M) := sup
x∈X

‖φ̃(x)‖(X ,p,N),(X ,q,M)

for any φ̃ ∈ BC
(
X ; C∞pol(X × X )

)
. For F ∈ Sk1,k2

1,1 (Ξ× Ξ) we shall need the following family of norms

‖F‖(k1,N1,M1),(k2,N2,M2) :=

max
|a|≤N1

max
|α|≤M1

max
|b|≤N2

max
|β|≤M2

sup
Y ∈Ξ

sup
Z∈Ξ

∣∣∣< η >−k1+|α|< ζ >−k2+|β|
(
∂a

y∂α
η ∂b

z∂
β
ζ F ε

)
(Y, Z)

∣∣∣ .

Now let us introduce the main technical tool that will allow us to estimate the oscillating integrals appearing
in the computation of the symbol of the resolvent.
Lemma 3.8. We consider a function γ ∈ C

(
I;BC∞

(X ;C∞pol(X × X )
))

satisfying estimations of the form

C(γ) ≡ sup
ε∈I
‖∂α

x γε‖∞,(X ,s1(N1,N2),N1),(X ,s2(N1,N2),N2) < ∞, ∀α ∈ Nn (3.15)

and a function Fλ ∈ C
(
I;BC∞

(
Ξ; Sk1k2

1,1 (Ξ× Ξ)
))

satisfying estimations of the form

sup
ε∈I

sup
x∈X

∥∥[
∂b

x∂α
ξ F ε

λ

]
(X)

∥∥
(k1,N1,M1),(k2,N2,M2)

≤ Ca,β(Fλ) 〈ξ〉−ρ−|β|
λ−ρ′ (3.16)

for some strictly positive exponents ρ and ρ′. Then the function

G(ε; λ; X) :=
∫

Ξ

∫

Ξ

dY dZ e−2iz·η e2iy·ζ γε(x; y, z)F ε
λ(X;Y, Z) (3.17)

defines for each λ > 0 an element of C
(
I;S−ρ

1 (Ξ)
)

and we have

sup
ε∈I

‖G(ε; λ; ·)‖Ξ,1,−ρ,N,M ≤ Cλ−ρ′ .

Proof. We shall introduce some integrable factors into the integral (3.17) by applying suitable differential
operators to the phase factor e−2iz·ηe2iy·ζ . In fact we have

〈y〉−2

(
1 +

1
2i

y · ∂ζ

)
e2iy·ζ = e2iy·ζ , 〈z〉−2

(
1− 1

2i
z · ∂η

)
e−2iz·η = e−2iz·η,

〈η〉−2

(
1− 1

2i
η · ∂z

)
e−2iz·η = e−2iz·η, 〈ζ〉−2

(
1 +

1
2i

ζ · ∂y

)
e2iy·ζ = e2iy·ζ .

We integrate by parts in (3.17), first with respect to the (y, z) variables (obtaining the integrable powers in η
and ζ and some growing factors in (y, z)) and then with respect to the (η, ζ) variables obtaining the integrable
factors in y and z due to the symbol behavior of the function Fλ. More precisely, after N1 + N2 + M1 + M2

integration by parts we obtain the equality:
∫

Ξ

∫

Ξ

dY dZ e−2iz·η e2iy·ζγε(x; y, z)F ε
λ(X;Y,Z) =

=
∫

Ξ

∫

Ξ

dY dZ e−2iz·η e2iy·ζ ×
[
〈y〉−2M2

(
1− 1

2i
y · ∂ζ

)M2

〈z〉−2M1

(
1 +

1
2i

z · ∂η

)M1

×

× 〈η〉−2N2

(
1 +

1
2i

η · ∂z

)N2

〈ζ〉−2N1

(
1− 1

2i
ζ · ∂y

)N1

(γεF ε
λ)

]
(X;Y, Z) =

=
∫

Ξ

∫

Ξ

dY dZ e−2iz·η e2iy·ζ ×
[
〈y〉−M2 〈z〉−M1

(
1
〈y〉 −

y

2i 〈y〉 · ∂ζ

)M2
(

1
〈z〉 +

z

2i 〈z〉 · ∂η

)M1

×
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× 〈η〉−N2 〈ζ〉−N1

(
1
〈η〉 +

η

2i 〈η〉 · ∂z

)N2
(

1
〈ζ〉 −

ζ

2i 〈ζ〉 · ∂y

)N1

(γεF ε
λ)

]
(X; Y,Z),

where the differential polynomials have coefficients of class BC∞(Ξ). This clearly implies the estimation
∣∣∣∣
∫

Ξ

∫

Ξ

dY dZ e−2iz·η e2iy·ζ γε(x; y, z) F ε
λ(X;Y,Z)

∣∣∣∣ ≤

≤ C1(N1, N2,M1,M2) sup
ε∈I
‖γε‖(X ,s1(N1,N2),N1),(X ,s2(N1,N2),N2) sup

ε∈I
‖F ε(X)‖(k1,N1,M1),(k2,N2,M2)×

×
∫

Ξ

dY

∫

Ξ

dZ 〈y〉−M2 〈z〉−M1 〈η〉−N2 〈ζ〉−N1 〈y〉s1(N1,N2) 〈z〉s2(N1,N2) 〈η〉k1 〈ζ〉k2 ≤

≤ C(N1, N2,M1,M2) C(γ)C(Fλ) 〈ξ〉−ρ
λ−ρ′ ,

for a choice of the form N1 > k1 + n, N2 > k2 + n, M1 > s1(N1, N2) + n, M2 > s2(N1, N2) + n.
In order to finish the proof we only have to apply a derivation operator of the form ∂a

x∂α
ξ to our function

G(ε; λ; (x, ξ)) (defined in (3.17)) and remark that

• for any multi-index b ∈ Nn the function
(
∂b

xγε
)
(x; y, z) verifies exactly the same properties as γε(x; y, z);

• for any multi-indices b ∈ Nn and β ∈ Nn the function
(
∂b

x∂βF
)ε

λ
(X;Y,Z) verifies exactly the same

properties as F ε
λ(X;Y, Z).

¥
Let us remark that under Hypothesis 1.2 the ’magnetic phase factor’ Ωε in the explicit formula of the Moyal

product satisfies the hypothesis on .the functions γ in the statement of the above Lemma 3.8
Lemma 3.9. Assume Hypothesis 1.2. Then:

(a) for each ε ∈ I and x ∈ X , Ωε(x; ·, ·) ∈ C∞pol(X × X );

(b) for each N1, N2 ∈ N, and α ∈ Nn there exist s1(N1, N2) ≥ 0 and s2(N1, N2) ≥ 0 such that

sup
ε∈I
‖∂α

x Ωε‖∞,(X ,s1(N1,N2),N1),(X ,s2(N1,N2),N2) < ∞;

(c) the map I 3 ε 7→ Ωε ∈ BC∞
(X ; C∞pol(X × X )

)
is continuous.

Proof. We use the explicit parametric form of Ωε in (1.6). Taking into account Hypothesis 1.2, a simple
examination of (1.6) leads directly to the results. See also the proof of Lemma 4.2 in [11]. ¥

We come now to the main technical result of our paper.
Proposition 3.10. Under Hypothesis 1.1 and 1.2, there exists some a > 0 large enough such that for any
z ∈ C \ [a,+∞) we have:

1. for any ε ∈ I, the function hε − z1 ∈ Sm
1 (Ξ) ⊂ Mε(Ξ) is invertible for the ]ε-product having an inverse

rε
z ∈ F

[
L

]
;

2. moreover the function I × Ξ 3 (ε,X) 7→ r̃z(ε,X) := rε
z(X) belongs to the algebra F

[
L̃

]
and eε

(
r̃z

)
= rε

z.

Proof. For λ > 0 set f ε := hε + λ, consider the point-wise inverse (f ε)−1 = (hε + λ)−1 ∈ S−m
1 (Ξ) and compute

(in the sense of distributions and using oscillatory integral techniques relying on exp [−2iσ(Y, Z)])
[
f ε]ε (f ε)−1

]
(X) =

= π−2n

∫

Ξ

∫

Ξ

dY dZ e−2iσ(Y,Z)Ωε(x; y, z)
{

1 + [f ε(X − Y )− f ε(X − Z)] (f ε)−1 (X − Z)
}

=

= 1 + π−2n

∫

Ξ

∫

Ξ

dY dZ e−2iσ(Y,Z)Ωε(x; y, z)
[
f ε(X − Y )− f ε(X − Z)

]
(f ε)−1 (X − Z) =

= 1 + π−2n

∫

Ξ

∫

Ξ

dY dZe−2iz·ηe2iy·ζΩε(x; y, z)×

×
∫ 1

0

ds
[
(z − y) · (∂xf ε)(X − Z + s(Z − Y )) + (ζ − η) · (∂ξf

ε)(X − Z + s(Z − Y ))
]
(f ε)−1 (X − Z).

The fact that ∂ξf
ε ∈ Sm−1

1 (Ξ) is important in the following arguments. Although ∂xf ε only belongs to Sm
1 (Ξ)

one can write
(zj − yj)

[
e−2iz·ηe2iy·ζ] = − 1

2i
(∂ηj + ∂ζj )

[
e−2iz·ηe2iy·ζ]
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and after integrating by parts we get the same type of improvement. Thus

[
f ε]ε(f ε)−1

]
(X) = 1 +

n∑

k=1

gj(ε; λ; X), (3.18)

where
gj(ε; λ; X) := π−2n

∫

Ξ

∫

Ξ

dY dZ e−2iz·η e2iy·ζ Ωε(x; y, z)×

×
{

i

2

∫ 1

0

ds (∂ξj ∂xj f
ε)(X − Z + s(Z − Y ))(f ε)−1(X − Z)−

−i

∫ 1

0

ds (∂xj
f ε)(X − Z + s(Z − Y ))

(
∂ξj

f ε
)
(X − Z)(f ε)−2(X − Z)+

+
∫ 1

0

ds (ζj − ηj)(∂ξj f
ε)(X − Z + s(Z − Y ))(f ε)−1(X − Z)

}
=

=: π−2n

∫

Ξ

∫

Ξ

dY dZ e−2iz·η e2iy·ζ Ωε(x; y, z) F ε
λ(X; Y,Z). (3.19)

We intend to prove that each term gj(ε; λ; ·) is a symbol of strictly negative order with a uniform bound
controlled by λ > 0. One has

[
∂a

x∂α
ξ gj

]
(ε;λ; X) =

∑

b≤a

Cb
a π−2n

∫

Ξ

∫

Ξ

dY dZ e−2iz·ηe2iy·ζ [
∂a−b

x Ωε
]
(x; y, z)

[
∂b

x∂α
ξ F ε

λ

]
(X;Y, Z).

Due to our Hypothesis 1.2, all the derivatives ∂c
xΩε are dealt with by Lemma 3.9. We now study the functions

∂b
x∂α

ξ F ε with F ε defined in (3.19); any of these functions is the sum of three contributions.

• Let us begin with
∂b

x∂α
ξ

[
(∂ξj ∂xj f

ε)(X − Z + s(Z − Y ))(f ε)−1(X − Z)
]

=

=
∑

c≤b,β≤α

Cb,c
α,β

[
∂b−c

x ∂α−β
ξ ∂ξj ∂xj f

ε
]
(X − Z + s(Z − Y ))

[
∂c

x∂β
ξ (f ε)−1

]
(X − Z).

We have to use the fact that, due to the ellipticity of h, |(f ε)−1(X)| ≤ C(f) (〈ξ〉m + λ)−1. Moreover, it is
straightforward to see by induction that for |c|+ |β| ≥ 1

∂c
x∂β

ξ (f ε)−1 = (f ε)−1sε
c,β(f), with sc,β(f) ∈ C

(
I;S−|β|1 (Ξ)

)
,

verifying
‖sc,β(f)‖Ξ,−|β|,N,M ≤ C ‖f ε‖|c|+|β|Ξ,m,N+|c|,M+|β| .

For |b|+ |α| = 0 we have
∣∣[∂ξj ∂xj f

ε
]
(X − Z + s(Z − Y ))

[
(f ε)−1

]
(X − Z)

∣∣ ≤

≤ C(f) ‖f ε‖Ξ,m,1,1

〈ξ〉m−1 〈ζ〉m−1 〈η〉m−1

〈ξ − ζ〉m + λ
≤ C(f) ‖f ε‖Ξ,m,1,1

〈ξ〉m−1 〈ζ〉m−1 〈η〉m−1

〈ξ〉m / 〈ζ〉m + λ
≤

≤ C(f) ‖f ε‖Ξ,m,1,1

〈ζ〉2m−1 〈η〉m−1 〈ξ〉m−1

〈ξ〉m + λ 〈ζ〉m ≤ C(f) ‖f ε‖Ξ,m,1,1

〈ζ〉2m−1 〈η〉m−1 〈ξ〉m−1

〈ξ〉m + λ
.

We use now the inequality a + b ≥ (µa)µ−1
(νb)ν−1

, valid for a, b ∈ R+, µ, ν ∈ [1,+∞), µ−1 + ν−1 = 1. Thus
for some ν ≥ 1 such that mν−1 − 1 < 0, we have

∣∣[∂ξj ∂xj f
ε
]
(X − Z + s(Z − Y ))

[
(f ε)−1

]
(X − Z)

∣∣ ≤

≤ C(f) ‖f ε‖Ξ,m,1,1 〈ζ〉2m−1 〈η〉m−1 〈ξ〉m−1

〈ξ〉m + λ
≤

≤ C(f) C(ν) ‖f ε‖Ξ,m,1,1 〈ζ〉2m−1 〈η〉m−1 〈ξ〉mν−1−1
λ−ν−1

.
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For any fixed X ∈ Ξ we have, by very similar arguments, the following estimations:
∣∣∂b

y∂α
η

[(
∂ξj ∂xj f

ε
)
(X − Z + s(Z − Y ))

[
(f ε)−1

]
(X − Z)

]∣∣ ≤

≤ C(f) C(ν) ‖f ε‖Ξ,m,1,1 〈ζ〉2m−1−|α| 〈η〉m−1−|α| 〈ξ〉mν−1−1−|α|
λ−ν−1

.

Let us remark that
∂b

z∂
α
ζ

[(
∂ξj

∂xj
f ε

)
(X − Z + s(Z − Y ))

[
(f ε)−1

]
(X − Z)

]
=

= (−1)|α|
∑

c≤b,β≤α

Cb,c
α,β (1− s)|α|−|β|

[
∂b−c

x ∂α−β
ξ ∂ξj ∂xj f

ε
]
(X − Z + s(Z − Y ))

[
∂c

x∂β
ξ (f ε)−1

]
(X − Z),

and thus is completely similar to the higher order derivatives ∂b
x∂α

ξ that we shall now study.
For |b|+ |α| > 0 we obtain

∣∣∂b
x∂α

ξ

[
(∂ξj

∂xj
f ε)(X − Z + s(Z − Y ))(f ε)−1(X − Z)

]∣∣ ≤

≤ ∣∣f−1
ε (X − Z)

∣∣∑

c≤b

Cc
b

∑

β≤α

Cβ
α ‖f ε‖Ξ,m,|b−c|+1,|α−β|+1 [〈ξ〉 〈η〉 〈ζ〉]m−|α−β|−1 |sc,β(f)(X − Z)| ≤

≤ C(b, α) ‖f ε‖|b|+1+|α|+1
Ξ,m,|b|+1,|α|+1

[〈ξ〉 〈η〉 〈ζ〉]m−|α|−1

〈ξ − ζ〉m + λ
≤

≤ C(b, α)C(ν) ‖f ε‖|b|+1+|α|+1
Ξ,m,|b|+1,|α|+1 〈η〉m−|α|−1 〈ζ〉2m−|α|−1 〈ξ〉mν−1−1−|α|

λ−ν−1

and similar estimations for this term after application of differential operators of the form ∂b
y∂α

η or ∂b
z∂

α
ζ . Thus,

for each ε ∈ I this first term (that we denote by F ε
λ,1) satisfies:

F ε
λ,1 ∈ BC∞

(
Ξ; Sm−1,2m−1

1,1 (Ξ× Ξ)
)

(3.20)

and
sup
ε∈I

sup
x∈X

∥∥[
∂b

x∂α
ξ F ε

λ,1

]
(X; ·, ·)

∥∥
(m−1,N1,M1),(2m−1,N2,M2)

≤ (3.21)

≤ C(b, α)C(ν)C(f)‖f ε‖2+|b|+|α|+N2+M2

Ξ,m,|b|+N1+N2+1,|α|+M1+M2+1 〈ξ〉mν−1−1−|α|
λ−ν−1

.

Let us study its continuity with respect to ε ∈ I. First, we fix some ε ∈ I and for any ε′ ∈ I we consider the
difference

(
∂ξj ∂xj f

ε′
)

(X − Z + s(Z − Y ))(f ε′)−1(X − Z)− (∂ξj ∂xj f
ε)(X − Z + s(Z − Y ))f−1

ε (X − Z) =

=
[
(∂ξj ∂xj )(f

ε′ − fε)(X − Z + s(Z − Y ))
]
(f ε′)−1(X − Z)+

+(∂ξj ∂xj f
ε)(X − Z + s(Z − Y ))

[
(f ε′)−1 − (f ε)−1

]
(X − Z) =

=
[
(∂ξj ∂xj )(f

ε′ − f ε)(X − Z + s(Z − Y ))
]
(f ε′)−1(X − Z)+

+(∂ξj ∂xj f
ε)(X − Z + s(Z − Y ))

[
(f ε′)−1(f ε′ − f ε)

[
(f ε)−1

]]
(X − Z).

After applying the operator ∂a
x∂α

ξ to the above difference, for the first term we can directly use the previous
analysis with f ε replaced by f ε′ − f ε and obtain a uniform bound with some constant multiplied by

∥∥∥f ε′ − f ε
∥∥∥
|b|+1+|α|+1

Ξ,m,|b|+1,|α|+1
,

that converges to zero for ε′ → ε due to our Hypothesis 1.1. For the second term, we have to replace in the
previous analysis the factor (∂ξj ∂xj f

ε)(X −Z + s(Z − Y )) that is an element of Sm−1
1 (Ξ) and thus satisfies an

estimation of the type

(∂b
x∂α

ξ ∂ξj ∂xj f
ε)(X − Z + s(Z − Y )) ≤ ‖f ε‖Ξ,m,|b|+1,|α|+1 〈ξ〉m−1−|α| 〈η〉m−1−|α| 〈ζ〉m−1−|α|

,

with the derivatives ∂b
x∂α

ξ of the factor

(∂ξj ∂xj f
ε)(X − Z + s(Z − Y ))(f ε′)−1(X − Z)(f ε′ − f ε)(X − Z)
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that are bounded by

C(b, α)‖f ε′ − f ε‖Ξ,m,|b|+1,|α|+1 ‖f ε‖3+|b|+|α|Ξ,m,|b|+1,|α|+1 〈ξ〉m−1−|α| 〈η〉m−1−|α| 〈ζ〉3m−1−|α|
.

Similar estimations are obtained analogously, applying differential operators of the form ∂b
y∂α

η or ∂b
z∂

α
ζ . Thus

sup
x∈X

∥∥[
∂b

x∂α
ξ

(
F ε

λ,1 − F ε
λ,1

)]
(X; ·, ·)

∥∥
(m−1,N1,M1),(3m−1,N2,M2)

≤ (3.22)

≤ C(b, α)‖f ε‖3+|b|+|α|+N2+M2

Ξ,m,|b|+N1+N2+1,|α|+M1+M2+1‖f ε′ − f ε‖Ξ,m,|b|+N1+N2+1,|α|+M1+M2+1.

We conclude that the first term in (3.19) satisfies the hypothesis for F in Lemma 3.8.

• Now let us consider the second term in (3.19):
(
∂xj f

ε
)
(X − Z + s(Z − Y ))

(
∂ξj f

ε
)
(X − Z)f−2

ε (X − Z) =

=
(
∂xj

f ε
)
(X − Z + s(Z − Y ))

[(
∂ξj

f ε
)
(X − Z)f−1

ε (X − Z)
]
f−1

ε (X − Z).

It verifies the estimation ∣∣(∂xj
f ε

)
(X − Z + s(Z − Y ))

(
∂ξj

(f ε)−1
)
(X − Z)

∣∣ ≤

≤ C(f)
∣∣(f ε)−1(X − Z)

∣∣ ‖f ε‖Ξ,m,1,0 ‖f ε‖Ξ,m,0,1
〈ξ〉m 〈η〉m 〈ζ〉m

〈ξ〉 / 〈ζ〉 ≤

≤ C(f) ‖f ε‖Ξ,m,1,0 ‖f ε‖Ξ,m,0,1 〈η〉m 〈ζ〉2m+1 〈ξ〉m−1

〈ξ〉m + λ
≤

≤ C(ν)C(f) ‖f ε‖Ξ,m,1,0 ‖f ε‖Ξ,m,0,1 〈η〉m 〈ζ〉2m+1 〈ξ〉mν−1−1
λ−ν−1

.

Applying then the derivation operator ∂a
x∂α

ξ we proceed exactly as for the first term. In fact the essen-

tial step is the difference of one unit between the denominator and the numerator in 〈ξ〉m−1 (〈ξ〉m + λ)−1

that was obtained for the first term due to the factor ∂xj ∂ξj f
ε and for this second term from the factor[(

∂ξj f
ε
)
(X − Z)f−1

ε (X − Z)
]

(a strictly positive difference would have been enough). The ε-continuity also
follows by the same procedure.

• Now let us consider the third term in (3.19):

(ζj − ηj)
(
∂ξj f

ε
)
(X − Z + s(Z − Y ))(f ε)−1(X − Z).

Recalling the above observation we notice that the same type of factor 〈ξ〉m−1 (〈ξ〉m + λ)−1 will now be obtained
due to the presence of the factor ∂ξj f

ε. The presence of the factor (ζj − ηj) will only contribute to modify the
order of symbols in the given variables so that we shall obtain the estimation

∣∣(ζj − ηj)(∂ξj f
ε)(X − Z + s(Z − Y ))(f ε)−1(X − Z)

∣∣ ≤

≤ C(ν)C(f) ‖f ε‖Ξ,m,0,1 〈η〉m 〈ζ〉2m 〈ξ〉mν−1−1
λ−ν−1

.

Obviously all the following arguments given for the first term still remain true for this third term in (3.19).
We conclude that

sup
ε∈I

sup
x∈X

∥∥[
∂b

x∂α
ξ F ε

λ

]
(X; ·, ·)

∥∥
(m,N1,M1),(2m+1,N2,M2)

≤

≤ C(ν)C(f) ‖f ε‖2+|b|+|α|+N2+M2

Ξ,m,|b|+N1+N2+1,|α|+M1+M2+1 〈ξ〉mν−1−1
λ−ν−1

.

Thus, choosing ν > m, we have ρ := −mν−1 + 1 > 0 and thus we can use Lemma 3.8 to deduce that for
each λ > 0 the application g(ε; λ;X) :=

∑
1≤j≤n gj(ε;λ; X) defines an element g(·; λ; ·) ∈ C

(
I;S−ρ

1 (Ξ)
)

and
moreover we have for any ν > m

sup
ε∈I

‖g(ε;λ; ·)‖Ξ,1,−ρ,N,M ≤ Cνλ−ν .

Thus, we conclude that for any α ∈ Nn there exists a constant Cα,ν such that

sup
ε∈I

sup
x∈X

sup
ξ∈X ′

∣∣∣< ξ >(ρ−|α|) (
∂α

ξ g
)
(ε; λ; x, ξ)

∣∣∣ ≤ Cα,νλ−ν .
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Fixing ε ∈ I and using Lemma A.4 in [17] and the argument at the end of the proof of Theorem 1.8 ([17]
Section 2.1), one obtains the conclusion of point 1 of the Proposition.

A completely straightforward modification of Lemma A.4 in [17] (just take (ε, x) ∈ I × X instead of q ∈ X
in the proof given in [17]) allows us to conclude that for any λ > 0 and any ε ∈ I we have that (for any ν > m)

(
F−1g

)
(·; λ; ·) ∈ L1

(
(X ; C

(
I; BCu(X )

))
= L̃ and ‖(F−1g

)
(·;λ; ·)‖L̃ ≤ Cνλ−ν .

Using (3.18) and the above result and repeating the arguments at the end of the proof of Theorem 1.8 ([17]
Section 2.1), we obtain also the second point of the proposition. ¥
Corollary 3.11. The map

I 3 ε 7→ rε
z ∈ F

[
L
]

is continuous for the topology induced by the norm ‖G‖F(L) :=
∫
X dx ‖[F(G)](x)‖∞.

Proof. We notice that for any φ̃ ∈ Cc

(
X ; C

(
I; BCu(X )

))
we have

sup
ε∈I

∫

X
dx

∥∥∥
[
φ̃(x)

]
(ε)

∥∥∥
BCu(X )

≤
∫

X
dx sup

ε∈I

∥∥∥
[
φ̃(x)

]
(ε)

∥∥∥
BCu(X )

and thus L̃ ⊂ C
(
I;L)

. ¥

4 A continuous field of twisted crossed products

In this section we prove Theorem 2.7, which in its turn implies our main result. Our proposal is to use the
concept of continuous field of C∗-algebras [5, 7, 19, 21, 22], and Theorem 2.4 of [22]. Let us notice that we
are in the frame of Section 2 of [22] with the C∗-algebra A = BCu(X ) (that is abelian and unital), the locally
compact space Ω = I (that is even compact in our case) and the locally compact group G = X ∼= Rn that is
abelian and second countable. The action of the group on the C∗-algebra is explicitely given as the action θ of
X on BCu(X ) by translations. Let us recall the notion of continuous field of θ-cocycles on the group X over
the locally compact space I, as introduced in [22]:
Definition 4.12. A continuous field of θ-cocycles on X over I is a function

ω̃ : I ×X × X → BCu(X )

such that:

1. for any ε ∈ I the map ω̃(ε, ·, ·) defines a normalized θ-cocycle on X , i.e. |[ω̃(ε, y, z)](x)| = 1 and

ω̃(ε, x, y + z)θx [ω̃(ε, y, z)] = ω̃(ε, x + y, z)ω̃(ε, x, y), ω̃(ε, x, 0) = ω̃(ε, 0, x) = 1;

2. for any (y, z) ∈ X × X the map I 3 ε 7→ ω̃(ε, y, z) ∈ BCu(X ) is continuous;

3. the map X × X 3 (y, z) 7→ ω̃(·, y, z) ∈ C
(
I; BCu(X )

)
is Bochner measurable.

Remark 4.13. The map ω̃ defined in (2.13) and (2.11) satisfies the conditions for a continuous field of θ-cocycles
on X over I. One checks easily that the first condition is satisfied, by an inspection of the explicit definition; the
last two conditions follow from Hypothesis 1.2 that implies that ω̃ belongs in fact to C

(
X ×X ; C

(
I;BCu(X )

))
.

In this framework we follow M. Rieffel [22] and consider the field of C∗-algebras {Bε}ε∈I over the compact
space I and B as a C∗-algebra of cross-sections of this field. Then combining our framework with Theorem 2.4
and Propositions 1.2 and 2.3 in [22], one obtains the following result:
Proposition 4.14. The family of maps {eε : B → Bε}ε∈I have the following properties:

1. each eε : B → Bε is surjective;

2. for any F ∈ B we have ‖F‖B = sup
ε∈I
‖eε(F )‖Bε ;

3. for any F ∈ B the map I 3 ε 7→ ‖eε(F )‖Bε ∈ R+ is upper semi-continuous.

Our Proposition 3.10 now evidently implies the following Corollary
Corollary 4.15. Under our Hypothesis 1.1 and 1.2, the map I 3 ε 7→ ‖rε

z‖Bε is upper semi-continuous.
Using now our Corollary 3.11 and the Hilbert space representation (2.12) we shall obtain the lower semi-

continuity of our map I 3 ε 7→‖ rε
z ‖ε by a standard procedure.

Lemma 4.16. Given a continuous function I 3 ε 7→ φε ∈ L and an element ψ ∈ H, the map

I 3 ε 7→ φε ¦ε ψ ∈ H
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is continuous.

Proof. For ε, ε
′ ∈ I we have

‖φε ¦ε ψ − φε′ ¦ε′ ψ‖L2(X×X ) ≤ ‖φε ¦ε ψ − φε′ ¦ε ψ‖L2(X×X ) + ‖φε′ ¦ε ψ − φε′ ¦ε′ ψ‖L2(X×X ). (4.23)

To estimate the first term we use the definition of the ¦ε product in order to write

[
φε ¦ε ψ − φε′ ¦ε ψ

]
(q, x) =

∫

X
dy

(
φε − φε′

) (
q − x− y

2
; y

)
ψ(q +

y

2
; x− y) ωε

(
q − x

2
; y, x− y

)
,

so

‖φε ¦ε ψ − φε′ ¦ε ψ‖2L2(X×X ) ≤
∫

X
dq

∫

X
dx

[∫

X
dy

∣∣∣∣
(
φε − φε′

)(
q − x− y

2
; y

)
ψ(q +

y

2
; x− y)

∣∣∣∣
]2

≤

≤
∫

X
dq

∫

X
dx

[∫

X
dy

(
sup
z∈X

∣∣∣
(
φε − φε′

)
(z; y)

∣∣∣
) ∣∣∣ψ(q +

y

2
; x− y)

∣∣∣
]2

≤

≤ ‖φε − φε′‖1,∞

∫

X
dq

∫

X
dx

∫

X
dy

(
sup
z∈X

∣∣∣
(
φε − φε′

)
(z; y)

∣∣∣
) ∣∣∣ψ(q +

y

2
; x− y)

∣∣∣
2

=

= ‖φε − φε′‖2L ‖ψ‖2L2(X×X ) −→
ε′→ε

0

using Fubini and a change of variables. It remains to verify that second term in (4.23) also converges to 0; one
has:

‖φε′ ¦ε ψ − φε′ ¦ε′ ψ‖2L2(X×X ) ≤ (4.24)

≤
∫

X
dq

∫

X
dx

[∫

X
dy

∣∣∣∣φε′
(

q − x− y

2
; y

)
ψ(q +

y

2
; x− y)

∣∣∣∣
∣∣∣ ωε

(
q − x

2
; y, x− y

)
− ωε

′ (
q − x

2
; y, x− y

)∣∣∣
]2

≤

≤ 4
∫

X
dq

∫

X

dx

[∫

X
dy ‖φε′(·; y)‖∞ |ψ(q +

y

2
; x− y)|

]2

≤

≤ 4 ‖φε′‖1,∞

∫

X
dq

∫

X
dx

∫

X
dy ‖φε′(·; y)‖∞ |ψ(q +

y

2
;x− y)|2 = 4 ‖φε′‖2L ‖ψ‖2L2(X×X ),

by the same procedure as above. Moreover, due to our Hypothesis 1.2 the difference

ωε
(
q − x

2
; y, x− y

)
− ωε

′ (
q − x

2
; y, x− y

)

converges point-wise to 0 for |ε− ε′| → 0. We conclude by the Dominated Convergence Theorem. ¥
Corollary 4.17. Under our Hypothesis 1.1 and 1.2, the map I 3 ε 7→ ‖rε

z‖Bε is lower semi-continuous.

Proof. We use Corollary 3.11, the above Lemma 4.16 and the well known fact that if a family {Sε}ε∈I of bounded
linear operators in a Hilbert space H is strongly continuous, then ε 7→‖ Sε ‖B(H) is lower semi-continuous (as
the supremum of a family of continuous functions). ¥

Combining the Corollaries 4.15 and 4.17 one proves Theorem 2.7 and finishes the proof of Theorem 1.4.
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mun. in P. D. E., 27, no. 5-6, 1079–1101, (2002).

12
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