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ABSTRACT. We study the distribution of eigenvalues of the one-
dimensional Schrödinger operator with a complex valued potential V . We
prove that if |V | decays faster than the Coulomb potential, then the series
of imaginary parts of square roots of eigenvalues is convergent.

1. INTRODUCTION

Let V : [0,∞) 7→ C be a complex valued potential. The object of our
investigation is the one-dimensional Schrödinger operator

H = − d2

dx2
+ V (x)

on the half-line with the Dirichlet boundary condition at zero. Denote by λj
the eigenvalues of the operator H lying outside of the interval R+ = [0,∞).

We shall consider only potentials from the space L1(R+). It is interesting,
that in this case, all non-real eigenvalues λ of H satisfy the estimate

|λ| ≤
(∫ ∞

0

|V |dx
)2

.

The proof of this result can be found in [1] (see also [2]). Recently, this result
was (partially) generalized to the multi-dimensional case. It was proven in
[7], that the condition |V | ≤ C(1 + |x|)−q with q > 1implies that all non-real
eigenvalues of −∆ + V are situated in a disk of a finite radius. However, the
estimate

|λ| ≤ C
(∫

Rd

(1 + |x|)1−d|V |dx
)2

has not been proven.
The paper [3] treats the multi-dimensional case. (Everywere below, <z

and =z denote the real and the imaginary parts of z.) The one-dimensional
version of the main result of [3] tells us, that for any t > 0, the eigenvalues
λj of H lying outside the sector {λ : |=λ| < t <λ} satisfy the estimate

(1.1)
∑
|λj|γ ≤ C

∫
|V (x)|γ+1/2dx, γ ≥ 1,
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where the constant C depends on t and γ (see also [6] for the case when V is
real).

Finally, we would like to mention the paper [5]. It deals with the natural
question that appears in relation to the main result of [3]: what estimates are
valid for the eigenvalues situated inside the conical sector {λ : |=λ| < t<λ},
where the eigenvalues might be close to the positive half-line? Theorems of
the article [5] provide some information about the rate of accumulation of
eigenvalues to the set R+ = [0,∞). Namely, [5] gives sufficient conditions
on V that guarantee convergence of the sum

(1.2)
∑

a<<λj<b

|=λj|γ <∞

for 0 ≤ a < b <∞.
Both exponents γ in (1.1) and in (1.2) are not less than 1. We suggest a

method that allows one to study the case γ = 1/2.

Theorem 1.1. Let V : R+ 7→ C satisfy the condition∫ ∞
0

(1 + |x|p)|V (x)|dx <∞,

for some p ∈ (0, 1). Then∑
j

|=
√
λj| ≤ C

(∫ ∞
0

|x|p|V (x)| dx+ log+(2||V ||L1)

∫ ∞
0

|V (x)| dx
)
,

where the positive constant C depends on p, but is independent of V .

2. PROOF OF THEOREM 1.1

1. Before proving the theorem we will acquaint the reader with our no-
tations. As it was already mentioned <z and =z denote the real and the
imaginary parts of z. The class of compact operators T having the property

||T ||qSq
:= tr (T ∗T )q/2 <∞, q ≥ 1,

is called the Neumann-Schatten class Sq. The functional ||T ||Sq is a norm on
Sq. For T ∈ S1 one can introduce det(I + T ) as the product of eigenvalues
of I + T . Note that

| det(I + T )| ≤ exp(||T ||S1 .

Besides det(I + T ), one can introduce the second determinant by setting

det 2(I + T ) = det(I + T )e−tr T .

The advantage of this definition is illustrated by the estimate

| det 2(I + T )| ≤ exp(C||T ||S2).

2. The basic tool of the proof is the trace formula involving the eigen-
values λj and the perturbation determinant det(I + V R(z)) where R(z) =
(−d2/dx2 − z)−1. It is known that the eigenvalues of the operator H are
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zeros of the function d(z) = det(I + V R(z)). Traditionally, one writes z in
the form z = k2 and one considers the function a(k) = d(k2) with k ∈ C+

instead of d(z).
Denote by kj the zeros of the function a(k) lying in the upper half-plane

C+. We construct the Blaschke product B(k) having the same zeros as a(k)

B(k) =
∏
j

k − kj
k − kj

kj
|kj|

.

It is pretty obvious that the ratio a(k)/B(k) does not have zeros and therefore
the function log(a(k)/B(k)) is well defined in the upper half-plane. More-
over, the ratio a(k)/B(k) has the nice property that∣∣∣ a(k)

B(k)

∣∣∣ = |a(k)| if k ∈ R.

The trace formula is a relation that involves an integral of the function
log |a(k)| and the zeros kj . The Blaschke product allows one to separate the
contribution of zeros into the trace formula from other contributions. Indeed,
since

logB(k) = log(
∏
j

kj
|kj|

)− 2i
∑
j

=kj
k
− i
∑
j

=k2
j

k2
− 2i

∑
j

=k3
j

3k3
+O(k−4)

as k →∞, we obtain that the real part of the integral∫
CR

log(B(k))ρ(k)dk, ρ(k) = (R2 − k2),

over the contour, consisting of the interval [−R,R] and the half-circle of
radius R, equals

2πR2
∑
j

=kj −
2π

3

∑
j

=k3
j .

for a sufficiently large R > 0. It is also clear that∫
CR

log
( a(k)

B(k)

)
ρ(k)dk = 0,

since the function log
(
a(k)
B(k)

)
is analytic in the upper half-plane. Thus, we

obtain that ∫
CR

log(B(k))ρ(k)dk =

∫
CR

log(a(k))ρ(k)dk,

which implies the equality

2πR2
∑
j

=kj −
2π

3

∑
j

=k3
j = <

∫
CR

log(a(k))ρ(k)dk.

Choose now R = 2
∫
|V |dx. We will shortly see how convenient this choice

is, and now we will obtain an estimate of the quantity log(a(k)).
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We have to estimate this quantity twice: first time, we have to estimate the
absolute value | log(a(k))| under the condition that |k| = R; second time, we
will establish an upper estimate of log |a(k)| on the interval [−R,R].

Let us carry out the computations for |k| = R. The arguments are bor-
rowed from [4]. Let us estimate the derivative of the function ψ(z) = a(k),
z = k2. We have

ψ′(z) = tr (H − z)V (−d2/dx2 − z)−1 =
∞∑
j=0

(−1)jtr
[
(−d2/dx2−z)−1WU(W (−d2/dx2−z)−1WU)jW (−d2/dx2−z)−1

]
where U = V/|V | and W =

√
|V |. Since, for |k| = R,

||W (−d2/dx2 − z)−1W || ≤
∫
|V |dx
|k|

≤ 1

2
,

we obtain that∣∣∣ψ′(z)
∣∣∣ ≤ C

∫
|V |dx

∫ ∞
−∞

dξ

|ξ2 − z|2
≤
C1

∫
|V |dx

|=z|3/2

Integrating along the vertical line we will obtain that

|ψ(z)| ≤
C0

∫
|V |dx

|=z|1/2

Consequently, for φ = Arg(z),

|ψ(z)||ρ(k)| ≤
C0

∫
|V |dx

|R sin(φ)|1/2
|R2(1− ei2φ)| ≤ CR

∫
|V |dx

on the circle {k : |k| = R, =k > 0}. It implies the following estimate for
the integral ∣∣∣∫

|k|=R,=k>0

log(a(k))ρ(k)dk
∣∣∣ ≤ CπR2

∫
|V |dx.

Assume now that k = k̄. Let us estimate the quantity log |a(k)| =
log | det(I + V R(z))| from above. We already know that

(2.1) ||WR(z)W ||S2 ≤
∫
|V |dx
|k|

=⇒ log |a(k)| ≤ C

∫
|V |dx
|k|

however this estimate is not suitable for k → 0. Therefore we have to conduct
our reasoning in a more delicate way. Consider the integral kernel of the
operator X = WR(z)W . It is a function of the form

cW (x)

∫ ∞
−∞

sin(ξx) sin(ξy)

ξ2 − z
W (y)dξ.

It follows clearly from this formula that X is representable as the integral

X = c

∫ ∞
−∞

l∗ξ lξ

ξ2 − z
dξ,
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where the linear functional lξ is defined by the relation

lξ(u) =

∫ ∞
0

sin(ξy)W (y)u(y)dy

and acts from L2(R+) to C.
It is obvious that

||lξ||2 ≤ |ξ|p
∫
|x|p|V | dx, 0 < p < 1.

Moreover ||lξ − lη|| can be estimated in the following way. Since

| sin(ξy)− sin(ηy)| ≤ 2| sin
(

(
ξ − η

2
)y
)
| ≤ C|ξ − η|p/2|y|p/2,

we obtain that

||lξ − lη|| ≤ C|ξ − η|p/2
(∫
|x|p|V (x)| dx

)1/2

.

Consider now the operator Gξ = l∗ξ lξ. It is clear that

||Gξ||S1 ≤ |ξ|p
∫
|x|p|V | dx, 0 < p < 1.

Moreover,
||Gξ −Gη||S1 ≤ ||lξ − lη||(||lξ||+ ||lη||) ≤

≤ C|ξ − η|p/2(|ξ|p/2 + |η|p/2)
(∫
|x|p|V (x)| dx

)
Therefore the following representation of the operator X

X = c
(∫ ∞
−∞

Gξ −Gη

ξ2 − z
dξ +

πiGη

k

)
, η = |<z|1/2

implies that

||X||S1 ≤ C
(∫ ∞
−∞

|ξ − η|p/2(|ξ|p/2 + |η|p/2)
|ξ2 − η2|

dξ +
ηp

|k|

)∫ ∞
0

|x|p|V (x)| dx.

If k ∈ R is real , then we obtain that

(2.2) ||X||S1 ≤
C

|k|1−p

∫ ∞
0

|x|p|V (x)| dx.

Combining (2.1) with (2.2) we derive the following estimates

log |a(k)| ≤


C
|k|1−p

∫∞
0
|x|p|V (x)|dx for |k| ≤ 1,

C
|k|

∫∞
0
|V (x)| dx for |k| > 1.

Therefore, ∫ R

−R
log |a(k)|ρ(k)dk ≤ R2

∫ R

−R
log |a(k)|dk ≤
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R2C
(∫ ∞

0

|x|p|V (x)| dx+ log+(2||V ||L1)

∫ ∞
0

|V (x)| dx
)
.

Let us summarize the results: we proved that∑
j

=kj−
1

3R2

∑
j

=k3
j ≤ C

(∫ ∞
0

|x|p|V (x)| dx+log+(2||V ||L1)

∫ ∞
0

|V (x)| dx
)

It remains to notice that |kj| ≤
∫
|V |dx = R/2, which implies that

1

3R2
=k3

j ≤
1

4
=kj.

The proof is completed.
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