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Abstract. In this paper we motivate, formulate and analyze the Multi-Confi-
guration Time-Dependent Hartree-Fock (MCTDHF) equations for molecular
systems under Coulomb interaction. They consist in approximating the N-
particle Schrödinger wavefunction by a (time-dependent) linear combination
of (time-dependent) Slater determinants. The equations of motion express as
a system of ordinary differential equations for the expansion coefficients cou-
pled to nonlinear Schrödinger-type equations for mono-electronic wavefunc-
tions. The invertibility of the one-body density matrix (full-rank hypothesis)
plays a crucial rôle in the analysis. Under the full-rank assumption a fiber
bundle structure shows up and produces unitary equivalence between conve-
nient representations of the equations. We discuss and establish existence and
uniqueness of maximal solutions to the Cauchy problem in the energy space as
long as the density matrix is not singular. A sufficient condition in terms of the
energy of the initial data ensuring the global-in-time invertibility is provided

(first result in this direction). Regularizing the density matrix breaks down
energy conservation, however a global well-posedness for this system in L

2 is
obtained with Strichartz estimates. Eventually solutions to this regularized
system are shown to converge to the original one on the time interval when
the density matrix is invertible.

Multiconfiguration methods, Hartree–Fock equations, Dirac–Frenkel variational
principle, Strichartz estimates

1. Introduction

The purpose of the present paper is to give a comprehensive self-contained
mathematical description of the multi-configuration time-dependent Hartree-Fock
(MCTDHF) equations. Such models are used in many body quantum physics and
quantum chemistry to approximate the solutions of the time-dependent N particle
linear Schrödinger equation with pairwise interaction. The MCTDH(F) models are
natural generalizations of the well-known time-dependent Hartree-Fock (TDHF)
approximation, yielding a hierarchy of models that, in principle, should converge
to the exact model.

Unless otherwise specified the quantum system under consideration is a molecule
composed of a finite number M of fixed nuclei of masses m1, . . . ,mM > 0 with
charge z1, . . . , zM > 0 and a finite number N of electrons.

Using atomic units, the N -body Hamiltonian of the electronic system submitted
to the external potential due to the nuclei is then the self-adjoint operator

(1.1) HN =
∑

1≤i≤N

(

−1

2
∆xi

+ U(xi)

)

+ V (x1, · · · , xN )

acting on the Hilbert space L2(ΩN ; C) with pairwise interaction between the elec-
trons of the form

V (x1, · · · , xN ) =
∑

1≤i<j≤N

v(|xi − xj |),

1



MCTDHF EQUATIONS 2

with v real-valued and even. Here and below Ω is either the whole space R3 or
a bounded domain in R3 with boundary conditions. The N electrons state is
modeled through a so-called wavefunction Ψ = Ψ(x1, . . . , xN ) living in L2(ΩN ) and
normalized in order that ‖Ψ‖L2(ΩN ) = 1, for |Ψ|2 is interpreted as the probability
density of the N electrons. In order to account for the Pauli exclusion principle
which features the fermionic nature of the electrons, an antisymmetry condition is
imposed to the wave-function Ψ i.e.

Ψ(x1, . . . , xN ) = ǫ(σ)Ψ(xσ(1), . . . , xσ(N)),

for every permutation σ of {1, . . . , N}. The space of antisymmetric wave-functions

will be denoted by
∧N

i=1 L
2(Ω). In (1.1) and throughout the paper, the subscript xi

of −∆xi
means derivation with respect to the ith variable of the function Ψ. Next,

U(x) := −
M
∑

m=1

zm

|x−Rm|

is the Coulomb potential created by M nuclei of respective charge z1, · · · , zM >
0 located at points R1, · · · , RM ∈ R3 and v(x) = 1

|x| is the Coulomb repulsive

potential between the electrons. Actually our whole analysis carries through to
more general potentials (possibly time-dependent) as explained in Section 7 below.

The time evolution of a quantum system starting from some initial data Ψ0 ∈
L2(ΩN ) is governed by the time-dependent Schrödinger equation (TDSE)

(1.2)







i
∂Ψ(t)

∂t
= HN Ψ(t) ,

Ψ(0) = Ψ0.

By the Stone theorem which ensures the existence of an unitary group U(t) =
exp(−itHN) the Cauchy problem (1.2) is known to be well-posed and the unique
global solution is given by Ψ(t) = U(t)Ψ0 for all t ∈ R. For nearly all applications,
even with two interacting electrons the numerical treatment of the exact problem is
out of the reach of even the most powerful computers, and approximation algorithms
have to be used.

Simplest elements of
∧N

i=1 L
2(Ω) are the so-called Slater determinants

(1.3) Ψ(x1, . . . , xN ) =
1√
N !

det
(

φi(xj)
)

1≤i,j≤N

constructed with any orthonormal family φi in L2(Ω) . The factor 1√
N !

ensures the

normalization condition on the wave-function. Such a Slater determinant will be
denoted by φ1 ∧ . . . ∧ φN and any family of all Slater determinants built from a

complete orthonormal set of L2(Ω) is a complete orthonormal set of
∧N

i=1 L
2(Ω).

Therefore they are used to approximate this huge space. Algorithms based on the
restriction to a single Slater determinant are called Hartree-Fock approximation
(HF). On the other hand the basic idea of the multi-configuration methods is to
use a finite linear combinations of such determinants constructed with K(≥ N)
orbitals.

For a mathematical theory of the use of the time-independent multiconfiguration
Hartree–Fock (MCHF) ansatz in the computation of so-called ground– and bound
states we refer to [24, 16, 25]. Our goal in the present paper is to lay out the
mathematical theory of the time–dependent problem, the multiconfiguration time–
dependent Hartree–Fock (MCTDHF) which is used for the dynamics of few electron
problems, e.g. the formation of molecules in quantum chemistry, or the interaction
of an atom with a strong short laser-pulse [7, 37, 38] and [20].
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One observes (this computation is done in Subsection 3.5) that in the absence of
pairwise interacting potentials any Slater determinant constructed with orthonor-
mal solutions φi(x, t) to the single-particle time–dependent Schrödinger equation
gives an exact solution of theN -particle non interacting time–dependent Schrödinger
equation. Such φi(x, t) are called orbitals in the Chemistry literature. The same is
true for any linear combination of Slater determinants with constant coefficients.
Of course, the situation turns out to be completely different when pairwise inter-
actions are acting : a solution to TDSE starting with an initial data composed
of one or a finit number of Slater determinants will not remain so for any time
t 6= 0. Such behaviour (called “explosion of rank”) is part of the common be-
lief, but is not shown rigorously as a property of the equations, to the best of our
knowledge. In the MCTDHF approach one introduces time–dependent coefficients
and time-dependent orbitals to take into account pairwise interactions and to pre-
serve the finite linear combination structure of Slater determinants in time. On
the other hand, using time-independent orbitals as it corresponds to a Galerkin-
type approximation would save the effort for the nonlinear equations, but requires
a much larger number of relevant orbitals and hence the numerical cost is much
higher. The motion of the electrons in the MCTDHF framework is then governed
by a coupled system of K nonlinear partial differential equations for the orbitals
and

(

K
N

)

ordinary differential equations for the expansion coefficients.

Although MCTDHF is known for decades, the mathematical analysis has been
tackled only recently. A preliminary contribution was given by Lubich [27] and Koch
and Lubich [23] for the time-dependent multi-configuration Hartree (MCTDH)
equations for bosons, for the simplified case of a regular and bounded interaction
potential v between the electrons and a Hamiltonian without exterior potential
U . The MCTDH equations are similar to MCTDHF from the functional analysis
point of view, although more complicated from the algebraic point of view, since
more density-matrices have to be considered in the absence of a priori antisym-
metry requirements on the N -particle wave-function (see also [22] for an extension
to MCTDHF equations). Using a full-rank (i.e. invertibility) assumption on the
one-body density matrices, the authors proved short-time existence and uniqueness
of solutions in the functions space H2(R3) for the orbitals with the help of Lie
commutators techniques. Numerical algorithms are also proposed and analyzed by
the groups around Scrinzi (e.g. [37]) and Lubich, the proof of their convergence
generally requires the H2-type regularity assumptions (see e.g. [28]).

In our paper we present the state-of-the-art of the theory of well-posedness re-
sults for the associated Cauchy problems related to MCTDHF in H1, H2 and L2,
under suitable assumptions on the rank of the first-order density matrix and for the
physically most relevant and mathematically most demanding case of a Coulomb
interaction. We also give sufficient conditions for global-in-time full-rank in terms
of the energy of the initial data.

This paper is organized as follows. In Section 2 we give a complete analysis of
the ansatz Ψ associated to the Multi-Configuration Hartree-Fock approximation.
Essentially, this ansatz corresponds to a linear combination of Slater determinants
built from a vector of complex coefficients C and a set of orthonormal, square inte-
grable functions represented by a vector Φ = (φ1, φ2, . . . , φK), for K ≥ N . The first
order “density matrix” is introduced and represented by a complex valued matrix
IΓ which corresponds to the representation of the kernel [Ψ⊗Ψ]:1 in the orthonor-
mal basis {φ1, φ2, . . . , φK}. By abuse of language this very matrix IΓ depending
on the combination coefficients C is also called density matrix. The invertibility
of such matrix is a crucial hypothesis which will be referred to as the full rank
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hypothesis. With this hypothesis, the corresponding set of pairs (C,Φ) is endowed
with a structure of a fiber bundle. In Section 3, two set of equivalent systems are
presented. The first one, S0, called variational system is inspired by a variational
principle. The second one, SH, will be referred to as working equations. In Section
4, the system S0 is used to prove the propagation of the normalization constraints,
the conservation of the total energy and an a posteriori error estimate for smooth
solutions (if they exist). The system SH is used to prove local existence, unique-
ness and stability with initial data in Hs for s ≥ 1. In particular the space H1 is
used to balance the singularity of the potentials (of Coulomb type) and we prove
the local well-posedness using the Duhamel formula. Next, the conservation of
the total energy allows us to extend the local-in-time solution until the associated
density matrix IΓ becomes singular. Therefore, Section 5 is devoted to a criteria
based on the conservation of the energy that guarantees the global-in-time invert-
ibility of the density matrix IΓ. To handle the possible degeneracy of this matrix, a
regularized problem is considered in Section 6. For this problem the conservation
of the energy does not hold anymore. Hence, we propose an alternate proof, also
valid for singular potentials, but that is only based on mass conservation. Such
proof relies on Strichartz estimates. Eventually, one expects that the solution of
the regularized problem converges towards the solution of the original one as long
as its density matrix is invertible. The proof is a H1 version of the classical “shad-
owing lemma” for ordinary differential equations. Finally, in the last section we
list some extensions to time-dependent Hamiltonian including a laser field and/or
a time-dependent external potential. The case of discrete systems is also discussed
there.

The time-dependent Hartree–Fock equations (TDHF) for the motion of a sin-
gle determinant turn out to be a special case of the MCTDHF equations that is
therefore included in our analysis, although this case is much simpler: since the
first-order density matrix is the identity for all time, the full-rank assumption is
automatically satisfied.

Some of the results presented here have been announced in [34] and [3] and the
details of the L2 theory are worked out in [30].

Notation. 〈·, ·〉 and 〈·|·〉 respectively denote the usual scalar products in L2(Ω)
and in L2(ΩN ) and a · b the complex scalar product of two vectors a and b in CK or

Cr. The bar denotes complex conjugation. We set L2
∧(ΩN ) :=

∧N
k=1 L

2(Ω) where
the symbol ∧ denotes the skew-symmetric tensorial product. Throughout the paper
bold face letters correspond to one-particle operators on L2(Ω), calligraphic bold
face letters to operators on L2(ΩN ), whereas “black board” bold face letters are
reserved to matrices.
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2. The Stationary Multi-configuration Hartree-Fock Ansatz

2.1. The MCHF ansatz. For positive integers N ≤ K, let ΣN,K denotes the range
of the family of increasing mappings σ : {1, . . . , N} −→ {1, . . . ,K}. In other words,

ΣN,K =
{

σ = {σ(1) < . . . < σ(N)} ⊂ {1, . . . ,K}
}

, |ΣN,K | =

(

K

N

)

:= r.

From now on, we shall use the same notation for the mapping σ and its range
{σ(1) < . . . < σ(N)}. Next we define

FN,K := Sr−1 ×OL2(Ω)K

with

(2.1) OL2(Ω)K =
{

Φ = (φ1, . . . , φK) ∈ L2(Ω)
K

:

∫

Ω

φi φ̄j dx = δi,j

}

,

with δi,j being the Kronecker delta and with Sr−1 being the unit sphere in Cr

endowed with the complex euclidean distance

(2.2) Sr−1 =
{

C = (cσ)σ∈ΣN,K
∈ C

r : ‖C‖2 =
∑

σ∈ΣN,K

|cσ|2 = 1
}

.

The notation
∑

σ∈ΣN,K
means that the sum runs over all the mappings σ of ΣN,K .

We shall use the shorthand
∑

σ instead of the cumbersome one above when there
is no confusion. Now, given σ ∈ ΣN,K and Φ in OL2(Ω)K , we define the associated

Slater determinant as follows

Φσ(x1, . . . , xN ) = φσ(1) ∧ . . . ∧ φσ(N) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

φσ(1)(x1) . . . φσ(1)(xN )
...

...
φσ(N)(x1) . . . φσ(N)(xN )

∣

∣

∣

∣

∣

∣

∣

;

that is, the skew-symmetric function Φσ is the determinant built from the φi’s such
that i ∈ σ. The vector Φ being in OL2(Ω)K , the factor 1√

N !
ensures the normalization
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‖Φσ‖L2(ΩN ) = 1. Next, we define the mapping

(2.3)
πN,K : FN,K −→ L2

∧(ΩN )

(C,Φ) 7−→ Ψ = πN,K(C,Φ) =
∑

σ cσ Φσ.

When there is no ambiguity, we simply denote π = πN,K . The application πN,K

(thereby Ψ) is then a multilinear skew-symmetric mapping from FN,K into L2
∧(ΩN ).

More precisely, it maps continuously FN,K equipped with the natural topology of

Cr × L2(Ω)
K

into

BN,K = π(FN,K) =
{

Ψ =
∑

σ

cσΦσ : (C,Φ) ∈ FN,K

}

.

It is also clearly infinitely differentiable with respect to C and Φ. The wave-function
Ψ is a linear combination of r Slater determinants and is therefore skew-symmetric.
The set BN,N is the set of single determinants or Hartree–Fock states. Of course
BN,K ⊂ BN,K′ when K ′ ≥ K and actually

lim
K→+∞

BN,K =
{

Ψ ∈ L2
∧
(

ΩN
)

: ‖Ψ‖ = 1
}

,

in the sense of an increasing sequence of sets, since Slater determinants form an
Hilbert basis of L2

∧
(

ΩN
)

(see [26]). In particular, for σ, τ ∈ ΣN,K , we have

(2.4) 〈Φσ

∣

∣ Φτ 〉 = δσ,τ .

More generally, if Φ, Ξ ∈ L2(Ω)
N

(not necessarily in OL2(Ω)N ), then

(2.5) 〈φ1 ∧ . . . ∧ φN

∣

∣ ξ1 ∧ . . . ∧ ξN 〉 = det (〈φi; ξj〉1≤i,j≤N )

(see [26]).

The range BN,K of FN,K by the mapping π is characterized in Proposition 2.2
below in terms of the so-called first-order density matrix (Subsection 2.2). Its
geometric structure is investigated in Subsection 2.3 below.

2.2. Density Operators. In this section, we recall the definition of the so-called
nth order density operator

[

Ψ⊗Ψ
]

:n
(see e.g. [1, 26, 4]). Our convention is the same

as Löwdin in [26]. When Ψ is a multi-configuration ansatz, explicit expressions of
the first and second order density matrices are derived in terms of the functions
φi and the coefficients cσ, and they will play an important rôle in the sequel (see
also [16]). For n = 1, . . . , N and Ψ ∈ L2

∧(ΩN ), a trace-class self-adjoint operator
[

Ψ ⊗ Ψ
]

:n
is defined on L2

∧(Ωn) through its kernel
[

Ψ ⊗ Ψ
]

:n

(2.6)
[

Ψ ⊗ Ψ
]

:n
(Xn, Yn) =

(

N

n

)
∫

ΩN−n

Ψ(Xn, Z
N
n ) Ψ(Yn, Z

N
n ) dZN

n ,

for 1 ≤ n ≤ N and
[

Ψ ⊗ Ψ
]

:N
(XN , YN ) = Ψ(XN ) Ψ(YN ),

where we used the notation

Xn = (x1, . . . , xn), Yn = (y1, . . . , yn), ,

ZN
n = (zn+1, . . . , zN ), dZN

n = dzn+1 . . . dzN ,

and similarly for other capital letters. A simple calculation shows that, for 1 ≤ n ≤
N − 1,

(2.7)
[

Ψ ⊗ Ψ
]

:n
(Xn, Yn) =

n+ 1

N − n

∫

Ω

[

Ψ ⊗ Ψ
]

:n+1
(Xn, z, Yn, z) dz
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In particular, given 1 ≤ n ≤ p ≤ N −1, one can deduce the expression of
[

Ψ⊗Ψ
]

:n

from the one of
[

Ψ ⊗ Ψ
]

:p
. These kernels are hermitian within each set of capital

variables and they satisfy

Proposition 2.1 ([1, 12, 13]). For every integer 1 ≤ n ≤ N , the n-th order density
matrix is a trace-class self-adjoint operator on L2

∧(Ωn) such that

(2.8) 0 ≤
[

Ψ ⊗ Ψ
]

:n
≤ 1,

in the sense of operators, and

TrL2(Ωn)

[

Ψ ⊗ Ψ
]

:n
=

(

N

n

)

.

First- and second-order density matrices will be of particular interest for us. In-
deed, the first-order density matrix allows to characterize the set BN,K (see Propo-
sition 2.2 below) whereas the second-order density matrix is needed to express
expectation values of the energy Hamiltonian as soon as two-body interactions are
involved.

The first-order (or one-particle) density matrix
[

Ψ ⊗ Ψ
]

:1
is often denoted by

γΨ in the literature and in the course of this paper. According to Proposition 2.1
above it is a non-negative self-adjoint trace-class operator on L2(Ω), with trace N
and with operator norm less or equal to 1. Therefore its sequence of eigenvalues
{γi}i≥1 satisfies 0 ≤ γi ≤ 1, for all i ≥ 1, and

∑

i≥1 γi = N . In particular, at

least N of the γi’s are not zero, and therefore rank γΨ ≥ N , for any Ψ ∈ L2
∧(ΩN ).

Actually, multi-configuration ansatz correspond to first-order density matrices with
finite rank, and we have the following

Proposition 2.2. [Löwdin’s expansion theorem [26]; see also [16, 25]] Let K ≥ N
and let

BN,K =
{

Ψ ∈ L2
∧(ΩN ) : ‖Ψ‖ = 1 and rank

[

Ψ ⊗ Ψ
]

:1
≤ K

}

,

then

BN,K = π(FN,K).

If Ψ = π(C,Φ) with (C,Φ) ∈ FN,K, then rank
[

Ψ⊗Ψ
]

:1
≤ K and Ran

[

Ψ⊗Ψ
]

:1
⊂

Span{φ1; · · · ;φK}. If Ψ ∈ BN,K and if rank
[

Ψ ⊗ Ψ
]

:1
= K ′ with N ≤ K ′ ≤ K

and with {φ1; . . . ;φK′} being an orthonormal basis of Ran
[

Ψ⊗Ψ
]

:1
, then Ψ can be

expanded as a linear combination of Slater determinants built from (φ1; · · · ;φK′).
If Ψ = π(C,Φ) ∈ BN,K , then the kernel of [π(C,Φ) ⊗ π(C,Φ)]:1 is given by the

formula

(2.9) γπ(C,Φ)(x, y) := [π(C,Φ) ⊗ π(C,Φ)]:1(x, y) =
K
∑

i,j=1

γij φi(x)φj(y)

whereas for the second-order density matrix kernel we have

(2.10) [Ψ ⊗ Ψ]:2(x, y, x
′, y′) =

K
∑

i,j,k,l=1

γijkl φi(x) φj(y) φk(x′) φl(y
′).

We denote by IΓπ(C,Φ) the K×K matrix with entries γ̄ij , 1 ≤ i, j ≤ K; that is, up to
complex conjugation, the matrix representation of the first-order density operator
in Span{Φ} := Span{φ1; . . . ;φK}. (This convention allows for the formula (2.16)
below to hold). According to Proposition 2.1, IΓπ(C,Φ) is a positiveK×K Hermitian
matrix of trace N with same eigenvalues as γΨ and same rank. In particular, there
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exists a unitary K ×K matrix U such that U IΓπ(C,Φ) U
⋆ = diag(γ1, . . . , γK) with

0 ≤ γk ≤ 1 and
∑K

k=1 γk = N . Hence, γΨ can be expanded as follows

(2.11) γΨ(x, y) =

K
∑

i=1

γi φ
′
i(x) φ

′
i(y),

where Φ′ = U ·Φ with obvious notation and with {φ′1; · · · ;φ′K} being an eigenbasis
of γΨ.

Explicit expressions for the coefficients of the first- and second- order density
operators play an essential role in our analysis. They are recalled in the following

Proposition 2.3 ([16], Appendix 1). Let Ψ = π(C,Φ) in BN,K. Then,

(2.12) γijkl =
1

2
(1 − δi,j)(1 − δk,l)

∑

σ,τ | i,j∈σ, k,l∈τ
σ\{i,j}=τ\{k,l}

(−1)σ
i,j(−1)τ

k,l cσ cτ ,

with, for i 6= j,

(2.13) (−1)σ
i,j =

i− j

|i− j| (−1)σ−1(i)+σ−1(j).

In particular, from (2.7),

(2.14) γij =
2

N − 1

K
∑

k=1

γikjk =
∑

σ,τ | i∈σ, j∈τ
σ\{i}=τ\{j}

(−1)σ−1(i)+τ−1(j) cσ cτ

and

(2.15) γii =
∑

σ | i∈σ

|cσ|2.

Note that it is easily recovered from (2.15) that 0 ≤ γi ≤ 1 for C ∈ Sr−1.
Similarly n-th order eigenvalues and orbitals may be defined for n-th order density
matrices (see [1] for more details). Since we have restricted the analysis to the
case of one- and two-body interactions, only the first- and second- order density
matrices play a rôle here.

Remark 2.4. Of course, when K = N (Hartree-Fock case), γΨ being of trace N
must be the projector on Span{φ1; · · · ;φN}; that is, IΓπ(1,Φ) is the N ×N identity
matrix and

γΨ(x, y) =

N
∑

i=1

φi(x) φi(y) := PΦ(x, y),

with PΦ denoting the projector on Span{φ1, · · · , φN}. In this case, (2.14) and
(2.12) simply reduce to γij = δi,j and γijkl = 1

2

(

δi,kδj,l − δi,lδj,k
)

.

Remark 2.5. It is worth emphasizing the fact that the coefficients γij and γijkl

only depend on the expansion coefficients C and not on the orbitals, and that this
dependency is quadratic. This property actually holds true at any order 1 ≤ p ≤
N − 1. We shall rely on it in the proof of existence of solutions in Section 4.

As a consequence of the above remark, we shall now use the shorthand IΓ(C) for
IΓπ(C,Φ).

The representation of a wavefunction Ψ ∈ BN,K in terms of expansion coefficients
C and orbitals Φ is obviously not unique as it is already seen on the Hartree–Fock
ansatz. Indeed, if ΨHF = φ1∧· · ·∧φN = ψ1∧· · ·∧ψN , there exists a unique N×N
unitary transform U such that (φ1, · · · , φN ) = (ψ1, · · · , ψN ) · U . The preimage of
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ΨHF by π in FN,N is the orbit of (φ1, · · · , φN ) under the action of ON , with Oℓ

being the set of ℓ× ℓ unitary matrices. On the other hand, as

K ≤ K ′ =⇒ BN,K ⊂ BN,K′,

any Slater determinant ΨHF = φ1∧· · ·∧φN can also be seen as an element of BN,K

for all K ≥ N . If K > N , the preimage of Ψ by π in FN,K does not have a similar
orbit structure as illustrated by the following example. Let C′ = (1, 0, . . . , 0) ∈ Sr−1

where all coordinates but the first one are 0 and let Φ′ = (φ1, . . . , φN , φN+1, . . . , φK)
with φi ∈ Span{φ1, . . . , φN}⊥ for every N + 1 ≤ i ≤ K be such that Φ′ ∈ OL2(Ω)K ,
then (C′,Φ′) ∈ FN,K and ΨHF = π(C′,Φ′). Then it is not possible to define a local
inverse from a neighborhood of ΨHF on BN,K into FN,K. The full-rank assumption
defined below is compulsory to define a local continous inverse of π.

2.3. Full-rank and fibration. We therefore introduce

∂BN,K :=
{

Ψ ∈ BN,K : rank γΨ = K
}

and, by analogy,

∂FN,K = π−1
N,K(∂BN,K) :=

{

(C,Φ) ∈ FN,K : rank IΓ(C) = K
}

.

In this latter case, as in [23], we shall say that the associated K × K matrix
IΓ(C) satisfies a full-rank assumption. In particular it is invertible with positive
eigenvalues. Since invertible matrices form an open subset and since the mapping
C 7→ IΓ(C) is continuous, it is clear that ∂FN,K is an open subset of FN,K.

Clearly ∂BN,N = BN,N and ∂FN,N = FN,N ; that is, the full-rank assumption is
automatically satisfied in the Hartree–Fock setting (see Remark 2.4).

On the opposite, it may happen that ∂BN,K = ∅ (in that case BN,K = BN,K−1).
Indeed, for K ≥ N the admissible ranks of first-order density matrices must satisy
the relations [16, 25]

K







= 1 N = 1
≥ 2, even N = 2
≥ N, 6= N + 1, N ≥ 3.

.

From now on, we only deal with pairs (N,K) with K admissible. We recall from
[26] the following

Proposition 2.6. Let (C,Φ) and (C′,Φ′) in ∂FN,K such that π(C,Φ) = π(C′,Φ′).
Then, there exists a unique unitary matrix U ∈ OK and a unique unitary matrix
d(U) = U ∈ Or such that

Φ′ = U · Φ, C′ = d(U) · C
where, for every σ ∈ ΣN,K,

Φ′
σ =

∑

τ

Uσ,τ Φτ .

Moreover,

(2.16) IΓ(C′) = U IΓ(C) U⋆.

Proof. Let (C,Φ) and (C′,Φ′) in ∂FN,K such that π(C,Φ) = π(C′,Φ′) = Ψ ∈
∂BN,K. From Proposition 2.2, Span{Φ} = Span{Φ′} = Ran(γΨ) with Φ and Φ′

in OL2(Ω)K , therefore there exists a unique unitary matrix U ∈ OK such that

Φ′ = U · Φ. Eqn. (2.16) follows by definition of IΓ(C). Accordingly, there exists a
unique unitary matrix U in Or that maps the family {Φσ}σ∈ΣN,K

to {Φ′
σ}σ∈ΣN,K

.
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More precisely, being given σ ∈ ΣN,K , we have by a direct calculation (see also
[26])

(2.17) Φ′
σ =

∑

τ

Uσ,τ Φτ

where, for all σ, τ ∈ ΣN,K ,

Uσ,τ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Uσ(1),τ(1) . . . Uσ(N),τ(1)

...
...

...
...

...
...

Uσ(1),τ(N) . . . Uσ(N),τ(N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= det
(

Uσ(j),τ(i)

)

1≤i,j≤N
(2.18)

= det
(

〈φ′σ(j);φτ(i)〉
)

1≤i,j≤N
.

By construction the r× r matrix U with matrix elements Uσ,τ is unitary. By the
orthonormality of the determinants, we have

(2.19) c′σ =
〈

π(C,Φ) | Φ′
σ

〉

=
∑

τ

cτ

〈

Φτ | Φ′
σ

〉

=
∑

τ

Uσ,τ cτ ,

whence the lemma with d(U) = U. �

Under the full-rank assumption and given (N,K) admissible, the set ∂BN,K is
a principal fiber bundle. Indeed, within geometry-differential terminology, ∂BN,K

is called the base, and, for any Ψ ∈ ∂BN,K , the preimage π−1(Ψ) is the fiber over
Ψ. Proposition 2.3 helps defining a group action on ∂FN,K that is referred to with
the following notation

(C′,Φ′) = U · (C,Φ) ⇐⇒ C′ = d(U) · C and Φ′ = U · Φ,
U :=

(

d(U), U
)

∈ Or ×OK .
(2.20)

Indeed on the one hand, it is clear from the expression for the matrix elements
of d(U) that d(IK) = Ir. On the other hand from (2.17) and (2.19) it is easily
checked that d(UV ) = d(U) d(V ). Therefore couples of the form

(

d(U), U
)

form
a subgroup of Or × OK that we denote by Or

K . The action of Or
K is not free

on FN,K itself (as shown before on the examples of Slater determinants in FN,K

with K > N), but it is free on ∂FN,K and transitive over any fiber π−1(Ψ) for
every Ψ ∈ ∂BN,K. Therefore, the mapping π defines a principal bundle with fiber
given by the group Or

K . We can define local (cross-)sections as continuous maps
s : Ψ 7→ (C,Φ) from ∂BN,K to ∂FN,K such that π ◦ s is the identity. In particular,
∂FN,K/Or

K is homeomorphic to ∂BN,K. Since the map π is C∞, one concludes
from the inverse mapping theorem that the above isomorphism is also topological.
In the Hartree–Fock case K = N where the full-rank assumption is automatically
fulfilled, π−1

N,N

(

BN,N) is a so-called Stiefel manifold.

Having equipped ∂BN,K with a manifold structure we can now study the tangent
space of ∂BN,K .

Being polynomial in its variables, the application π is clearly differentiable with
respect to C and Φ and its derivatives can be written down explicitly. Here and
below L(E;F ) denotes the set of continuous linear applications from E to F (as
usual L(E) = L(E;E)). For any (C,Φ) ∈ FN,K we then define

∇π : Cr × L2(Ω)K −→ L
(

Cr;L2(ΩN )
)

× L
(

L2(Ω)K ;L2(ΩN )
)

Ψ = π(C,Φ) 7−→ ∇ Ψ = (∇C Ψ,∇Φ Ψ)
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in the following way. For any δC in Cr,

(2.21) ∇CΨ[δC] =

r
∑

k=1

δck
∂Ψ

∂cσk

=

r
∑

k=1

δck Φσk
,

with ΣN,K = {σ1, · · · , σr}. For any ζ = (ζ1, . . . , ζK) ∈ L2(Ω)K ,

(2.22) ∇ΦΨ [ζ] =

K
∑

k=1

∂Ψ

∂φk
[ζk] =

∑

σ∈ΣN,K

cσ

K
∑

k=1

∂Φσ

∂φk
[ζk],

with ∂Ψ
∂φk

being the linear application from L2(Ω) to L2
∧(ΩN ) that is given by

(2.23)
∂Ψ

∂φk
[ζ] =

N
∑

i=1

ζ(xi)

∫

Ω

Ψ(x1, . . . , xN ) φk(xi) dxi,

for any function ζ ∈ L2(Ω).

Remark 2.7. 1. Actually, for every σ ∈ ΣN,K, 1 ≤ k ≤ K, we have ∂Φσ

∂φk
= 0 if

k 6∈ σ and

(2.24)
∂Φσ

∂φk
[ζ] = φσ(1) ∧ · · · ∧ φσ(j−1) ∧ ζ ∧ φσ(j+1) ∧ · · · ∧ φσ(N)

if σ−1(k) = j.

2. From (2.24) we recover the Euler Formula for homogeneous functions, that
reads here

(2.25) Ψ =
1

N

K
∑

k=1

∂Ψ

∂φk
[φk] :=

1

N
∇ΦΨ [Φ].

The adjoint ∇ΦΨ⋆ of the operator ∇ΦΨ is defined by

(2.26) ∀ζ ∈ L2(Ω)
K
, ∀Ξ ∈ L2

∧(ΩN ), 〈∇ΦΨ⋆[Ξ]; ζ〉L2(Ω)K =
〈

Ξ
∣

∣∇ΦΨ[ζ]
〉

L2(ΩN )
.

In other words, for all 1 ≤ k ≤ K,
∂Ψ⋆

∂φk
denotes the linear operator in L

(

L2
∧(ΩN );L2(Ω)

)

that is defined by

∂Ψ

∂φk

⋆

[Ξ](x) = N

∫

Ω

φk(y)
(

∫

ΩN−1

Ξ(x, x2, . . . , xN )Ψ(y, x2, . . . , xN ) dx2 · · · dxN

)

dy

for any function Ξ in L2
∧(ΩN ).

From (2.25), (2.21), (2.22) and (2.23) it is easily checked that the tangent space
of BN,K at Ψ = π(C,Φ) is given by

TΨBN,K =

{

δΨ =
∑

σ

Φσ δcσ +
1

N

∑

σ

K
∑

k=1

cσ
∂Φσ

∂φk
[δφk] ∈ L2

∧(ΩN ) :

δC =
(

δcσ1
, · · · , δcσr

)

∈ C
r, δφk ∈ Span{Φ}⊥, for every 1 ≤ k ≤ K

}

.

(2.27)

In Physicists’ terminology this is the space of allowed variations around (C,Φ) in
FN,K according to the constraints (2.1) and (2.2) on the expansion coefficients and
the orbitals.

It is also worth emphasizing the fact that changing (C,Φ) to (C′,Φ′) following the
group action (2.20), involves a straightforward change of “variable” in the derivation
of Ψ; namely, with a straightforward chain rule,

(2.28) ∇C Ψ = U
⋆ · ∇C′ Ψ = ∇C′ Ψ · d(U), ∇Φ Ψ = ∇Φ′ Ψ · U
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and

(2.29) [∇Φ′ Ψ]⋆ = U · [∇Φ Ψ]⋆.

Note that the tangent space (2.27) only depends on the basis point Ψ and not on
the choice of coordinates (C,Φ) in the corresponding fiber. The following further
properties of the functional derivatives of Ψ will help to link the full-rank assump-
tion with the possibility for π to be a local diffeomorphism in a neighbourhood of
Ψ0 = π(C0,Φ0) ∈ ∂BN,K .

Lemma 2.8. Let (C,Φ) ∈ FN,K with Ψ = π(C,Φ). Then, for all ζ ∈ Span{Φ}⊥,
ξ ∈ L2(Ω) and σ, τ ∈ ΣN,K, we have

(2.30)
〈∂Φτ

∂φk
[ζ]
∣

∣

∣
Φσ

〉

= 0,

and

(2.31)
〈 ∂Ψ

∂φk
[ζ]
∣

∣

∣

∂Ψ

∂φl
[ξ]
〉

= IΓlk 〈ζ, ξ〉 ,

for any 1 ≤ k, l ≤ K.

Proof. The first claim follows immediately in virtue of (2.24) and (2.5). For the
second claim we proceed as follows. Thanks to (2.24) again

〈 ∂Ψ

∂φk
[ζ]
∣

∣

∣

∂Ψ

∂φl
[ξ]
〉

=
∑

σ,τ | k∈σ, l∈τ

cσ cτ

〈∂Φσ

∂φk
[ζ]
∣

∣

∣

∂Φτ

∂φl
[ξ]
〉

=
∑

σ,τ | k∈σ, l∈τ
σ\{k}=τ\{l}

(−1)σ−1(k)(−1)τ−1(l) cσ cτ 〈ζ, ξ〉

= IΓlk

〈

ζ, ξ
〉

.

We conclude with the help of (2.14). �

Let Ψ0 = π(C0,Φ0) be in BN,K with invertible IΓ(C0). Then the local mapping
theorem at (C0,Φ0) allows to define a so-called section π−1 : Ψ 7→ (C,Φ) as a C1

diffeomorphism in the neighbourhood of Ψ0. According to (2.27), we have to check
that (0, 0) is the only solution in Cr × Span{Φ0}⊥ to

(2.32) dπ(C0,Φ0)(δC, δΦ) =
∑

σ

Φσ δcσ +
1

N

K
∑

k=1

∂Ψ

∂φk
[δφk] = 0 .

Indeed, on the one hand, if we scalar product the above equation with Φτ for any
τ ∈ ΣN,K we obtain δC = 0 in virtue of the orthonormality of Slater determinants
and (2.30). On the other hand, for a given 1 ≤ l ≤ K and any ξ ∈ L2(Ω), the
scalar product of (2.32) with ∂Ψ

∂φl
[ξ] yields

K
∑

k=1

〈 ∂Ψ

∂φk
[δφk]

∣

∣

∣

∂Ψ

∂φl
[ξ]
〉

=

K
∑

k=1

IΓlk 〈δφk, ξ〉 =
〈

(

IΓδΦ
)

l
, ξ
〉

= 0

thanks to (2.31). Since ξ is arbitrary in L2 and since IΓ is invertible this is equivalent
to δΦ = 0, hence the result. This property is mandatory for lifting continuous paths
t 7→ Ψ(t) on the basis ∂BN,K to continuous paths t 7→

(

C(t),Φ(t)
)

on ∂FN,K.
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2.4. Interpretation in terms of quantum physics. The wave-function Ψ ∈
L2(ΩN ) with ‖Ψ‖ = 1 is interpreted through the square of its modulus |Ψ(XN )|2
(=
[

Ψ ⊗ Ψ
]

:N
(XN , XN)) that represents the density of probability of presence of

the N electrons in ΩN . More generally, for all 1 ≤ n ≤ N , the positive function
Xn 7→

[

Ψ ⊗ Ψ
]

:n
(Xn, Xn) is in L1(Ωn) with L1 norm equal to

(

N
n

)

, and it is in-

terpreted as
(

N
n

)

times the density of probability for finding n electrons located
at Xn ∈ Ωn. Any set {σ(1), . . . , σ(N)} for σ ∈ ΣN,K is called a configuration in
quantum chemistry literature and this is where the terminology multi-configuration
comes from for wave-functions in BN,K . When {φk}1≤k≤K is an orthonormal basis
of Ran

[

Ψ⊗Ψ
]

:1
each mono-electronic function φk is called an orbital of Ψ. When the

orbitals are also eigenfunctions of [π(C,Φ)⊗π(C,Φ)]:1 according to (2.11) they are
referred to as natural orbitals in the literature whereas the associated eigenvalues
{γi}1≤i≤K are referred to as occupation numbers. Under the full-rank assumption,
only occupied orbitals are taken into account. The functions with N − 1 variables
∫

Ω
Ψ(x1, . . . , xN )φk(xi)dxi that appear in formula (2.23) are known as a single-hole

function in the literature (see e.g. [5, 7]). Finally, the K×K matrix IΓ(C) is called
the charge- and bond matrix (see Löwdin [26]).

A key concept for many particle system is “correlation”. Whereas the “cor-
relation energy” of a many particle wavefunction associated to a many particle
Hamiltonian is a relatively well-defined concept, the intrinsic correlation of a many
particle wavefunction as such is a rather vague concept, with several different def-
initions in the literature (see among others [19, 18] and the references therein).
In [18] Gottlieb and Mauser recently introduced a new measure for the correla-
tion. This non-freeness is an entropy-type functional depending only on the density
operator[Ψ⊗ Ψ]:1, and defined as follows

E(Ψ) = −Tr

{

[Ψ ⊗ Ψ]:1 log([Ψ ⊗ Ψ]:1)

}

− Tr

{

[(1 − [Ψ ⊗ Ψ]:1) log(1− [Ψ ⊗ Ψ]:1)

}

.

Hence it depends on the eigenvalues of [Ψ ⊗ Ψ]:1 in the following explicit way

E(Ψ) = −
K
∑

i=1

(

γi log(γi) + (1 − γi) log(1 − γi)

)

It is a concave functional minimized for γi = 0 or 1. In the MCHF case this
functional depends implicitly on K and N via the dependency on the γ′is. This
definition of correlation has the basic property that the correlation vanishes if and
only if Ψ is a single Slater determinant. The simple proof is based on the Löwdin
expansion theorem (see Proposition 2.2 and Remark 2.4).

The single Slater determinant case is usually taken as the definition of uncor-
related (also called “free”) wavefunctions. The Hartree-Fock ansatz is not able to
catch “correlation effects”. Even if the initial data happens to be a single Slater de-
terminant, the interaction of the particles would immediately create “correlations”
in the time evolution - however, the TDHF method forces the dynamics to stay on
a manifold where correlation is always zero.

Improving the approximation systematically by adding determinants brings in
correlation into the multiconfiguration ansatz. Now correlation effects of the many
particle wavefunction can be included in the initial data and the effects of dynamical
“correlation - decorrelation” can be caught in the time evolution. This is a very
important conceptually advantage of MCTDHF for the modeling and simulation of
correlated few electron systems. Such systems, for example in “photonics” where
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an atom interacting with an intense laser is measured on the femto- or atto-second
scale, are increasingly studied and have given a boost to MCTDHF (see e.g. [7],[2]).

3. Flow on the Fiber Bundle

In this section, we consider a general self-adjoint operator H in L2(ΩN ). Most
calculations here will stay at the formal level with no consideration of functional
analysis. Solutions are meant in the classical sense and in the domain of the op-
erator H . In Section 4 below physical problems will be considered and details
concerning proof of existence, uniqueness of solutions and blow-up alternatives in
the appropriate functional spaces will be given.

From this point onward, T > 0 is fixed. A key point of the time-dependent case is
that the set of ansatz BN,K is not invariant by the Schrödinger dynamics. It is even
expected (but so far not proved to our knowledge) that the solution of the exact
Schrödinger equation (1.2) with initial data in BN,K for some finite K ≥ N features
an infinite rank at any positive time as long as many-body potentials are involved
(see [17] for related issues on the stationary solutions and Subsection 3.5 for the
picture for non-interacting electrons). We therefore have to rely on a approximation
procedure that forces the solutions to stay on the set of ansatz for all time. In
Physics’ literature, the MCTDHF equations are usually (formally) derived from
the so-called Dirac–Frenkel variational principle (see, among others, [14, 15, 23]
and the references therein) that demands that for all t ∈ [0, T ], Ψ = Ψ(t) ∈ BN,K

and

(3.1)
〈

i
∂Ψ

∂t
−HΨ

∣

∣

∣
δΨ
〉

= 0, for all δΨ ∈ TΨBN,K,

where TΨBN,K denotes the tangent space to the differentiable manifold BN,K at
Ψ. Equivalently, one solves

(3.2) Ψ(t) = argmin
{

‖i ∂Ψ

∂t
−HΨ‖L2(0,T ;L2(ΩN )) : Ψ ∈ BN,K

}

for every T > 0 (see [27]). A continuous flow t 7→ Ψ(t) ∈ ∂BN,K on [0, T ] may be
lifted by infinitely many continuous flows t 7→

(

C(t); Φ(t)
)

on the fibers ∂FN,K that
are related by the transitive action of a continuous family of unitary transforms.
So called gauge transforms allow then to pass from a flow t 7→

(

C(t),Φ(t)
)

on

a given fiber to another (equivalent) flow t 7→
(

C′(t),Φ′(t)
)

such that Ψ(t) =

π
(

C(t),Φ(t)
)

= π
(

C′(t),Φ′(t)
)

. This is illustrated on Figure 1 below.
One choice of gauge amounts to imposing

(3.3)
〈∂φi

∂t
;φj

〉

= 0 for all 1 ≤ i, j ≤ K

to the time-dependent orbitals. Formally the minimization problem (3.2) under
the constraints Ψ = π(C,Φ), (C,Φ) ∈ FN,K along with (3.3) leads to the following
system of coupled differential equations

S0 :























i
dC

dt
=
〈

H Ψ | ∇CΨ
〉

,

i IΓ
(

C(t)
) ∂Φ

∂t
= (I− PΦ) ∇ΦΨ⋆[H Ψ],

(

C(0),Φ(0)
)

=
(

C0,Φ0

)

,

for a given initial data
(

C0,Φ0

)

in FN,K. This system will be referred to as the
variational system in the following, and its rigorous derivation will be detailed in
Subsection 3.3 below.
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The operator PΦ in S0 denotes the projector onto the space spanned by the φ′is.
More precisely

(3.4) PΦ(·) =
K
∑

i=1

〈

· , φi

〉

φi.

Actually one checks that

∇ΦΨ⋆[H Ψ] = ∇Φ

〈

H Ψ | Ψ
〉

.

Up to the Lagrange multipliers associated to (3.3) the right-hand side in the vari-
ational system corresponds to the Fréchet derivatives of the energy expectation

E(Ψ) =
〈

HΨ |Ψ
〉

with respect to the conjugate (independent) variables C̄ and Φ̄.

The variational system S0 is well-suited for checking energy conservation and
constraints propagation over the flow as shown in Subsection 3.1 below. However
it is badly adapted for proving existence of solutions for the Cauchy problem or for
designing numerical codes. Equivalent representations of the MCTDHF equations
over different fibers is made rigorous in Subsection 3.3. In particular, we prove below
that the variational system is unitarily (or gauge-) equivalent to System (3.25) –
named working equations – whose mathematical analysis in the physical case is the
aim of Section 4.

Remark 3.1. Since for every σ ∈ ΣN,K,
∂Ψ

∂cσ
= Φσ, the system for the cσ’s can

also be expressed as

(3.5) i
dcσ
dt

=
∑

τ

〈H Φτ | Φσ

〉

cτ .

This equation is then obviously linear in the expansion coefficients. Furthermore,
when the φi’s (or equivalently the Φσ’s) are kept constant in time, (3.5) is noth-
ing but a Galerkin approximation to the exact Schrödinger equation (1.2). The
MCTDHF approximation then reveals as a generalization to a combination of time-
dependent basis functions (with extra degree of freedom in the basis functions) of
the Galerkin approximation.

3.1. Conservation Laws. In this subsection, we assume the full-rank assumption
on the time interval [0, T ); that is IΓ

(

C(t)
)

is invertible for every t ∈ [0;T ]. We
check here that the expected conservation laws (propagation of constraints, conser-
vation of the energy) are granted by the variational system. Recall that to avoid
technicalities all calculations in this section are formal but would be rigorous for
regular classical solutions. We start with the following

Lemma 3.2 (The dynamics preserves FN,K). Let (C0,Φ0) ∈ FN,K being the initial
data. If there exists a solution to the system S0 on [0, T ] such that rank IΓ

(

C(t)
)

=
K for all t ∈ [0;T ], then

∑

σ

|cσ(t)|2 = 1,

∫

R3

φi(t) φ̄j(t) dx = δi,j ,

for all t ∈ [0;T ].

Proof. First we prove that
∑

σ |cσ(t)|2 =
∑

σ |cσ(0)|2 for all t ∈ [0, T ]. By taking
the scalar product of the differential equation satisfied by C in S0 with C itself, we
get

d

dt
|C(t)|2 = 2 ℜ

( d

dt
C(t);C(t)

)

= 2 ℑ
∑

σ

〈

H Ψ | cσ Φσ

〉

= 2 ℑ
〈

H Ψ | Ψ
〉

= 0,
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thanks to the self-adjointness of H, where ℜ and ℑ denote respectively real and
imaginary parts of a complex number. From the other hand, the full-rank assump-
tion allows to reformulate the second equation in (S0) as

(3.6) i
∂Φ

∂t
= (I − PΦ) IΓ(C)−1 ∇Φ Ψ⋆[H Ψ].

(Notice that PΦ commutes with IΓ(C)−1.) By definition I − PΦ projects on the
orthogonal subspace of Span{Φ}, therefore ∂

∂tφi lives in Span{Φ}⊥ for all t. Hence,

(3.7)
〈∂φi(t)

∂t
, φj(t)

〉

= 0.

for all 1 ≤ i, j ≤ K and for all t ∈ [0, T ]. This achieves the proof of the lemma. �

We now check that solutions to the variational system indeed agree with the
Dirac-Frenkel variational principle.

Proposition 3.3 (Link with the Dirac-Frenkel variational principle). Let (C,Φ) ∈
∂FN,K be a classical solution to S0 on [0, T ]. Then, Ψ = π(C,Φ) satisfies the
Dirac–Frenkel variational principle (3.1).

Proof. We start with the characterization (2.27) of the elements in TΨBN,K . Since
the full-rank assumption is satisfied in [0, T ], the orbitals satisfy (3.6), and therefore
∂φk

∂t ∈ Span{Φ}⊥ for all t ∈ [0, T ] and 1 ≤ k ≤ K. Firstly, being given σ ∈ ΣN,K ,
we have

〈

i
∂Ψ

∂t
−HΨ

∣

∣

∣

∂Ψ

∂cσ

〉

= i
∑

τ

dcτ
dt

〈

Φτ

∣

∣Φσ

〉

−
〈

H Ψ
∣

∣Φσ

〉

+ i
∑

τ

cτ

〈∂Φτ

∂t

∣

∣Φσ

〉

(3.8)

= i
dcσ
dt

−
〈

HΨ
∣

∣Φσ

〉

= 0,

thanks to the equation satisfied by cσ. Indeed,

∂Φτ

∂t
=

K
∑

k=1

∂Φτ

∂φk

[∂φk

∂t

]

and therefore the sum in (3.8) vanishes thanks to Lemma 2.8. Secondly, for every
1 ≤ k ≤ K and for any function ζ in Span{Φ}⊥, we have
〈

i
∂Ψ

∂t
−HΨ

∣

∣

∂Ψ

∂φk
[ζ]
〉

= i
∑

σ

dcσ
dt

〈

Φσ|
∂Ψ

∂φk
[ζ]
〉

+ i

K
∑

j=1

〈 ∂Ψ

∂φj

[∂φj

∂t

] ∣

∣

∂Ψ

∂φk
[ζ]
〉

−
〈

HΨ
∣

∣

∂Ψ

∂φk
[ζ]
〉

(3.9)

=
〈

i
(

(IΓ
(

C(t)
)

· ∂Φ

∂t

)

k
− ∂Ψ⋆

∂φk
[HΨ] , ζ

〉

= −
〈

PΦ
∂Ψ⋆

∂φk
[HΨ] , ζ

〉

= 0.(3.10)

Indeed, on the one hand, in virtue of Lemma 2.8, the first term in the right-hand side

of (3.9) vanishes whereas the second one identifies with i
∑K

j=1 IΓkj(C)
〈 ∂φj

∂t , ζ
〉

=
〈

(

IΓ
(

C(t)
)

· ∂Φ
∂t

)

k
; ζ
〉

since
∂φj

∂t and ζ both belong to Span{Φ}⊥. On the other

hand, the last line (3.10) is obtained using the equation satisfied by Φ in S0 and by
observing that PΦ ζ = 0 since ζ ∈ Span{Φ}⊥. The proof is complete. �

Let us now recall the definition of the energy

E(Ψ) = E
(

π(C,Φ)
)

=
〈

H Ψ | Ψ
〉

.
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It is clear that E(Ψ) depends on time via (C(t),Φ(t)). As a corollary to Proposi-
tion 3.3 we have the following

Corollary 3.4 (Energy is conserved by the flow). Let T > 0 and let (C,Φ) ∈ ∂FN,K

be a solution to S0 on [0, T ] such that π(C(t),Φ(t)) lies in the domain of H (or in
the “form domain” when H is a positive operator ) for all t in [0, T ]. Then,

E
(

π(C(t),Φ(t))
)

= E
(

π(C0,Φ0)
)

on [0, T ].

Proof. Comparing with (2.27) we observe that ∂Ψ
∂t ∈ TΨBN,K , for

∂Ψ

∂t
=
∑

σ

dcσ
dt

Φσ +
1

N

∑

σ

K
∑

k=1

cσ
∂Φσ

∂φk

[∂φk

∂t

]

,

with ∂φk

∂t in Span{Φ}⊥ whenever IΓ(t) is invertible. Then, applying Proposition 3.3

to δΨ = ∂Ψ
∂t one obtains

(3.11) 0 = ℜ
〈

i
∂Ψ

∂t
−H Ψ

∣

∣

∂Ψ

∂t

〉

= −ℜ
〈

HΨ | ∂Ψ

∂t

〉

= −1

2

d

dt

〈

H Ψ | Ψ
〉

.

Hence the result. �

3.2. An a posteriori error estimate. In this section, we will establish an L2(Ω)N

error bound for the MCTDHF approximation compared with the exact solution to
the linear N−particle Schrödinger equation (1.2). Let us introduce the projection
PTΨB onto the tangent space TΨBN,K to BN,K at Ψ. Then, we claim

Lemma 3.5. Given an initial data (C0,Φ0) ∈ ∂FN,K and an exact solution ΨE

to the N -particle Schrödinger equation (1.2). Then, as long as (C,Φ) is a solution
to S0 in ∂FN,K, we have for Ψ(t) = π(C(t),Φ(t)) the estimate:

‖ΨE − Ψ‖L2(ΩN ) ≤ ‖Ψ0
E − Ψ0‖L2(ΩN ) +

∣

∣

∣

∣

∫ t

0

(I − PTΨF) [H Ψ(s)] ds

∣

∣

∣

∣

.

Proof. First, Proposition 3.3 expresses the fact that PTΨBN,K

(

i∂Ψ
∂t − HΨ

)

= 0.
Therefore the equation satisfied by the ansatz Ψ is:

(3.12) i
∂Ψ

∂t
−HΨ = (I − PTΨBN,K

)
[

i
∂Ψ

∂t
−H Ψ

]

= −(I − PTΨBN,K
) [H Ψ],

since ∂Ψ
∂t lives in the tangent space TΨBN,K . Next, subtracting (3.12) from (1.2),

we get

i
∂(ΨE − Ψ)

∂t
−H(ΨE − Ψ) = −(I − PTΨBN,K

) [H Ψ]

Then, we apply the PDE above to ΨE −Ψ and we integrate formally over ΩN . The
result follows by taking the imaginary of both sides and by using the self-adjointness
of H. �

Roughly speaking, the above lemma tells that the closer is H Ψ to the tangent
space TΨBN,K , the better is the MCTDHF approximation. Intuitively, this is true
for large values of K. Let us mention that this bound was already obtained in [27]
and it is probably far from being accurate. However if the MCTDHF algorithm is
applied to a discrete model say of dimension L then for K large enough (K ≥ L )
this algorithm coincides with the original problem.
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3.3. Unitary Group Action on the Flow. We have just seen that the varia-
tional system S0 is taylor-made for checking energy conservation and constraints
propagation over the flow. However it is badly adapted for proving existence of
solutions for the Cauchy problem or for designing numerical codes. It is therefore
convenient to have at our disposal several explicit and equivalent representations
of the MCTDHF equations over different fibers and to understand how they are
related. This is the purpose of this subsection. Proofs of technical lemma and
theorems are postponed in the Appendix to facilitate straight reading.

We start with the following (straightforward) lemma on regular flows of unitary
tranforms :

Lemma 3.6 (Flow of unitary transforms). Let U0 ∈ OK and let t 7→ U(t) be in

C1
(

[0, T );OK

)

with U(0) = U0. Then, t 7→M(t) := −i dU∗

dt U defines a continuous
family of K ×K hermitian matrices, and for all t > 0, U(t) is the unique solution
to the Cauchy problem

(3.13)







i
dU

dt
= U(t)M(t)

U(0) = U0.

Conversely, if t 7→ M(t) is a continuous family of K ×K Hermitian matrices and
if U0 ∈ OK is given, then (3.13) defines a unique C1 family of K × K unitary
matrices.

The corresponding flow for unitary transforms for coefficients is as follows:

Corollary 3.7. Let (N,K) be an admissible pair, let t 7→ M(t) be a continuous
family of K ×K Hermitian matrices and let U0 ∈ OK . Then, if t 7→ U(t) denotes
the unique family of unitary K ×K matrices that solves (3.13), the unitary r × r
matrix U given by (2.18) is the unique solution to the differential equation

(3.14)







i
dU

dt
= U M,

U(0) = d
(

U0
)

,

with

(3.15) Mσ,τ =
∑

i∈σ, j∈τ
σ\{i}=τ\{j}

(−1)σ−1(i)+τ−1(j)Mij .

The proof of this corollary is postponed to the Appendix. The main result of
this section is:

Theorem 3.8 (Flow of unitary equivalent cross-sections). Let U0 ∈ OK and
(C0,Φ0) ∈ ∂FN,K.

(i) Let t 7→ M(t) be a continuous family of K × K Hermitian matrices on [0, T ]
and let U(t) ∈ C1

(

[0, T );OK

)

be the corresponding solution to (3.13). Assume that

there exists a solution (C,Φ) ∈ C0
(

0, T ; ∂FN,K

)

of S0 with initial data (C0,Φ0).
Then, the couple (C′,Φ′) = U(t) · (C,Φ) with U ∈ Or

K defined by (2.20) and (2.18)
is solution to the system

(3.16)























i
dC′

dt
=
〈

H Ψ | ∇C′Ψ
〉

− M
′ C′,

i IΓ(C′)
∂Φ′

∂t
= (I − PΦ′) ∇Φ′Ψ⋆[H Ψ] + IΓ(C′)M ′ Φ′

(

C′(0),Φ′(0)
)

= U0 · (C0,Φ0)
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with Ψ = π(C,Φ) = π(C′,Φ′), U0 =
(

U0, d(U0)
)

∈ Or
K being defined by (2.20) and

with

M ′ = UMU⋆, M
′ = UMU

⋆,

where M be the r × r Hermitian matrix with entries given by (3.15).
(ii) Conversely, assume that there exists a solution (C,Φ) ∈ C0

(

0, T ; ∂FN,K

)

of

S0 with initial data (C0,Φ0) and let U(t) ∈ C1
(

[0, T );OK

)

. Then, the couple
(C′,Φ′) = U(t) · (C,Φ) with U ∈ Or

K defined by (2.20) and (2.18) is a solution to

System (3.16) with M(t) = −i dU∗

dt U .

Remark 3.9 (Link with Lagrangian interpretation). The equations can be derived
(at least formally) thanks to the Lagrangian formulation: One writes the stationar-
ity condition for the action

A(Ψ) =

∫ T

0

〈

Ψ
∣

∣i
∂

∂t
−H

∣

∣Ψ
〉

dt

over functions Ψ = Ψ(t) that move on FN,K. The associated time-dependent Euler–
Lagrange equations take the form (3.16) with Ψ = π(C,Φ), M an hermitian matrix
and with M be the r×r hermitian matrix linked to M through Eqn. (3.15) above. As
observed already by Cancès and Le Bris [8], even if they appear so, the Hermitian
matrices M and M should not be interpreted as time-dependent Lagrange multipliers
associated to the constraints (C,Φ) ∈ FN,K since the constraints on the coefficients
and the orbitals are automatically propagated by the dynamics (see Lemma 3.15),
but rather as degrees of freedom within the fiber at Ψ . In particular, this gauge
invariance can be used to set M and M to zero for all t as observed in Lemma 3.8
and Eqn. (3.22) below, so that the above system can be transformed into the simpler
system (S0) we started with.

As a first example of the change of gauge one can use the unitary transforms to
diagonalize the matrix IΓ for all time and therefore derive the evolution equations
for natural orbitals following [5]

Lemma 3.10 (Diagonal density matrix). Let (C,Φ) satisfying S0 with initial data
(C0,Φ0) and let U0 ∈ OK that diagonalizes IΓ(C0). We assume that for all time
the eigenvalues of IΓ(C) are simple, that is γi 6= γj for 1 ≤ i, j ≤ K and i 6= j.
Define a K ×K Hermitian matrix by

Mij =











1

γj − γi

〈

H Ψ | ∂Ψ

∂φi
[φj ]
〉

−
〈 ∂Ψ

∂φj
[φi] | H Ψ

〉

if i 6= j,

0 otherwise ,

and consider the family t 7→ U(t) ∈ OK that satisfies (3.13) with U(t = 0) = U0.
Then (C′,Φ′) = U(t) · (C,Φ) is solution to



























i
dC′

dt
=
〈

H Ψ | ∇C′Ψ
〉

− M
′ C′,

i γi(t)
∂φ′i
∂t

= (I − PΦ′)
∂Ψ

∂φ′i

⋆

[H Ψ] + γi(t)M
′ Φ′

(

C′(0),Φ′(0)
)

= U0 · (C0,Φ0)

with the notation of Theorem 3.8. In particular, IΓ(C′) = diag
(

γ1(t), . . . , γK(t)
)

for every t.
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Proof. Using the equation for the coefficients in (3.16) together with (2.14), the
evolution equation for the coefficients of the density matrix writes

i
dγij

dt
=

∑

σ,τ : i∈σ, j∈τ
σ\{i}=τ\{j}

(−1)σ−1(i)+τ−1(j)
[

〈H Ψ | cσ Φτ 〉 − 〈cτ Φσ | H Ψ〉
]

+
∑

κ,σ,τ : i∈σ, j∈τ
σ\{i}=τ\{j}

(−1)σ−1(i)+τ−1(j)
[

Mσ,κ cκ cτ − Mκ,τ cκ cσ
]

=
〈

H Ψ | ∂Ψ

∂φi
[φj ]
〉

−
〈 ∂Ψ

∂φj
[φi] | H Ψ

〉

−
K
∑

k=1

{

IΓik Mkj −Mik IΓkj

}

Next, we require that

γij(t) = γi δi,j , that is
dIΓij

dt
= 0 ∀ 1 ≤ i 6= j ≤ K.

Using the above equation, a sufficient condition is given by

Mi,j =
1

γi − γj

[〈

H Ψ | ∂Ψ

∂φi
[φj ]
〉

−
〈 ∂Ψ

∂φj
[φi] | H Ψ

〉]

This achieves the proof. �

As a second application of Theorem 3.8 we investigate particular (stationary)
solutions or standing waves. A standing wave for the exact Schrödinger equation is
of the form Ψ(t, x) = e−iλ tΨ(x) with λ ∈ R . In the same spirit we look for solutions
(C′,Φ′) of System (3.16) with (C′,Φ′) = U(t) · (e−iλ t C,Φ), where (C,Φ) ∈ ∂FN,K

is fixed, independent of time, and U(t) ∈ Or
K . Using the formulas (2.28) and (2.29)

for the changes of variables, we arrive at






















(

i
dU(t)

dt
+ M U + λU

)

C = U

〈

H Ψ | ∇CΨ
〉

,

IΓ(C)
(

i U⋆ dU

dt
− U⋆M U

)

Φ = (I − PΦ) ∇ΦΨ⋆ [H Ψ],

U(0) = IK .

In the above system Ψ = π(C,Φ) and IΓ(C) are independent of time and IΓ(C) is
invertible. We start with the equation satisfied by Φ. Observing that the left-hand
side lives in Span{Φ} whereas the right-hand side lives in Span{Φ}⊥, we conclude
that there are both equal to zero. Therefore, there exists a K ×K matrix Λ that
is independent of t and such that

(3.17) ∇ΦΨ⋆[H Ψ] = ∇Φ

〈

H Ψ | Ψ
〉

= Λ · Φ.
Also since the left-hand side has to be independent of t we get

i
dU

dt
= M U.

Comparing now with the equation for the coefficients we infer from Corollary 3.7
that

i
dU(t)

dt
= −M U,

hence

(3.18) ∇C

〈

H Ψ | Ψ
〉

= λC.

Equations (3.17) and (3.18) are precisely the MCHF equations that are satisfied by
critical points of the energy. They were derived by Lewin [25] in the Coulomb case.
The real λ is the Lagrange multiplier corresponding to the constraint C ∈ Sr−1
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whereas the Hermitian matrix Λ is the matrix of Lagrange multipliers corresponding
to the orthonormality constraints on the orbitals. Existence of such solutions in
physical case will be recalled in Section 4.

The proof of Theorem 3.13 is postponed in the Appendix and we rather state
before some corollaries or remarks. In Physics’ literature the MCTDHF equations
are derived from the variational principle (3.1) under the constraints Ψ = π(C,Φ) ∈
BN,K along with additional constraints to the time-dependent orbitals

(3.19)
〈∂φi

∂t
;φj

〉

= 〈Gφi;φj〉 for all 1 ≤ i, j ≤ K

where G is an arbitary self-adjoint operator on L2(Ω) possibly time-dependent. In
this spirit the variational system corresponds to G = 0. This operator is named a
gauge. Therefore a gauge field is chosen a priori and the corresponding equations
are derived accordingly. Both approaches are equivalent by observing that, to every
Hermitian matrixM , one can associate a self-adjoint operator G in L2(Ω) such that
Mij = 〈Gφi;φj〉 by demanding that

Gφi =

K
∑

j=1

Mij φj for all 1 ≤ i ≤ K.

Conversely being given the family t 7→M(t) in Theorem 3.13 it follows immediately
from the system (3.16) that for all 1 ≤ i, j ≤ K,

i
〈∂φ′i
∂t

;φ′j
〉

= M ′
ij .

provided IΓ(C′) = U IΓ(C) U⋆ is invertible on [0, T ). We state below Theorem 3.8
that is the equivalent formulation of Theorem 3.13 in terms of gauge. It is based
on above remarks together with the following :

Lemma 3.11. Let t 7→ G(t) be a family of self-adjoint operators on L2(Ω) and let
Φ = (φ1(t), φ2(t), . . . , φK(t)) ∈ OL2(Ω)K such that such that t 7→ 〈G(t)φi(t) ; φj(t)〉
is continuous on [0, T ] . Then theK×K matrix M with entries Mij(t) = 〈G(t)φi(t);φj(t)〉
is Hermitian and the Cauchy problem (3.13) defines a globally well-defined C1 flow
on the set of unitary K×K matrices. In that case, the unitary transforms U = d(U)
solve the Cauchy problem (3.14) with M in (3.15) given by

(3.20) Mσ,τ =
N
∑

i=1

〈

Gxi
Φσ

∣

∣Φτ

〉

.

Remark 3.12. When G is the Laplace operator or, more generally a one-body
time independent Schrödinger operator, we simply assume that φi ∈ H1(R3) or,
say, φi ∈ H1

0 (Ω) when Ω is a bounded domain. (Other boundary conditions could
of course be considered.)

Theorem 3.13 (Flow in different gauge). Let U0 ∈ OK , (C0,Φ0) ∈ ∂FN,K and
let t 7→ G(t) be a family of self-adjoint operators in L2(Ω). Assume that there
exists a solution (C,Φ) ∈ C0

(

0, T ; ∂FN,K

)

to S0 with initial data (C0,Φ0) such
that t 7→ 〈G(t)φi(t);φj(t)〉 is continuous on [0, T ] for every 1 ≤ i, j ≤ K. Define
the family of unitary transforms U(t) ∈ C1

(

[0, T );OK

)

that satisfy (3.13) with

Mij = 〈G φi;φj〉 as in Lemma 3.11. Then the couple (C′,Φ′) = U(t) ·
(

C; Φ
)

with
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U(t) =
(

d(U(t));U(t)
)

defined by (2.20) and (2.18) is a solution to

(SG)



































i
dC′

dt
=
〈

H Ψ | ∇C′Ψ
〉

−
〈

N
∑

i=1

Gxi
Ψ | ∇C′Ψ

〉

,

i IΓ(C′)
∂Φ′

∂t
= IΓ(C′) G Φ′ + (I − PΦ′) ∇Φ′Ψ⋆

[

H Ψ −
N
∑

i=1

Gxi
Ψ
]

,

(

C′(0),Φ′(0)
)

= U0 · (C0,Φ0),

with Ψ = π(C,Φ) = π(C′,Φ′), U0 =
(

U0, d(U0)
)

∈ Or
K being defined by (2.20) and

with M being the r × r Hermitian matrix given by (3.15).

Remark 3.14. Passing from S0 to SG amounts to change the operator H by H−
∑N

i=1 Gxi
in both equations and by adding the linear term IΓ(C′)GΦ′ in the equation

satisfied by Φ′. Note that whereas solutions to S0 in ∂FN,K satisfy

i
〈∂φi

∂t
;φj

〉

= 0,

for all 1 ≤ i, j ≤ K, solutions to (SG) satisfy

(3.21) i
〈∂φ′i
∂t

;φ′j
〉

=
〈

Gφ′i ;φ′j
〉

.

The system SG corresponds to the choice of the gauge G .

This is illustrated on Figure 1 below.

Theorem 3.13 and Lemma 3.11 provide with the differential equation that satis-
fies the unitary matrix U(t) that transforms S0 into SG. A direct calculation shows
that, given two self-adjoint one-particle operators G and G′, the solution to

(3.22)







i
dU

dt
= U MG→G′ ,

U(t = 0) = U0

with
(

MG→G′

)

ij
=
〈

(G−G′)φi ; φj

〉

maps a solution to SG to a solution to SG′ . In

particular, if we prove existence of solutions for the system SG for some operator G
then we have existence of solutions for any system SG′ . Another immediate though

Figure 1. Flow on the Fiber Bundle

crucial consequence of Theorem 3.13 and Theorem 3.8 is given in Corollary 3.15
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below. It states that for any choice of gauge the constraints on the expansion
coefficients and on the orbitals are propagated by the flow and the energy is kept
constant since it is the case for the system S0. Also the rank of the first-order
density matrices does not depend on the gauge.

Corollary 3.15 (Gauge transforms and conservation properties). Let T > 0. Let G
be a self-adjoint (possibly time-dependent) operator acting on L2(Ω). Assume that
there exists a solution to the system SG on [0, T ] such that rank IΓ

(

C(t)
)

= K and

such that the matrix t 7→
〈

Gφi;φj

〉

1≤i,j≤K
is continuous. Then, for all t ∈ [0;T ],

(C(t),Φ(t)) ∈ ∂FN,K,

and the energy is conserved, that is

E
(

π(C(t),Φ(t))
)

= E
(

π(C(0),Φ(0))
)

.

In addition, Ψ = π(C,Φ) satisfies the Dirac-Frenkel variational principle (3.1).

Proof of Corollary 3.15. By Theorem 3.13 and its remark, if (C,Φ) satisfies SG with
initial data in ∂FN,K, there exists a family of unitary transforms U ∈ C1

(

0, T ;OK

)

such that (C,Φ) = U · (C′,Φ′) where (C′,Φ′) satisfies S0 with same initial data. By
Lemma 3.2, S0 preserves FN,K , hence so does SG since U and U = d(U) are unitary.
Then, by Lemma 2.6, π(C,Φ) = π(C′,Φ′) = Ψ, and the energy is conserved by the
flow since it only depends on Ψ. Eventually Eqn. (3.1) is satisfied since TΨBN,K

only depends on the point Ψ on the basis BN,K and not on the preimages in the
fiber π−1(Ψ). �

So far we have considered a generic Hamiltonian H and we have written down an
abstract coupled system of evolution equations for this operator. In next subsection
we go back to the particular physical case when H is a N -body Schrödinger type
operators with pairwise interactions

3.4. N-body Schrödinger type operators with pairwise interactions. At
this point, we consider an Hamiltonian in L2(ΩN ) of the following form

(3.23) HN Ψ =

N
∑

i=1

Hxi
Ψ +

∑

1≤i<j≤N

v(|xi − xj |) Ψ.

In the above definition, H is a self-adjoint operator acting on L2(Ω). To fix ideas
we take H = − 1

2∆ + U . As usual, the subscript xi means that the operator is

acting on the ith space variable and it will be omitted when there is no confusion.
v is a real-valued even potential, and we denote

V =
∑

1≤i<j≤N

v(|xi − xj |) .

Now, expanding the expression of H in the system S0 and arguing as in the proof
of Theorem 3.13 we obtain

(3.24) S0 :



































i
dC

dt
=
〈

N
∑

i=1

Hxi
Ψ | ∇CΨ

〉

+
〈

V Ψ | ∇CΨ
〉

i IΓ(C)
∂Φ

∂t
= (I − PΦ) ∇ΦΨ⋆

[

V Ψ +

N
∑

i=1

Hxi
Ψ
]

(

C(0),Φ(0)
)

=
(

C0,Φ0

)

∈ FN,K .
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Comparing with System SG in Theorem 3.13, one observes that the choice of gauge
G = H leads to the equivalent system

(3.25) SH :



























i
dC

dt
=

〈

V Ψ | ∇CΨ

〉

,

i IΓ(C)
∂Φ

∂t
= IΓ(C) H Φ + (I − PΦ) ∇ΦΨ⋆[V Ψ]

(

C(0),Φ(0)
)

=
(

C0,Φ0

)

∈ FN,K,

(provided t 7→ 〈Hφi;φj〉 makes sense). From Corollary 3.15 we know that if the
initial data in (3.25) lies in FN,K it persists for all time. This property allows to
recast System (3.25) in a more tractable way where the equations satisfied by the
orbitals form a coupled system of non-linear Schrödinger-type equations. This new
system that it is equivalent to System (3.25) as long as the solution lies in FN,K

will be referred to as working equations following [7, 23]. It is better adapted for
well-posedness analysis as will be seen in the forthcoming subsection.

Proposition 3.16 (Working equations). Let (C,Φ) be a solution to (3.25) in FN,K,
then it is a solution to

(3.26)























i
dC

dt
= K[Φ] C,

i IΓ(C)
∂Φ

∂t
= IΓ(C) H Φ + (I − PΦ) W[C,Φ] Φ,

(

C(0),Φ(0)
)

=
(

C0,Φ0
)

∈ FN,K ,

where K[Φ] (resp. W[C,Φ]) is a r× r (resp. K×K) Hermitian matrix with entries

(3.27) K[Φ]σ,τ =
∑

i,j∈τ, k,l∈σ

δτ\{i,j},σ\{k,l}(−1)τ
i,j (−1)σ

k,lDv

(

φi φ̄k , φ̄jφl

)

and

(3.28) W[C,Φ]ij(x) = 2

K
∑

k,l=1

γjkil

(

φk φ̄l ⋆Ω v)

where here and below we denote

Dv(f, g) =

∫∫

Ω×Ω

v(|x − y|) f(x) g(y) dxdy,

f ⋆Ω v =

∫

Ω

v(· − y) f(y) dy

and with the coefficients γijkl being defined by (2.12) in Proposition 2.3. Conversely,
any solution to (3.26) defines a flow on FN,K as long as IΓ(C) is invertible and is
therefore a solution to (3.25).

Proof. We have to show that for Ψ = π(C,Φ) in BN,K

(3.29)
〈

V Ψ | ∇CΨ
〉

= ∇C

〈

V Ψ | Ψ
〉

= K[Φ]C

and

(3.30) ∇ΦΨ⋆[V Ψ] = ∇Φ

〈

V Ψ | Ψ
〉

= W[C,Φ] Φ.

We start from
〈

V Ψ | Ψ
〉

=

∫∫

R3×R3

[Ψ ⊗ Ψ]:2(x, y, x, y) v(|x − y|) dxdy

with

[Ψ ⊗ Ψ]:2(x, y, x, y) =
K
∑

i,j,k,l=1

γijkl φi(x) φj(y) φk(x) φl(y)



MCTDHF EQUATIONS 25

according to (2.10). Since only the coefficients γijkl depend on C through Eqn.
(2.12) we first get

∇C

〈

V Ψ | Ψ
〉

=

K
∑

i,j,k,l=1

∇C

(

γijkl

)

Dv

(

φi φ̄k , φ̄jφl

)

.

Hence (3.27) by using again the formula (2.12).

We now turn to the proof of (3.30) starting from

〈

V Ψ | Ψ
〉

=

K
∑

i,j,k,l=1

γijkl

∫∫

R3×R3

φi(x) φj(y) φk(x) φl(y) v(|x− y|) dxdy.

Then, for every 1 ≤ p ≤ K

∂

∂φp

〈

V Ψ | Ψ
〉

=

K
∑

i,j,l=1

γijpl

(

(φjφl) ⋆ v
)

φi +

K
∑

i,j,k=1

γijkp

(

(φiφk) ⋆ v
)

φj

= 2

K
∑

i,j,l=1

γjipl

(

(φiφl) ⋆ v
)

φj

by interchanging the rôle played by i and j in the first sum and by using γijkp = γjipk

and renaming k as l in the second one. Comparing with (3.28) we find

∂

∂φp

〈

V Ψ | Ψ
〉

= 2

K
∑

j=1

W[C,Φ]pj φj .

To achieve the proof of the proposition we now check that the system of equations
in (3.26) preserves FN,K as long as IΓ(C) is invertible. The claim is obvious as
regards the orthonormality of the orbitals since H is self-adjoint and since I − PΦ

projects on Span{Φ}⊥. On the other hand, the equation on the coefficients leads
to

d

dt
‖C(t)‖2 = 2 ℑ

∑

σ,τ

K[Φ]σ,τcτ cσ = 0

since the matrix K[Φ] is Hermitian. �

We treat apart in the last two subsections the special cases of the linear free sys-
tem with no pairwise interaction and of the time-dependent Hartree–Fock equations
for the evolution of a single-determinant (TDHF in short) with pairwise interaction.

3.5. Free Systems v ≡ 0. In this section we consider free systems for which the
binary interaction potential v is switched off. Then the system (3.25) becomes











i
dC

dt
= 0,

i IΓ(C)
∂Φ

∂t
= IΓ(C) H Φ.

From the first equation the coefficients cσ’s are constant during the evolution. In
particular the full-rank assumption is satisfied for all time whenever it is satisfied at
start. In that case the orbitals satisfy K independent linear Schrödinger equations
through

(3.31) i
∂Φ

∂t
= H Φ,



MCTDHF EQUATIONS 26

and the N -particle wave-function Ψ = π(C,Φ) solves the exact Schrödinger equa-
tion

(3.32)















i
∂Ψ

∂t
=

N
∑

i=1

Hxi
Ψ,

Ψ(t = 0) = π(C0,Φ0).

Conversely, the unique solution to the Cauchy problem (3.32) with (C0,Φ0) ∈
∂FN,K coincides with π(C(t),Φ(t)) ∈ FN,K where Φ(t) is the solution to (3.31).
This is a direct consequence of the fact that the linear structure of (3.32) propagates
the factorization of a Slater determinant. In particular, this enlightens the fact
that the propagation of the full-rank assumption is intricately related to the non-
linearities created by the interaction potential v between particles.

3.6. MCTDHF (K = N) contains TDHF. We now check that the usual time-
dependent Hartree-Fock (TDHF) equations are obtained in the above general set-
ting for K = N . We consider the following single-determinant ansatz

ΨHF = φ1 ∧ . . . ∧ φN

for Φ = (φ1, . . . , φN ) in OL2(Ω)N . The TDHF equations write (up to a unitary
transform)

(3.33) i
∂φi

∂t
= H φi + FΦ φi,

for 1 ≤ i ≤ N , with FΦ being the self-adjoint operator on L2(Ω) that is defined by

FΦ w =
(

N
∑

j=1

∫

Ω

v(| · −y|)|φj(y)|2dy
)

w −
N
∑

j=1

(

∫

Ω

v(| · −y|)φj(y)w(y) dy
)

φj .

The global-in-time existence of solutions in the energy space H1(ΩN ) goes back to
Bove, Da Prato and Fano [6] for bounded interaction potentials and to Chadam
and Glassey [11] for the Coulomb potentials. They also checked by integrating the
equations that the TDHF equations propagate the orthonormality of the orbitals
and that the Hartree–Fock energy is preserved by the flow. Derivation of the
TDHF equations from the Dirac-Frenkel variational principle may be encountered
in standard Physics textbooks (see e.g. [29]). Let us also mention the work [8] by
Cancès and LeBris who have investigated existence of solutions to TDHF equations
including time-dependent electric field and that are coupled with nuclear dynamics.

By simply setting K = N in the MCTDHF formalism one gets

(3.34) #ΣN,K = 1 , , IΓ(t) = IN

and
Ψ(t) := C(t) φ1(t) ∧ . . . ∧ φN (t), C(t) = e−iθΦ(t)

for some θΦ ∈ R. In addition according to Remark 2.4,

(3.35) γjkil =
1

2

(

δi,j δk,l − δi,k δj,l
)

.

Therefore with the definitions (3.27) and (3.28)

K[Φ] =
〈

V φ1 ∧ . . . ∧ φN | φ1 ∧ . . . ∧ φN

〉

=
∑

i,j,k,l : {i,j}={k,l}
(−1)i+pi(j)+k+pk(l)Dv(φi φ̄k; φ̄j φl)

=
N
∑

i=1

〈

FΦφi;φi

〉



MCTDHF EQUATIONS 27

and
N
∑

j=1

W[C,Φ]ij φj = FΦ φi.

Eventually for N = K, according to (3.26), the MCTDHF system in the working
form turns out to be

SH(N = K)











































dθΦ(t)

dt
=

N
∑

i=1

〈

FΦφi;φi

〉

,

i
∂φi

∂t
= H φi + (I − PΦ) FΦ φi

= H φi + FΦ φi −
N
∑

j=1

〈FΦ φi;φj〉 φj

with θΦ(0) = 0 and Φ(0) ∈ OL2(Ω)N . Comparing with (3.16), we introduce the N×
N Hermitian matrix M with entries Mij = −〈FΦ φi;φj〉. According to Lemma 3.6
there exists a unique unitary matrix U(t) such that







i
dU

dt
= − U M,

U(t = 0) = IN .

In virtue of (2.18) the corresponding unitary matrix that transforms φ1 ∧ . . . ∧ φN

into (Uφ1)∧. . .∧(UφN ) is then simply the complex number of modulus 1 U = det(U)
that satisfies

(3.36)







i
dU

dt
= −tr(M) U,

U(t = 0) = 1.

Comparing (3.36) with the equation satisfied by θΦ(t) in SH(N = K) it turns out
that U = eiθΦ(t). In that special case a change of gauge is simply a multiplication
by a global phase factor. Applying Theorem 3.8, the functions φ′i, 1 ≤ i ≤ N ,
defined by Φ′ = UΦ satisfy the standard Hartree–Fock equations (3.33) and C′(t) =
UC(t) = 1 for all time; that is Ψ = φ′1 ∧ . . . ∧ φ′N . Being a special case of the
MCTDHF setting we then deduce “for free” that the TDHF equations propagate
the orthonormality of the initial data, that they satisfy the Dirac-Frenkel variational
principle and that the flow keeps the energy constant.

4. Mathematical analysis of the MCDTHF Cauchy Problem

[Well-posednessof MCTDHF equations] This section is devoted to the mathe-
matical analysis of the Cauchy problem for the N -body Schrödinger operator with
“physical interactions”

(4.1) U(x) = −
M
∑

m=1

zm

|x−Rm| and v(x) =
1

|x|

that is given by (3.25):

SH :



























i
dC

dt
=

〈

V Ψ | ∇CΨ

〉

,

i IΓ(C)
∂Φ

∂t
= IΓ(C) H Φ + (I − PΦ) ∇ΦΨ⋆[V Ψ]

(

C(0),Φ(0)
)

=
(

C0,Φ0

)

∈ FN,K.
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In this section Ω = R3. According to Proposition (3.26) solutions to (SH) lie in
FN,K and they are therefore solutions to

(4.2)























i
dC

dt
= K[Φ] C,

i IΓ(C)
∂Φ

∂t
= IΓ(C) H Φ + (I − PΦ) W[C,Φ] Φ,

(

C(0),Φ(0)
)

=
(

C0,Φ0
)

∈ FN,K

with

K[Φ]σ,τ =
∑

i,j∈τ, k,l∈σ

δτ\{i,j},σ\{k,l}(−1)τ
i,j (−1)σ

k,lD
(

φi φ̄k , φ̄jφl

)

,

W[C,Φ]ij(x) = 2
K
∑

k,l=1

γjkil

(

φk φ̄l ⋆
1

|x| )

D(f, g) =

∫∫

R3×R3

1

|x− y| f(x) g(y) dxdy .

The above system is referred to as the “strong form” of the working equations. Let
us emphasize again that it is equivalent to (SH) provided (C,Φ) ∈ FN,K . The main
sources of difficulties arise from the fact that the matrix IΓ(t) may degenerate and
from the Coulomb singularities of the interaction potentials. Our strategy of proof
works for more general potentials U and v. This is discussed in Section 7 below.

The spaces Cr and Wm,p(R3)K are equipped with the Euclidian norms for the
vectors C and Φ respectively

‖C‖2 :=
∑

σ∈ΣN,K

|cσ|2, ‖Φ‖2
W m,p :=

K
∑

i=1

‖φi‖2
W m,p(R3) .

Moreover, for a p× p matrix M we use the Frobenius norm

‖M‖ =

√

√

√

√

p
∑

i,j=1

|Mij |2.

We introduce the spaces Xm := Cr ×Hm(R3)K for m ∈ {1, 2} endowed with the
norms

‖(C,Φ)‖Xm
= ‖C‖ + ‖Φ‖Hm .

The main result in this section is the following

Theorem 4.1. [The MCTDHF equations are well-posed] Let m ≥ 1 and (C0,Φ0) ∈
∂FN,K with Φ0 in Hm(R3)K . Then, there exists a maximal existence time T ⋆ > 0
(possibly +∞ but independent of m) such that:

(i) The MCTDHF system (3.26) admits a unique solution (C,Φ) with

C ∈ C1
(

[0, T ⋆); Cr
)

, Φ ∈ C0
(

[0, T ⋆);Hm(R3)K
)

∩ C1
(

[0, T ⋆);Hm−2(R3)K
)

.

This solution depends continuously on the initial data (C0,Φ0) in Xm. For every
0 ≤ t < T ⋆,

(ii)
(

C(t),Φ(t)
)

∈ ∂FN,K and IΓ
(

C(t)
)

is invertible.

(iii) The energy is conserved :
〈

HN Ψ(t)
∣

∣Ψ(t)
〉

=
〈

HN Ψ0
∣

∣Ψ0
〉

with Ψ = π(C,Φ) and Ψ0 = π(C0,Φ0).
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(iv) The Dirac–Frenkel variational principle (3.1) is satisfied.
(v) When T ⋆ < +∞ one has

lim sup
tրT ⋆

‖IΓ(C(t))−1‖ = +∞

and more precisely:
∫ T ⋆

0

‖IΓ
(

C(t)
)−1‖3/2 dt = +∞ .

The global well-posedness in H1 and H2 of the TDHF equations goes back
to Chadam and Glassey [11]. Recently Koch and Lubich [23] proved local well-
posedness in H2 of the MCTDH and MCTDHF equations for regular pairwise
interaction potential v and with U ≡ 0 by using Lie commutators techniques. Our
result extends both works. The rest of the section is devoted to the proof of this
theorem. The above system with the same notation is rewritten in the “mild form”
which makes sense as long as the matrix IΓ(C(t)) is not singular:

(4.3) U(t) = e−itAU0 − i

∫ t

0

e−i(t−s)AL
(

U(s)
)

ds

with
(4.4)

U =

(

C
Φ

)

, A =

(

0
H⊗ IK

)

, L(U) =

(

K[Φ]C
IΓ(C)−1 (I − PΦ) W[C,Φ]Φ

)

.

The strategy of proof is as follows.
In Subsection 4.1 we show that the operator L is locally Lipschitz continuous

on Xm for m ≥ 1 in the neighbourhood of any point (C0,Φ0) such that IΓ(C0) is
invertible. Observe in particular that IΓ(C) is a second-order homogeneous function
of the coefficients C and therefore the inversibility of this matrix is a local property.
Standard theory of evolution equations with locally Lipschitz non-linearities then
guarantees local-in-time existence and uniqueness of a mild solution in these spaces
that is continuous with respect to the initial data as long as the matrix IΓ(C)
remains invertible (see e.g [32, 31]). Next for initial data in Xm with m ≥ 2,
the corresponding mild solution in this space is regular enough to be a strong
solution to (4.2) (see [31, 10]). As shown in the previous section (Proposition 3.16),
the strong solution then remains on the constraints fiber bundle ∂FN,K and it
is therefore a solution to (3.25). Furthermore using the gauge equivalence and
Corollary 3.15 one deduces that the energy of the solution is conserved and that
the Dirac-Frenkel variational principle is satisfied. Recall for further use that the
energy may be recasted in the following equivalent forms [16, 25]

E(Ψ) = E
(

π(C,Φ)
)

=

〈

(

H IΓ +
1

2
W[C,Φ]

)

Φ,Φ

〉

L2

=
K
∑

i,j=1

γij

∫

R3

[

1

2
∇φi · ∇φ̄j + U φi φ̄j

]

dx+
K
∑

i,j,k,l=1

γijkl D
(

φl φ̄i;φk φ̄j

)

.

(4.5)

In consequence for initial data in Xm, m ≥ 2, the norm of the vector Φ(t) remains
locally bounded in H1 (independently of the H2 norm). Therefore it is also a
strong solution in H1 defined on the same time interval which depends only on the
H1norm and on IΓ(C0). Eventually using the density of X2∩∂FN,K in X1∩∂FN,K
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and the continuous dependence with the initial data one obtains the local-in-time
existence of a strong solution in X1 ∩ ∂FN,K with constant energy.

In Subsection 4.2, relying on the conservation of the energy we prove the existence
of the solution over a maximal time interval beyond which the density matrix de-
generates. By the system itself we get the further regularity C(t) ∈ C1

(

[0, T ∗),Cr
)

and Φ(t) ∈ ×C0([0, T ∗), Hm(R3)K) ∩ C1([0, T ∗), Hm−2(R3)K) .

4.1. Properties of the one-parameter group and local Lipschitz properties
of the non-linearities. As in Chadam and Glassey [11] for example, one checks
that

{

eitA}
t∈R

is a one-parameter group of linear operators, unitary in X0 and

uniformly bounded in time for 0 < t < T in X1 and X2.

We now show that the operator L in the right-hand side of (4.3) is a locally
bounded and locally Lipschitz continuous mapping in a small enough neighbour-
hood of any (C0,Φ0) in Xm such that IΓ(C0) is invertible for every m ≥ 1. The
operator L reveals as a composition of locally bounded and locally Lipschitz con-
tinuous mappings as now detailed. We first recall that invertible matrices form an
open subset of MK×K(C) and that the mapping M 7→ M−1 is locally Lipschitz
continuous since

‖M−1 − M̃−1‖ = ‖M−1 (M̃ −M) M̃−1‖
≤ ‖M−1‖ ‖M̃−1‖ ‖M − M̃‖.

In addition, being quadratic, the mapping C 7→ IΓ(C) is for any m and indepen-
dently ofm locally Lipschitz inXm in a small enough neighbourhood of any (C0,Φ0)
such that IΓ(C0) is invertible. The same holds true for the mapping C 7→ IΓ(C)−1

by composition of locally bounded and locally Lipschitz functions.

The operator PΦ is a sum of K terms of the form 〈φ, ·〉L2 φ with φ in Hm(R3).
Hence, for m ≥ 0,

(4.6) ‖PΦ‖L(Hm) . ‖Φ‖L2 ‖Φ‖Hm

where here and below . is a shorthand for a bound with a universal positive
constant that only depends on K and N . Therefore Φ 7→ PΦ is locally Lipschitz
from Xm to L(Hm) since it is quadratic with respect to Φ. To deal with the other
non-linearities we start with recalling a few properties of the Coulomb potential
taken from [11, Lemma 2.3]. Their proof is a straightforward application of Cauchy–
Schwarz’ and Hardy’s inequalities and we skip it. Let φ, ψ ∈ H1

(

R3
)

, then with

r = |x|, (φψ) ⋆ 1
r ∈ W 1,∞(R3), and we have

(4.7) ‖(φψ) ⋆
1

r
‖L∞(R3) ≤ 2 ‖∇φ‖L2(Ω)‖ψ‖L2(Ω)

and
∥

∥

∥∇
(

(φψ) ⋆
1

r

)

∥

∥

∥

L∞(R3)
≤ 4 ‖∇φ‖L2(Ω)‖∇ψ‖L2(Ω).

As a consequence of above inequalities and by an induction argument that is detailed
in [9] for example, we have, for Φ ∈ Hm(R3)K and for every 1 ≤ i, j, k ≤ K,

(4.8)
∥

∥

(

(φi φj) ⋆
1

r

)

φk

∥

∥

Hm(R3)
. ‖Φ‖2

Hm′ ‖Φ‖Hm . ‖Φ‖3
Hm

with m′ = max(m−1, 1). First, recall from (3.28), that W[C,Φ] Φ is a sum of terms

of the form γjkil φj

(

1
r ⋆φk φl

)

with the coefficients γjkil depending quadratically on
C according to (2.12). They are therefore locally Lipschitz continuous with respect
to C. Gathering with (4.8) we have

(4.9) ‖W[C,Φ] Φ‖Hm . ‖C‖2 ‖Φ‖2
Hm′ ‖Φ‖Hm . ‖C‖2 ‖Φ‖3

Hm .
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The mapping (C,Φ) 7→ W[C,Φ] Φ is then locally bounded in Xm and being qua-
dratic in C and cubic in Φ it is locally Lipschitz continuous in Xm by a standard
polarization argument. In particular, the first bounds reveals a linear dependence
on the Hm norm. Eventually, for every 1 ≤ i, j, k, l ≤ K, using (4.7) and Hölder’s
inequality we obtain

∣

∣D(φj φi , φkφl)
∣

∣ . ‖Φ‖3
L2 ‖Φ‖H1 . ‖Φ‖4

Hm ,

the last line being a direct consequence of (4.8). In particular this proves

(4.10) |K[Φ]| . ‖Φ‖3
L2 ‖Φ‖H1

and

(4.11) ‖K[Φ]C‖ . ‖C‖ ‖Φ‖4
Hm

and that (C,Φ) 7→ K[Φ]C is locally Lipschitz continous in Xm since according to
(3.27), K[Φ]C is a finite sum of terms of this kind up to some universal constant.

For any m ≥ 1 existence and uniqueness of a solution (C(t),Φ(t)) to the integral
equation (4.3) in a neighborhood of (C0,Φ0) in C0(0, T ;Xm) for 0 < T small enough
follows by Segal’s Theorem [32], which also ensures the continuity with respect to
the initial data in Xm.

We now turn to the existence of a maximal solution and to the blow-up alterna-
tive in X1.

4.2. Existence of the maximal solution and blow-up alternative. To sim-
plify notation, from now on we use the shorthand IΓ(t) for IΓ

(

C(t)
)

. Existence of

a global-in-time solution requires to control uniformly both the H1 norm of Φ and
the norm of IΓ−1(t). With the conservation of the energy this turns to be equivalent
to control only the norm of IΓ−1(t). Let T ∗ denotes the maximal existence time
and assume that T ∗ < +∞. We first show that

(4.12) lim sup
t↑T∗

‖IΓ(t)−1‖ = +∞.

We argue by contradiction and assume that there exists a positive constant M0

such that for all t ∈ [0, T ∗), ‖IΓ(t)−1‖ ≤ M0. We now prove that there exists a
positive constant K0 such that

(4.13) ∀t ∈ [0, T ∗), ‖Φ(t)‖H1 ≤ K0.

Thanks to Lemma 3.4 and Corollary 3.15, the energy is preserved by the flow, and
therefore using the expression (4.5)

〈

H IΓ(t) Φ(t),Φ(t)
〉

≤
〈

H IΓ(t) Φ(t),Φ(t)
〉

+
1

2

〈

W[C,Φ] Φ(t),Φ(t)
〉

,

= E(π(C,Φ)) = E(C0,Φ0)

for all 0 ≤ t < T ∗ since, with Ψ = π(C,Φ),
〈

V Ψ
∣

∣Ψ
〉

=
〈

W[C,Φ] Φ(t),Φ(t)
〉

≥ 0

for v ≥ 0. As in [25, 16], Kato’s inequality then yields that

‖
√

IΓ Φ‖H1 ≤M1

where M1 is a positive constant that is independent of t ≥ 0. Now let µ(t) ∈ (0, 1]
be the smallest eigenvalue of the hermitian matrix IΓ(t), then

1

µ(t)
≤ ‖IΓ−1‖ ≤ K

µ(t)
and

1
√

µ(t)
≤ ‖

√
IΓ−1‖ ≤ K

√

µ(t)
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for all t ∈ [0, T ∗), and therefore

(4.14) ‖Φ‖H1 ≤ K
√

µ(t)
‖
√

IΓΦ‖H1 ≤ KM1 ‖IΓ−1‖1/2.

In particular, this shows (4.13) with K0 = mM1M
1/2
0 . Therefore, for any t ∈

[0, T ∗) arguing as above, we may build a solution to the system on [t, t + T0] for
T0 > 0 that only depends on M0 and K0. Since t is arbitrary close to T ∗ we reach
the contradiction with the definition of T ∗. Hence (4.12).

Now, taking the derivative with respect to t of both sides of IΓ IΓ−1 = IK , we get

(4.15)
dIΓ−1

dt
= −IΓ−1 dIΓ

dt
IΓ−1,

for all t ∈ [0, T ∗). From the expression of IΓ in terms of C and since ‖C‖ = 1, it
holds

∥

∥

dIΓ

dt

∥

∥ .
∥

∥

dC

dt

∥

∥ .
∥

∥Φ
∥

∥

H1 . ‖IΓ−1‖1/2

in virtue of the bound (4.10) on K[Φ] using the fact that ‖Φ‖L2 = K. Inserting the
last bound above in (4.15) and integrating over t yields

‖IΓ(t)−1‖ ≤ ‖IΓ(0)−1‖ + const.

∫ t

0

‖IΓ(s)−1‖3/2 ds,

for all t ∈ [0, T ∗). Because of (4.12), this implies that
∫ T∗

0 ‖IΓ(s)−1‖3/2 ds = +∞.

So far we have proved the local well-posedness of the MCTDHF equations in
Xm for every m ≥ 1 and the existence of a maximal solution in H1 until time T ∗

where the density matrix becomes singular. We prove now that T ∗ is the maximal
time of existence regardless of the imposed regularity on the solution. Let (C,Φ)
be a solution in X2, then it is in particular a maximal solution in X1. We have to
show that the H2 norm of Φ cannot explode at finite time 0 < τ < T ∗. Indeed, for
any τ < T ∗, we have

(4.16) max
0≤t≤τ

‖IΓ(t)−1‖ . 1

by definition of T ∗, hence

(4.17) max
0≤t≤τ

‖Φ(t)‖H1 . 1.

From the Duhamel formula for the PDEs system (4.3)–(4.4) and using the bounds
(4.6) and (4.8) together with ‖Φ‖L2 = 1 and ‖C‖ = 1, we get for all t ∈ [0, τ ]

‖Φ(t)‖H2 ≤ ‖Φ0‖H2 + C sup
[0,τ ]

∫ t

0

‖Φ(s)‖H2 ds

where C is a positive constant that only depends on the local bounds (4.16) and
(4.17). By Gronwall’s lemma we infer

max
0≤t≤τ

‖Φ(t)‖H2 . eCτ

hence the conclusion. The proof for any m ≥ 2 follows then by a straightforward
induction argument using the corresponding bounds (4.6) and (4.8) by assuming
that max0≤t≤τ ‖Φ(t)‖Hm−1 . 1.

The proof of Theorem 4.1 is now complete.
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4.3. Existence of Standing wave solutions. In the present case the equations
for standing waves write (3.18) for the coefficients while (3.17) becomes:

(4.18) IΓ(C) H Φ + W[C,Φ] Φ = Λ · Φ
according to Proposition 3.16. In [24] Le Bris has proved the existence of ground-
states - that is, minima of the energy over the set FN,K - for the physical Hamil-
tonian (1.1), on the whole space R3, and under the assumptions K = N + 2 and
∑M

m=1 zm > N − 1. Later on Friesecke extended this result to general admissible
pairs (N,K), under the same assumption on the nuclear charge. Finally Lewin
proved the existence of infinitely many critical points of the MCHF energy for any
pairs (N,K), hence the existence of infinitely many solutions to the coupled sys-
tem (4.18) – (3.18) that satisfy the full-rank assumption. All these solutions then
give rise to infinitely many standing waves of the MCTDHF system and thereby of
particular global-in-time solutions.

The conservation of the invertibility of the matrix IΓ(t) being an essential issue
in the MCTDHF setting it is natural to give sufficient condition for such property.

5. Sufficient condition for global-in-time existence

In this section we focus again on the N -body Schrödinger operator (1.1) with
“physical interactions” (4.1). For any K ≥ N + 1 with fixed N , we denote

I(K) = inf
{

E(π(C,Φ)) : (C,Φ) ∈ FN,K

}

the “K- ground state energy”. Obviously one has

(5.1) ∀K ′ ≤ K ≤ ∞, inf σ(HN ) ≤ I(K) ≤ I(K ′),

with inf σ(HN ) being the bottom of the spectrum of HN on L2
∧(ΩN ). Recall that

the maximal rank hypothesis corresponds to the following equivalent facts :

(i) The rank of the operator [π(C,Φ) ⊗ π(C,Φ)]:1 is equal to K;
(ii) The K ×K matrix IΓ(C) is invertible;
(iii) The smallest eigenvalue of IΓ(C) is strictly positive.

Since this is satisfied for K = N (Hartree–Fock case) and since K must be ad-
missible, we now assume that K ≥ N + 2. The main result of this section is the
following:

Theorem 5.1. Let (C0,Φ0) ∈ FN,K be an initial data in (3.26) with IΓ
(

C0
)

in-
vertible. Assume that T ⋆ < +∞ then

E(π(C0,Φ0)) ≥ I(K − 1).

As an immediate by-product we get a sufficient condition assuring the global-in-
time invertibility of the matrix IΓ

(

C(t)
)

.

Corollary 5.2. If (C0,Φ0) ∈ ∂FN,K satisfies

(5.2) I(K) ≤ E(π(C0,Φ0)) < I(K − 1),

then T ⋆ = +∞; that is, the maximal solution is global-in-time.

Remark 5.3. The hypothesis
∑M

m=1 zm ≥ N in (4.1) implies the relation I(K) <
I(K−2) [24, 17]. Therefore (5.2) can be always satisfied by changing K into K−1.

Remark 5.4. A key difficulty in the proof of above theorem is that the energy
functional Ψ 7→ E(Ψ) is not weakly lower semi-continuous in H1(R3N ) while it is
in H1(Ω3N ) for any bounded domain Ω as already observed by Friesecke [16]. When
Ω is a bounded domain of R3 or when the potential U is non-negative, the proof is
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much easier thanks to the lower semi-continuity, and it is detailed in [3]. In the
general case the proof is in the very spirit of Lewin’s one for the convergence of
critical points of the energy functional [25].

Proof of Theorem 5.1. Let (C,Φ) be the maximal solution to (3.26) on [0, T ⋆)
with initial data (C0,Φ0) given by Theorem 4.1. We assume that T ⋆ < +∞, then

lim sup
tրT ⋆

‖IΓ
(

C(t)
)−1‖ = +∞.

Equivalently, with the eigenvalues of IΓ(C) being arranged in decreasing order 0 ≤
γK ≤ γK−1 ≤ . . . ≤ γ1 ≤ 1, this means

lim inf
tրT ⋆

γK(t) = 0.

Then there exists a sequence tn converging to T ⋆, a positive number β and an
integer N + 1 ≤ m ≤ K such that

(5.3) lim
n→+∞

γm(tn) = 0 and 0 < β ≤ γm−1(tn) .

Indeed, since
∑K

k=1 γk(t) = N, for all t ∈ [0, T ⋆) , at least N eigenvalues stay
away from zero when t goes to T ⋆. We denote Cn = C(tn), Φn = Φ(tn), γn

i = γi(tn),
IΓn = IΓ

(

C(tn)
)

and so on for other involved quantities.

For all n ≥ 1, (Cn,Φn) ∈ ∂FN,K. Thus according to Proposition 2.6, there
exists a unique sequence of unitary transforms Un ∈ Or

K that map (Cn,Φn) into
(C′n,Φ′n) with Φ′n being an eigenbasis for the operator γn. In particular the
corresponding matrix IΓ′n := IΓ(C′n) is diagonal. In other words,

Ψn := π(Cn,Φn) =
∑

σ

cnσ Φn
σ =

∑

σ

c′σ
n

Φ′
σ

n
= π(C′n,Φ′n),

γn =

K
∑

i,j=1

γn
ij φ

n
i ⊗ φj

n =

K
∑

i=1

γn
i φ

′
i
n ⊗ φ′i

n.

Since the group of unitary transforms is compact, we may argue equivalently on the
sequence (C′n,Φ′n) that we keep denoting by (Cn,Φn) for simplicity. From (5.3)

(5.4)







lim
n→+∞

γn
i = 0 for all m ≤ i ≤ K,

lim inf
n→+∞

γn
i ≥ β > 0 for all 1 ≤ i ≤ m− 1.

Then,

(5.5) for all σ ∈ ΣK
N , {m, . . . ,K} ∩ σ 6= ∅ =⇒ lim

n→+∞
cnσ = 0,

for γn
i =

∑

i∈σ |cnσ|2 in virtue of (2.15). In particular, the sequence Cn ∈ Sr−1

being compact

(5.6) lim
n→+∞

∑

σ⊂{1,...,m−1}
|cnσ |2 = 1.

We decompose

Ψn = π(Cn,Φn) = Ψ+
n + Ψ−

n

with

Ψ−
n =

∑

σ∩{m,...,K}6=∅
cnσ Φn

σ, Ψ+
n =

∑

σ∩{m,...,K}=∅
cnσ Φn

σ .

Then

lim
n→+∞

∥

∥Ψ−
n

∥

∥

L2(R3N )
= 0
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as a consequence of (5.5) and since each determinant Φσ
n is normalized in L2(R3N ).

Hence

(5.7) lim
n→+∞

∥

∥Ψn − Ψ+
n

∥

∥

L2(R3N )
= 0.

Since the MCTDHF flow keeps the energy constant, we have

E
(

π(Cn,Φn)
)

= cste = E
(

π(C0,Φ0)
)

,

for all n ≥ 1. This property provides with additional information on the sequence
(Cn; Φn). Using the fact that the φn

i ’s diagonalize γn, the energy (4.5) rewrites

E(π(Cn,Φn)) =

K
∑

i=1

γn
i

∫

R3

[

1

2
|∇φn

i |2 + U |φn
i |2
]

dx+

K
∑

i,j,k,l=1

γn
ijkl D

(

φn
l φ̄

n
i ; φn

k φ̄
n
j

)

≥
K
∑

i=1

γn
i

∫

R3

[

1

2
|∇φn

i |2 + U |φn
i |2
]

dx,(5.8)

where in (5.8) we used the positivity of the two-body interaction potential v. By
the Kato inequality, for any 0 < ε < 1, there exists Cε > 0 such that

|U | ≤ −ε∆ + Cǫ

in the sense of self-adjoint operators. Then

K
∑

i=1

γn
i

∫

R3

U |φn
i |2 dx ≥ −ǫ

(

K
∑

i=1

γn
i

∫

R3

|∇φn
i |2 dx

)

− CǫN.

Therefore, inserting into (5.8),

K
∑

i=1

γn
i

∫

R3

|∇φn
i |2 dx ≤ cste.

Thus, for all 1 ≤ i ≤ K,
√

γn
i φ

n
i is bounded in H1(R3). Then, from (5.4), we

obtain
(5.9)

for all m ≤ i ≤ K,
√

γn
i φ

n
i converges to 0 weakly in H1(R3) and strongly in L2(R3),

extracting subsequences if necessary, and

(5.10) for all 1 ≤ i ≤ m− 1, φn
i is bounded in H1(R3).

Since, under the hypotheses on U , the map ϕ 7→
∫

R3 U |ϕ|2 dx is weakly lower

semi-continuous on H1(R3), we deduce from (5.9) that
(5.11)

lim inf
n→+∞

K
∑

i=1

γn
i

∫

R3

[

1

2
|∇φn

i |2 + U |φn
i |2
]

dx ≥ lim inf
n→+∞

m−1
∑

i=1

γn
i

∫

R3

[

|∇φn
i |2+U |φn

i |2
]

dx.

We now check that
(5.12)

lim inf
n→+∞

K
∑

i,j,k,l=1

γn
ijkl D

(

φn
l φ̄

n
i ; φn

k φ̄
n
j ) = lim inf

n→+∞

m−1
∑

i,j,k,l=1

γn
ijkl D

(

φn
i φ̄

n
l ; φn

k φ̄
n
j )

by showing that

(5.13) lim inf
n→+∞

K
∑

i,j,k,l=1

{i,j,k,l}∩{m,...,K}6=∅

γn
ijkl D

(

φn
l φ̄

n
i ; φn

k φ̄
n
j ) = 0.
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Let {i, j, k, l} ∩ {m, . . . ,K} 6= ∅. We assume without loss of completeness that
i ≥ m. From the expression (2.12) for γn

iklj , we observe that
∣

∣

∣γn
ijkl

∣

∣

∣ . min
(√

γn
i ;
√

γn
j

)

min
(√

γn
k ;
√

γn
l

)

. min
(

γn
i ; γn

k ; γn
j ; γn

l

)1/2
,(5.14)

since 0 ≤ γn
· ≤ 1. We thus get

(5.15) if {i, j, k, l} ∩ {m, . . . ,K} 6= ∅, lim
n→+∞

γn
ikjl = 0,

from (5.4). Then thanks to (4.7) and (5.14)

|γn
ijkl D

(

φn
l φ̄

n
i ; φn

k φ̄
n
j )| .

√

γn
i

√

γn
k ‖∇φn

k‖L2 ‖φn
i ‖L2 ‖φn

j ‖L2 ‖φn
l ‖L2

.
√

γn
i

since the L2 norms of the orbitals equal 1 and since in any case
√

γn
j ∇φn

j is bounded

in L2 independently of n. Therefore each term which appears in the sum in (5.13)
converges to 0 as n goes to infinity thanks to (5.9). Claim (5.13) then follows.

Gathering together (5.11) and (5.12) we have

lim inf
n→+∞

E
(

π(Cn; Φn)
)

≥ lim inf
n→+∞

[

m−1
∑

i=1

γn
i

∫

R3

[

|∇φn
i |2 + U |φn

i |2
]

dx+

m−1
∑

i,j,k,l=1

γn
ijkl D

(

φn
i φ̄

n
l ; φn

k φ̄
n
j )
]

.(5.16)

The point now consists in showing that the right-hand side in (5.16) is bounded

from below by lim inf
n→+∞

E
(

Ψ+
n

)

. Indeed, let us set Ψ+
n = π(C̃n, Φ̃n) where C̃n =

(cnσ)σ⊂{1,...,m−1} ∈ C( K

m−1) and Φ̃n = (φn
1 , . . . , φ

n
m−1) ∈ OL2(Ω)m−1 . There is a slight

difficulty arising here from the fact that (with obvious notation) γ̃n
ij is close but

different from γn
i δ

n
ij and similarly for γ̃n

ijkl and γn
ijkl. (Also C̃n is not normalized

in Cm−1 (only asymptotically) but this will be dealt with afterwards.)

First we observe that because of (2.14) for every i, j ∈ {1, · · · ,m− 1},
γn

i δ
n
ij − γ̃n

ij =
∑

(σ∪τ)∩{m,··· ,K}6=∅
i∈σ, j∈τ ,σ\{i}=τ\{j}

(−1)σ−1(i)+τ−1(j) cnσ c
n
τ

goes to 0 as n goes to infinity thanks to (5.5). In addition, each term of the

form
∫

R3

[

1
2∇φn

i · ∇φ̄n
j + U φn

i · φ̄n
j

]

dx is bounded independently of n for i, j ∈
{1, · · · ,m− 1}. Therefore
(5.17)
m−1
∑

i=1

γn
i

∫

R3

[1

2
|∇φn

i |2+U |φn
i |2
]

dx =

m−1
∑

i,j=1

γ̃n
ij

∫

R3

[

1

2
∇φ̃n

i ∇ ¯̃
φn

j + U φ̃n
i

¯̃
φn

j

]

dx+o(1).

For the same reason, and with obvious notation, for all 1 ≤ i, j, k, l ≤ m− 1,

lim
n→+∞

∣

∣γn
ijkl − γ̃n

ijkl

∣

∣ = 0

since according to (2.12) the extra terms in these differences only involve coefficients
cnσ with σ ∩ {m, . . . ,K} 6= ∅. Again each term of the form D

(

φn
i φ̄

n
l ; φn

k φ̄
n
j

)

is
bounded independently of n for i, j, k, l ∈ {1, . . . ,m− 1}. Therefore

(5.18)
m−1
∑

i,j,k,l=1

γn
ijkl D

(

φn
i φ̄

n
l ; φn

k φ̄
n
j ) =

m−1
∑

i,j,k,l=1

γ̃n
ijkl D

(

φn
i φ̄

n
l ; φn

k φ̄
n
j ) + o(1).
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Therefore, gathering together (5.16), (5.17) and (5.18),

(5.19) lim inf
n→+∞

E
(

π(Cn; Φn)
)

≥ lim inf
n→+∞

E
(

π(C̃n; Φ̃n)
)

.

Since C̃n is not in S( K

m−1)−1 (it is only the case asymptotically), (C̃n; Φ̃n) is not in

FN,m−1, thus we cannot bound immediately E
(

π(C̃n; Φ̃n)
)

= E
(

Ψ+
n

)

from below
by I(m− 1). We proceed as follows. In virtue of (5.6),

(5.20) lim
n→+∞

‖Ψ+
n ‖2 = 1.

Finally the energy being quadratic with respect to Ψ

(5.21) E
(

Ψ+
n

)

= ‖Ψ+
n ‖2 E

( Ψ+
n

‖Ψ+
n ‖
)

≥ ‖Ψ+
n ‖2 I(m− 1),

for Ψ+
n /‖Ψ+

n ‖ ∈ FN,m−1 for all n ≥ 1. Gathering together (5.19), (5.20) and (5.21)
and taking the limit as n goes to infinity we deduce

(5.22) lim inf
n→+∞

E
(

π(Cn,Φn)
)

≥ I(m− 1).

Hence the theorem. �

Remark 5.5. When Ω is a bounded domain of R3, any sequence in FN,K is rela-
tively compact in Cr × L2(Ω)K thanks to the Rellich theorem. On the other hand,
the energy functional Ψ 7→ E(Ψ) is weakly lower semi-continuous in H1(Ω3N ).
Therefore it is easily checked in that case that

lim inf
n→+∞

E
(

π(Cn; Φn)
)

≥ lim inf
n→+∞

E
(

π(C⋆; Φ⋆)
)

≥ I(m− 1)

with (C⋆; Φ⋆) ∈ FN,m−1 being the weak limit of the sequence (C̃n; Φ̃n) introduced
in the above proof.

Remark 5.6 (Stability, Consistency and invertibility of the density matrix IΓ).
The main factor in the instability of the working equations or any gauge-equivalent
system, is the inverse of the density matrix. In the present section, criteria for
the global invertibility of IΓ(C) have been given. These criteria do not provide with
an uniform estimate for ‖IΓ−1‖, and furthermore increasing the consistency of the
MCTDHF approximation leads to the increase of the number K of orbitals. As
usual consistency and stability are both necessary and antinomic. Indeed, the most
obvious observation is that one always has

‖IΓ−1‖ ≥ K

N
,

for IΓ has at most K positive eigenvalues whose sum equals N . Therefore the
smallest can be at most N/K. These considerations lead either to a limitation on
K or to a regularization or a “cut-off ” of IΓ−1. In fact the “consistency” in the
sense of numerical analysis is obtained with fixed N by letting K go to infinity.
This is basically different from the idea (in spirit of statistical mechanics) of letting
N go to infinity [4].

6. Stabilization of IΓ and existence of L2 solutions

In the above analysis, both for existence of maximal solutions and for global
invertibility of the density matrix, the conservation of energy plays a crucial rôle.
Besides the theoretical interest, the analysis of an MCTDHF system with infinite
(or non conserved) energy but finite mass is relevant. Indeed, because of the pos-
sible degeneracy of the density matrix, physicists resort to ad hoc methods like
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perturbations of this matrix in order to ensure its invertibility. Typically, this is
achieved as follows

(6.1) IΓǫ = IΓ + ǫ Id

(see e.g. [7]), or by taking

(6.2) IΓǫ = IΓ + ǫ exp(−IΓ/ǫ)

for small values of ǫ (see [5]). Note that in latter case vanishing eigenvalues are
perturbed at order ǫ while the others are unchanged up to exponentially small
errors in terms of ǫ. Then the perturbed system reads for an ǫ > 0

(6.3)























i
dC

dt
= K[Φ] C,

i
∂Φ

∂t
= HΦ + IΓǫ[C]−1 (I − PΦ) W[C,Φ]Φ,

C(0) = C0,Φ(0) = Φ0,

On the other hand, when a laser field is turned on, the Hamiltonian of the system
is then time-dependent which is a relevant configuration from the physical point of
view (see [7] and Section 7 below). In such situation, the conservation of the energy
fails and a recourse to alternative theories is necessary.

However in both situations the L2 norm (which corresponds to the electronic
charge) is conserved and this justifies an L2 analysis of the MCTDHF outside
the energy space. Therefore the Strichartz estimates turn out to be a natural in
the same spirit as Castella [9] and Zagatti [36]. In [30], existence and uniqueness
of global-in-time mild solutions has been obtained for L2 initial data. As in the
previous section (and with the same notation) the perturbed working equations are
written in “Duhamel ” form

C(t) = C(0) +

∫ t

0

K[Φ(s)] C(s)ds ,

Φ(t) = S(t)Φ0 − i

∫ t

0

S(t− s) U Φ(s) ds

− i

∫ t

0

S(t− s) IΓǫ[C(s)]−1 (I − PΦ) W[C,Φ]Φ ds ,

where S(t) = exp[− 1
2 i t∆] denotes the group of isometries generated by − i

2∆ on

L2(R3,C). The potentials U and v = v(|x|) belong to L
3
2 + L∞ .

From the relation

‖S(t)φ‖L∞(R3) ≤
1

(4π t)3/2
‖φ‖L1(R3)

and

‖S(t)φ‖L2(R3) = ‖φ‖L2(R3)

one deduce by interpolation the so-called Strichartz estimates

‖S(t)φ‖Lp(0,T ;Lq(R3)) ≤ C(q)T
3
q
− 1

2 ,

that hold for any Strichartz pairs (p, q) ∈ [2,+∞] × [2, 6] with 2
3p = (1

2 − 1
q ).

(Strichartz estimates for the endpoints p = 2 and q = 6 are more intricate and due
to Keel and Tao [21]).

Following Zagatti [36] and Castella [9], the spaces

XT = L∞(0, T ; Cr) ×
(

L∞(0, T ;L2(R3)
)

∩ Lp
(

0, T ;Lq(R3)
)

)K

,
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are introduced for any Strichartz pairs. For some R > 0 and some T > 0 small
enough, the non-linear operator (C,Φ) 7→ L(C,Φ) which appears in the Duhamel
integral

L(C,Φ)(t) =











∫ t

0

K[Φ(s)] C(s) ds
∫ t

0

S(t− s)
(

U Φ(s) + IΓǫ(s)
−1(I − PΦ) W[C(s),Φ(s)] Φ(s)

)

ds











is a strict contraction in the ball
{

(C,Φ) ∈ XT : ‖C‖Cr + ‖Φ‖L2,∞

T
+ ‖Φ‖Lp,q

T
≤ R

}

.

Next using the conservation of the L2 norms of the orbitals and the estimate

‖Φ‖Lp(0,T ;Lq(R3)) . ‖Φ0‖L2(R3)

one follows the lines of Tsutsumi in [35] to get existence and uniqueness of a strong
solution in X∞ (see the details in [30]). This is summarized in the

Proposition 6.1. Let ǫ > 0. For any initial data (C0,Φ0) ∈ ∂FN,K and for any
Strichartz pairs (p, q), the ǫ-regularized working equations admit a unique strong
solution

(Cǫ(t),Φǫ(t)) ∈ L∞(R+; Cr) × (L∞(R+;L2(R3)) ∩ (Lp
loc(R

+;Lq(R3))K

that lives in FN,K for all t ≥ 0. If in addition Φ0 ∈ H1(R3)K then Φǫ(t) ∈
C0(R+;H1(R3)K .

Eventually one expects that whenever the original solution is well-defined (with
a non degenerate density matrix IΓ(t)) on a time interval 0 ≤ t < T ∗ it will be
on the same interval the limit for ǫ → 0 of the solution of the perturbed working
equations. This is the object of the following

Theorem 6.2. Let (C0,Φ0) ∈ Sr−1 × (H1(R3))K . Assume that the corresponding
solution (C(t),Φ(t)) to (3.26) is well-defined on [0, T ] and is such that

(6.4) sup
0≤t≤T

||IΓ(t)−1|| ≤M < +∞.

Then, on the same time interval it is the limit in Cr ×H1(R3)K for ǫ → 0 of the
solution (Cǫ,Φǫ) to the regularized problem (6.3) with same initial data.

Proof. We first recall the obvious a posteriori bounds

‖C‖ = ‖Cǫ‖ = 1, ‖Φ‖L2 = ‖Φǫ‖L2 = 1

on [0, T ], and, as a consequence of (6.4) and the energy conservation,

max
0≤t≤T

‖Φ(t)‖H1 ≤M ′

with M ′ = M ′(E
(

π(C0,Φ0)
)

,M). We can also rely on the orthonormality of the
orbitals in Φ and Φǫ. We introduce the notation

U =

(

C
Φ

)

, Uǫ =

(

Cǫ

Φǫ

)

, A =

(

0
H

)

, B(ǫ)(U) =

(

K[Φ]C
IΓ−1

(ǫ) B(U)

)

where

B(U) = (I − PΦ) W[C,Φ]Φ
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and where the index (ǫ) means that the claim holds both for the regularized system
and the initial one, uniformly in ǫ. The system (6.3) can also be written in synthetic
form:

U(t) = e−itAU0 − i

∫ t

0

e−i(t−s)AB
(

U(s)
)

ds,(6.5)

Uǫ(t) = e−itAU0 − i

∫ t

0

e−i(t−s)ABǫ

(

Uǫ(s)
)

ds.(6.6)

Since the initial Φǫ(0) = Φ0 is in H1 and since the regularized system propagates
the regularity, Φǫ is in H1(R3)K for all time.

We fix ǫ > 0. We introduce a parameter η > 0 to be made precised later and
the set

Iǫ =
{

t ∈ [0, T ] : ‖Uǫ(t) − U(t)‖ ≤ η
}

with ‖U‖ = ‖C‖ + ‖Φ‖H1 . The mappings t 7→ U(ǫ)(t) being continuous from [0, T ]

to XT := Cr ×L∞(0, T ;H1(R3)K
)

, the set Iǫ is closed and since ‖Uǫ(0)−U(0)‖ =
0 < η, there exists a maximal time Tǫ > 0 in Iǫ such that

∀t ∈ [0, Tǫ], ‖Uǫ(t) − U(t)‖ ≤ η.

We now prove by contradiction that Tǫ = T . Assume then Tǫ < T .

Subtracting (6.5) to (6.6) and taking norms first yields to

‖Cǫ(t) − C(t)‖ ≤
∫ t

0

‖Cǫ‖ ‖K[Φǫ] − K[Φ]‖ + ‖Cǫ − C‖ ‖K[Φ]‖,

≤ C(η)

∫ t

0

‖Uǫ − U‖ ds(6.7)

for all 0 ≤ t ≤ Tǫ. Here and below C(η) = C(M, E
(

π(C0,Φ0)
)

, η) denotes a positive
constant that may vary from line to line but that is independent of ǫ and continuous
and non-decreasing with respect to η. Indeed we use the fact that the non-linearity
Φ 7→ K[Φ] is locally Lipschitz continuous in H1 (Subsection 4.1) together with the
uniform bound

max
0≤t≤Tǫ

‖Φǫ‖H1 ≤M ′ + η.

On the other hand, we write

‖Φǫ(t) − Φ(t)‖ ≤MT

∫ t

0

‖B(Uǫ)‖H1 ‖IΓ−1
ǫ − IΓ−1‖ + ‖IΓ−1‖ ‖B(Uǫ) − B(U)‖H1

≤ C(η)

∫ t

0

(

‖IΓ−1
ǫ − IΓ−1‖ + ‖Uǫ − U‖H1

)

ds,(6.8)

by using the local Lipschitz bounds of U 7→ B(U) given in Subsection 4.1. We
now turn to the quantity ‖IΓ−1

ǫ − IΓ−1‖. Both regularization (6.1) and (6.2) of the
density matrix take the form:

IΓǫ = IΓ(Cǫ) + ǫ g(Cǫ)

with ‖g(Cǫ)‖ ≤ ǫ. Then,

‖IΓǫ − IΓ‖ ≤ ‖IΓ(Cǫ) − IΓ(C)‖ + ǫ

≤ κ (‖Cǫ − C‖ + ǫ)(6.9)

by using the obvious bound ‖IΓ(C)‖ . ‖C‖2 for C, Cǫ ∈ Sr−1, where κ only depends
on N and K. We now assume that

(6.10) ǫ, η ≤ 1

4 κM
,
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where M is given in the statement of the theorem. Using

IΓǫ =
(

I −
(

IΓ − IΓǫ

)

IΓ−1
)

IΓ,

we deduce

IΓ−1
ǫ = IΓ−1

(

I −
(

IΓ − IΓǫ) IΓ−1
)−1

= IΓ−1
∑

n≥0

(

(

IΓ − IΓǫ) IΓ−1
)n

.

Therefore

‖IΓ−1
ǫ − IΓ−1‖ ≤

∑

n≥1

‖IΓ − IΓǫ‖n ‖IΓ−1‖n+1

≤
∑

n≥1

Mn+1 κn (‖Cǫ − C‖ + ǫ)n

by using (6.9). Hence

‖IΓ−1
ǫ − IΓ−1‖ ≤M2 κ

(

‖Cǫ − C‖ + ǫ)
∑

n≥0

Mn κn (‖Cǫ − C‖ + ǫ)n

≤ 2M2 κ
(

‖Cǫ − C‖ + ǫ)(6.11)

since M κ
(

‖Cǫ(t)−C(t)‖+ ǫ) ≤ 1
2 by (6.10) and for t in [0, Tǫ]. Inserting (6.11) in

(6.8) we get:

(6.12) ‖Φǫ(t) − Φ(t)‖ ≤ C(η)

∫ t

0

(

‖Uǫ(s) − U(s)‖ + ǫ
)

ds.

Eqn. (6.12) together with (6.7) finally leads to

(6.13) ‖Uǫ(t) − U(t)‖ ≤ C(η)

∫ t

0

(

‖Uǫ(s) − U(s)‖ + ǫ
)

ds,

for all t ∈ [0, Tǫ]. Eventually, thanks to Gronwall’s inequality,

(6.14) max
0≤t≤Tǫ

‖Uǫ(t) − U(t)‖ ≤ ǫ eC(η)T .

With η as in (6.10), next

(6.15) ǫ ≤ min
( 1

4 κM
,
η

2
e−C(η) T

)

,

we get

max
0≤t≤Tǫ

‖Uǫ(t) − U(t)‖ ≤ η

2
.

By continuity of t 7→ ‖Uǫ(t)−U(t)‖, we may then find T ′
ǫ > Tǫ such that max

0≤t≤T ′

ǫ

‖Uǫ(t)−
U(t)‖ ≤ η. Hence the contracdiction with the definition of Tǫ. Therefore, Iǫ = [0, T ]
and, going back to (6.14) we obtain:

(6.16) max
0≤t≤T

‖Uǫ(t) − U(t)‖ ≤ ǫ eC(η) T ,

for say η = 1
4 κ M and ǫ small enough, satisfying (6.15), whence the result. �

In the forthcoming (and last) section we comment on straight extensions of the
above analysis.
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7. Extensions

The present contribution is focused on the algebraic and functional analysis prop-
erties of the MCTDHF equations for fermions. Multiconfiguration approximations
can also be considered for symmetric wave functions or also for wave function with
no symmetry (see e.g. [5, 23]). The mathematical analysis of the equations which
play the rôle of the “working equations” of Section 3 is similar. On the other hand,
the fermionic case is important by itself and leads to much better geometric struc-
ture in terms of principal fiber bundle as described in Section 2. Hence our choice.
Our results could be generalized to general (symmetric) n-body interactions as well
including the n-body density matrices.

7.1. Beyond Coulomb potentials. Although above results and proofs are mainly
detailed for Coulomb potentials they carry through more general real-valued po-
tentials. Indeed well-posedness results in H1 and H2 are still valid for U and v in
the class Lp(R3) + L∞(R3) with p > 3/2, and v ≥ 0 and even. These conditions
ensure that HN is self-adjoint in L2(ΩN ), that the one-body operator − 1

2∆ + U

is a semi-bounded self-adjoint in L2(R3) with domain H2(R3) and that the Kato
inequality holds for the potential U . Under these assumptions, the energy space is
Cr ×H1(R3)K (respectively Cr ×H1

0 (Ω)K when Ω is a bounded domain) and the
propagator e−itH is a one-parameter group of unitary operators in H2(R3) and in
H1(R3).

For the global-well-posedness sufficient condition to hold true (Theorem 5.1 and
its corollary) further conditions on the potentials are required to ensure that the
energy functional is weakly lower semi-continuous on the energy space. Sufficient
conditions are (for example) U ≥ 0 or U− (the negative part of U) tending to 0 at
infinity at least in a weak sense.

7.2. Extension to time-dependent potentials. One of the basic use of the
MCTDHF is the simulation of ultrashort light pulses with matter [37]. Describing
this situation leads to the same type of equations but with the one-body Hamilton-
ian H being replaced by a one-body time dependent hamiltonian

H(t) := (i∇ +A(t))2 + ω(t)U(x)

with ω(t) and A(t) real and U as in the above subsection. A typical example is
A(t) = A0 exp

(

− (t/τ)2
)

sin(αt) for some positive real parameters A0, α and τ
[37, 38]. This does not change neither the algebraic and geometrical structure of
the equations nor the definition of the density matrix IΓ nor the notion of full-rank.
The potential vector A being independent of the x variable the energy space is
H1. With convenient hypotheses (say ω and A continuous, bounded with bounded
derivatives), the results in Section 4 concerning local-in-time H1 well-posedness
of the Cauchy problem remain valid. For generalization of the use of Strichartz
estimates and the local L2 well posedness one should follow [10, ?]. Since the energy
is now time-dependent extra hypothesis have to be introduced for the persistence
of the full rank assumption done in Section 5.

Assume that ω(t) and A(t) take their values in a bounded set (the set of “control”
C) and that their derivatives are also bounded. The system S0 (3.24) with H
replaced by H(t) keeps on preserving the constraints since Lemma 3.2 only relies
on the self-adjointness of the Hamiltonian. Similarly solutions to (3.24) satisfy the
Dirac–Frenkel variational principle. However the energy is no longer conserved by
the flow. Indeed, following the lines of the proof of Corollary 3.4, we have

d

dt
E
(

Ψ(t)
)

=
d

dt

〈

H(t)Ψ(t)
∣

∣Ψ(t)
〉

=
(

ω′(t) + 2A(t)A′(t)
)

〈Ψ(t)
∣

∣Ψ(t)〉,
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with the prime denoting time derivatives. Therefore

E
(

Ψ(t)
)

= ω(t) + 2A(t)2 + E
(

Ψ(0)
)

− ω(0) − 2A2(0),

and the energy in controlled for any finite time, whence the existence of a maximal
solutions in H1 as long as the matrix IΓ

(

C(t)
)

remains invertible.
To adapt the result concerning the global the full-rank hypothesis, for any real

numbers ω̄ and Ā, we introduce the minimization problems

Iω̄,Ā(K) = inf
{

Eω̄,Ā(Ψ) : Ψ ∈ BN,K

}

with

Eω̄,Ā(Ψ) =

〈

(

Hω̄,Ā IΓ +
1

2
W[C,Φ]

)

Φ,Φ

〉

L2

for Ψ = π(C,Φ). The result of Theorem 5.1 concerning the global-in-time conser-
vation of full-rank remains true under the hypothesis

Eω(0),A(0)

(

Ψ(0)
)

< inf
{

Iω̄,Ā(K − 1) : |ω̄| ≤ ‖ω‖L∞(R+), |Ā| ≤ ‖A‖L∞(R+)

}

− ‖ω‖L∞(R+) − 2 ‖A‖2
L∞(R+) + ω(0) + 2A2(0).

There is a lot of room for improvement in the above argument. For example, if we
assume that, for all time, the solution Ψ = π(C,Φ) ∈ ∂BN,K satisfies

〈∂H
∂t

Ψ(t)
∣

∣Ψ(t)〉 ≤ h(t) 〈H(t)Ψ(t)
∣

∣Ψ(t)〉

for a given function h, then by the Gronwall lemma

〈H(t)Ψ(t)
∣

∣Ψ(t)〉 − 〈H(0)Ψ0

∣

∣Ψ0〉 ≤ exp
(

∫ t

0

h(s) ds
)

.

Then concerning the conservation of the global full-rank of the one-particle density
matrix, the result of Theorem 5.1 remains true provided

E(Ψ0) = 〈H(0)Ψ0

∣

∣Ψ0〉 ≤ I(K − 1) − exp
(

∫ +∞

0

h(s) ds
)

.

7.3. Discrete systems. The emphasis has been but in particular for the function-
nal analysis on the case where Ω = R3 although in the first part we have described
the problem in any open subset of R3. In fact all the formal and algebraic deriva-
tions can also be adapted to the case when Ω is a discrete set equipped with a
discrete Lebesque measure and in particular when Ω is a finite set. Such situation
is important for two reasons. On the one hand many models of quantum physics
(the Ising model for instance) involve a discrete Hamiltonian defined on a discrete
set. On the other hand the discretization of the original problem in view of any
numerical algorithm leads to a discrete problem. The discrete problem is written
down explicitly in [3].

Up to now only a rough a posteriori error estimate have been proven. However
if the MCTDHF algorithm is applied to a discrete model say of dimension L then
for K large enough (K ≥ L ) this algorithm coincides with the original problem. It
should be eventually observed that in general the two operations : - Discretization
of the original N -particle problem and use of a MCTDHF approximation or - Use
of a MCTDHF approximation and then discretization of the equations, lead to
different algorithms.
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Appendix – Proofs of technical lemmas in Subsection 3.3

Proof of Corollary 3.7. For σ and τ given it is convenient to denote by Uσ,τ(j)

the column vector in C
N with entries

(

Uσ(i),τ(j)

)

1≤i≤N
and by

[Uτ(1),Uτ(2), . . . ,Uτ(N)]σ

the determinant composed with these vectors. With this notation (3.13) gives

(7.1) i
dUσ,τ(j)

dt
=

K
∑

k=1

Mk,τ(j) Uσ,k

Differentiating the relation

Uσ,τ = [Uτ(1), Uτ(2), . . . , Uτ(N)]σ

and using the multilinearity with respect to the column vectors and Eqn. (7.1) one
obtains:

(7.2) i
dUσ,τ

dt
=

∑

1≤k≤K
1≤j≤N

Mk,τ(j)[Uτ(1), Uτ(2), . . . , Uτ(j−1), Uk, Uτ(j+1), . . . , Uτ(N)]σ.

On the other hand since U(t) is a flow of unitary matrices it is solution, of a
differential equation of the following type:

(7.3) i
dUσ,τ

dt
=
∑

τ ′

[Uτ ′(1), Uτ ′(2), . . . , Uτ ′(N)]σM̃τ ′,τ

Identification of the coefficients of

[Uτ ′(1), Uτ ′(2), . . . , Uτ ′(N)]σ

gives, taking in account the number of permutation needed to change

τ(1), τ(2), . . . τ(j − 1), k, τ(j + 1), . . . τ(N) into τ ′(1), τ ′(2) . . . , τ ′(N)

M̃τ ′,τ =
∑

k∈τ ′,j∈τ
τ ′\{k}=τ\{j}

Mk,j(−1)τ−1(j)+τ ′−1(k).

Let us now prove (3.20). Let σ, τ ∈ ΣN,K . We first observe that

(7.4)

N
∑

i=1

Gxi
Φσ =

N
∑

i=1

φσ(1) ∧ . . . ∧ Gφσ(i) ∧ . . . ∧ φσ(N).

Now we use (2.5) and the Laplace method to develop a determinant with respect
to the row that contains the terms involving G to get

N
∑

i=1

〈

Gxi
Φσ

∣

∣Φτ

〉

=

N
∑

i=1

〈

φσ(1) ∧ . . . ∧ Gφσ(i) ∧ . . . ∧ φσ(N)

∣

∣Φτ

〉

=
N
∑

i,j=1

(−1)i+j〈G φσ(i);φτ(j)〉 δσ\{σ(i)},τ\{τ(j)},

in virtue of (2.4). Hence (3.20) using (3.15) and the definition of M . �
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Proof of Theorem 3.13 and Theorem 3.8. Let (C(t),Φ(t)) be a solution to
S0 and let G be as in the statement of the theorem. With Mij = 〈G φi ; φj〉
we define the family of unitary transforms U(t) according to Lemma 3.11 and
d(U)(t) = U(t) is then given by Corollary 3.7. We set V = U, C′(t) = V(t) C(t)
and Φ′(t) = U(t)Φ(t). Thanks to (3.14), V solves

(7.5)







i
dV

dt
= −V M,

V(0) = d
(

U0
)

.

Then, for all σ ∈ ΣN,K ,

i
dC′

dt
= i

dV

dt
C + V i

dC

dt
= −V M V

⋆ C′ + V
〈

H Ψ
∣

∣∇CΨ
〉

= −V M V
⋆ C′ + V

〈

H Ψ
∣

∣∇C′Ψ V
〉

thanks to (2.28) and (7.5). On the one hand, since V is unitary,

V
〈

H Ψ
∣

∣∇C′Ψ V
〉

=
〈

H Ψ
∣

∣∇C′Ψ
〉

.

On the other hand, when M is obtained through G, we get by a direct calculation
from (3.20)

(

V M V
⋆ C′

)

σ
=
∑

τ

〈

N
∑

i=1

Gxi
Φ′

τ

∣

∣Φ′
σ

〉

c′τ =
〈

N
∑

i=1

Gxi
Ψ
∣

∣

∣Φ′
σ

〉

.

Combining these two facts we get the first equation in SG, namely

i
dC′

dt
=
〈

H Ψ
∣

∣∇C′Ψ
〉

−
〈

N
∑

i=1

Gxi
Ψ
∣

∣∇C′Ψ
〉

.

We turn now to the equation satisfied by Φ′. To simplify the notation we use the
shorthand IΓ for IΓ(C) and IΓ′ for IΓ(C′) respectively. Then, using IΓ′ = U IΓ U⋆

and (3.13), we have

i IΓ′ ∂Φ′

∂t
= IΓ′ i

dU

dt
Φ + IΓ′ U i

∂Φ

∂t

= IΓ′ UMU⋆ Φ′ + U IΓ i
∂Φ

∂t

= IΓ′ UMU⋆ Φ′ + (I − PΦ′) U ∇ΦΨ⋆
[

H Ψ
]

= IΓ′ UMU⋆ Φ′ + (I − PΦ′) ∇Φ′Ψ⋆
[

H Ψ
]

(7.6)

thanks to (2.29) and since clearly PΦ′ = PΦ for Span{Φ} = Span{Φ′}. It is easily
checked that when M is given through G we have

(

UMU⋆
)

ij
= 〈Gφ′i;φ

′
j〉

and therefore

UMU⋆ Φ′ = PΦ′ GΦ′.

Hence (7.6) also writes

i IΓ′ ∂Φ′

∂t
= IΓ′ GΦ′ + (I − PΦ′ ) ∇Φ′Ψ⋆

[

H Ψ
]

− (I − PΦ′) IΓ′ G Φ′.

We now check that, for all 1 ≤ i ≤ N ,

(I − PΦ′)
(

IΓ G Φ′)
i
= (I − PΦ′)

∂Ψ

∂φ′i

⋆[ N
∑

j=1

Gxj
Ψ
]

,
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thereby proving that

i IΓ′ ∂Φ′

∂t
= IΓ′ G Φ′ + (I − PΦ′) ∇Φ′Ψ⋆

[

H Ψ −
N
∑

i=1

Gxi
Ψ
]

.

Indeed, for all ξ ∈ L2(Ω), thanks to (2.31) in Lemma 2.8 in (7.7) and (7.4) in (7.8),
we have

〈

(I − PΦ)
(

IΓ G Φ
)

i
; ξ
〉

=

K
∑

k=1

IΓik

〈

G φk; (I − PΦ) ξ
〉

=
K
∑

k=1

〈 ∂Ψ

∂φk
[G φj ] ;

∂Ψ

∂φi
[(I − PΦ) ξ]

〉

(7.7)

=
〈

N
∑

j=1

Gxj
Ψ ;

∂Ψ

∂φi
[(I − PΦ) ξ]

〉

(7.8)

=
〈

(I − PΦ)
∂Ψ

∂φi

⋆
[

N
∑

j=1

Gxj
Ψ
]

; ξ
〉

by the definition (2.26) of ∂Ψ
∂φi

⋆
; whence the result since ξ is arbitrary in L2(Ω). �
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