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Abstract.
We prove the Padé (Stieltjes) summability of the perturbation series of the
energy levels of the cubic anharmonic oscillator, H1(β) = p

2+x2+ i
p
βx3, as

suggested by the numerical studies of Bender and Weniger. At the same time,
we give a simple and independent proof of the positivity of the eigenvalues of
the PT -symmetric operator H1(β) for real β (Bessis-Zinn Justin conjecture).
All the n 2 N zeros of an eigenfunction, real at β = 0, become complex with
negative imaginary part, for complex, non-negative β6= 0.

PACS numbers: 03.65.Sq, 02.30.Lt, 03.65.Ge

1 Introduction

The anharmonic oscillators are interesting non-solvable models of quantum
physics, as the cubic one, for their simplicity. New interest comes from the
theory of the PT -symmetric operators. In particular, the interest is directed
to the summability of the perturbation series, also in connection to similar
problems in quantum field theory.
Many years ago [1], the Padé summability (PS) of the perturbation series
of the energy levels of the quartic anharmonic oscillator with Hamiltonian
K4,1(β) = p

2 + x2 + βx4 was proved.
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Some years later [2], the Borel summability of the perturbation series of each
eigenvalue En,α(β), n 2 N, of the cubic anharmonic oscillator,

Hα(β) = p
2 + αx2 + i

√
βx3, (1)

was also proved for a fixed α > 0. This result was later extended [3], giving
the distributional Borel summability [4] of the perturbation series, in the
case of negative β.
The conjecture of Bessis-Zinn Justin (BZJ), was proved by Dorey et al. [11]
at α = 0. Shin [5] extended the proof to α 2 R, and proved the positivity
of the eigenvalues fEn,α(β)gn for α ¸ 0, β > 0. Strangely enough, Bessis
didn’t suggest, as far as we know, that the reality of the eigenvalues was
a consequence of his loved PS. Some years later, Bender and Weniger have
given numerical evidence of PS [8].
The BZJ conjecture was later extended by Bender and Boettcher (BB) [6],
to the family of PT -symmetric (PTS) Hamiltonians,

HN,α(1) = p
2 + αx2 ¡ (ix)N ,

α ¸ 0, N ¸ 2, with analytic eigenfunctions φ(z), where z = x+ iy, vanishing
at infinity on the two Stokes angular sectors of the complex plane,

SN±1 = fj arg(iz)§
2π

(N + 2)
j < π

(N + 2)
g. (2)

The last conjecture was proved, as part of a more general result, by Vladimir
Bouslaev and one of us [9] (see also [10]), in the relevant case of N = 4.
Shin has proved the BB conjecture, in the general case, for α · 0 [5].
From now on, we restrict the discussion to the cubic oscillator. The family of
operators H1(β) is an analytic family of type A on the cut plane Cc = fβ 2
C;β6= 0, j arg(β) = θj < πg, and we have the spectral equivalence [12],

H1(β) » α−1/2Hα(1), (3)

where α = exp(¡i2θ/5). For β at the boundary of the cut, for instance,
β = b exp(¡iπ) = ¡b ¡ i0+, b > 0, the mechanical problem defined by
the Hamiltonian Hα(β), for α = a > 0, is uncomplete in both classical
and quantum cases and can be defined by the physical hypothesis of the
disapperance of the particle when it reaches infinity. In the quantum case,
this means that one must define the Hamiltonian by the Gamow-Siegert
condition at ¡1 [2]. The eigenvalues have the meaning of resonances and
the eigenfunctions have the meaning of metastable states for the dynamical
problem. Thus we expect, and we prove, a negative imaginary part of the
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eigenvalues, related, in the usual way, to the lifetime of the metastable state.
We consider the eigenfunction ψn,a,β(z), for a fixed a > 0, where n 2 N is
the number of its nodes, and β is on the complex cut plane Cc. The n nodes,
numerically studied in [7] for positive β, are stable at β = 0 and are the only
zeros on the lower half complex plane C− = fz 2 C;=(x) = y < 0g. On the
other side, there are no zeros on the strip 0 · =(z) · y+ = 2a<

p
β/3b.

We use the Loeffel-Martin method and the complex semiclassical Sibuya
picture to prove the confinement of the nodes. We use also the hypothesis of
the boundedness of each eigenvalue for bounded parameters. This hypothesis
is verified by the Bohr-Sommerfeld quantization rule and the invariance of
the number of nodes.
The crossings of eigenvalues and the branch point singularities are forbidden
by the unique characterization of the eigenfunctions by the number of their
nodes, and the simplicity of the spectrum. Let us remember that we have
the extended PT symmetry (see [2]) of the complex Hamiltonians,

H1(β) = PH
∗

1 (β̄)P.

The isolation and analyticity of each eigenvalue on the cut plane Cc and
the unique sum of the perturbation series, imply the extended PT symme-
try of the eigenfunctions, ψn,1,β(x) = ψ̄n,1,β̄(¡x), and eigenvalues En,1(β) =
Ēn,1(β̄). The identity, obtained by complex scaling for β6= 0, j arg(β)j < π,

fEn,1(β) = α−1/2En,α(1)gn∈N, (4)

where α = β−2/5, allows the global analytic continuation on the Riemann
surface of β1/5, of the set of the eigenvalues. In particular, we prove the
power law behavior of the eigenvalues at β = 1 by the scaling law (4) and
the analyticity of fEn,α(1)gn at α = 0.
We prove the PS of the perturbation series of each eigenvalue to the eigen-
value itself. In order to be more precise, let us fix n 2 N = f0, 1, 2, ...g,
and set the simplified notations for the once subtracted eigenvalue, f(β) =
(En,1(β) ¡ En,1(0))/β, for any β on the cut complex plane Cc. Thus, for
β 2 Cc, we have the Stieltjes representation for f(β), and the asymptotics
for small b = jβj given by the formal perturbation series [2],

f(β) =
∫
∞

0

1

(1 + βλ)
ρ(λ)dλ » Σ(β) =

∞∑

k=0

ck+1β
k,

where ρ(λ) is non-negative, and the fcjgj∈N are the perturbation coefficients

of En,1(β).
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Thus, we prove, in a new way, the positivity of the eigenvalues, for positive
β,

En,1(β) = En,1(0) + βf(β) = En,1(0) + β
∫
∞

0

1

(1 + βλ)
ρ(λ)dλ ¸ En,1(0) > 0.

The PS of the perturbation series to the eigenvalue is defined by the limit,

f(β) = lim
k→∞

Rkk(β),

where the Rkk(β) = Pk(β)/Qk(β), are the diagonal Padé approximants, Pk(β),
Qk(β) are polynomials of order k, with Qk(0) = 1, completely defined by the
asymptotics for jβj small,

jRkk(β)¡ Σ2k+1(β)j = O(jβj2k+1),
where Σk(β) =

∑k−1
j=0 cj+1β

j .
The semiclassical behavior, for large positive λ, of the discontinuity,

ln(ρ(λ)) = ¡C−1λ(1 +O(ln(λ)/λ)),
where C = 15/8, agrees with the asymptotics of the perturbation coefficients
for large j, as computed in [8], for n = 0,

cj = (¡1)j+14
p
15Cj(2π)−3/2Γ(j + 1/2)(1 +O(1/j)).

For numerical aspects, as the interesting similarity of this perturbation series
with the one of the quartic anharmonic oscillator, see reference [8].

In Section 2 we discuss the operators for β at the boundaries of the complex
cut plane. In Section 3 we consider the stability, analyticity and asymptotics
of the eigenvalues and the nodes of the eigenfunctions for small jβj. In Sec-
tion 4 we confine the nodes on the lower complex half plane. In Section 5 we
prove the stability of the nodes for small parameter. In Section 6 we prove
the stability of the nodes for large parameter. In Section 7 we prove the
boundedness of an eigenvalue for bounded parameters. In Section 8 we prove
the power law behavior in the parameter at infinity. In Section 9 we prove
the Padé summability of the perturbation series.

2 The imaginary part of the eigenvalues on

the cut

Let β = b exp(iθ), b > 0, the family of operators H1(β) is an analytic family
of type A on the cut plane Cc = fβ 2 C; β6= 0, j arg(β)j < πg, and we have
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the spectral equivalence (see [2])

H1(β) = PH
∗

1 (β̄)P » α−1/2Hα(b), (5)

where α = exp(¡i2θ/5) and Pψ(x) = ψ(¡x). The identity of the sets of
eigenvalues,

fEn,1(β)gn∈N = α−1/2fEn,α(b)gn∈N, (6)

defines the global analytic continuation from Cc to all the Riemann surface
of β1/5, of the set of the eigenvalues, fEn,1(β))gn∈N.
In particular, here we are interested in the eigenvalues fEn,1(β)gn∈N for β
on the closed cut plane C̄c = fβ 2 C; β6= 0, j arg(β)j · πg.
The operators H1(β) on the borders of the cut, arg(β) = θ = §π, are un-
complete, and are defined by the choice of the fundamental behavior at §1
respectively [2]. This choice is fixed by the spectral equivalence (3).
In the case of θ = ¡π, i

p
β positive, the Hamiltonian is real, but both the

classical problem and the quantum one, are uncomplete. In the quantum
case, all the solutions are L2 at ¡1. The choice of the Gamow-Siegert
behavior (corresponding to negative current density) at ¡1, gives eigen-
values with the meaning of resonances and eigenstates with the meaning of
metastable states.
On the other case, for θ = π, i

p
β negative, with the choice of the anti-

Gamow-Siegert behavior at +1, we have the correct definition of the op-
erator and we verify the spectral equivalence, H1(β) »

p
αHα(b), α =

exp(¡i2π/5).
Actually, we have the following behavior of the eigenfunction ψn,1,β for x
large:

ψn,1,β(x) »
K

x3/4
exp(¡

p
i 4
√
βx5/2) =

K

x3/4
exp(¡i 4

p
bx5/2). (7)

The same behavior is defined by the scaled eigenfunction, satisfying the L2

condition,

ψn,α(b)(x) »
K1

x3/4
exp(¡

p
i
4
p
bx5/2)! 0, (8)

as x!1.
Now, let us consider the translated Hamiltonian

T−ǫH(1, β)T−1−ǫ = H−ǫ,1(β),

where the complex translation, is defined by T−ǫψ(x) = ψ−ǫ(x) = ψ(x¡ iǫ),
for ǫ > 0. Because of the translation analyticity of the Hamiltonian, we have
the spectral equivalence,

H−ǫ,1(β) » H1(β)
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for β 2 Ċc. This equivalence can be extended to the case of θ = π, if the
operator H1(β) is defined, as above, by the correct condition at +1. Let
us consider an eigenfunction ψ−ǫ,n,1,β(x) = ψn,1,β(x ¡ iǫ) of H−ǫ,1(β), for
β = b exp(iπ)6= 0. We have the L2 behavior,

ψn,1,β(x¡ iǫ) »
K2

x3/4
exp(¡i 4

p
bx5/2(1¡ 5iǫ/x))! 0, (9)

as x! +1, if ψn,1,β has the anti-Gamow-Siegert behavior.
Let us consider the numerical range of the translated operator, for β =
b exp(iπ),

H−ǫ,1(β) = p
2 + V1,β(x¡ iǫ),

for ǫ > 0, where V1,β(x¡ iǫ) = (x¡ iǫ)2 ¡
p
b(x¡ iǫ)3 and

=V (x¡ iǫ) = ¡ǫ(2x¡
p
b(3x2 ¡ ǫ2)) ¸ ¡ ǫ

3
p
b
(1 + 3bǫ2).

Thus, the intersection of the numerical ranges of the operators fH−ǫ,1(β)gǫ,
for all ǫ > 0, is contained on C+ = fz 2 C : =z ¸ 0g. Thus, we have “anti-
resonances” En(1, b exp(iπ)) = En(1,¡b+ i0+), with =En(1,¡b¡ i0+) ¸ 0,
as the usual anti-resonances [16].
In a similar way, we prove that =En,1(¡b¡ i0+) · 0. Thus, we have:
Lemma 1. An eigenvalue E(β) = En,1(β), n 2 N, β = b exp(iπ) = ¡b+i0+,
b > 0, of H1(β) » α−1/2Hα(b), α = exp(¡4iπ/5), has a non-negative imag-
inary part: =E(b exp(iπ)) ¸ 0. On the other side, for β = b exp(¡iπ) =
¡b¡ i0+, b > 0, we have =E(b exp(¡iπ)) · 0.

3 Analyticity, symmetry and stability of the

nodes for small parameter

Let us consider the analytic family of type A of compact resolvent operators,

Hα(β), (10)

on the domain D = D(p2) \D(x3) for fixed α 2 C, β on the cut plane

Cc = fβ 2 C; b = jβj > 0, j arg(β) = θj < π, g

([2], Theorem 2.9).
We fix, for example, α = 1.
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We remember thatH1(β), for β on the borders of Cc, for instance at arg(β) =
¡π (the other case, arg(β) = ¡π, is similar), is defined by the Gamow-Siegert
condition at ¡1.
The eigenvalue En,1(β), for a fixed n = 0, 1, ..., of H1(β) is an eigenvalue also
of the operator α1/2Hα(b), En,1(β) = α1/2En,α(b), (the index n is related to
the number of nodes of the eigenfunction) where

α = (b/β)2/5 = exp(¡2iθ/5).

In particular En,1(b exp(§π)) =
p
αEn,α(b), where α = exp(¨2iπ/5).

Moreover, the eigenvalue En,1(β) of H1(β)(p, x), for β = b exp(§iπ), is also
an eigenvalue of the translated operator,

H1(β)(p, x§ iǫ) = p2 + (x§ iǫ)2 + i
√
β(x§ iǫ)3,

for ǫ > 0.
For β on the completed cut plane, Cc = fβ 2 C; β 6= 0, j arg(b)j · π, g we
have the spectral equivalence for scaling:

H(α, b) » (α)−1/2H(1, β), (11)

where α = (b/β)2/5 = exp(¡2iθ/5) with j arg(α)j < π/2.
In place of the limit of H1(β), as β ! 0, we consider the norm resolvent limit
Hα(b)! Hα(0), for α = (b/β)2/5 fixed, as b! 0. Let us notice that H(α, 0),
for α6= 0, is defined on the domain D = D(p2) \D(x2) (see Theorem 2.13
on reference [2], and its extension on reference [3]).
We have the result of strong asymptotism of the eigenvalues:

Theorem 1.

For n = 0, 1, ..., let En,1(β) be an eigenvalue, and let ck, k 2 N, be its per-
turbation coefficients,

f(β) =
(En,1(β)¡ En,1(0))

β
.

Then, there exists bn > 0 such that f(β) is analytic on the bounded sector,

Ωn = fβ 2 C; 0 < jβj < bn, j arg(β)j · πg,

and there exist numbers A,C > 0, such that

jf(β)¡ΣN(β)j < ACNN !jβjN ,
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where ΣN(β) =
∑N−1
k=0 ck+1(β)

k, uniformly for N ¡ 1 2 N and β 2 Ωn.
Proof See reference [2], Theorem 3.2.,(where β is our i

p
β), extended in

reference [3] (for k = 1).

Remark 1: the stability of the nodes.

Together with the stability of the eigenvalues, we have the stability of the
eigenfunctions. In particular, we are interested in the stability of their zeros,
or nodes.
We have the limit of the eigenvalue En(1, β)! En(1, 0) and the strong limit
of the eigenvector ψn,1,β ! ψn,1,0 as b = jβj ! 0+, for β 2 Ωn, arg(β) fixed,
j arg(β)j · π. Thus we have the limit ψn,1,β(z) ! ψn,1,0(z) as b = jβj ! 0+,
for β 2 Ωn, arg(β) fixed, j arg(β)j · π, uniformly for z on a compact of the
complex plane.
Since the perturbed eigenfunctions are entire, as the unperturbed ones, we
have the stability of the n zeros of ψn,1,0(z) for b = jβj small.
For any fixed regular closed curve γ = ∂Γ on the complex plane, oriented
in the positive sense, around the segment of extremes (x−, x+), where x± =

§
√
En(1, 0) = §

√
(2n+ 1), we have the constant number of zeros (nodes) in

Ωn:

n =
1

2iπ

∮

γ

ψ′n,1,β(z)

ψn,1,β(z)
dz =

1

2iπ

∮

γ

ψ′n,1,0(z)

ψn,1,0(z)
dz,

for β 2 Ω′n, where

Ω′n = fβ 2 C; 0 < jβj · b′n, j arg(β)j · πg,

and 0 < b′n · bn.
Let us set ψβ = ψn,1,β and ψ0 = ψn,1,0 and apply the theorem of Rouché
[17]. Since the zeros of ψ0(z) are not on γ, there exists M > 0, such
that jψ0j ¸ M > 0 uniformly on γ. Moreover, jψβ(z) ¡ ψ0(z)j ! 0 uni-
formly for z on the compact γ, because of the analyticity. Thus, we have
jψ0(z)j > jψβ(z) ¡ ψ0(z)j for z on γ and for β 2 Ω′n, so that the Rouché
theorem applies.
We shall see (Theorem 2) that, for β 2 Cc

⋂
Ω′n, where Cc is the complex

plane cut on the negative real axis, the n zeros (nodes) are confined on
Γ
⋂
C−, where C− = fz 2 C;=(z) < 0g. The n nodes are the only zeros of

ψ(z) on C−.
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4 Absence of zeros of the eigenfunctions on

a strip containing the real axis

We consider the operator

H(a, β) = p2 + ax2 + i
√
βx3,

and the eigenvalue En,a(β), with eigenfunction ψn,a,β, where n = 0, 1, ...,
a ¸ 0, jβj = b > 0, θ = arg(β), jθj · π.
Let us fix jθj < π, a > 0.
We call z = x+iy the x variable extended to the complex plane. We consider
the eigenvalues E = En,a(β), and eigenfunctions ψE(z) = ψn,a,β(z), where the
label n is related to the number of zeros stable at β = 0.

On the strip

A(a, β) = fz 2 C; 0 · =(z) · y+ =
2a<

p
β

3b
=

2a

3
p
b
cos(

θ

2
)g,

there are no zeros of the eigenfunction ψn,a,β(z).

Theorem 2. On the strip

A(a, β) = fz 2 C; 0 · =(z) · y+ =
2a<

p
β

3b
=

2a

3
p
b
cos(

θ

2
)g,

there are no zeros of any eigenfunction ψE(z) of H(a, β), with eigenvalue E,
where a > 0, and b = jβj > 0, θ = arg(β), jθj · π.
Proof.

Let us, at first, set jθj < π, and consider the translated operator Ha,β,y =
p2 + Vy, where

Vy = Vy(x) = a(x+ iy)
2 + i

√
β(x+ iy)3 =

= ax2 ¡ ay2 ¡ 3
√
βyx2 +

√
βy3 + 2aiyx¡ 3i

√
βy2x+ i

√
βx3.

Let ψy(x) = ψE(x+ iy). We have:

ψE(x+ iy) = ψy(x)6= 0

for every x 2 R, for 0 · y · y+ = 2a<(β)/3b.
For 0 · y · y+,

¡=(ψy(r)
dψy(r)

dr
) =

∫
∞

r
=(Vy(x)¡ E)jψy(x)j2dx > 0, (12)
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or

¡=(ψy(r)
dψy(r)

dr
) = ¡

∫ r

−∞

=(Vy(x)¡ E)jψy(x)j2dx > 0, (13)

for any r 2 R.
The proof is based on the monotonicity of

f(x) = =(Vy(x)¡ E) = R(x3 ¡ 3y2x) + 2axy ¡ 3Iyx2 + c,

where R = <(pβ), I = =(pβ) and c is a constant, that is, the non-
negatitivity of f ′(x),

f ′(x) = =(Vy(x)¡ E)′ = 3Rx2 ¡ 6Iyx¡ 3Ry2 + 2ay = Ax2 +Bx+ C ¸ 0,

where: A = 3R, B = ¡6Iy, C = ¡3Ry2+2ay.We impose the non-positivity
of the discriminant:

(B2 ¡ 4AC)/4 = 12y[3by ¡ 2Ra] · 0,

proved for

0 · y · y+ =
2Ra

3b
=

2a

3
p
b
cos(

θ

2
).

We have absence of zeros for 0 · =z · y+.
In the case of j arg(β)j = π, we have the limits of the equations (12)(13), and
for any r 2 R,

∫
∞

r
=(V (x)¡E)jψǫ(x)j2dx = ¡

∫
∞

r
=(E)jψE(x)j2dx > 0, or

∫ r

−∞

=(E)jψE(x)j2dx > 0. (14)

This means that the imaginary part of the eigenvalue is different from zero.
Thus, the imaginary part of the eigenvalue is different from zero, and we
extend Lemma 1:
Lemma 2.

An eigenvalue E(β) = En,1(β), n 2 N, β = b exp(iπ) = ¡b + i0+, b > 0,
of H1(β) » α−1/2Hα(b), α = exp(¡4iπ/5), has a positive imaginary part:
=E(b exp(iπ)) > 0. On the other side, for β = b exp(¡iπ) = ¡b¡ i0+, b > 0,
we have (14), =E(b exp(¡iπ)) < 0.
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5 The semiclassical confinement of the nodes

for small parameter

We prove the absence, for jβj > 0 small, j arg(β)j · π, of any zero of the
eigenfunction ψβ(z) = ψn,1,β(z) of H1(β), with eigenvalue Eβ = En,1(β), for
a fixed n = 0, 1, ..., on the lower half plane, z 2 C−, for large jzj.
Let us consider the semiclassical quantity,

pβ(z) =
√
Vβ(z)¡ Eβ, (15)

where Vβ(z) = z
2 + i

p
βz3 and Eβ = En,1(β) is the eigenvalue of the Hamil-

tonian with eigenfunction ψβ(z). There are three zeros of pβ(x). Two zeros
z±(β), converge z±(β) ! z± = §

p
E0 as β ! 0, in the sector jarg(β)j < π.

The third one, z0(β) diverges, z0(β) » i/
p
β, as β ! 0, in the sector

jarg(β)j < π.
Let n = 0, 1, .. fixed, z 2 C−, jzj >> jz±j, and β 2 Ω′n, we define:

f(β, z) = f(n, 1, β, z) =
jψ′β(z)j

jpβ(z)ψβ(z)j
, (16)

where pβ(z) is defined above (15). We have,

f(β, z)! 1, (17)

for jzj ! 1, uniformly for z on the sector j arg(iz)j · π/2 ¡ ǫ, for any ǫ
0 < ǫ < π/2, 0 · jβj · b′n, for fixed arg β, j arg(β)j < π. This means that no
node of ψβ(z) goes to (or comes from) infinity on the sector j arg(iz)j · π/2,
for this set of parameters.

Theorem 3.

Let ψβ(z) = ψn,1,β(z) be an eigenfunction with n nodes and eigenvalue E =
En.
No one of its nodes goes to (or comes from) infinity on the sector j arg(iz)j <
π/2, for jβj · b′n, j arg(β)j < π.

Remark 2.

We can extend the limit (17) uniformly for 0 · b = jβj · b′n fixed, and
j arg βj · π. Thus we extend the barrier for the zeros at infinity on the sector
j arg(iz)j · π/2, to the full β¡sector

Ω
′

n = fβ 2 C; 0 · jβj · b′n, j arg(β)j · πg,
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6 The semiclassical confinement of the nodes

for large parameter

Let the Hamiltonian be Ha = p
2+Va = Ha(β) = p

2+Va(β), and E = En,a(β)
for fixed n = 0, 1, .., be an eigenvalue with eigenfunction ψE(z) = ψn,a,β(z)
for fixed β, jβj ¸ b′n, j arg(β)j · π, and 0 · a · 1. We have E 6= 0,
j arg(E)j · π/2, because of the numerical range.
Now, we make the hypothesis of boundendness of an eigenvalue for the pa-
rameters restricted on a compact. This allows to prove the stability of the
nodes of its eigenfunction. We will prove later that the eigenvalue is bounded
if the number of nodes is stable.
Hypothesis I.

The eigenvalue E = En,a(β) for fixed n = 0, 1, .., β, jβj = b′n > 0, where b′n
is given in Theorem 1, is uniformly bounded for j arg(β)j · π, and 0 · a · 1.

Let us recall [13] the 5 Stokes angular sectors of the complex x plane, for
β6= 0,

Sk = Sk(arg(β)) = fz 2 C; j arg(iz) +
1

5
arg(β)¡ 2kπ

5
j < π

5
g,

¡2 · k · 2.
The eigenfunction ψE(z) is an entire function and,

(ψE(z), ψ
′

E(z))! 0

as jzj ! 1, for arg(z) in each one of the two Stokes angular sectors S±1.
On the other side, ψE(z) is purely divergent in the other three sectors S0, S±2,
and has no zeros [13] in the full angular sector of the complex plane

S = S(arg(β)) = S−2
⋃
S̄−1

⋃
S0
⋃
S̄1
⋃
S2 = fx 2 C; j arg(iz)+

1

5
arg(β)j < πg

for large jzj.
We have the following result.

Theorem 3’.

Let β be fixed, withjβj = b′n > 0, j arg(β)j · π, and 0 · a · 1, ψa(z) =
ψn,a,β(z) be an eigenfunction, with eigenvalue E = Ea = En,a(β), where the
index n = 0, 1, .., is the number of its nodes at a = 1.
Moreover, we assume the Hypothesis I.
Then, no one of its nodes goes to (or comes from) infinity on the sector

S− = fz 2 C; j arg(iz)j · π/2g.

12



Remark 3.

Considering also Theorem 2, we have the invariance of the number of nodes.
Proof of the Theorem 3’.

Let us consider the function

fa(z) =
jψ′a(z)j

jpa(z)ψa(z)j
, (18)

where pa(z) =
√
Va(z)¡ En,a » 4

p
β(iz)3/2 for large jzj with a, E fixed.

Since ψa(z) is the analytic solution of the Schrödinger equation, with energy
En,a, the zeros of ψa(z) are simple and fa(z) has a pole where ψa(z) has a
zero. We have,

fa(z)! 1

as jzj ! 1, uniformly for j arg(iz)j · π/2, a 2 [0, 1], E on a compact set.
This means that no zero of ψa(z) goes to (or comes from) infinity on the
sector j arg(iz)j · π/2, for this set of parameters.

7 Boundedness of the eigenvalues

We prove the boundedness of the eigenvalues En,a(β) for bounded param-
eters (n, a, β). In particular, n = 0, 1, ... is fixed, a 2 [0, an], where an =
(1/b′n)

2/5 > 0, β 2 C, jβj = 1, j arg(β) = θj · π.
It is better to use the following scaling:

En,α(1) = exp(¡iθ/5)En,a(β),

where α = a exp(¡i2θ/5).
Thus, we should prove the boundedness of En,α(1) for jαj 2 [0, an], and
j arg(α)j · 2π/5 for α6= 0.
For our non self-adjoint operators, we use an argument slightly different from
the one of the reference [1]. We directly use the semiclassical quantization
and the stability of the nodes.
Theorem 4.

For any n = 0, 1, .., α0 = 0, or α0 6= 0 with j arg(α0)j · 2π/5, En,α(1) is
bounded and continuous at α = α0.
Proof.

Let us consider the three parameter operators,

H(h̄, α, β) = ¡h̄2p2 + αx2 + i
√
βx3,

13



and the eigenvalues En(h̄, α, β) for n = 0, 1, .... We have the spectral equiv-
alence for real scaling:

H(1, α, 1) » H(λ−2, λ2α, λ3),

so that
En(1, α, 1) = En(λ

−2, λ2α, λ3),

for n = 0, 1, .. λ6= 0.
Because of the analyticity of the family of operators Hα(1) = H(1, α, 1),
boundedness implies continuity.
We prove the boundedness by absurd.
Let us fix n = 0, 1, .., and α0, 0 · a0 = jα0j · an, j arg(α0)j · 2π/5 for
a0 < 0 , and suppose jEn(1, α, 1)j ! 1 as α ! α0. For α near α0, we scale
the Hamiltonian and use the identity:

λ6/5En(1, α, 1) = En(h̄, α
′, 1) := ǫ = exp(iθ),

where ǫ = ǫ(α), λ = h̄ = jEn(1, α, 1)j−5/6 > 0, α′ = λ2/5α and jθj · π/2. We
set ǫ0 = ǫ(α0) = En(h̄, 0, 1)6= 0.
Thus, we study the semiclassical eigenvalue problem H(h̄, α′, 1)ψn = ǫψn, by
the Bohr-Sommerfeld quantization rule:

J(α) = i
∫

γ

√
V (z)¡ ǫ dz = π(2n+ 1)h̄+O((h̄)2), (19)

where the phase of
√
V (z)¡ ǫ vanishes as jzj ! 1, with arg(z) = ¡π/6.

Thus, the n nodes are confined on the fixed compact domain Ω bounded by
the regular curve ∂Ω = γ1 [ γ2, where γ1 is the arc of circle γ1 = fjzj =
R; j arg(iz)j · (π/2)+θ′g, (see Theorems 3-4) and γ2 the segment of extrems
(¡R exp(iθ′), R exp(iθ′)), where θ′ = arg(α)/4 (see Theorem 2). The limit
α! α0 implies ǫ! ǫ0, α

′, h̄! 0, and, for the classical action,

J(α)! J(α0) = i
∫

γ

√
iz3 ¡ ǫ0 dz = ǫ5/60 i

∫

γ

√
iy3 ¡ 1 dy =

= ǫ
5/6
0

∫

γ

√
1¡ iy3 dy = ǫ5/60 2<(2 exp(¡iπ/6)

∫
1

0

p
1¡ x3 dx) =

= ǫ
5/6
0 4 sin(

π

3
)
∫
1

0

p
1¡ x3 dx = ǫ

5/6
0 2

p
π sin(

π

3
)

Γ(1 + (1/3))

Γ((1/3) + (3/2))
6= 0, (20)

where y = zǫ
−2/3
0 , and where the phase of

p
iz3 ¡ ǫ0 vanishes as jzj ! 1, for

arg(z) = ¡π/6, and where γ, in this semiclassical approximation, has been

14



distorted to a regular path encircling the origin and both the turning points
z±.
As a result, for the left hand of equation (19) we have,

J(α)! 0, (21)

as α! α0, h̄! 0, in contradiction with the limit of the left hand of equation
(19), as written in equation (20). The proof is similar for α0 = 0.
Let us notice that the same analysis gives the correct semiclassical behavior
of the eigenvalues [6], [5], for large n. From the equations (20) and (19), we
have,

ǫ
5/6
0 2

p
π sin(

π

3
)

Γ(1 + (1/3))

Γ((1/3) + (3/2))
» π(2n+ 1)h̄,

where,

ǫ0 = En(h̄, 0, 1)! (
Γ[(3/2) + (1/3)]

p
π A

sin(π/3)Γ[1 + (1/3)]
)6/5,

as n!1, nh̄! A > 0 [6].

8 The power law behavior at infinity

We prove here the algebraic behavior of the eigenvalues for large parameter.
We use the scaling formula:

p
αEn,1(β) = En,α(1)

for n 2 N, where α = β−2/5. Let us recall that Theorem 4, in the special case
of α0 = 0, implies continuity and boundedness of each eigenvalue En,α(1) in
the limit α! 0.
The analyticity, of type A, of the family of operators Hα(1) (see [2] Theorem
2.10), with the control of the nodes, and the simplicity of the spectrum, imply
the stability at α = 0 and the α¡analyticity in a neighborhood of the origin
of each eigenvalue En,α(1).
Therefore, if α = β−2/5,

p
αEn,1(β) = En,α(1) ! En,0(1) for β ! 1. Thus,

for jβj = b large, En,α(β) grows as b1/5, and has an algebraic singularity there:

En,1(β) = β
1/5En,β−2/5(1) » β1/5En,0(1).

Let us notice that we have arg(En,1(b exp(§iπ)))! §π/5, and
§b−1/5=(En,1(b exp(§iπ)))! En,0(1) sin(π/5) > 0,

as b!1.
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9 Global analyticity, symmetry, and Padé summa-

bility on the cut plane

Let E(β) = En,1(β), n = 0, 1, 2, ...,

f(β) =
E(β)¡ E(0)

β
,

f(β) is bounded holomorphic on the completed cut complex plane C̄c =
fβ 2 C;β 6= 0, j arg(β) = θj · πg, (see Theorems 1-2-3’-4). Moreover, we
have the symmetry of the eigenvalues: En,1(β) = Ēn,1(β̄), so that we have,
f(β) = f̄(β̄). For the Cauchy theorem, we have,

f(β) =
1

2iπ

∮

γ

f(z)

z ¡ β =
1

2iπ

∮

γ

1

1¡ (β/z)

f(z)

z
dz =

∫
∞

0

1

(1 + βx)
ρ(x)dx,

where γ is any curve turning around β in the positive way, we have the
dispersion relation of a Stieltjes function, where

ρ(1/b) = ¡b(f(¡b+ i0+)¡ f(¡b¡ i0+))/2iπ =

= ¡b=f(¡b+ i0+)/π = =En(¡b+ i0+)/π ¸ 0,

for Lemma 1. We have the asymptotism to the formal power series:

f(β) » Σ(β) =
∞∑

j=0

aj(¡β)j

for jβj small, where the

aj = jcj+1j =
∫
∞

0

xjρ(x)dx, (22)

are the moments of the measure ρ(x)dx. Thus, the problem of the moments

aj = jcj+1j =
∫
∞

0

xjdµ(x), (23)

has the solution dµ(x) = ρ(x)dx. Because of the bound on the perturbation
coefficients jcjj < ACjj! (see Theorem 1 and references [2], [3]), the Carleman
theorem condition (see [20] page 330) is satisfied,

∑

n

(1/an)
1/2n =1,

and the unicity of the solution dµ(x) = ρ(x)dx.
Let us recall the definition of the diagonal Padé approximants Rnn(β) of
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the formal power series Σ(β) =
∑
∞

j=0 aj(¡β)j, with partial sums ΣN(β) =
∑N−1
j=0 aj(¡β)j, β 2 C. The diagonal Padé approximants, Rnn(β), n ¸ 0, are

the rational fractions,

Rnn(β) =
Pn(β)

Qn(β)
,

where Pj(β), Qj(β), are polynomials of degree j, with the condition Qj(0) =
1, defined by the asymptotic condition, jRnn(β) ¡ Σ2n+1(β)j = O(β2n+1), for
jβj ! 0.
As a general result, the Padé approximants Rnn(β) on Stieltjes asymptotic
expansions, don’t have poles or zeros on the complex cut plane, and there
converge

Rnn(β)! fµ(β) =
∫
∞

0

1

(1 + βx)
dµ(x),

where dµ is a measure solution of the moment problem (23). In this case,
necessarily we have dµ(x) = ρ(x)dx and fµ(β) = f(β).
Thus, we have the result:

Theorem 5.

The function

f(β) =
E(β)¡ E(0)

β
,

is a Stieltjes function,

f(β) =
∫
∞

0

1

(1 + βx)
ρ(x)dx, (24)

for β on the cut complex plane, where

ρ(1/b) = =(En(¡b+ i0+))/π > 0, (25)

and,

ln(ρ(x)) = ¡C−1x(1 +O(ln(x)/x)), (26)

where C−1 = 8/15 = 2B(2, 3/2) = 2
∫
1

0
x
p
1¡ xdx, [16] for large positive x.

The diagonal Padé approximants of the perturbation series, converge to f,

Rnn(β)! f(β),

as n!1, uniformly for β on compacts of the cut complex plane.

Proof.
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The inequality (25) is proved by the PT symmetry of the eigenfunctions
and eigenvalues, En(¡b+ i0+)¡En(¡b¡ i0+) = 2i=(En(¡b+ i0+)) and by
Lemma 2. We only have to discuss the asymptotic behavior of the disconti-
nuity function.
For the semiclassical behavior of the discontinuity (26), we consider the semi-
classical scaling, where b > 0 plays the role of semiclassical parameter, with
the anti-Gamow-Siegert condition at +1:

H(b, 1, exp(iπ)) » bH(1, 1, b exp(iπ)).

In the case of the semiclassical operator H(b, 1, exp(iπ)), we have a “double
well problem”, with the barrier width C−1 = 8/15 = 2

∫
1

0 x
p
1¡ xdx, and

h̄ = b. This value of the barrier, implies the behavior of ρ(x), as x !
1, as given in (26), and the behavior of the perturbation coefficients cj =
(¡1)jaj−1, aj =

∫
∞

0 xjdρ(x), aj » DCjj!, as j ! 1, for some D > 0,
compatible with the behavior:

cj = (¡1)j−14
p
15Cj(2π)−3/2Γ(j + 1/2)(1 +O(1/j)),

for large j, obtained numerically [8] in the case of n=0.

Remark 4.

We have proved, in a new way, that the eigenvalue E(β) = En,1(β), n =
0, 1, 2, ..., is real and positive for positive β,

E(β) = E(0) + βf(β) = E(0) + β
∫
∞

0

1

(1 + βx)
ρ(x)dx ¸ E(0),

and En,1(β) » β1/5En,0(1) for large positive β.
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