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Abstract. We consider the cubic and quintic Gross-Pitaevskii (GP) hierar-
chy in d dimensions, for focusing and defocusing interactions. We introduce

new higher order conserved energy functionals that allow us to prove global

existence and uniqueness of solutions for defocusing GP hierarchies, with ar-
bitrary initial data in the energy space. Moreover, we prove generalizations of

the Sobolev and Gagliardo-Nirenberg inequalities for density matrices, which

we apply to establish global existence and uniqueness of solutions for focusing
and defocusing GP hierarchies on the L2-subcritical level.

1. Introduction

In recent years, there has been impressive progress related to the derivation of
nonlinear dispersive PDEs, such as the nonlinear Schrödinger (NLS) or nonlinear
Hartree (NLH) equations, as effective theories describing the mean field dynamics of
weakly interacting Bose gases, see [11, 12, 13, 21, 20, 25] and the references therein,
and also [1, 3, 10, 14, 15, 16, 18, 17, 19, 27]. For advances in the mathematical
theory of Bose-Einstein condensation in systems of interacting Bosons, we refer to
the highly influencial works [2, 22, 23, 24] and the references therein.

In the landmark works [11, 12, 13], Erdös, Schlein, and Yau developed the fol-
lowing method to derive the NLS as a dynamical mean field limit of an interacting
Bose gas. Starting with the solution of the Schrödinger equation describing N in-
teracting bosons, one determines the BBGKY hierarchy of the associated marginal
density matrices. The scaling of the system is chosen in such a way that the par-
ticle interaction potential tends to a delta distribution as N →∞, and, moreover,
that the kinetic and potential energy in the system are both of the same order
of magnitude, which is O(N); see also [21, 26] for surveys. Subsequently, in the
limit N →∞, one derives the Gross-Pitaevskii (GP), which is an infinite hierarchy
of partial differential equations determining the dynamics of marginal k-particle
density matrices, k ∈ N. For factorized initial data, the solutions of the GP hier-
archy are easily seen to remain factorized. The individual factors are governed by
an NLS, which is cubic for systems with 2-body interactions, [11, 12, 13, 21], and
quintic NLS for systems with 3-body interactions, [6]. The proof of the uniqueness
of solutions of the GP hierarchy is the most difficult part of this analysis, and is
obtained in [11, 12, 13] by use of highly sophisticated Feynman graph expansion
methods inspired by quantum field theory.
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Subsequently, Klainerman and Machedon presented an alternative method in
[20] to prove the uniqueness of solutions for the cubic GP hierarchy in d = 3, using
spacetime bounds on marginal density matrices and a sophisticated combinatorial
result based on a certain “boardgame argument”; their analysis requires the as-
sumption of an a priori spacetime bound which is not proven in [20]. Kirkpatrick,
Schlein, and Staffilani then proved in [21] that this a priori spacetime bound is
satisfied for the cubic GP hierarchy in d = 2, locally in time, by exploiting the con-
servation of energy in the BBGKY hierarchy, in the limit as N →∞. However, no
explicit conserved energy functional on the level of the GP hierarchy was identified
in [21], or in [11, 12].

It is currently not known how to obtain a GP hierarchy from the N →∞ limit
of a BBGKY hierarchy with attractive interactions. Nevertheless, we have begun in
[7] to use the level of GP hierarchies as our starting point, and to consider systems
with both focusing and defocusing interactions. Accordingly, the corresponding GP
hierarchies are referred to as cubic, quintic, focusing, or defocusing GP hierarchies,
depending on the type of the NLS governing the solutions obtained from factorized
initial conditions. Our interest lies in investigating the Cauchy problem for GP
hierarchies without any factorization condition.

In [7], we prove the a priori bound conjectured in [20], and sharpen it by demon-
strating it to correspond to an inequality of Strichartz type. For the proof, we
introduce a natural topology on the space of sequences of k-particle marginal den-
sity matrices, and invoke a Picard fixed point argument. Accordingly, we prove in
[7] local well-posedness for the cubic and quintic GP hierarchies, in various dimen-
sions; moreover, we establish lower bounds on the blowup rate for blowup solutions
of focusing GP-hierarchies. In [8], this result is sharpened, and we present a signif-
icantly improved and shorter proof. In the joint work [9] with Tzirakis, we identify
a conserved energy functional and prove that on the L2-critical and supercritical
level, blowup occurs for focusing GP hierarchies whenever the average energy per
particle is negative.

In the present paper, we continue our investigation of the Cauchy problem for
the cubic and quintic GP hierarchy, with focusing and defocusing interactions. It
is crucial that our results do not assume any factorization of the initial data. Our
interest in this system is based on the fact that the GP hierarchy is an effective
theory describing an interacting Bose gas on the quantum field theory level, which is
richer than the set of factorized states parametrized by solutions of the NLS, but at
the same time also more accessible than the original system before taking N →∞.
It possesses an interesting combination of mean field features and characteristics of
quantum manybody systems.

While in [7], we addressed the local well-posedness of solutions, we will in this
work establish global well-posedness of solutions of GP hierarchies in various sit-
uations described below. To be more precise, we describe here some of the basic
settings. Similarly to [7], we introduce Banach spacesHαξ = {Γ ∈ G | ‖Γ ‖Hαξ <∞}
where

G = {Γ = ( γ(k)(x1, . . . , xk;x′1, . . . , x
′
k) )k∈N |Trγ(k) < ∞} (1.1)
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is the space of sequences of k-particle density matrices, and

‖Γ ‖Hαξ :=
∑
k∈N

ξk ‖ γ(k) ‖Hα(Rdk×Rdk) , (1.2)

where

‖γ(k)‖Hαk := ( Tr( |S(k,α)γ(k)|2 ) )
1
2 , (1.3)

with S(k,α) :=
∏k
j=1

〈
∇xj

〉α〈∇x′j〉α. These are the L2-type norms used in [20, 6, 7].
In this paper, we will also at various instances make use of the norms

‖γ(k)‖]Hαk := Tr( |S(k,α)γ(k)| ) (1.4)

employed in [11, 12], mostly in connection with energy conservation.

The parameter ξ > 0 is determined by the initial condition, and it sets the
energy scale of a given Cauchy problem. If Γ ∈ Hαξ , then ξ−1 an upper bound on
the typical Hα-energy per particle; this notion is made precise in [7]. We note that
small energy results are characterized by large ξ > 1, while results valid without
any upper bound on the size of the energy can be proven for arbitrarily small values
of ξ > 0; in the latter case, one can assume 0 < ξ < 1 without any loss of generality.

The parameter α determines the regularity of the solution, and our results on
the L2-critical and supercritical level, with p ≥ pL2 = 4

d , hold for

α ∈ A(d, p) :=


( 1

2 ,∞) if d = 1
(d2 −

1
2(p−1) ,∞) if d ≥ 2 and (d, p) 6= (3, 2)[
1,∞) if (d, p) = (3, 2) ,

(1.5)

where p = 2 for the cubic, and p = 4 for the quintic GP hierarchy.

The main results proven in this paper are:

(1) We prove the global well-posedness of solutions to defocusing p-GP hier-
archies with Γ0 ∈ H1

ξ for arbitrary ξ > 0 (see Section 7 for details). This
result can be understood as an improvement of the global existence and
uniqueness of solutions in H1

ξ which was obtained in [7] under the assump-
tion that an a priori bound ‖Γ(t)‖H1

ξ
< c holds for ξ > 0 sufficiently small.

In the work at hand, we actually prove a related a-priori bound by identi-
fying (in Section 4) a family of conserved, higher order energy functionals,
generalizing those found in [9]. Moreover, another important tool, used
in the proof of global well-posedness for defocusing p-GP hierarchies with
Γ0 ∈ H1

ξ , is a generalization of the Sobolev inequalities that we prove for
marginal density matrices in Section 5.

(2) We prove the global well-posedness of solutions for focusing and defocusing
p-GP hierarchies on the L2-subcritical level, p < 4

d (see Section 8). For
the proof, we establish (in Section 6) a generalization of the Gagliardo-
Nirenberg inequality, valid for marginal density matrices.

The precise definition of the model studied in this paper is given in Section 2,
and the main Theorems proven in this work are summarized in Section 3.
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2. Definition of the model

In this section, we introduce the mathematical model analyzed in this paper.
We will mostly adopt the notations and definitions from [7], and we refer to [7] for
motivations and more details.

2.1. The spaces. We introduce the space

G :=
∞⊕
k=1

L2(Rdk × Rdk)

of sequences of density matrices

Γ := ( γ(k) )k∈N

where γ(k) ≥ 0, Trγ(k) = 1, and where every γ(k)(xk, x
′
k) is symmetric in all

components of xk, and in all components of x′k, respectively, i.e.

γ(k)(xπ(1), ..., xπ(k);x′π′(1), ..., x
′
π′(k)) = γ(k)(x1, ..., xk;x′1, ..., x

′
k) (2.1)

holds for all π, π′ ∈ Sk.

Throughout the paper we will denote the vector (x1, · · · , xk) by xk and similarly
the vector (x′1, · · · , x′k) by x′k.

The k-particle marginals are assumed to be hermitean,

γ(k)(xk;x′k) = γ(k)(x′k;xk). (2.2)

We call Γ = (γ(k))k∈N admissible if γ(k) = Trk+1,...,k+ p
2
γ(k+ p

2 ), that is,

γ(k)(xk;x′k) (2.3)

=
∫
dxk+1 · · · dxk+ p

2
γ(k+ p

2 )(xk, xk+1, . . . , xk+ p
2
;x′k, xk+1, . . . , xk+ p

2
)

for all k ∈ N.

Let 0 < ξ < 1. We define

Hαξ :=
{

Γ ∈ G
∣∣∣ ‖Γ‖Hαξ < ∞} (2.4)

where

‖Γ‖Hαξ =
∞∑
k=1

ξk‖ γ(k) ‖Hαk (Rdk×Rdk) ,

with

‖γ(k)‖Hαk :=
(

Tr( |S(k,α)γ(k)|2 )
) 1

2 (2.5)

where S(k,α) :=
∏k
j=1

〈
∇xj

〉α〈∇x′j〉α.

Remark 2.1. We remark that similar spaces are used in the isospectral renormal-
ization group analysis of spectral problems in quantum field theory, [4].
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Remark 2.2. We note that in [11, 12], the norm

‖γ(k)‖]Hαk := Tr(|S(k,α)γ(k)|) (2.6)

is used, which will also be employed here in connection with a priori energy bounds.
We note that

‖γ(k)‖Hαk ≤ C ‖γ(k)‖]Hαk (2.7)

as is proven in [7].

2.2. The GP hierarchy. Next, we introduce cubic, quintic, focusing, and defo-
cusing GP hierarchies, adopting notations and definitions from [7].

Let p ∈ {2, 4}. The p-GP (Gross-Pitaevskii) hierarchy is given by

i∂tγ
(k) =

k∑
j=1

[−∆xj , γ
(k)] + µBk+ p

2
γ(k+ p

2 ) (2.8)

in d dimensions, for k ∈ N. Here,

Bk+ p
2
γ(k+ p

2 ) = B+
k+ p

2
γ(k+ p

2 ) −B−
k+ p

2
γ(k+ p

2 ) , (2.9)

where

B+
k+ p

2
γ(k+ p

2 ) =
k∑
j=1

B+
j;k+1,...,k+ p

2
γ(k+ p

2 ),

and

B−
k+ p

2
γ(k+ p

2 ) =
k∑
j=1

B−
j;k+1,...,k+ p

2
γ(k+ p

2 ),

with (
B+
j;k+1,...,k+ p

2
γ(k+ p

2 )
)

(t, x1, . . . , xk;x′1, . . . , x
′
k)

=
∫
dxk+1 · · · dxk+ p

2
dx′k+1 · · · dx′k+ p

2

k+ p
2∏

`=k+1

δ(xj − x`)δ(xj − x′`)γ(k+ p
2 )(t, x1, . . . , xk+ p

2
;x′1, . . . , x

′
k+ p

2
),

and (
B−
j;k+1,...,k+ p

2
γ(k+ p

2 )
)

(t, x1, . . . , xk;x′1, . . . , x
′
k)

=
∫
dxk+1 · · · dxk+ p

2
dx′k+1 · · · dx′k+ p

2

k+ p
2∏

`=k+1

δ(x′j − x`)δ(x′j − x′`)γ(k+ p
2 )(t, x1, . . . , xk+ p

2
;x′1, . . . , x

′
k+ p

2
).

Moreover, we let

B±
j;k+1,...,k+ p

2
γ(k+ p

2 ) := B+
j;k+1,...,k+ p

2
γ(k+ p

2 ) − B−
j;k+1,...,k+ p

2
γ(k+ p

2 ) . (2.10)

The operator Bk+ p
2
γ(k+ p

2 ) accounts for p
2 + 1-body interactions between the Bose

particles. We note that for factorized solutions, the corresponding 1-particle wave
function satisfies the p-NLS i∂tφ = −∆φ+ µ|φ|pφ.
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As in [7, 9], we refer to (2.8) as the cubic GP hierarchy if p = 2, and as the quintic
GP hierarchy if p = 4. Also we denote the L2-critical exponent by pL2 = 4

d and
refer to (2.8) as a L2-critical GP hierarchy if p = pL2 and as a L2-subcritical GP
hierarchy if p < pL2 . Moreover, for µ = 1 or µ = −1 we refer to the GP hierarchies
as being defocusing or focusing, respectively.

The p-GP hierarchy can be rewritten in the following compact manner:

i∂tΓ + ∆̂±Γ = µB̂Γ
Γ(0) = Γ0 , (2.11)

where
∆̂±Γ := ( ∆(k)

± γ(k) )k∈N with ∆(k)
± = ∆xk

−∆x′k
,

and

B̂Γ := (Bk+ p
2
γ(k+ p

2 ) )k∈N . (2.12)

Moreover, we will use the notation

B̂+Γ := (B+
k+ p

2
γ(k+ p

2 ) )k∈N,

B̂−Γ := (B−
k+ p

2
γ(k+ p

2 ) )k∈N .

We refer to [7] for more detailed explanations.

3. Statement of the main Theorems

The main results of this paper, stated in Theorems 3.2 and 3.3 below, establish
two important situations when solutions of (2.11) are globally wellposed. We also
recall a new local well-posedness theorem (originally obtained in [7] in a weaker
form) whose new and significantly simpler proof is given in [8].

In our arguments, we will make use of the following local wellposedness result
proven in [8], which is an improvement on our result in [7].

Theorem 3.1. Let α ∈ A(d, p) and Γ0 ∈ Hαξ . Let I = [0, T ] for 0 < T < T0(d, p, ξ).
Then, there exists a unique solution Γ ∈ L∞t∈IHαξ of the p-GP hierarchy, with

‖ B̂Γ ‖L1
t∈IHαξ < C(T, ξ, d, p) ‖Γ0‖Hαξ , (3.1)

in the space

W(I, ξ) = {Γ ∈ L∞t∈IHαξ | B̂+Γ , B̂−Γ ∈ L2
t∈IHαξ } (3.2)

for the initial condition Γ(0) = Γ0.

The key improvement of this local well-posedness result over the one established
in [7] consists of the fact that the initial condition and the solution are in the same
space Hαξ . In [7], the initial data Γ0 was required to belong to Hαξ1 for some ξ1 > 0,
while the solution Γ(t) was shown to belong to Hαξ2 , for some 0 < ξ2 < ξ1. For the
proof of Theorem 3.1, we refer to [8].

The main results proven in this work are:



GLOBAL WELL-POSEDNESS FOR THE GP HIERARCHY 7

(1) We establish global well-posedness for defocusing p-GP hierarchies with
arbitrary H1-data.

Theorem 3.2. Assume that p ≤ 2d
d−2 and 1 ∈ A(d, p), and that ‖Γ0‖]H1

ξ′
<

∞ for 0 < ξ′ < 1. Let

ξ ≤ (1 +
2

p+ 2
CSob(d, p))

− 1
kp ξ′ , (3.3)

where CSob is the constant in Theorem 5.1 (generalized Sobolev inequality).
Moreover, let Ij := [jT, (j + 1)T ] with T < T0(d, p, ξ) (see Theorem 3.1).
Then, there exists a unique global solution Γ ∈ ∪j∈ZW(Ij , ξ) of the p-GP
hierarchy with initial condition Γ(0) = Γ0, satisfying

‖Γ(t)‖H1
ξ
≤ ‖Γ0‖]H1

ξ′
(3.4)

for all t ∈ R.

For the proof, we identify higher order conserved energy functionals,
generalizing those found in [9]. Moreover, we prove a generalization of the
Sobolev inequalities, applied to marginal density matrices.

(2) We prove global well-posedness for focusing and defocusing p-GP hierar-
chies on the L2-subcritical level, p < 4

d .

Theorem 3.3. Assume that p < pL2 = 4
d , and that Γ0 ∈ H1

ξ′ for some 0 <
ξ′ < 1. Moreover, let d

2 ( 1
2−

1
2kp

) = 1−2δ
kp

< 1
kp
< 1 where kp = 1+ p

2 and δ >
0. Moreover, let Ij := [jT, (j+1)T ] with T < T0(d, p, ξ) (see Theorem 3.1).
Then, for 0 < ξ < 1 sufficiently small, there exists a unique global solution
Γ ∈ ∪j∈ZW(Ij , ξ) of the p-GP hierarchy with initial condition Γ(0) = Γ0,
and there exists a positive constant C(d, p, γ0, ξ, δ,Γ0) <∞ such that the a
priori bound

‖Γ(t)‖H1
ξ
≤ C(d, p, γ0, ξ, δ,Γ0) (3.5)

holds, for all t ∈ R.

An explicit upper bound on the constant C(d, p, γ0, ξ, δ,Γ0) is provided
in Theorem 8.1 below. For the proof, we establish a generalization of the
Gagliardo-Nirenberg inequality for marginal density matrices, to control
the norm of B̂Γ.

The remainder of this paper is dedicated to the proofs of these results.

4. Higher order energy conservation

In this section, we introduce a higher order generalization of the energy functional
introduced in [9]. We prove that it is a conserved quantity for solutions of the p-GP
hierarchy. As a main application, it will be used to enhance local well-posedness of
solutions to global well-posedness.
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Let

kp := 1 +
p

2
. (4.1)

We define the operators

K` :=
1
2

(1 − ∆x`) Tr`+1,...,`+ p
2

+
µ

p+ 2
B+
`;`+1,...,`+ p

2

for ` ∈ N. This operator is related to the average energy per particle E1(Γ) (intro-
duced in [9]) through

1
2

+ E1(Γ)

= Tr1,...,`,`+k,··· ,jK`γ
(j)

=
1
2

+
1
2

Tr1(−∆xγ
(1)) +

µ

p+ 2

∫
dx γ(kp)(x, . . . , x;x, . . . , x) , (4.2)

using the admissibility of Γ = (γj)j∈N, see also [9].

Moreover, we introduce the operator

K(m) := K1Kkp+1 · · ·K(m−1)kp+1 (4.3)

where the m factors are mutually commuting, in the sense that

Kjkp+1Kj′kp+1γ
(j) = Kj′kp+1Kjkp+1γ

(j) (4.4)

holds for 0 ≤ j 6= j′ ≤ m− 1.

Theorem 4.1. Assume that Γ = (γ(j)) is admissible and solves the GP hierarchy.
Let m ∈ N. Then,〈

K(m)
〉

Γ(t)
:= Tr1,kp+1,2kp+1,...,(m−1)kp+1(K(m) γ(mkp)(t) ) (4.5)

is a conserved quantity,

∂t
〈
K(m)

〉
Γ(t)

= 0 . (4.6)

We note that replacing γ(mkp) by any γ(j) with j ≥ mkp yields the same value of〈
K(m)

〉
Γ(t)

.

In particular, for the defocusing p-GP hierarchy, with µ = +1, the a priori bound

Tr(S(m,1)γ(m)(t) ) ≤
〈
K(m)

〉
Γ0

(4.7)

holds for all t ∈ R, and any solution Γ(t) of the p-GP hierarchy with
〈
K(m)

〉
Γ0
<∞.

Proof. To prove (4.6), we note that

i∂tγ
(mkp) =

m∑
`=1

(
h±` γ

(mkp) + µ b±` γ
((m+1)kp)

)
(4.8)

where

h±` γ
(mkp)(xmkp ;x′mkp) (4.9)

:= −
`kp∑

j=(`−1)kp+1

(∆xj −∆x′j
) γ(mkp)(xmkp ;x′mkp)
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and

b±` γ
(mkp)(xmkp ;x′mkp) (4.10)

:=
`kp∑

j=(`−1)kp+1

(B±j;mkp+1,...,(m+1)kp
γ((m+1)kp))(xmkp ;x′mkp) .

Accordingly,

∂t
〈
K(m)

〉
Γ(t)

=
m∑
`=1

[
Ah(`;m) + µAb(`;m)

]
,

where

Ah(`;m) := Tr1,kp+1,2kp+1,...,(m−1)kp+1(K(m)h±` γ
(mkp) ) , (4.11)

and

Ab(`;m) := Tr1,kp+1,2kp+1,...,(m−1)kp+1(K(m)b±` γ
((m+1)kp) ) . (4.12)

Next, we claim that

Ah(`;m) + µAb(`;m) = 0 (4.13)

for every ` ∈ {1, . . . ,m}.

To prove this, we first of all note that by symmetry of γ(mkp)(xmkp ;x′mkp) with
respect to the components of xmkp and x′mkp , it suffices to assume that ` = 1. The
other cases are similar.

Accordingly, letting ` = 1, we introduce the notations

γ̃(kp)(xkp ;x′kp) := Trkp,...,mkp(Kkp · · ·K(m−1)kpγ
(mkp) ) (4.14)

and

γ̃(2kp)(xkp , ykp ;x′kp , y
′
kp

) (4.15)

:= Trkp,...,mkp(Kkp · · ·K(m−1)kpγ
((m+1)kp) )(xkp , ykp ;x′kp , y

′
kp

)

where yi = xmkp+i and y′i = x′mkp+i, for i ∈ {1, . . . , kp}.

We recall that

K1 = K
(1)
1 + K

(2)
1 (4.16)

where

K
(1)
1 :=

1
2

(1−∆x1) Tr2,...,kp (4.17)

and

K
(2)
1 :=

µ

p+ 2
B+

1;2,...,kp
. (4.18)
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Accordingly, we consider

A
(1)
h := Tr1(K(1)

1 h±1 γ̃
(kp) )

= −1
2

Tr1,2,...,kp( (1−∆x1)
kp∑
j=1

(∆xj −∆x′j
) γ̃(kp) )

=
1
2

∫
du1 . . . dukpdu

′
1 . . . du

′
kp

∫
dx1 . . . dxkpdx

′
1 . . . dx

′
kp

δ(x1 − x′1) · · · δ(xkp − x′kp) (1 + u2
1)

kp∑
j=1

(
u2
j − (u′j)

2
)

( kp∏
l=1

ei(ulxl−u
′
lx
′
l)
)̂̃γ(kp)(ukp ;u′kp)

=
1
2

∫
du1 . . . dukpdu

′
1 . . . du

′
kp

( kp∏
l=1

δ(ul − u′l)
)

(1 + u2
1)

kp∑
j=1

(
u2
j − (u′j)

2
)̂̃γ(kp)(ukp ;u′kp)

= 0

and

A
(1)
b := Tr1(K(1)

1 b±1 γ̃
(2kp) ) , (4.19)

and

A
(2)
h := Tr1(K(2)

1 h±1 γ̃
(kp) ) , (4.20)

as well as

A
(2)
b := Tr1(K(2)

1 b±1 γ̃
(2kp) )

=
µ

p+ 2
Tr1(B+

1;2,...,kp
b±1 γ̃

(2kp) )

=
µ

p+ 2

kp∑
j=1

Tr1(B+
1;2,...,kp

B±j;kp+1,...,2kp
γ̃(2kp) )

=
µ

p+ 2

kp∑
j=1

∫
dx1 . . . dxkpdx

′
1 . . . dx

′
kp δ(x1 = · · · = xkp = x′1 = · · · = x′kp)(

B±j;kp+1,...,2kp
γ̃(2kp)

)
(xkp , x

′
kp) ,

where we used the notation

δ(x1 = · · · = xkp = x′1 = · · · = x′kp)

:= δ(x1 − x′1)
kp∏
`=2

( δ(x1 − x`) δ(x1 − x′`) ) (4.21)

also employed in [9].
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Using the definition of B±j;kp+1,...,2kp
, we find

A
(2)
b =

µ

p+ 2

kp∑
j=1

∫
dx1 . . . dxkpdx

′
1 . . . dx

′
kp δ(x1 = · · · = xkp = x′1 = · · · = x′kp)

[ γ̃(2kp)(x1, . . . , xkp , xj , . . . , xj︸ ︷︷ ︸
kp

;x′1, . . . , x
′
kp , xj , . . . , xj︸ ︷︷ ︸

kp

)

− γ̃(2kp)(x1, . . . , xkp , x
′
j , . . . , x

′
j︸ ︷︷ ︸

kp

;x′1, . . . , x
′
kp , x

′
j , . . . , x

′
j︸ ︷︷ ︸

kp

) ]

= 0

(see also [9]). Next, we claim that

Ah(1;m) + µAb(1;m) = A
(2)
h + µA

(1)
b = 0 (4.22)

holds.

To this end, we note that

A
(1)
b =

1
2

Tr1( (1−∆x1) Tr2,...,kp

kp∑
j=1

B±j;kp+1,...,2kp
γ̃(2kp) )

=
1
2

kp∑
j=2

Tr1,2,...,kp( (1−∆x1)B±j;kp+1,...,2kp
γ̃(2kp) ) (4.23)

+
1
2

Tr1,2,...,kp( (1−∆x1)B±1;kp+1,...,2kp
γ̃(2kp) )

=
1
2

Tr1,2,...,kp( (1−∆x1)B±1;kp+1,...,2kp
γ̃(2kp) )

=
1
2

∫
dx1 . . . dxkpdx

′
1 . . . dx

′
kp δ(x1 − x′1) · · · δ(xkp − x′kp) (4.24)(

(1−∆x1)B±1;kp+1,...,2kp
γ̃(2kp)

)
(xkp , x

′
kp

) . (4.25)
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Using the definition of B±1;kp+1,...,2kp
, this equals

A
(1)
b =

1
2

∫
dx1 . . . dxkpdx

′
1 . . . dx

′
kp δ(x1 − x′1) · · · δ(xkp − x′kp)(

1−∇x1 ∇x′1
)

[ γ̃(2kp)(x1, . . . , xkp , x1, . . . , x1︸ ︷︷ ︸
kp

;x′1, . . . , x
′
kp , x1, . . . , x1︸ ︷︷ ︸

kp

)

− γ̃(2kp)(x1, . . . , xkp , x
′
1, . . . , x

′
1︸ ︷︷ ︸

kp

;x′1, . . . , x
′
kp , x

′
1, . . . , x

′
1︸ ︷︷ ︸

kp

) ]

=
1
2

∫
dx1 . . . dxkpdx

′
1 . . . dx

′
kp δ(x1 − x′1) · · · δ(xkp − x′kp)

[ ∆x′1
γ̃(2kp)(x1, . . . , xkp , x1, . . . , x1︸ ︷︷ ︸

kp

;x′1, . . . , x
′
kp , x1, . . . , x1︸ ︷︷ ︸

kp

)

−∆x1 γ̃
(2kp)(x1, . . . , xkp , x

′
1, . . . , x

′
1︸ ︷︷ ︸

kp

;x′1, . . . , x
′
kp , x

′
1, . . . , x

′
1︸ ︷︷ ︸

kp

) ]. (4.26)

On the other hand,

A
(2)
h = − µ

p+ 2
Tr1(B+

1;2,...,kp

kp∑
j=1

(∆xj −∆x′j
)γ̃(kp) )

= − µ

p+ 2

∫
dx1 . . . dxkpdx

′
1 . . . dx

′
kp δ(x1 = ... = xkp = x′1 = ... = x′kp)

kp∑
j=1

(∆xj −∆x′j
) γ̃(kp) (xkp ;x′kp) (4.27)

By symmetry of γ̃(kp) with respect to the components of xkp and x′kp , this yields

A
(2)
h = − µkp

p+ 2

∫
dx1 . . . dxkpdx

′
1 . . . dx

′
kp δ(x1 = ... = xkp = x′1 = ... = x′kp)

(∆x1 −∆x′1
) γ̃(kp) (xkp ;x′kp) (4.28)

= − µ

2

∫
dx1 . . . dxkpdx

′
1 . . . dx

′
kp δ(x1 − x′1) · · · δ(xkp − x′kp)

[ ∆x1 γ̃
(2kp)(x1, . . . , xkp , x

′
1, . . . , x

′
1︸ ︷︷ ︸

kp

;x′1, . . . , x
′
kp , x

′
1, . . . , x

′
1︸ ︷︷ ︸

kp

)

−∆x′1
γ̃(2kp)(x1, . . . , xkp , x1, . . . , x1︸ ︷︷ ︸

kp

;x′1, . . . , x
′
kp , x1, . . . , x1︸ ︷︷ ︸

kp

) ], (4.29)

where in order to obtain (4.29) we used the admissibility of Γ = ( γ(j) )j∈N.

The proof that (4.22) now follows from (4.26) and (4.29).

This proves (4.6).
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It is clear that if µ = +1, then〈
K(m)

〉
Γ0

=
〈
K(m)

〉
Γ(t)

≥ Tr1,kp,...,(m−1)kp(K(1)
1 K

(1)
kp
· · ·K(1)

(m−1)kp
γ(mkp) )

= 2−m Tr1,...,m(S(m,1)γ(m) ) . (4.30)

This proves (4.7). �

5. Generalized Sobolev inequality

As a preparation for our discussion in Section 7 where we use higher order
energy conservation to enhance local to global well-posedness for defocusing GP-
hierarchies, we present a generalization of Sobolev inequalities for density matrices.

Theorem 5.1. (Sobolev inequality) Assume that f ∈ Ḣα(Rqd). Then, there exists
CSob = CSob(d, q) such that(∫

dx|f(x, . . . , x︸ ︷︷ ︸
q

)|2
) 1

2 ≤ CSob

(∫
dx1 · · · dxq | |∇x1 | · · · |∇xq | f(x1, . . . , xq)|2

) 1
2

= ‖ f ‖Ḣαx1,...,xq (5.1)

for α = (q−1)d
2q and xi ∈ Rd. The statement is also valid for Hα in place of Ḣα.

Proof. We perform a Littlewood-Paley decomposition 1 =
∑
j Pj where Pj acts

in frequency space as multiplication with the characteristic function on the dyadic
annulus Ai := {ξ ∈ Rd|2j ≤ |ξ| < 2j+1}, and P0 is the characteristic function on
the unit ball.

Let j1, . . . , jq ∈ N0, and

fj1...jq (x1, . . . , xq) := (P (1)
j1
· · ·P (q)

jq
f)(x1, . . . , xq) (5.2)

where the superscript in P
(m)
i signifies that it acts on the m-th variable.

Then, clearly, the Fourier transform satisfies

f̂j1...jq (ξ1, . . . , ξq) = hj1(ξ1) · · ·hjq (ξq)f̂j1...jq (ξ1, . . . , ξq) (5.3)

where hi are Schwartz class functions with Pihi = Pi.

We note that

h∨j (x) =
∫
dξ hj(ξ) e2πiξx

= 2jd
∫
dξ h1(ξ) e2πiξ(2jx)

= 2jd h∨1 (2jx) . (5.4)

Therefore, h∨j is a smooth delta function with amplitude 2jd, and supported on a
ball of radius 2−j . In particular,

‖h∨j ‖L∞x ≤ c 2jd , ‖h∨j ‖L1
x

= ‖h∨1 ‖L1
x
≤ c′ , (5.5)
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for constants c, c′ independent of j. Because hj is an even function for all j, it
follows that h∨j ∈ R.

Accordingly, performing the inverse Fourier transform,

fj1...jq (x1, . . . , xq) =
∫
dy1 · · · dyq fj1...jq (y1, . . . , yq) (5.6)

h∨j1(y1 + x1) · · · h∨jq (yq + xq) .

In particular,∫
dx |fj1...jq (x, . . . , x)|2

=
∫
dy1 · · · dyq dy′1 · · · dy′q fj1...jq (y1, . . . , yq)fj1...jq (y′1, . . . , y′q)∫

dxh∨j1(y1 + x) · · · h∨jq (yq + x)

h∨j1(y′1 + x) · · · h∨jq (y
′
q + x) . (5.7)

Using Cauchy-Schwarz only on fj1...jqfj1...jq , this is bounded by∫
dx |fj1...jq (x, . . . , x)|2 ≤

∫
dy1 · · · dyq | fj1...jq (y1, . . . , yq) |2∫
dx

∫
dy′1 · · · dy′q |h∨j1(y1 + x) · · · h∨jq (yq + x)

h∨j1(y′1 + x) · · · h∨jq (y
′
q + x) | . (5.8)

Thus, integrating out y′1, . . . , y
′
q and using ‖h∨j ‖L1

x
< c′,∫

dx |fj1...jq (x, . . . , x)|2 ≤ C

∫
dy1 · · · dyq | fj1...jq (y1, . . . , yq) |2∫

dx |h∨j1(y1 + x) · · · h∨jq (yq + x) | . (5.9)

Now, we assume without any loss of generality that ji ≤ jq for all i < q. Then,∫
dx |h∨j1(y1 + x) · · · h∨jq (yq + x) | ≤ ‖h∨j1‖L∞x · · · ‖h

∨
jq−1
‖L∞x ‖h

∨
jq‖L1

x

≤ 2(j1+···+jq−1)d c′ . (5.10)

Now, since by assumption, ji ≤ jq for all i < q,

j1 + · · ·+ jq−1 ≤
q − 1
q

(j1 + · · ·+ jq) . (5.11)

Therefore, ∫
dx |fj1...jq (x, . . . , x)|2

≤ C 22(j1+···+jq)α
∫
dy1 · · · dyq | fj1...jq (y1, . . . , yq) |2 , (5.12)

where

α =
(q − 1)d

2q
. (5.13)
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We thus find that

‖ f(x, . . . , x) ‖L2
x(Rd)

= ‖
∑

j1,...,jq

fj1...jq (x, . . . , x) ‖L2
x(Rd)

≤
∑

j1,...,jq

(∫
dx |fj1,...,jq (x, . . . , x)|2

) 1
2

≤ C
∑

j1,...,jq

2(j1+···+jq)α
(∫

dy1 · · · dyq | fj1,...,jq (y1, . . . , yq) |2
) 1

2

= C
∑

j1,...,jq

2(j1+···+jq)α‖ fj1,...,jq ‖L2
x1,...,xq

(5.14)

= C ‖ f ‖Ḣαx1,...,xq . (5.15)

This is the asserted result. �

6. Generalized Gagliardo-Nirenberg inequality

We can easily generalize our proof of the generalized Sobolev inequalities to a
generalization of the Gagliardo-Nirenberg inequality, which will be useful to us in
Section 8 where we prove global well-posedness for L2 subcritical GP hierarchies.

Theorem 6.1. (Gagliardo-Nirenberg inequality) Assume that f ∈ Ḣ1(Rqd) and
α = (q−1)d

2q < 1. Then,(∫
dx | f(x, . . . , x︸ ︷︷ ︸

q

) |2
) 1

2 ≤ C ‖ f ‖α
Ḣ1
x1,...,xq

‖ f ‖1−αL2
x1,...,xq

(6.1)

where xi ∈ Rd. The statement is also valid for H1 in place of Ḣ1.

Proof. From (5.14), the Hölder estimate yields

‖ f(x, . . . , x) ‖L2
x(Rd)

≤
∑

j1,...,jq

‖ fj1...jq (x, . . . , x) ‖L2
x(Rd)

≤ C
∑

j1,...,jq

2(j1+···+jq)α‖ fj1,...,jq ‖L2

= C
∑

j1,...,jq

2(j1+···+jq)α‖ fj1,...,jq ‖αL2‖ fj1,...,jq ‖1−αL2

≤ C
[ ∑
j1,...,jq

(
2(j1+···+jq)α‖ fj1,...,jq ‖αL2

) 1
α
]α

[ ∑
j1,...,jq

(
‖ fj1,...,jq ‖1−αL2

) 1
1−α
]1−α

= C ‖ f ‖α
Ḣ1
x1,...,xq

‖ f ‖1−αL2
x1,...,xq

, (6.2)
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for α = (q−1)d
2q < 1 (noting that 1

α ,
1

1−α > 1 are Hölder conjugate exponents). �

7. Global well-posedness of solutions for defocusing GP hierarchies
and arbitrary H1 data

For energy subcritical, defocusing GP hierarchies, we can now deduce a pri-
ori energy bounds based on which we establish global well-posedness of solutions
independent of the size of the initial data.

Theorem 7.1. Assume that µ = +1 (defocusing p-GP hierarchy), p ≤ 2d
d−2 , 1 ∈

A(d, p), and that ‖Γ0‖]H1
ξ′
<∞ for 0 < ξ′ < 1. Let

ξ ≤ (1 +
2

p+ 2
CSob(d, p))

− 1
kp ξ′ . (7.1)

Moreover, let Ij := [jT, (j + 1)T ] with T < T0(d, p, ξ) (see Theorem 3.1). Then,
there exists a unique global solution Γ ∈ ∪j∈ZW(Ij , ξ) of the p-GP hierarchy with
initial condition Γ(0) = Γ0, satisfying

‖Γ(t)‖H1
ξ
≤ ‖Γ0‖]H1

ξ′
(7.2)

for all t ∈ R.

To prove this result, we first note that the following Lemma is an immediate
corollary of Theorem 4.1.

Lemma 7.2. Assume that µ = +1 (defocusing p-GP hierarchy), and that∑
m∈N

(2ξ)m
〈
K(m)

〉
Γ0

< ∞ , (7.3)

for ξ > 0. Assume that Γ(t) ∈ H1
ξ solves the p-GP hierarchy. Then,

‖Γ(t)‖]H1
ξ
≤

∑
m∈N

(2ξ)m
〈
K(m)

〉
Γ(t)

=
∑
m∈N

(2ξ)m
〈
K(m)

〉
Γ0

< ∞ (7.4)

for all t ∈ R.

Moreover, we use the following proposition which expresses that the interaction
energy in Γ0 is bounded by the kinetic energy, in the energy critical and subcritical
case, p ≤ 2d

d−2 .

Proposition 7.3. Assume that µ = +1 or µ = −1 (defocusing or focusing p-GP
hierarchy), p ≤ 2d

d−2 , and that ‖Γ‖]H1
ξ′
<∞ for 0 < ξ′ < 1. Let

ξ ≤ (1 +
2

p+ 2
CSob(d, p))

− 1
kp ξ′ . (7.5)

Then, ∑
m∈N

(2ξ)m
〈
K(m)

〉
Γ
≤ ‖Γ‖]H1

ξ′
(7.6)
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holds.

Proof. The Sobolev inequalities for the GP hierarchy proven in Theorem 5.1 imply
that for p ≤ 2d

d−2 , the interaction energy is bounded by the kinetic energy,

Tr1(B1;2,...,kp γ̃
(kp) ) ≤ CSob(d, p) Tr1,...,kp(S(kp,1)γ̃(kp) ) . (7.7)

This follows from the fact that writing γ̃(kp) with respect to an orthonormal basis
(φj)j ,

γ̃(kp)(xkp , x
′
kp

) =
∑
j

λj
∣∣φj(xkp)

〉〈
φj(x′kp)

∣∣ , (7.8)

where λj ≥ 0 and
∑
j λj = 1, we have

Tr1(B+
1;2,...,kp

γ(kp) ) =
∑
j

λj

∫
dx|φj(x, . . . , x)|2 . (7.9)

Accordingly, Theorem 5.1 implies that

Tr1(B+
1;2,...,kp

γ̃(kp) )

≤ CSob
∑
j

λj‖φj‖2H1
xkp

= CSob Tr1,...,kp(S(kp,1)γ̃(kp) ). (7.10)

Now we observe that (7.7) implies

Tr1(K1γ̃
(kp) ) ≤ (

1
2

+
1

p+ 2
CSob(d, p) ) Tr1,...,kp(S(kp,1)γ̃(kp) ) . (7.11)

By iteration, this is easily seen to imply that〈
K(m)

〉
Γ
≤ (

1
2

+
1

p+ 2
CSob(d, p) )m Tr1,...,mkp(S(mkp,1)γ(mkp) ) . (7.12)

Therefore,∑
`

(2ξ)`
〈
K(`)

〉
Γ
≤

∑
`

(
( 1 +

2
p+ 2

CSob(d, p) )
1
kp ξ

)`
‖ γ(`) ‖]

H1
`

≤ ‖Γ ‖H1
ξ′

(7.13)

with ξ ≤ ( 1 + 2
p+2CSob(d, p) )−

1
kp ξ′. Hence, the claim follows. �

We may now prove Theorem 7.1, by enhancing local well-posedness to global
well-posedness using the a priori H1 bound provided by Proposition 7.3.

Proof. To begin with, the bound ‖Γ‖Hαξ ≤ ‖Γ‖
]
Hαξ

is proven in [7].

Let ξ satisfy

0 < ξ ≤ (1 +
2

p+ 2
CSob(d, p))

− 1
kp ξ′ . (7.14)
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Given Γ0 with ‖Γ0‖]H1
ξ′
<∞, we have that

‖Γ0‖H1
ξ
≤ ‖Γ0‖]H1

ξ
≤ ‖Γ0‖]H1

ξ′
< ∞ . (7.15)

We now let T > 0 be small enough that Theorem 3.1 holds, and I := [0, T ]. We
recall that Theorem 3.1 requires that 1 ∈ A(d, p). Then, Γ( · ) ∈ W(I, ξ) is the
unique solution of the p-GP hierarchy with initial condition Γ0; see (3.2) for the
definition of W(I, ξ).

Next, Lemma 7.2 and Proposition 7.3 imply that

‖Γ(t)‖H1
ξ
≤ ‖Γ(t)‖]H1

ξ

≤
∑
`

(2ξ)`
〈
K(`)

〉
Γ(t)

≤ ‖Γ(t)‖]H1
ξ′1

(7.16)

for all t ∈ I.

However, Theorem 4.1 implies that
〈
K(`)

〉
Γ(s)

=
〈
K(`)

〉
Γ(s′)

for all s, s′ ∈ I, and
thus, we also have that

‖Γ(t)‖]H1
ξ
≤ ‖Γ0 ‖]H1

ξ′
. (7.17)

Accordingly, writing I0 := I,

‖Γ(t)‖]
L∞t∈I0

H1
ξ
, ‖Γ(T )‖]H1

ξ
≤ ‖Γ0 ‖]H1

ξ′
. (7.18)

We may thus use Γ(T ) as the initial condition for the p-GP hierarchy with t ∈ I1 :=
[T, 2T ], to find that

‖Γ‖]
L∞t∈I1

H1
ξ
, ‖Γ(2T )‖]H1

ξ
≤ ‖Γ0 ‖]H1

ξ′
, (7.19)

so that we can use Γ(2T ) as the initial condition for the interval I2 := [2T, 3T ], and
so on. Extending this argument also to t < 0, we conclude that

‖Γ‖L∞t∈RH
1
ξ
≤ ‖Γ‖]

L∞t∈RH
1
ξ
≤ ‖Γ0 ‖]H1

ξ′
. (7.20)

Using Theorem 3.1, we conclude that the solution Γ( · ) ∈ W(Ij , ξ) is unique for
every j ∈ Z, and hence globally in time. This implies the claim. �

8. Global well-posedness for L2 subcritical GP hierarchies

In this section, we prove that the Cauchy problem for any p-GP hierarchy on
the L2-subcritical level, p < pL2 = 4

d , is globally well-posed. For the NLS, this is a
well-known result. Due to the generalized Gagliardo-Nirenberg inequality, we can
now obtain analogous result in the context of the L2-subcritical p-GP hierarchy.

Theorem 8.1. Assume that p < pL2 = 4
d , and that Γ0 ∈ H1

ξ′ for some 0 < ξ′ < 1.

Moreover, let α = (kp−1)d
2kp

= 1−2δ
kp

< 1
kp

< 1 where kp = 1 + p
2 . Moreover, let

Ij := [jT, (j + 1)T ] with T < T0(d, p, ξ) (see Theorem 3.1). Then, for 0 < ξ < 1
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sufficiently small, there exists a unique global solution Γ ∈ ∪j∈ZW(Ij , ξ) of the
p-GP hierarchy with initial condition Γ(0) = Γ0, and the a priori bound

‖Γ(t)‖H1
ξ
≤ max{

(
2

1− ξδ

) 1
1−α

, 2
∑
m

(2ξ)m
〈
K(m)

〉
Γ0
} (8.1)

holds, for all t ∈ R.

Proof. The bound

‖Γ(t)‖H1
ξ
≤ ‖Γ(t)‖]H1

ξ
=
∑
k≥1

ξkTr(Sk,1γ(k) ) (8.2)

is proven in [7]; see also (2.7).

To prove that ‖Γ(t)‖]H1
ξ

is bounded by the right hand side in (8.1), we note the
following.

Given α = (kp−1)d
2kp

< 1, we obtain from the generalized Gagliardo-Nirenberg
inequality given in Theorem 6.1 that

Tr1(B+
1;2,...,kp

γ(kp) ) ≤ C (Tr(S(kp,1)γ(kp) ) )α(Tr( γ(kp) ) )1−α . (8.3)

More precisely, this follows from the fact that writing γ(kp) with respect to an
orthonormal basis (φj)j ,

γ(kp)(xkp , x
′
kp) =

∑
j

λj
∣∣φj(xkp)

〉〈
φj(x′kp)

∣∣ , (8.4)

where λj ≥ 0 and
∑
j λj = 1, it is clear that

Tr1(B+
1;2,...,kp

γ(kp) ) =
∑
j

λj

∫
dx|φj(x, . . . , x)|2 . (8.5)

Therefore, Theorem 6.1 implies that

Tr1(B+
1;2,...,kp

γ(kp) )

≤ C
∑
j

(λj‖φj‖2L2
xkp

)1−α(λj‖φj‖2H1
xkp

)α

≤ C (
∑
j

λj‖φj‖2L2
xkp

)1−α(
∑
j

λj‖φj‖2H1
xkp

)α, (8.6)

where in order to arrive at the last line, we used the Hölder inequality with dual
exponents 1

1−α and 1
α . This implies (8.3).

We recall the definition of the operators

K` = K
(1)
` + K

(2)
` (8.7)

where

K
(1)
` :=

1
2

(1 − ∆x`) Tr`+1,...,`+ p
2

(8.8)

and

K
(2)
` :=

µ

p+ 2
B+
`;`+1,...,`+ p

2
,
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for ` ∈ N. Moreover, we have previously introduced

K(m) := K1Kkp+1 · · ·K(m−1)kp+1 , (8.9)

and we proved that〈
K(m)

〉
Γ(t)

:= Tr1,kp+1,2kp+1,...,(m−1)kp+1(K(m)γ(mkp)(t) ) (8.10)

is a conserved quantity, for every m ∈ N, provided that Γ(t) solves the p-GP
hierarchy.

In order to simplify the presentation below, we introduce the notation

Tr1,m := Tr1,kp+1,2kp+1,...,(m−1)kp+1 . (8.11)

In the L2 subcritical case, where p < pL2 = 4
d , we will now use the sequence of

conserved quantities (
〈
K(m)

〉
Γ(t)

)m∈N to obtain an a priori bound on ‖Γ(t)‖H1
ξ
, for

ξ > 0 sufficiently small.

To this end, we observe that, clearly,〈
K(m)

〉
Γ(t)
− Tr1,m(K(1)

1 K
(1)
kp+1 · · ·K

(1)
(m−1)kp+1γ

(mkp) )

=
m−1∑
`=0

(
m

`

)
Tr1,m(K(1)

1 · · ·K(1)
(`−1)kp+1K

(2)
`kp+1 · · ·K

(2)
(m−1)kp+1γ

(mkp) ) . (8.12)

Using (8.3) repeatedly, we find that

Tr1,m(K(1)
1 · · ·K(1)

(`−1)kp+1K
(2)
`kp+1 · · ·K

(2)
(m−1)kp+1γ

(mkp) )

≤ C1

[
Tr1,m(K(1)

1 · · ·K(1)
(`−1)kp+1K

(2)
`kp+1 · · ·K

(2)
(m−2)kp+1S

(kp,1)

(m−1)kp+1γ
(mkp) )

]α
≤ · · · · · ·

≤ Cm−`1

[
Tr1,m(K(1)

1 · · ·K(1)
(`−1)kp+1S

((kp,1))
`kp+1 · · ·S

(kp,1)

(m−1)kp+1γ
(mkp) )

]αm−`
.(8.13)

Due to the admissibility of γ(mkp), the last line equals

(8.13) = Cm−`1

[
Tr(S(`+(m−`)kp,1)γ(`+(m−`)kp) )

]αm−`
≤ Cm−`1

[
Tr(S(`+(m−`)kp,1)γ(`+(m−`)kp) )

]α
(8.14)

where we used the fact that

Tr(S(`+(m−`)kp,1)γ(`+(m−`)kp) ) ≥ 1 ,

and 0 < α < 1
kp
< 1, and moreover, m− ` ≥ 1.

Clearly,

(8.14) ≤ ξ−(`+(m−`)kp)α Cm−`1 ( ‖Γ(t)‖]H1
ξ

)α . (8.15)
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Therefore, by the admissibility of Γ(t),

|(8.12)| = | 2m
〈
K(m)

〉
Γ(t)
− Tr(S(m,1)γ(m) ) |

≤
m−1∑
`=0

(
m

`

)
ξ−(`+(m−`)kp)α Cm−`1 ( ‖Γ(t)‖]H1

ξ
)α

=
m−1∑
`=0

(
m

`

)
(ξ−α)`(C1 ξ

−kpα)m−` ( ‖Γ(t)‖]H1
ξ

)α

≤ (ξ−α + C1 ξ
−kpα)m ( ‖Γ(t)‖]H1

ξ
)α . (8.16)

Since α < 1
kp
< 1, we find that for sufficiently small ξ > 0,

ξ (ξ−α + C1 ξ
−kpα) < ξδ < 1 , (8.17)

where δ > 0 is defined by α = 1−2δ
kp

< 1
kp
< 1.

Accordingly, ∣∣∑
m

(2ξ)m
〈
K(m)

〉
Γ(t)
−
∑
m

ξmTr(S(m,1)γ(m) )
∣∣

=
∣∣∑
m

(2ξ)m
〈
K(m)

〉
Γ(t)
− ‖Γ(t)‖]H1

ξ

∣∣
≤

( ∑
m

ξδm
)

( ‖Γ(t)‖]H1
ξ

)α

=
1

1− ξδ
( ‖Γ(t)‖]H1

ξ
)α . (8.18)

Because α < 1, this immediately yields an a priori upper bound on ‖Γ(t)‖H1
ξ
, as we

show next.

It follows from (8.18) that

‖Γ(t)‖]H1
ξ

(
1 − 1

1− ξδ
( ‖Γ(t)‖]H1

ξ
)α−1

)
≤
∑
m

(2ξ)m
〈
K(m)

〉
Γ(t)

. (8.19)

Herefrom, we deduce the following:

• If ‖Γ(t)‖]H1
ξ
<
(

2
1−ξδ

) 1
1−α

, then ‖Γ(t)‖]H1
ξ

is trivially bounded.

• On the other hand, if ‖Γ(t)‖]H1
ξ
≥
(

2
1−ξδ

) 1
1−α

, it follows from α < 1 that(
1 − 1

1− ξδ
( ‖Γ(t)‖]H1

ξ
)α−1

)
≥ 1

2
, (8.20)

so that

‖Γ(t)‖]H1
ξ
≤ 2

∑
m

(2ξ)m
〈
K(m)

〉
Γ(t)

= 2
∑
m

(2ξ)m
〈
K(m)

〉
Γ0

(8.21)

where the right hand side is a conserved quantity, as was established in
Theorem 4.1. In particular, the right hand side converges for 0 < ξ <
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1 sufficiently small, if Γ0 ∈ H1
ξ′ for some 0 < ξ′ < 1, as follows from

Proposition 7.3.

This implies that for 0 < ξ < 1 sufficiently small,

‖Γ(t)‖]H1
ξ
≤ max{

(
2

1− ξδ

) 1
1−α

, 2
∑
m

(2ξ)m
〈
K(m)

〉
Γ0
} (8.22)

is a priori bounded, for all t ∈ R. This proves the claim of the theorem. �
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[24] E.H. Lieb, R. Seiringer, J. Yngvason, A rigorous derivation of the Gross-Pitaevskii energy
functional for a two-dimensional Bose gas, Commun. Math. Phys. 224 (2001).

[25] I. Rodnianski, B. Schlein, Quantum fluctuations and rate of convergence towards mean field

dynamics, preprint arXiv:math-ph/0711.3087.
[26] B. Schlein, Derivation of Effective Evolution Equations from Microscopic Quantum Dynam-

ics, Lecture notes for the minicourse held at the 2008 CMI Summer School in Zurich.
[27] H. Spohn, Kinetic Equations from Hamiltonian Dynamics, Rev. Mod. Phys. 52, no. 3, 569–

615 (1980).

[28] T. Tao, Nonlinear dispersive equations. Local and global analysis, CBMS 106, eds: AMS,
2006.

T. Chen, Department of Mathematics, University of Texas at Austin.

E-mail address: tc@math.utexas.edu
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