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Abstract

In this paper we consider the Interband Light Absorption Coeffi-

cient for various models. We show that at the lower and upper edges

of the spectrum the Lifshitz tails behaviour of the density of states

implies similar behaviour for the ILAC at appropriate energies. The

Lifshitz tails property is also exhibited at some points corresponding

to the internal band edges of the density of states.

1 Introduction

In this work we look for Lifshitz tails behaviour of the Interband Light
Absorption Coefficient (ILAC) defined in equation (eqnl4). The standard
definition of the ILAC involves considering a pair of operators of the form
H±

ω = ∆ ± V ω, with ∆ the Laplacian on either ℓ2(Zd), in the discrete case
or on L2(Rd) in the continuous case, and taking a random potential V ω. Re-
stricting these operators H±

ω to boxes Λ gives operators with discrete spectra
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so that in any finite region of energy these operators have only finitely many
eigenvalues. Using this fact one can define the quantity

1

V ol(Λ)

∑

λ−
ω +λ+

ω≤E

|〈φω,λ−
ω
, ψω,λ+

ω
〉|2

where φω,λ−
ω
, ψω,λ+

ω
are the eigen functions of the operators H∓

ω restricted to
the box Λ, corresponding to the eigenvalues λ−ω , λ

+
ω respectively.

The limit of the above quantity, when it exits, gives the ILAC.
We consider a correlation measure (mentioned also in [12]) ρ and identify

the ILAC as the distribution function of a marginal of the measure ρ in a
diagonal direction. This identification enables us to prove theorems on the
Lifshitz tails behaviour of the ILAC more easily since it involves only com-
paring the marginal of ρ with the density of states of either of the operators
H±

ω . We also do not need to approximate to define the ILAC, but can obtain
the function directly.

In the next section, we present an abstract version of the correlation
measure ρ and the density of states n for a pair of random covariant operators
and obtain relations between the two.

2 General Covariant Operators

We start with a definition of a random family of self adjoint operators which
are covariant under a group action.

Hypotheses 1.

1. H is a (separable, complex) Hilbert space, (Ω,F ,P) a probability space.

2. There is a locally compact abelian group G and {Ux}x∈G is a group of
unitary operators on H, i.e. the Ux are unitary and Ux+y = Ux Uy,
U0 = Id, U−x = U−1

x = U∗
x

3. There is a discrete subgroup L of G and an orthogonal projection P
on H such that {U∗

nPUn}n∈L, {UnPU
∗
n}n∈L are orthogonal partitions of

unity on H. We set Pn = U∗
nPUn, P̃n = UnPU

∗
n.

4. {Tn}n∈L is a group of probability preserving transformations on Ω.
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Definition 1. A family {Aω}ω∈Ω of self-adjoint operators on H is called
measurable if the family {(Aω + i)−1}ω∈Ω is measurable

It is known (see [3], [2] and section 2.4 of [25]) that a family of bounded
self-adjoint operators is measurable iff it’s weakly measurable.

Moreover, if {Aω} is a measurable family of self-adjoint operators then
for any bounded measurable function f the operator family f(Aω) is weakly
measurable. (also in [3], [2], section 2.4 [25]).

Finally, the product of weakly measurable families is weakly measurable
(see [2]).

Definition 2. A weakly measurable family Aω of bounded operators is called
covariant (with respect to Ux, Tx) if

ATxω = U∗
x Aω Ux for all x ∈ G

Also, a measurable family Aω of self adjoint operators is called covariant
(with respect to Ux, Tx) if

ATxω = U∗
x Aω Ux for all x ∈ G

If Aω is a covariant family of self-adjoint operators and f is a bounded
measurable function, then the family f(Aω) is covariant (also in [3], [2]).
Moreover, if both Aω and Bω are covariant families of bounded operators,
then Aω Bω is a covariant family. We denote by ‖B‖1 the trace norm of a
trace class operator B.

Proposition 1. Let Aω and Bω be covariant families of bounded operators
and assume that AωP and BωP are trace class and

E(‖AωP‖1) <∞ and E(‖BωP‖1) <∞. (1)

Then:
E(Tr(PAωBωP )) = E(Tr(PBωAωP )) (2)

Proof.

Tr(PAωBωP ) = Tr(PAωBωP ) (3)

=
∑

n

Tr(PAωPnBωP ) (4)
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since Pn is a partition of unity of orthogonal projections.

=
∑

n

Tr(PnBωPAωPn) (5)

using the Tr(AB) = Tr(BA) and the invariance of trace Tr(U∗CU) =
Tr(C),

=
∑

n

Tr(PAT−1
n ωP̃nBT−1

n ωP ) (6)

from the covariance of Aω and Bω

= Tr(PBT−1
n ωAT−1

n ωP )〉 (7)

In the last step we used the fact that P̃n is a partition of unity also. Now we
take expectations of either side of the above equation and obtain

E(Tr(PAωBωP ) = E(
∑

n

Tr(PBT−1
n ωP̃nAT−1

n ωP )) (8)

=
∑

n

E(Tr(PBT−1
n ωP̃nAT−1

n ωP )) (9)

We have used Fubini’s theorem to interchange expectation and sum, allowed
because of (22)

=
∑

n

E(Tr(PBωP̃nAωP )) (10)

since T−1
n is probability preserving

= E(
∑

n

Tr(PBωP̃nAωP )) (11)

P̃n is a partition of unity.

= E(Tr(BωAωP )) = E(Tr(PBωAωP )) (12)
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Corollary 2. 1. If Aω, Bω, Cω are covariant families of bounded operators
satisfying the condition (1) then:

E(Tr(PAωBωCωP )) = E(Tr(PCωAωBωP )) (13)

2. If Aω, Bω are covariant families of bounded, positive (i.e. ≥ 0) opera-
tors satisfying the conditions (1) then

E(TrPAωBωP )) ≥ 0 (14)

Proof. The first assertion is clear as we can apply the proposition to the
covariant families AωBω and Cω.

For the second claim we observe that Bω = CωCω with a Cω =
√
Bω. Cω

as a function of the covariant family Bω is covariant as well. Moreover, since
Aω is positive (and the Hilbert space is complex), Aω is self-adjoint and so
is Cω.

By part (i) of the corollary we have:

E(Tr(PAωBωP )) = E(PAωCωCωP )) (15)

= E(Tr(PCωAωCωP )) (16)

≥ 0 since Aω is positive (17)

Hypotheses 2. Let Hω be family of self-adjoint operators, which are bounded
below, on a Hilbert space H. Let E

Hω
(·) be the (projection-valued) spec-

tral measure of Hω such that for any bounded borel set A, the operators
PE

Hω
(A), E

Hω
(A)P are trace class for a.e. ω and form a covariant family

of operators.

For operators Hω satisfying the above hypothesis, it is clear that for any
finite x, the spectral measure E

Hω
((−∞, x]) = E

Hω
([c, x]), with c finite and

smaller than the infimum of the spectrum of Hω. Therefore the hypothesis
implies that for any finite x, the operators PE

Hω
((−∞, x]), E

Hω
((−∞, x])P

are trace class. Therefore we can now define the density of states for such
operators.

Definition 3. Let Hω be a family of self adjoint operators satisfying Hypoth-
esis 2. Then the density of states of this family is defined to be the unique
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σ-finite measure n associated with the monotone right continuous function
F ,

F (x) = E
(

Tr(PE
Hω

((−∞, x])P )
)

,

via n((a, b]) = F (b) − F (a), a, b ∈ R.

Thus for any bounded borel set A, n(A) agrees with the right hand side
of the above relation with A replacing (−∞, x].

In the above framework we define another measure that is used to define
the Interband Light Absorption Coefficient (ILAC). To do this we need a
pair H±

ω of self-adjoint operators as in the Hypothesis 2 and consider the
associated projection valued measures EH±

ω
(·). We then define the density of

states of these operators by,

n±(A) = E
(

Tr(PEH±
ω
(A)P )

)

. (18)

Consider the semi algebra I × I of subsets of R
2 where

I = R ∪ {(a, b] : a, b ∈ R} ∪ {(a,∞) : a ∈ R} ∪ {(−∞, a] : a ∈ R}.

We define the correlation measure ρ on I × I as

ρ(A×B) = E
(

Tr(PEH+
ω
(A)EH−

ω
(B)P )

)

, (19)

where ρ is set to be ∞ if either A or B is an unbounded element of I.
This set function takes values in [0, 1] if P is trace class and in [0,∞],

if PEH±
ω ((a,b]) are trace class only for bounded intervals (a, b], in view of

Proposition 3. We set

ρ(A) =
∞
∑

i=1

ρ(Ai × Bi), if A = ⊔∞
i=1Ai, Ai ∈ I.

It is a simple exercise to see that this ρ is well defined on I × I and via
standard measure theory extends as a σ-finite measure to the whole borel
σ-algebra of R

2..
Using the Hypothesis 2, and Proposition 1 we see that the following is

valid.

Proposition 3. Consider the operators H±
ω satisfying Hypothesis 2 and let

n± and ρ be as in equation (19). Then for any B,C ∈ I bounded,
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1. ρ(B × C) = E
(

Tr(PEH−
ω
(C)EH+

ω
(B)EH−

ω
(C)P )

)

2. ρ(B × C) = E
(

Tr(PEH+
ω
(B)EH−

ω
(C)EH+

ω
(B)P )

)

3. The following inequalities are valid

ρ(B × C) ≤ n+(B), ρ(B × C) ≤ n−(C).

Proof: Since the subsets B,C are bounded the operators PEH−
ω
(C), PEH+

ω
(B)

are covariant trace class operators satisfying the inequality (1). Therefore the
result follows by an application of Proposition 1 and Corollary 2.

We collect the arguments about ρ in a proposition.

Proposition 4. Consider a pair of covariant operators H±
ω satisfying the

Hypothesis 2 and consider the correlation measures ρ extended to the borel
σ-algebra on R

2 from that given by equation (19). Then the following are
valid.

1. If P is trace class, then ρ is a probability measure on R
2, with support

in the closure of ∪ωσ(H+
ω ) × σ(H−

ω ).

2. If P is not trace class but, PEH±
ω
((a, b])P is trace class, for bounded

intervals (a, b], then ρ is a positive σ-finite measure on R
2, with support

in the closure of ∪ωσ(H+
ω ) × σ(H−

ω ).

Remark 5. Typically the first case occurs for operators on ℓ2(Zd) and the
second case occurs in L2(Rd).

We take the transformation T on R
2 given by

T

(

λ1

λ2

)

=

(

λ1+λ2√
2

λ1−λ2√
2

)

.

Using this T we define the Interband Light Absorption Coefficient (ILAC) A
as the distribution function,

A(λ) −A(λ′) = ν

(

1√
2
(λ′, λ]

)

, where ν(B) = ρ ◦ T−1(B × R) (20)

In the above equation the factor 1√
2

is because of the normalisation we used
for T , so that this definition of ILAC agrees with the standard one in the
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case of finite box operators. We also note that since the operators H±
ω are

assumed to be bounded below A(−∞) = 0.
In the case when P in Hypothesis 1 is ergodic with respect to the action

of G on Ω, then, the spectra σ(H±
ω ) of covariant families of operators H±

ω

are almost everywhere constant sets. In such a case we can talk about the
infimum of spectra of H±

ω without reference to ω. In this context we have
the following theorem.

Theorem 2.1. Suppose H±
ω are a pair of random families of self-adjoint

operators satisfying Hypothesis 1. Assume further that P is ergodic with
respect to the action of G on Ω.

1. Let E± = inf σ(H±
ω ). Then A(E+ + E− + a) − A(E+ + E− − a) ≤

n±((E± − 2a, E± + 2a)), a > 0.

2. Let E ′
± = sup σ(H±

ω ). Then A(E ′
+ + E ′

− + a) − A(E ′
+ + E ′

− − a) ≤
n±((E ′

± − 2a, E ′
± + 2a)), a > 0.

Proof: We shall prove the first case, the other proof is similar (where one
has to use the fact that λ1 ≤ E ′

+, λ2 ≤ E ′
− respectively for the other case

and work it out). Let E+, E− to be the infima of the spectra σ(H+
ω ), σ(H−

ω )
of H+

ω , H
−
ω . We consider the closure of the Cartesian product Σ = σ(H+

ω ) ×
σ(H−

ω ) of the spectra of H±
ω , which is the support of the measure ρ. Therefore

if we denotes points of Σ by (λ1, λ2), so that λ1 ≥ E+, λ2 ≥ E−, then the
possible values of λ1 + λ2 have a lower bound E− + E+, so λ1 + λ2 ∈ (E− +
E+, E−+E++a) implies λ1 ∈ (E+−2a, E++2a) and λ2 ∈ (E−−2a, E−+2a),
(see Figure 2). This immediately implies the inclusions (the first inclusion is
clear and the second one uses the above):

{(λ1, λ2) : λ2 ∈ (E−, E− + (a/2)) and λ1 ∈ (E+, E+ + (a/2))}
⊂ {(λ1, λ2) : λ1 + λ2 ∈ (E− + E+ − a, E− + E+ + a)}

⊂ {(λ1, λ2) : λ2 ∈ (E−, E− + 2a) and λ1 ∈ (E+, E+ + 2a)}.
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This then would lead to the inequalities that

A(E+ + E− + a) −A(E+ + E−)

= ρ ◦ T−1( 1√
2
(E+ + E−, E+ + E− + a] × R)

= ρ ({(λ1, λ2) : E− + E+ ≤ λ1 + λ2 ≤ E− + E+ + a})
≤ ρ ((E−, E− + 2a) × (E+, E+ + 2a))

≤ min{ρ ((E−, E− + 2a) × R) , ρ ((E+, E+ + 2a) × R)}
≤ min{n− ((E− − 2a, E− + 2a)) , n+ ((E+ − 2a, E+ + 2a))},

where the last inequality comes from Proposition 3(3) and enlarging the
intervals slightly, which only increases the bound since n± are measures.

Remark 6. If the density of states n± have Lifshitz tails behaviour n±((E±−
a, E±+a)) ≈ e−Caα

as a goes to zero, for an appropriate α, at E± respectively,
then we have

lim sup
a>0

1

h(2a)
n± ((E− − 2a, E− + 2a)) <∞,

for h(a) = e−Caα

for some α, so, using the above inequalities,

lim sup
a>0

1

h(2a)
(A(E− + E+ + a) −A(E− + E+ − a))

≤ lim sup
a>0

1

h(2a)
n+ ((E+ − a, E+ + 2a)) <∞.

In the case when the density of states n± have Lifshitz tails behaviour at
other internal band edges, the same behaviour is valid for ILAC under some
conditions. Suppose the spectra of H±

ω consist of bands ∪N
i=1[a

±
i , b

±
i ]. Then

the product of the spectra is ∪N
i=1,j [a

+
i , b

+
i ] × [a−j , b

−
j ]. Let us denote Rij =

[a+
i , b

+
i ] × [a−j , b

−
j ]. Then, the measure ρ is supported on the set ∪N

i=1,jRij .
We index the pairs (ij) by β and use Rβ to denote a rectangle forming

part of Σ henceforth. So we have Σ = ∪βRβ.
The central point in the proof of Theorem 2.1 is that if (c, d) is a corner

of the rectangle formed by the lowest bands of the spectra of H±
ω , then the

strip {(λ1, λ2) : c + d ≤ λ1 + λ2 ≤ c + d + a} intersected with the support
of ρ is a triangle of side length

√
2a, (see Figure 2 ), hence its ρ measure

is smaller than that of the square with the corner (c, d) and side length 2a,
as can be seen in the Figure 2. As we see in Figure 1, there may be some
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rectangles in the support of ρ, with this property. Those rectangles in Figure
1, where this is not true are marked by X and the solid lines are those lines
λ1 + λ2 = const for which this feature is valid and the dashed lines are those
for which this is not true.

In the definition below the sets Rβ ⊂ R
2 and we denote the coordinates

of R
2 by (λ1, λ2).

Definition 4. Let the support of ρ be Σ = ∪βRβ, with Rβ = [a+
i , b

+
i ] ×

[a−j , b
−
j ], β = (ij). Then we call a corner (c, d) of a rectangle Rβ good, if

the intersection of the line λ1 + λ2 = c + d with Σ consists of finitely many
points and all of them are corners of rectangles forming Σ. Given a corner
(c, d) in Σ we shall denote by Kc,d the set of corners that lie on the line
λ1 + λ2 = c+ d.

Theorem 2.2. Let spectra of H±
ω be as in theorem 2.1 and let Σ be the

support of the measure ρ given in equation 19. Let A, as given in equation
(20) be the corresponding ILAC. If (c, d) is a good corner in Σ. Denote the
elements of Kc,d by {(cγ, dγ)}. Then we have

A(c+ d+ a) − A(c+ d− a)

≤
∑

(cγ ,dγ)∈Kc,d
min {n+((cγ − 2a, cγ + 2a)), n−((dγ − 2a, dγ + 2a))} .

Proof: Firstly we note that if we take a rectangle, Rβ , then only the
lower-left and the top-right corners are candidates of being good corners,
since for the other two corners, the line λ1 + λ2 = const that contains the
said corner will pass through the rectangle and hence has infinitely many
points. We will prove the theorem for a good corner (c, d) which is a lower
left corner of a rectangle, the proof for the case of a top-right good corner is
similar. In this case we see immediately that if (c, d) is a good corner in Σ,
then the intersection of the strip Sa ((c, d)) = {(λ1, λ2) : c + d ≤ λ1 + λ2 ≤
c + d + a} with Σ is contained in finitely many rectangles Rβ forming Σ.
Further Sa ((c, d)) ∩ Rβ is contained in a square of side length 2a contained
in Rβ and having one corner common with a corner of Rβ. Given a good
corner (c, d) and the associated strip Sa ((c, d)), let (cγ , dγ) ∈ Kc,d denote the
corner of rectangle Rγ that has nonempty intersection with it. (Note that
this corner satisfies cγ + dγ = c+ d).

Then whenever (c, d) is a good corner we have the inequality, with γ
ranging over a finite set,

Sa ((c, d)) ∩ Σ ⊂ ∪(cγ ,dγ)∈Kc,d
[cγ , cγ + 2a] × [dγ, dγ + 2a]. (21)
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This inequality implies immediately that:

A(c+ d+ a) − A(c+ d− a)

≤ A(c + d+ a) −A(c + d) = ρ(Sa ((c, d)) ∩ Σ)

≤
∑

(cγ ,dγ)∈Kc,d
ρ ([cγ , cγ + 2a) × [dγ, dγ + 2a))

≤∑(cγ ,dγ)∈Kc,d
min {n+ ((cγ − 2a, cγ + 2a)) , n− ((dγ − 2a, dγ + 2a))} ,(22)

where in the last inequality we enlarged the sets using the fact that n± are
measures.

This shows that at ILAC has the same continuity property as the density
of states at the band edges.

In the theorem below we identify good corners for a simple case of spectra
having two bands.

Theorem 2.3. Consider a pair of self adjoint operators H±
ω as in Theo-

rem 2.1. Suppose a.e. ω, the spectra of H+
ω , H

−
ω are given by ∪2

i=1[a
+
i , b

+
i ]

and ∪2
i=1[a

−
i , b

−
i ], respectively, where a±i , b

±
j are listed in the increasing order.

Then the corners

{(a+
1 , a

−
1 ), (b+1 , b

−
1 ), (a+

2 , a
−
2 ), (b+2 , b

−
2 )}

are good whenever a±i , b
±
i satisfy,

a+
1 + a−1 < b+1 + b−1 < max(a+

2 + a−1 , a
+
1 + a−2 )

< max(b+2 + b−1 , b
+
1 + b−2 ) < a+

2 + a−2 < b+2 + b−2 .

In the case a+
i = a−i , b

+
i = b−i , i = 1, 2, even the corners

{(a+
2 , a

−
1 ), (a+

1 , a
−
2 ), (b+2 , b

−
1 ), (b+1 , b

−
2 )}

are good.

Proof: This is direct verification to see that the diagonal lines λ1 + λ2 =
const passing through the respective corners do not intersect any other rect-
angle. In the latter case when the spectra are the same, we have a+

2 + a−1 =
a+

1 + a−2 and b+2 + b−1 = b+1 + b−2 , hence the stated result.

Remark 7. In the symmetric case a±i = ai, b
±
j = bj, however, the rectangles

Rβ, Rγ ⊂ Sβ if β = (ij), γ = (ji). In this case the above assumption still
ensures that the lower-left and top-right corners of the rectangles are good.
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a1
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b2 a3
b3 a4 b4
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b1

a2

b2
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b3
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XX
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B

Figure 1: Products of Spectra
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λ2

λ1 + λ2 = c

λ1 + λ2 = c + a

a

√

2a

√

2a

λ1

Figure 2: A corner of a rectangle

3 Discrete Models:

Consider ℓ2(Zd) and the discrete Laplacian (∆u)(n) =
∑

|n−i|=1 u(i). Con-

sider real valued i.i.d random variables {q(n)} with common distribution µ.
Let Vω denote the operator of multiplication by the sequence qω(n). Consider
the operators

H±
ω = ∆ ± qω.

Taking G = L = Z
d, it is known that operators EHω

(A) are covariant. The
projection P is taken to be the projection |δ0〉〈δ0| onto the subspace generated
by the vector δ0, which is an element of the standard basis for ℓ2(Zd).

Then the density of states in these models are given by

n±((a, b)) = E
(

Tr(PEH±
ω
((a, b))

)

= E
(

〈δ0, EH±
ω
((a, b))δ0〉

)

and the correlation measure ρ is given by

ρ((a, b) × (c, d)) = E
(

〈δ0, EH+
ω
((a, b))EH−

ω
((c, d))δ0〉

)
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and is a probability measure as per Proposition 4 (1), since P is trace class
in this case.

In this model the density of states of H±
ω are shown to have Lifshitz

tails behaviour at the bottom of the spectra [21], under the condition that µ
satisfies µ((a, a+ ǫ)) ≥ CǫN , where a is the infimum of the support of µ.

In the case when the support of µ has two closed intervals [a1, b1] ∪
[a2, b2],(ai, bi arranged in an increasing order so that ai+1 > ai for all i)
and such that bi + 2d < ai+1 − 2d, Simon [22] proves the Lifshitz tails be-
haviour at the internal band edges, if µ satisfies µ((ai, ai + ǫ)) ≥ CǫN and
µ((bi − ǫ, bi)) ≥ CǫN for all i . When [a1 − 2d, b1 + 2d] and [a2 − 2d, b2 + 2d]
are disjoint, Lifshitz tails behaviour at the band edges is also shown for the
associated density of states n. That is at any of the band edges one has

n((E − δ, E + δ)) = O(e−Cδ−
d
2 ) as δ → 0.

An application of Theorems 2.1, 2.2 shows that the results are true for
the ILAC A, namely

Theorem 3.1. Consider the Anderson models as above on ℓ2(Zd). If [a±1 , b
±
1 ]∪

[a±2 , b
±
2 ], are ±(supp(µ)). Then, for some C > 0,

• (External band edge case) For E ∈ {a+
1 + a−1 , b

+
2 + b−2 }, one has

A(E + δ) − A(E − δ) = o(e−Cδ−
d
2 ), as δ → 0.

• (Internal band edge case) If the gap between the intervals [a±1 −2d, b±1 +
2d] and [a±2 − 2d, b±2 + 2d] is large enough, then

A(E + δ) − A(E − δ) = o(e−Cδ−
d
2 ), as δ → 0,

for any E ∈ {b+1 + a−1 , a
+
2 + a−1 , b

+
2 + a−1 , a

+
1 + a−2 , b

+
1 + b−2 , a

+
2 + a−2 }.

Remark 8. We gave a simple example of a discrete model, however there are
many more, those with periodic backgrounds [11], those which are unbounded
[16] and so on. We refer to the review [7] for the numerous cases where the
Lifshitz tails for the density of states is proved and for which our theorem
applies to the ILAC.
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4 Continuous Models:

Let us start by stating a theorem which is essentially a very weak version of
the uncertainty principle.

We take H0 = −∆ = −
∑d

i=1D
2
j , Dj = i ∂

∂xj
, is self adjoint on its natural

domain in L2(Rd) and its spectrum is [0,∞).
We start with a couple of lemmas. We recall the definition of the trace

ideal Ip to be those bounded operators A with the property |A|p is trace
class. Recall that elements of I1 are called Trace class operators.

Lemma 9. Consider L2(Rd) and the operator M = |−i∇|. Then the operator
(|x| + i)−1(M + i)−1 ∈ Id+1.

Proof: Since the function f(x) = (|x|+i)−1 is Ld+1(Rd) and the operator in
question is just f(x)f(−i∇), the result follows by an application of Theorem
4.1 in [23], which gives an estimate

‖f(x)g(−i∇)‖Ip
≤ 2π− d

p‖f‖p‖g‖p.

Let V be an operator of multiplication by a function V (x) on L2(Rd) on its
natural domain and such that V is bounded with respect toH0 having relative
bound smaller than 1. This means the operator V (H+i)−1 is bounded. Then
H = H0 + V is also self adjoint (Kato-Rellich theorem ) on the domain of
H0 and its spectrum is also bounded below. Writing (H0 + i)(H + i)−1 =
I−V (H+i)−1, we see that (H0+i)(H+i)−1 is also bounded. Let P denote the
operator of multiplication by the indicator function χΛ of a bounded region
Λ ⊂ R

d on L2(Rd). Let EH(A) denote the spectral measure of a bounded
borel set A, with respect to the (projection valued) spectral measure of H .
Then,

Theorem 4.1. Consider L2(Rd) and the operator H0 = −∆. Let V be
an operator of multiplication by a function V (x), such that V is relatively
bounded w.r.t. H0 with relative bound c < 1 and consider H = H0 + V .
Suppose either

1. d ≤ 3, then PEH(A) and EHP are Hilbert-Schmidt, so PEH(A)P is
trace class for any bounded borel set A.

2. Suppose d ≥ 1 and suppose V is bounded or ∂
∂xj
V, j = 1, . . . , d are rel-

atively bounded w.r.t H0. Then PEH(A) and EH(A)P are trace class.
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Proof: (1) Writing PEH(A) = P (|x|+ i)d(|x|+ i)−d(H0 + i)−1(H0 + i)(H+
i)−1(H + i)Eh(A), we see that since all the factors are bounded, it is enough
to show that (|x|+i)−d(H0+i)−1 is Hilbert-Schmidt. The operator (H0+i)−1

is multiplication by (|ξ|2+i)−1 after taking Fourier transforms and hence is in
L2(Rd), d ≤ 3. Therefore an application of Lemma 9, shows that the product
is Hilbert-Schmidt.

(2) We will prove that PEH(A) ∈ I1, the proof for EH(A)P is similar.
By taking a compactly supported smooth function φ which is value 1 on the
closure of A, we have φ(H)EH(A) = EH(A). We will therefore show that
Pφ(H) is trace class for any compactly supported smooth function φ. We
also note that the function Hφ(H) is again a function of the same type as φ.

Further since P is multiplication by compactly supported function of x,
P (x2 + i)d is bounded. Therefore we will show that (x2 + i)−dφ(H) ∈ I1.

We prove this by induction. Before we start, we note that if M ∈ Ip and
N is a bounded operator then MN ∈ Ip.

First consider (x2 + i)−1φ(H). We write this product as (x2 + i)−1(H +
i)−1(H + i)φ(H) and consider (recalling M = | − i∇|),

(x2 + i)−1(H+ i)−1 = (x2 + i)−1(M + i)−1(M + i)(H0 + i)−1(H0 + i)(H+ i)−1.
(23)

The product of the first two factors is in Id+1 (since (|ξ| + i)−d− 1 is
integrable), by Lemma 9, the next two factors form a bounded operator
(which can be seen by taking Fourier transforms). The final two factors
form a bounded operator as argued before the lemma. Therefore the en-
tire product is in Id+1. Since (H + i)φ(H) is bounded also, we get that
(x2 + i)−1φ(H) ∈ Id+1.

Now assume that (x2+i)−nφ(H) ∈ I d+1
n

, and show that (x2+i)−n−1φ(H) ∈
I d+1

n+1
. We write, ψ(H) = (H + i)φ(H), then

(x2 + i)−d−1φ(H) (24)

= (x2 + i)−d−1(H + i)−1(H + i)φ(H)

(x2 + i)−1[(x2 + i)−n, (H + i)−1]ψ(H) + (x2 + i)−1(H + i)−1(x2 + i)−nψ(H).

Using Theorem 2.8 (2.5b) in [23], (which says M ∈ Iq, N ∈ Ir =⇒ MN ∈
Ip with 1

p
= 1

q
+ 1

r
), so using the induction hypothesis and the already proved

fact that (x2 + i)−1(H + i)−1 ∈ Id+1, the last term is seen to be in I d+1
n+1

.
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So we concentrate on the first term.

(x2 + i)−1[(x2 + i)−n, (H + i)−1]ψ(H) (25)

= (x2 + i)−1(H + i)−1[H, (x2 + i)−n](H + i)−1ψ(H)

= (x2 + i)−1(H + i)−1[H0, (x
2 + i)−n](H + i)−1ψ(H)

= (x2 + i)−1(H + i)−1 ×
(

−4ni
∑d

j=1 Pjxj(x
2 + i)−1 − 2d(x2 + i)−1 + 4d(n+ 1)x2(x2 + i)−2

)

×(x2 + i)−nψ1(H)

(26)

where we set (H + i)−1ψ(H) = ψ1(H), where Pj = −i∇j .

(x2 + i)−1(H + i)−1Pj

= (x2 + i)−1(H0 + 1)−1/2(H0 + 1)
1
2 (H + i)−1(H0 + 1)

1
2 (H0 + 1)−

1
2Pj ,

and using Lemma 9, Lemma 10 below, we see that this expression is in Id+1.
Induction hypothesis gives (x2 + i)−nψ1(H) ∈ I d+1

n
. Therefore combining

these two facts we see that (x2 + i)−n−1φ(H) ∈ I d+1
n+1

.

Lemma 10. Suppose either V is bounded or ( ∂
∂xj
V )(H + i)−1, j = 1, . . . , d

are bounded. Then (H0 + 1)
1
2 (H + i)−1Pj is a bounded operator for each

j = 1, . . . d.

Proof: Consider the case when ∂
∂xj
V (H+ i)−1 is bounded for each j. Then

writing the expression using commutators

(H0 + 1)
1
2 (H + i)−1Pj = (H0 + 1)

1
2Pj(H + i)−1

+(H0 + 1)
1
2 (H + i)−1[Pj, H ](H + i)−1

= (H0 + 1)
1
2Pj(H + i)−1 + (H0 + 1)

1
2 (H + i)−1( ∂

∂xj
V )(H + i)−1.

The boundedness of the first term was seen before since (H0 + 1)
1
2Pj(H0 +

1)−1 and (H0 + 1)(H + 1)−1 are bounded. second term is bounded by the

assumption on V and the boundedness of (H0 + 1)−
1
2 .

Now consider the case when V is bounded, then taking f, g in the domain
of H0, we have

〈f, (H0 + 1)f〉 = 〈g, (H0 + V + c + 1)f〉 − 〈g, (V + c)f〉,
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where c is a positive constant such that H+c+1 is a positive operator (which
is possible since H is bounded below). Since H + c + 1 is positive it has a
unique square root, so using the boundedness of V and the above inequality,
we obtain, for some finite C,

‖(H0 + 1)
1
2 f‖2 ≤ ‖(H + c)

1
2f‖2 + C‖f‖ ≤ D‖(H + c)

1
2f‖2.

Taking f = (H0 + 1)
1
2 g, ‖g‖ = 1, for a set of g coming from C∞

0 (Rd), we see
that

K ≤ ‖(H + c)
1
2 (H0 + 1)−

1
2g‖2, K > 0,

K independent of g. This shows that (H + c)
1
2 (H0 + 1)−

1
2 has a bounded

inverse and that its inverse (H0 + 1)−
1
2 (H + c)

1
2 and (H + c)

1
2 (H0 + 1)−

1
2 are

both bounded (since M bounded implies M∗ is also bounded). Therefore
writing

(H0 + 1)
1
2 (H + i)−1Pj

= (H0 + 1)
1
2 (H + c)−

1
2 (H + c)(H + i)−1(H + c)−

1
2 (H0 + 1)

1
2 (H0 + 1)−

1
2Pj,

we see that the left hand side is bounded.
We are now ready to present examples where the theorems of the previous

section are applicable. We fist give a few examples of models on the lattice.
Consider L2(Rd), H0 = ∆, q(n), n ∈ Z

d, i.i.d random variables with
distribution µ having compact support. Let Λ denote the unit cube centred
at 0 ∈ R

d and Λ(n) denote the unit cube centred at the point n ∈ Z
d. Let

Vω =
∑

n∈Zd qω(n)χΛ(n), where χA is the operator of multiplication by the
indicator function of A. Then taking

H±
ω = ∆ ± Vω,

we see that, since Vω is bounded for each ω, the conditions of Theorem 4.1 are
satisfied. Further takingG = R

d and L = Z
d, (Uxf)(y) = f(y−x), on L2(Rd),

q
Tmω

(n) = qω(n + m), in Hypothesis 1, the spectral projections EH±
ω
((a, b))

are covariant families in the sense of Definition 1. The Theorem 4.1 shows
that χΛ(0)EH±

ω
((a, b))χΛ(0) is trace class whenever (a, b) is a bounded interval.

Hence we can define the density of states and the ILAC as in equations (18)
and (19), by taking P to be multiplication by χ

Λ(0)
. Therefore the Theorems

2.1, 2.2 are valid in this case.
Our theorem covers models where the random potential has the following

forms.
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• V ω(x) =
∑

n∈Zd qω(n)u(x − n), {q(n)} i.i.d.random variables whose
distribution has compact support and u a nice function with u(x− n)
summable.

• An addition of a periodic background potential W to the random po-
tential above.

• Addition of magnetic fields.

If in all these cases the density of states have Lifshitz tails behaviour at the
band edges the same is acquired by the ILAC at an appropriate energy level.

Remark 11. Let us remark that in the above examples we can even replace
the Laplacian −∆ with a real polynomial function Q of −i∇ and the results
go through, if for some R > 0, the polynomial satisfies

c1‖ξ‖2n ≤ Q(ξ) ≤ c2‖ξ‖2n, |ξ| > R, c1, c2 > 0.
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