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Abstract

In this paper we consider the Interband Light Absorption Coeffi-
cient (ILAC), in a symmetric form, in the case of random operators
on the d-dimensional lattice. We show that the symmetrized version
of ILAC is either continuous or has a component which has the same
modulus of continuity as the density of states.

1 Introduction

In the theory of disordered systems, one of the quantities that is widely
studied is the integrated density of states, whose continuity properties and
its behaviour near band edges (Lifshitz tails) were of great interest. Another
quantity that is of interest is the interband light absorption coefficient ILAC,
which is an important quantitative characteristic of semiconductors.

The literature on the density of states is vast so we refer the reader
to the books [3], [4], [17] and the review [8]. The continuity properties of
the density of states and its Lifshitz tails behaviour in various models is
widely understood. The physics literature is abound with works on the ILAC
starting from [7] and for example [1]. On the other hand rigorous work in
this area seem to be minimal, see for example [10], [11], [13], [12].
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We consider a borel probability space (Ω,B,P) with Zd acting on Ω such
that P is invariant and ergodic with respect to this action. Let V : Ω → RZ

d

(so that each V (n) is measurable). We consider a self-adjoint operator H0 =
∆ (given in equation (3) ) on ℓ2(Zd) and consider the family of operators,

H±
ω = H0 ± V ω, (V ωu)(n) = V ω(n)u(n), u ∈ ℓ2(Zd). (1)

We denote by δn the elements of the standard basis of ℓ2(Zd) in the rest of
the paper.

We define the density of states measures n± associated with H±
ω by

n± = E
(

〈δ0, EH±
ω
(·)δ0〉

)

. (2)

We denote by Ui, i ∈ Zd the unitary operators (Uiu)(n) = u(n − i), u ∈
ℓ2(Zd).

Hypothesis 1.1. 1. The random potential V ω satisfies U∗
i V

ωUi = V Tiω,
where Ti is the action of ei on Ω.

2. There is a bijection R of Ω to itself such that V Rω = −V ω and P is
invariant under R.

3. The operators H±
ω are self-adjoint with a common dense domain for a

set of full measure in ω.

4. The density of states measures n± are continuous.

Examples 1.2. Here are two extreme examples of operators satisfying the
above conditions. Of course there are many more of various varaities.

1. The Anderson Model:

V ω(n) = ω(n), (∆u)(n) =
∑

|i|=1

u(n+ i), u ∈ ℓ2(Zd) (3)

and Rω = −ω and P = ×µ with a probability measure µ on R. If µ
is continuous, then the density of states is continuous. We take µ to
satisfy µ(B) = µ(−B) for all borel subsets of R and take Rω = −ω.
Then P is invariant under R.

2. The Almost Mathieu model: Take d = 1 and take Ω = T, V ω(n) =
λ cos(αn+ω), Rω = ω+π and P the rotation invariant measure on T.
The density of states of this model is absolutely continuous, when α is
not rational and for |λ| 6= 2, see [2].
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Remark 1.3. We note that, using the definition of H±
ω and V ω and the

bijection R mentioned in the Hypothesis 1.1, that

H−
ω = H+

Rω, H+
ω = H−

Rω. (4)

Therefore if P satisfies Hypothesis 1.1 (2), then for any integrable function
f of ω, we have

E (f(ω)) = E (f(Rω)) .

The immediate consequence of our hypothesis is the equality of spectra
of H±

ω .

Theorem 1.4. Let H±
ω be as in Hypothesis 1.1. Then we have

σ(H+
ω ) = σ(H−

ω ), a.e.ω.

Proof: Under the assumptions of Hypothesis 1.1, it is well known that
the spectrum of the associated operators σ(H±

ω ) are constant sets almost
everywhere (Proposition V.2.4, Carmona-Lacroix [3]). The Hypothesis 1.1(2)
implies that H+

ω = H−
Rω and also that the support of P is invariant under R.

Therefore we have

σ(H+
ω ) = σ(H+

Rω) = σ(H−
ω ), a.e.ω,

proving the result.
We consider H±

ω as in equation (1), their spectral measures EH±
ω

and
define the measure ρ as follows.

ρ = E
(

〈δ0, EH+
ω
(·)EH−

ω
(·)δ0〉

)

(5)

on R2. (Let

I = R ∪ {(a, b] : a, b ∈ R} ∪ {(a,∞) : a ∈ R} ∪ {(−∞, a] : a ∈ R}.

This collection of sets forms a boolean semi-algebra on R. We then consider
the boolean semialgebra I × I and there define the set function ρ by

ρ(∪ki=1Ii × Ji) =
k
∑

i=1

E
(

〈δ0, EH+
ω
(Ii)EH−

ω
(Ji)δ0〉

)

, Ii, Ji ∈ I,

where the {Ii × Ji i = 1, . . . , k} are mutually disjoint rectangles. Then this
ρ, takes values in [0, 1] and satisfies ρ(R×R) = 1. The positivity of ρ follows
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from Proposition 2.5 (2), below and since intersection of rectangles of the
form considered are again rectangles of the same form, ρ is also seen to be
well defined. Hence it extends to a unique probability measure on the boolean
algebra generated by I × I, see Exercises 1.4.4 - 1.4.6 and Proposition 1.4.7
of [15]. The unique extension of this to a probability measure on the borel
σ-algebra on R2 is again standard, see Proposition 2.5.1 [15].)

Suppose H±
ω,Λ are the restrictions of H±

ω to Λ ⊂ Zd and λ±, uλ± are

eigenvalues and eigen functions of H±
Λ,ω.

It would be nice to show (as done in Kirsch-Pastur [10] for some models
on L2(Rd)), that ρ is the a.e. (weak) limit of the measures

ρ
Λ,ω

=
1

|Λ|
∑

λ±∈σ(H±

ω,Λ)

|〈uλ+, vλ−〉|2δλ+,λ−, (6)

as Λ → Zd. Then, the ILAC could be taken to be the limit of the distribution
functions

Aas,Λ(λ) =
∑

λ++λ−≤λ
ρ

Λ,ω
(λ+, λ−), (7)

as done in the continuum models.
We do not really need this point wise statement here, but only some

weaker version, which we prove in the next section.
Let T be a transformation from R2 to itself given by the matrix

1√
2

(

1 1
1 −1

)

.

Then T is an orthogonal matrix with T−1 = T and we have

T

(

λ1

λ2

)

=

(

λ1+λ2√
2

λ1−λ2√
2

)

.

Using these we define:

Definition 1.5. We consider the measure ρ defined in equation (5) and set
the asymmetric ILAC as:

Aas(λ) = ν((−∞, λ]), where ν(B) = ρ ◦ T−1(B × R) (8)

and the symmetric ILAC as :

As(λ) = σ((−∞, λ]), where σ(B) =
1

2

(

ρ ◦ T−1(B × R) + ρ ◦ T−1(R ×B)
)

.

(9)

4



In the above definitions and in our model we have dropped all the physical
constants and also have dropped the band gap Eg that customarily appears
in the definition since they play no role in the regularity properties as seen
in the proofs of our theorems.

The reason we consider a symmetrized version of ILAC is that, in the case
of disordered models where the spectrum is symmetric about 0, if λ is in the
spectrum then −λ is also in the spectrum. Therefore given a E we can have
λ++λ− = E and also λ+−(λ̃−) = E (of course λ̃− would be −λ−). Therefore
in the definition of the finite distribution functions in equation (7) we could
also have taken the sum over λ+ − λ− ≤ E. The distribution functions,
however differ for these two different definitions. Therefore it might be more
meaningful to take a symmetric definition.

2 Regularity Properties

In this section we show a regularity of a symmetrized ILAC. The idea be-
hind the proofs is the following. The ILAC is the distribution function of
a marginal of a twisted two dimensional measure, whose marginals are the
density of states. This measure ρ itself acquires the regularity of the density
of states, however it is possible that a marginal of the twisted version might
have an atomic component. This is possible only if the twisted measure it-
self has its support (not the topological support) Σ1 ∪ Σ2, with Σ1 being a
subset of a straight line which is disjoint from Σ2. If this happens then on
the straight line containing Σ1, the twisted measure must be as regular as
the density of states. This is precisely our conclusion.

We note here that in the proofs below, we do not really need to assume
that P is ergodic, a stationary P will do, however our assumption is made
out of habit. In fact even for the existence of the density of states one need
not have the ergodicity assumption, if we follow the method of proof we
use in Propositions 2.3, 2.5. We first define the density of states to be the
average spectral measure with respect to δ0, show by invariance that it is the
same as that for δn. In the event this measure happens to be continuous, we
show that the averages over space and randomness of the finite dimensional
spectral measure converge to the density of states.

We start with some results leading to proving some symmetry properties
of the measure ρ.
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Lemma 2.1. Suppose (Ω,B,P) is a probability space and Mω, Nω are finite
dimensional matrices which are weakly measurable. Then the product MωNω

is weakly measurable.

Proof: We note that for matrices weak measurability is equivalent to mea-
surability of each of the matrix entries as functions of ω. Since the entries
of product of matrices is a sum of products of entries of each of the matrices
and since products and sums of measurable functions are measurable, the
lemma follows.

Lemma 2.2. Suppose P is an orthogonal projection on a separable Hilbert
space H and {fn} is an orthonormal basis for H. Then the following are
equivalent.

1. P = 0.

2. 〈fn, P fn〉 = 0 for all n.

Proof: We will show only (2) implies (1) since the other part follows by
definition. Using the Cauchy-Schwarz inequality we see that for any f, g ∈ H,

〈f, Pf〉 = 0 = 〈g, Pg〉 =⇒ 〈f, Pg〉 = 0 = 〈g, Pf〉.

Since fn is an orthonormal basis for H, finite linear span of the fns is a total
set, so the result follows if we show that

〈fn, P fm〉 = 0, for all m,n.

For any pair of indices m,n, this follows from the previous inequality since
〈fn, P fn〉 = 0 = 〈fm, P fm〉, by assumption.

Proposition 2.3. Consider the operators H±
ω satisfying the Hypothesis 1.1.

Then given any a, b ∈ R, we have

P
(

{ω : E
H

±
ω

({a, b}) 6= 0}
)

= 0.

Proof: We consider the + case, the other one has a similar proof. Suppose
the conclusion of the proposition is not valid so that, by Lemma 2.2, the set

S = {ω : 〈δn, E
H

+
ω

({a, b})δn〉 6= 0 for some n ∈ Zd}
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satisfies P(S) 6= 0. Therefore for ω ∈ S we have,

f(ω) =
∑

n∈Zd

2−|n|〈δn, E
H

+
ω

({a, b})δn〉 > 0.

Let K =
∑

n∈Zd 2−|n|, then we have using the invariance of the measure P

under the action of Zd, in the second equality below,

K n+({a, b}) =
∑

n∈Zd 2−|n|E
(

〈δ0, E
H

+
ω

({a, b})δ0〉
)

=
∑

n∈Zd 2−|n|E
(

〈δn, E
H

+
ω

({a, b})δn〉
)

= E
(

∑

n∈Zd 2−|n|〈δn, E
H

+
ω

({a, b})δn〉
)

= E(f(ω)) ≥
∫

S
f(ω) dP(ω) > 0.

This contradicts the continuity of the measure n+, assured under Hypothesis
1.1(4), hence S must have measure zero.

Lemma 2.4. Consider the operators H±
Λ,ω, H

±
ω satisfying the Hypothesis 1.1.

Let Kω be a weakly measurable, uniformly bounded (in ω) operators satisfying
U∗
i K

ωUi = KTiω, where Ui, Ti are as in Hypothesis 1.1(1). Then we have for
arbitrary but fixed A ∈ B and for each finite Λ ⊂ Zd :

1. E
H

±

Λ,ω

(A)Kω is trace class for all ω.

2. We have :

Tr

(

E
H

±

Λ,ω

(A)Kω

)

= Tr

(

KωE
H

±

Λ,ω

(A)

)

= Tr

(

E
H

±

Λ,ω

(A)KωE
H

±

Λ,ω

(A)

)

.

3. We also have :

1

|Λ|E
(

Tr(E
H

±

Λ,ω

(A)Kω)

)

= E

(

〈δ0, E
H

±

Λ,ω

(A)Kωδ0〉
)

and

1

|Λ|E
(

Tr(E
H

±

Λ,ω

(A)KωE
H

±

Λ,ω

(A))

)

= E

(

〈δ0, E
H

±

Λ,ω

(A)KωE
H

±

Λ,ω

(A)δ0〉
)
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Proof: (1) For any finite Λ, HΛ,ω is a finite dimensional matrix and hence
E

H
±

Λ,ω

(A) is a finite rank operator, so the product of Kω with it is also trace

class.
(2) These are simple properties of trace, namely, Tr(MN) = Tr(NM) =

Tr(MNM), for valid for bounded N and trace class M such that M2 = M .
(3) These relations are proved by writing the trace explicitly in terms of

the basis vectors δn, using U∗
i K

ωUi = KTiω, U∗
i E

H
±

Λ,ω

(A)Ui = E
H

±

Λ,Tiω

(A) and

using the invariance of P under the action Ti.
We are now ready to state some properties of the measure ρ.

Proposition 2.5. Consider the operators H±
ω , with ω ∈ supp(P) and let ρ

be as in equation (5). Then for any borel subsets B,C of R,

1. ρ(B × C) = E
(

〈δ0, EH−
ω
(C)EH+

ω
(B)δ0〉

)

2. ρ(B × C) = E
(

〈δ0, EH−
ω
(C)EH+

ω
(B)EH−

ω
(C)δ0〉

)

3. ρ(B × C) = E
(

〈δ0, EH+
ω
(B)EH−

ω
(C)EH+

ω
(B)δ0〉

)

4. The following inequalities are valid

ρ(B × C) ≤ n+(B), ρ(B × C) ≤ n−(C).

Proof: The inequalities in (4) follows from the the equalities (2), (3) and
the fact that for any Borel set B, EH±

ω
(B) are orthogonal projections so

EH±
ω
(B) ≤ I, I being the identity operator.

(1) We consider I = R∪{(a, b] : a, b ∈ R}∪{(a,∞) : a ∈ R}∪{(−∞, a] :
a ∈ R}. Let B,C ∈ I We have the inequality (by Cauchy-Schwarz)

|E
(

〈δ0, EH−

Λ,ω
(C)EH+

Λ,ω
(B)δ0〉

)

− E
(

〈δ0, EH−
ω
(C)EH+

ω
(B)δ0〉

)

| (10)

≤
(

E
(

‖(EH−

Λ,ω
(C) −EH−

ω
(C))δ0‖2

))
1
2
(

E
(

‖(EH−

Λ,ω
(B) − EH−

ω
(B))δ0‖2

))
1
2

The operators H±
Λ,ω converge in the strong resolvent sense for each ω ∈ Ω.

Let ∂B = {a, b}, ∂C = {c, d}. By Proposition 2.3, we know that there is a
set Ω(B,C) of full measure on which EH+

ω
({a, b}) = 0, EH−

ω
({c, d}) = 0. (If

a is not finite but b is finite, then the statement would be EH+
ω
({b}) = 0 and

so on to cover all the elements of I.)
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So E
H

+
Λ,ω

(B) and E
H

−

Λ,ω

(C) converge strongly point wise in ω ∈ Ω(B,C),

by Theorem VIII.24(2) of Reed-Simon [16].
Therefore using Lebesgue dominated convergence theorem we see that

the right hand side of equation (10) converges to 0.
This shows that (1) is valid for the class of sets B,C ∈ I. Since the

measure ρ is uniquely extended from this class of sets (see example 2.7.3,
Parthasarathy [15] ), the relations now extend to all borel sets.

The proof of (2) and (3) are similar, so we show only (2) below.
(2) Again as in the previous argument, it is enough to consider B,C ∈ I.

We use the relation

|E
(

〈δ0, EH−

Λ,ω
(C)EH+

ω
(B)EH−

Λ,ω
(C)δ0〉

)

− E
(

〈δ0, EH−
ω
(C)EH+

ω
(B)EH−

ω
(C)δ0〉

)

|

≤
(

E
(

‖(EH−

Λ,ω
(C) −EH−

ω
(C))δ0‖2

))
1
2
(

E
(

‖(EH−

Λ,ω
(C) −EH−

ω
(C))δ0‖2

))
1
2

Therefore as before the right hand side above goes to zero as |Λ| → ∞,
via a choice of Ω(B,C) on which the integrands on the right hand side go to
zero point wise and then the integral itself goes to zero using LDCT.

For each Λ we have, by Lemma 2.4(2,3),

E
(

〈δ0, EH−

Λ,ω
(C)EH+

ω
(B)EH−

Λ,ω
(C)δ0〉

)

= E
(

〈δ0, EH+
ω
(B)EH−

Λ,ω
(C)δ0〉

)

.

The left and right hand sides of the above equation converge as |Λ| → ∞
respectively to the left and the right hand sides of the equation

E
(

〈δ0, EH−
ω
(C)EH+

ω
(B)EH−

ω
(C)δ0〉

)

= ρ(B × C),

arguing as before. Hence the result.

Lemma 2.6. Consider H±
ω satisfying Hypothesis 1.1. Then, n+ = n− and

in this case ρ is symmetric, i.e. ρ(A× B) = ρ(B ×A).

Proof: The hypothesis 1.1(2) says that for any integrable function f , E(f(ω)) =
E(f(Rω)). Therefore taking f(ω) = 〈δ0, EH+

ω
(B)δ0〉, for a fixed borel set B,

we see that it is integrable and satisfies f(Rω) = 〈δ0, EH−
ω
(B)δ0〉. Therefore

n+(B) = E(f(ω)) = E(f(Rω)) = n−(B). This being valid for any borel set
B the measures n+ and n− agree.
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The symmetry of ρ follows from the following equalities, using the invari-
ance of P under R.

ρ(B × C) = E
(

〈δ0, EH+
ω
(B)EH−

ω
(C)δ0〉

)

= E
(

〈δ0, EH−

Rω
(B)EH+

Rω
(C)δ0〉

)

= E
(

〈δ0, EH−
ω
(B)EH+

ω
(C)δ0〉

)

= ρ(C × B).

(11)

In the following we shall denote the marginals of ρ ◦ T−1 by,

ν1 =
1

2
ρ ◦ T−1(B × R), ν2 =

1

2
ρ ◦ T−1(R × B). (12)

Then, clearly

Aas(λ) = 2ν1((−∞, λ]) and As(λ) = (ν1 + ν2)((−∞, λ]).

Remark 2.7. The measure ρ is quite nice and we can say more about it. We
shall denote by Ba(x) a ball of radius a with centre x ∈ R2. We denote by ν
the marginal ρ(· × R)and note that ν = n+. In the case when ρ(B × R) =
ρ(R × B) for all borel B, then we have ν(B) = n+(B) = n−(B), from the
definitions of n±, ρ and ν.

Definition 2.8. Given a probability measure µ and a bounded continuous
function h on [r,∞), positive on (r,∞) and vanishing at r, we say that µ
has modulus of continuity h at a point x if

lim sup
a>0

µ(x− a, x+ a)

h(a + r)
<∞.

We say that µ is uniformly h-continuous if the above condition is valid inde-
pendent of x.

Examples 2.9. 1. Let r = 0, h(x) = xα, 0 ≤ x ≤ 1, h(x) = 1, x > 1 for
some 0 < α ≤ 1. Then h-continuity of µ for this h is called α-Hölder
continuity.

2. If r = 1 and h(x) = (ln(x))α, 1 ≤ x ≤ 2 and some positive bounded
continuous function on (2,∞) then h-continuity for this h is called α-
log Hölder continuity.
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3. Let r = 0. If ν is a probability measure and we take h(a) = ν ((y − a, y + a)) , y ∈
R, then h-continuity with this h means the modulus of continuity of µ
at x is the same as that of ν at y.

Remark 2.10. In the theorems below we will only present the case when
r = 0, the theorems easily follow even when we take r 6= 0 by taking h(· + r)
to replace h.

Theorem 2.11. Consider H±
ω satisfying Hypothesis 1.1. Suppose the density

of states n = n+ = n− is uniformly h-continuous for some h as in Definition
2.8 with r = 0. Then

ρ(Ba(x)) ≤ Ch(a).

Proof: We consider the function ψ(x) = 1
1+‖x‖2 , x ∈ R2, where ‖x‖2 =

x2
1 + x2

2, x = (x1, x2). Then ψ is integrable with respect to the probability
measure ρ on R2. This ψ satisfies ψ(x) ≥ 1

2
, whenever ‖x‖ ≤ 1. So taking

δ = 1 in Theorem 3.1, it is enough to show that

lim sup
a>0

1

h(a)

∫

ψa(y − x)dρ(y) <∞.

To see this we note that

ψa(y − x) ≤ 1

(1 + (y1−x1)2

a2
)
,

so that

1

h(a)

∫

ψa(y − x) dρ(y) ≤ 1
h(a)

∫

1

(1+
(y1−x1)2

a2 )
dν(y1)

= 1
h(a)

∫

φa(y1 − x1) dn(y1), (13)

where we have integrated over the variable y2 on the right hand side and
used the definition of the measure ν, remark 2.7 and have taken φ(y) =
1/(1 + y2), φa(y) = φ(y/a), y ∈ R.

Then using Theorem 3.3, we see that the limsup of the right had side is
finite for all x1 once n is uniformly h-continuous. Therefore the limsup of
the left hand side is finite for all x.

This theorem shows that ρ has no atoms. The marginals of ρ, namely
ρ(A× R) and ρ(R × A) both equal the density of states and hence are con-
tinuous if the density of states has no atoms.
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However it is possible that some marginal taken along other directions in
R2 may have atoms (for example if ρ is supported on a straight line and is
absolutely continuous on that line, as a one dimensional measure, then the
marginal taken orthogonal to this line would have an atom).

Theorem 2.12. Consider H±
ω satisfying Hypothesis 1.1 and suppose the den-

sity of states n is uniformly h-continuous for some h as in Definition 2.8.
If ν1 or ν2 defined in equation (12) has an atom, then the function As(λ)

has a uniformly h-continuous component.

Proof: We first note that ρ ◦ T−1(A × B) is a finite positive measure as a
function of A for a fixed B and as a function of B for a fixed A, whenever
ρ ◦ T−1(A × B) 6= 0 for some pair A,B. We also note that if ρ ◦ T−1(A ×
R) 6= 0, for a given A, then there must be a borel set B ( R, such that
ρ ◦ T−1(A×B) 6= 0 (otherwise we can take one such B and taking the union
of B and Bc, conclude that ρ ◦ T−1(A×R) = 0. A similar statement is valid
when ρ(R ×B) 6= 0.)

Therefore if the marginal ρ ◦ T−1(A× R) has an atom at a point x, then
we can decompose the other marginal measure ρ ◦ T−1(R ×B) as

ρ ◦ T−1(R × B) = ρ ◦ T−1(R \ {x} × B) + ρ ◦ T−1({x} ×B).

Let Sρ denotes a finite subset of the set of atoms of ρ ◦ T−1(A×R), then we
can write

ρ ◦ T−1(R ×B) = ρ ◦ T−1(R \ Sρ ×B) + ρ ◦ T−1(Sρ × B)

= ρ1(B) + ρ2(B). (14)

Similarly if Sσ is some finite subset of the set of atoms of ρ◦T−1(R×B),
then we can write

ρ ◦ T−1(A× R) = ρ ◦ T−1(A× R \ Sσ) + ρ ◦ T−1(A× Sσ)

= σ1(A) + σ2(A). (15)

We have for each A,B, the following relations, which is easy to see from
the above argument.

ρ2(B) =
∑

x∈Sρ
ρ ◦ T−1({x} × B),

σ2(B) =
∑

x∈Sσ
ρ ◦ T−1(A× {x}). (16)
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Using the decomposition in equations (15, 16), we can write

As(λ) = 1
2
(ρ1 + σ1) ((−∞, λ]) + 1

2
(ρ2 + σ2) ((−∞, λ])

= As,1(λ) + As,2(λ), (17)

where As,1, As,2 are non-zero functions, as seen by the preceding arguments.
Now the result follows from Lemma 2.13 below.

Lemma 2.13. Assume the conditions of theorem 2.12. Consider the func-
tion As,2 defined in equation (17). If the density of states n is uniformly
h-continuous for some h (as in Definition 2.8), then As,2 is uniformly h-
continuous for the same h.

Proof: We will prove that ρ2 is uniformly h-continuous, the proof for σ2

is similar. From these two statements the uniform h-continuity of As,2(λ) is
clear. Let the cardinality of Sρ be N and let E1, . . . , EN be the elements of
Sρ. Then

1

h(a)

∫

φa(y − x) dρ2(y) =

N
∑

j=1

1

h(a)

∫

φa(y − x)dρ ◦ T−1(Ej, y)

=

N
∑

j=1

1

h(a)

∫

T ({Ej}×R)

φa(w − (x+ Ej))dρ(
w√
2
,
w − 2Ej√

2
)

(18)

Since T ({Ej} × R) ⊂ R × R, the right hand side is bounded by
∑N

j=1
1

h(a)

∫

R×R
φa(w − (x+ Ej)) dρ(

w√
2
, z√

2
)

=
∑N

j=1
1

h(a)

∫

R
φa(

√
2w − (x+ Ej)) dn(w),

where we used the fact that dρ(·,R) = dn(·). The uniform h-continuity of
the density of states n shows that the right hand side is bounded uniformly
in x, proving the lemma.

Acknowledgement: I thank Prof Werner Kirsch for going through the
paper and his comments.

3 Appendix

We present here some results that we use in the main part, whose proofs are
essentially available elsewhere.
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We have an abstract theorem that extends the theorem of Jensen-Krishna
in [6]. In the following let (X, ‖ · ‖) be a normed vector space over complex
numbers and ρ a probability measure on X with respect to the borel σ-
algebra. Denote by Ba(x) the ball with centre x of radius a. Let ψ be a
positive bounded continuous function on X taking value 1 at 0. Denote by
ψa(x) = ψ(x/a), a > 0.

Theorem 3.1. Let h be a function as in Definition 2.8. Suppose

lim sup
a>0

1

h(a)

∫

ψa(y − x)dρ(y) <∞,

Then, there are constants C, δ > 0, depending upon ψ, such that

ρ(Baδ(x)) ≤ Ch(a), a > 0, x ∈ X.

Proof: Since ψ is continuous and is 1 at 0, there is a δ > 0 such that
ψ(y) ≥ 1

2
, whenever ‖x‖ < δ. So we have

1

h(a)

∫

ψa(y − x)dρ(y) ≥ 1

2h(a)
ρ(Baδ(x)).

We have used the fact that ‖x‖/a ≤ δ ⇐⇒ ‖x‖ ≤ aδ. Taking sup first on
the left hand side, which is finite since the limsup of the left hand side is
finite by assumption, and then taking sup over a, for a fixed δ on the right
hand side shows that the right hand side is finite for all x.

Given a function ψ satisfying:

Hypothesis 3.2. Let ψ be a continuous function on R with ψ(0) = 1 and
Aψ =

∫

ψ(x)dx 6= 0. Further assume that

1. ψ is bounded and positive.

2. ψ is differentiable, even and satisfies

|ψ(x)| + |xψ′(x)| ≤ 〈x〉−δ, for some δ > 1,

where 〈x〉 = (1 + x2)1/2.

We set

Ch
µ,ψ = lim sup

a>0

ψa ∗ µ
h(a)

(x), Dh
µ,ψ = lim sup

a>0

µ ((x− a, x+ a))

h(a)
(x),
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Theorem 3.3. Let µ be a probability measure and let ψ satisfy the Hypothesis
3.2. Then Ch

µ,ψ is finite for any x, iff Dh
µ(x) is finite for the same x.

Proof: The proof of this theorem proceeds on the lines of theorem 1.3.6
of [6] with the aα there replaced by h(a) and going through the arguments
almost verbatim.
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