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Abstract

The Cauchy problem for certain non-Kowalevskian complex homogeneous linear partial differential equations
with constant coefficients is considered. The necessary and sufficient conditions for the Borel summability
is given in terms of analytic continuation with an appropriate growth condition of the Cauchy data.
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1. Introduction and notation

In recent years, the theory of summability of formal power series solutions to differential equations has
been developed. In particular, it was proved that every formal solution of meromorphic ordinary differential
equation is multisummable (see B.L.J. Braaksma [6]).

The first result in that direction for partial differential equations was obtained by Lutz, Miyake and
Schäfke [8]. They showed that the formal solution to the Cauchy problem for the 1-dimensional homogeneous
complex heat equation is 1-summable in a direction d if and only if the Cauchy data ϕ(z) can be analytically
continued to infinity in some sectors in directions d/2 and d/2 + π and the continuation is of exponential
growth of order at most 2. Analogous result for more general initial data was given by W. Balser [1].
Similarly, the multidimensional case was investigated by Balser and Malek [4] and by S. Michalik [10].

This characterisation of Borel summability of formal solutions was generalised to the equation ∂pt u−∂qzu =
0 (with p < q) by M. Miyake [11] and to the quasi-homogeneous equations by K. Ichinobe [7].

On the other hand, the sufficient condition for the Borel summability of formal solutions was found by
Balser and Miyake [5] (for certain linear PDE with constant coefficients) and by W. Balser [3] (for general
linear PDE with constant coefficients).

In the paper we show that this sufficient condition is also necessary in the case of equations of the form
(1). In this way, we also extend the results of M. Miyake [11] and K. Ichinobe [7] to more general equations.

Precisely speaking, we consider the Cauchy problem for the non-Kowalevskian linear partial differential
equation in two complex variables t, z ∈ C with constant coefficients

∂mpt u(t, z) =
m∑
j=1

∂
(m−j)p
t Pjq(∂z)u(t, z), u(0, z) = ϕ(z), ∂tu(0, z) = ... = ∂mp−1

t u(0, z) = 0, (1)

where p, q,m ∈ N, p < q are coprime, Pjq(ζ) are polynomials of degree less than or equal to jq (j = 1, . . . ,m),
Pmq(ζ) is a polynomial of degree mq and ϕ(z) is analytic in some complex neighbourhood of the origin.
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The characterisation of Borel summability can be formulate as follows (for the precise formulation see
Theorem 2)

Main theorem The formal power series solution û(t, z) of the initial problem (1) is p/(q− p)-summable in
a direction d if and only if the Cauchy data ϕ(z) is analytically continued in directions (pd+argαj +2πn)/q
(j = 1, ..., l, n = 0, ..., q − 1) with exponential growth of order q/(q − p), where {α1, ..., αl} is the set of the
roots of the characteristic equation

αm −
m∑
j=1

αm−j p̃j = 0 with p̃j := lim
ζ→∞

Pjq(ζ)/ζjq.

The paper is organised as follows. In Section 2 we recall the notion of summability. Following W. Balser
(see [3]) we shall use the modified k-Borel transform of û(t, z) instead of its Borel transform of order k. This
modified transform is more suitable for a study of formal solutions of PDE.

In the next section we introduce the operators Bs, which after appropriate change of variables are equal
to the modified k-Borel transforms (with s = 1+1/k). Applying Bs to the formal solution û(t, z), we obtain
the associated function v(t, z) satisfying the initial value problem for certain Kowalevskaya type equation
related to (1). In other words, we can reduce the problem of summability to the study of this new equation.
This concept is a generalisation of the idea given in [10], where the question about the summability of the
formal solution to the heat equation is reduced to the investigation of the wave equation.

In Section 4 we consider this Kowalevskaya type equation with constant coefficients. In this section we
use the integral representation of the solution, which is based on the construction of Balser and Miyake
[5]. Since this equation is in some sense symmetric with respect to both variables t and z, we obtain the
equivalence between the analytic continuation with appropriate growth condition of the Cauchy data with
respect to z and of the solution with respect to t (see Theorem 1 below for more details).

In Section 5 we apply the properties of operators Bs and Theorem 1 to the proof of the main theorem.
In the final section we consider the quasi-homogeneous equation as the special case of (1). For this

type of equation we show the direct proof of characterisation of summability (without using the integral
representation).

In the paper we use the following notation. The complex disc with a centre at origin and a radius r > 0
is denoted by D(r) := {z ∈ C : |z| < r}. A sector in the universal covering space C̃ of C \ {0} is denoted by

S(d, ε,R) := {z ∈ C̃ : z = reiθ, d− ε/2 < θ < d+ ε/2, 0 < r < R}

for d ∈ R, ε > 0 and 0 < R ≤ +∞. In the case of R = +∞, we denote it briefly by S(d, ε). A sector S′ is
called a proper subsector of S(d, ε,R) if its closure in C̃ is contained in S(d, ε,R).

By O(D) we denote the space of analytic functions on a domain D ⊆ Cn. The Banach space of analytic
functions on D(r), continuous on its closure and equipped with the norm ‖ϕ‖r := max

|z|≤r
|ϕ(z)| is denoted by

E(r).
The space of formal power series

û(t, z) =
∞∑
j=0

uj(z)tj with uj(z) ∈ E(r)

is denoted by E(r)[[t]]. Moreover, we set E[[t]] :=
⋃
r>0

E(r)[[t]].

We denote by Pm(∂t, ∂z) the principal part of the differential operator P (∂t, ∂z) of order m. In other
words, if P (∂t, ∂z) =

∑
j+k≤m

ajk∂
j
t ∂

k
z then Pm(∂t, ∂z) =

∑
j+k=m

ajk∂
j
t ∂

k
z .

2. Gevrey formal power series and Borel summability

In this section we recall some fundamental facts about the Gevrey formal power series and the Borel
summability. For more details we refer the reader to [2].
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Definition1. We say that a function u(t, z) ∈ O(S(d, ε) ×D(r)) is of exponential growth of order at most
s > 0 as t→∞ in S(d, ε) if and only if for any r1 ∈ (0, r) and any ε1 ∈ (0, ε) there exist positive constants
C and B such that

max
|z|≤r1

|u(t, z)| < CeB|t|
s

for every t ∈ S(d, ε1).

The space of such functions will be denoted by Ost (S(d, ε)×D(r)).
Analogously, we say that a function ϕ(z) ∈ O(S(d, ε)) is of exponential growth of order at most s > 0 as

z →∞ in S(d, ε) if and only if for any ε1 ∈ (0, ε) there exist positive constants C and B such that

|ϕ(z)| < CeB|z|
s

for every z ∈ S(d, ε1).

The space of such functions will be denoted by Os(S(d, ε)).

Definition2. Let k > 0. We say that a formal power series

û(t, z) :=
∞∑
j=0

uj(z)tj with uj(z) ∈ E(r) (2)

is 1/k-Gevrey formal power series with respect to t if its coefficients satisfy

max
|z|≤r

|uj(z)| ≤ ABjΓ(1 + j/k) for j = 0, 1, . . .

with some positive constants A and B.
The set of 1/k-Gevrey formal power series in t over E(r) is denoted by E(r)[[t]]1/k. We also set E[[t]]1/k :=⋃

r>0
E(r)[[t]]1/k.

Definition3. Let k > 0 and d ∈ R. We say that a formal series û(t, z) ∈ E[[t]]1/k defined by (2) is
k-summable in a direction d if and only if its k-Borel transform

ṽ(t, z) :=
∞∑
j=0

uj(z)
tj

Γ(1 + j/k)

is analytic in S(d, ε)×D(r) (for some ε > 0 and r > 0) and is of exponential growth of order at most k as
t→∞ in S(d, ε). The k-sum of û(t, z) in the direction d is represented by the Laplace transform of ṽ(t, z)

uθ(t, z) :=
1
tk

∫ ∞(θ)

0

e−(s/t)k

ṽ(s, z) dsk,

where the integration is taken over any ray eiθR+ := {reiθ : r ≥ 0} with θ ∈ (d− ε/2, d+ ε/2).

For every k > 0 and d ∈ R, according to the general theory of moment summability (see Section 6.5 in [2]),
a formal series (2) is k-summable in the direction d if and only if the same holds for the series

∞∑
j=0

uj(z)
j!Γ(1 + j/k)

Γ(1 + j(1 + 1/k))
tj .

Consequently, we obtain a characterisation of k-summability (analogous to Definition 3), if we replace the
k-Borel transform by the modified k-Borel transform

v(t, z) := Bkû(t, z) :=
∞∑
j=0

uj(z)
j!tj

Γ(1 + j(1 + 1/k))
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and the Laplace transform by the Ecalle acceleration operator

uθ(t, z) = t−k/(1+k)
∫ ∞(θ)

0

v(s, z)C1+1/k((s/t)k/(1+k)) dsk/(1+k)

with θ ∈ (d− ε, d+ ε). Here integration is taken over the ray eiθR+ and C1+1/k(ζ) is defined by

C1+1/k(ζ) :=
1

2πi

∫
γ

u−1/(k+1)eu−ζu
k/(k+1)

du

with a path of integration γ as in the Hankel integral for the inverse Gamma function (from ∞ along
arg u = −π to some u0 < 0, then on the circle |u| = |u0| to arg u = π, and back to ∞ along this ray).

Hence the k-summability can be characterised as follows

Proposition 1. Let k > 0 and d ∈ R. A formal series û(t, z) given by (2) is k-summable in a direction d
if and only if its modified k-Borel transform

Bkû(t, z) =
∞∑
j=0

uj(z)
j!tj

Γ(1 + j(1 + 1/k))

satisfies conditions:

1. Bkû(t, z) is analytic in D(r1)×D(r2) (for some r1 > 0 and r2 > 0), i.e. the formal series û(t, z) is of
Gevrey order 1/k with respect to t.

2. Bkû(t, z) is analytic in S(d, ε)×D(r) (for some ε > 0 and r > 0)
3. Bkû(t, z) is of exponential growth of order at most k as t→∞ in S(d, ε).

3. Operators Bs and reduction to the Kowalevskaya type equation

In this section we introduce the operators Bs, which are related to the modified k-Borel operators Bk.
Using the operators Bs we can reduce the question about summability to the study of the solution of the
appropriate Kowalevskaya type equation.

Definition4. Let s > 0. We define a linear operator on the space of formal power series

Bs : E[[t]]→ E[[ts]]

by the formula

Bs
(
û(t, z)

)
= Bs

( ∞∑
j=0

uj(z)tj
)

:=
∞∑
j=0

uj(z)j!
Γ(1 + sj)

tsj .

In particular, for any p, q ∈ N the operator Bq/p : E[[tp]]→ E[[tq]] is given by

Bq/p
( ∞∑
j=0

uj(z)
(pj)!

tpj
)

=
∞∑
j=0

uj(z)
(qj)!

tqj . (3)

Such operators were considered by S. Malek [9] in the case of q = 1.
Observe that for any formal series û(t, z) and any k > 0 holds

Bkû(t, z) = Bsû(t1/s, z) with s = 1 + 1/k.

Hence, using the operators Bq/p one can reformulate Proposition 1 as follows
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Proposition 2. Let p, q ∈ N, p < q be coprime. Then the formal series û(t, z) ∈ E[[tp]] is p/(q − p)-
summable in a direction d if and only if Bq/pû(t, z) is analytic in some complex neighbourhood of origin
in C2 and the function t 7→ Bq/pû(t, z) is analytically continued to infinity in directions (pd + 2πj)/q for
j = 0, ..., q − 1 with exponential growth of order q/(q − p).

Since the formal series û(t, z) ∈ E[[tp]] is invariant under the change of coordinates t 7→ te2πi/p, as a corollary
we have

Corollary 1. The formal series û(t, z) ∈ E[[tp]] is p/(q− p)-summable in a direction d if and only if û(t, z)
is p/(q − p)-summable in directions d+ 2πj/p for j = 0, ..., p− 1.

The following properties of the operators Bq/p play crucial role in our study of summability.

Proposition 3. Let p, q ∈ N and û(t, z) ∈ E[[tp]]. Then operators Bq/p and derivatives satisfies the com-
mutation formulas:

1. Bq/p∂pt û = ∂qtB
q/pû;

2. Bq/p∂zû = ∂zB
q/pû;

3. Bq/pP (∂pt , ∂z)û = P (∂qt , ∂z)Bq/pû for any polynomial P (τ, ζ) :=
m∑
j=1

n∑
l=1

ajlτ
jζl with complex coefficients

ajl ∈ C.

Proof. By (3) we obtain

Bq/p(∂pt û(t, z)) = Bq/p
(
∂pt

∞∑
j=0

uj(z)
(pj)!

tpj
)

= Bq/p
( ∞∑
j=0

uj+1(z)
(pj)!

tpj
)

=
∞∑
j=0

uj+1(z)
(qj)!

tqj

= ∂qt

( ∞∑
j=0

uj(z)
(qj)!

tqj
)

= ∂qtB
q/p
( ∞∑
j=0

uj(z)
(pj)!

tpj
)

= ∂qtB
q/p(û(t, z))

and

Bq/p(∂zû(t, z)) = Bq/p
( ∞∑
j=0

u′j(z)
(pj)!

tpj
)

=
∞∑
j=0

u′j(z)
(qj)!

tqj = ∂z

( ∞∑
j=0

uj(z)
(qj)!

tqj
)

= ∂zB
q/p(û(t, z)).

Consequently

Bq/p(P (∂pt , ∂z)û(t, z)) = Bq/p
( m∑
j=1

n∑
l=1

ajl∂
pj
t ∂

l
zû(t, z)

)
=

m∑
j=1

n∑
l=1

ajlB
q/p
(
∂pjt ∂

l
zû(t, z)

)
=

m∑
j=1

n∑
l=1

ajl∂
qj
t ∂

l
zB

q/p(û(t, z) = P (∂qt , ∂z)B
q/p(û(t, z)).

�

By Proposition 3 we have

Proposition 4. A formal series û(t, z) is a solution of the Cauchy problem (1) for the non-Kowalev-
skian linear partial differential equation with constant coefficients if and only if the function v(t, z) :=
Bq/p(û(t, z)) satisfies the Kowalevskaya type equation

∂mqt v(t, z) =
m∑
j=1

∂
(m−j)q
t Pqj(∂z)v(t, z), v(0, z) = ϕ(z), ∂tv(0, z) = ... = ∂mq−1

t v(0, z) = 0. (4)

Remark1. Observe, that by the Cauchy-Kowalevskaya theorem, the function v(t, z) is analytic in some
complex neighbourhood of origin in C2. It means that the formal solution û(t, z) is of Gevrey order (q−p)/p.
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4. Integral representation of solutions to the Kowalevskaya type equation

In this section we consider the equation

P (∂t, ∂z)v(t, z) = 0, where P (∂t, ∂z) := ∂mt −
m∑
j=1

∂m−jt Pj(∂z), degPj(ζ) ≤ j, degPm(ζ) = m (5)

with the initial data

∂nt v(0, z) = ϕn(z) (n = 0, ...,m− 1) holomorphic in some complex nieghbourhood of the origin. (6)

We would like to find the relation between the Cauchy data and the solution of (5). For this purpose we
will use an integral representation of the solution of (5) with the initial data ϕn(z) given by the reccurence
relations

ϕ0(z) := ϕ(z), ϕn(z) :=
∑n
j=1 Pj(∂z)ϕn−j(z) for n = 1, ...,m− 1, (7)

where ϕ(z) is holomorphic in some complex neighbourhood of origin. The construction of this integral
representation is based upon the results of Balser and Miyake [5].

Let us start from the formal solution of (5) given by

v̂(t, z) =
∞∑
n=0

v̂n(z)
tn

n!
. (8)

Observe that coefficients v̂n(z) satisfy the recurrence equation

v̂n(z) =
m∑
j=1

Pj(∂z)v̂n−j(z) for n = 1, 2, ...

with the initial conditions

v̂0(z) = ϕ(z) and v̂−1(z) = ... = v̂−m+1(z) = 0.

The solution of this equation is given by

v̂n(z) = qn(∂z)ϕ(z) for n = 1, 2, ...,

where qn(ζ) satisfies the difference equation

qn(ζ) =
m∑
j=1

Pj(ζ)qn−j(ζ) (9)

with the initial conditions

q0(ζ) = 1 and q−1(ζ) = ... = q−m+1(ζ) = 0. (10)

Observe that qn(ζ) is a polynomial of degree less than or equal to n, so one can assume that qn(ζ) =∑n
k=0 qnkζ

k with some constant coefficients qnk.
Put Qn(ζ) :=

∑n
k=0 |qnk|ζk. Since Qn(ζ) is a polynomial of degree n, there exists K > 0 such that

|Qn(ζ)| ≤ (Kζ)n for every n ∈ N and ζ > 1. (11)

Hence, using the Cauchy inequality, there exist % > 0 and A,B <∞ satisfying

sup
|z|<%

|v̂n(z)| ≤
n∑
k=0

|qnk| sup
|z|<%

|ϕ(k)(z)| ≤
n∑
k=0

|qnk|ABkk! ≤ An!Qn(B) ≤ A(KB)nn!.
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Therefore, the formal series (8) is convergent for |t| < (KB)−1 and |z| < %. Furthermore, for such t, z and
sufficiently small ε > 0 we have

v(t, z) =
∞∑
n=0

v̂n(z)
tn

n!
=
∞∑
n=0

tn

n!

n∑
k=0

qnkϕ
(k)(z) =

1
2πi

∮
|w−z|=ε

ϕ(w)k(t, w − z) dw, (12)

where the kernel function is defined by

k(t, z) :=
∞∑
n=0

tn

n!

n∑
k=0

qnk
k!
zk+1

. (13)

On the other hand, one can find the solution of the difference equation (9) using the characteristic
equation

λm =
m∑
j=1

Pj(ζ)λm−j , or equivalently P (λ, ζ) = 0. (14)

We may assume that for sufficiently large |ζ|, say |ζ| > |ζ0|, the characteristic equation (14) has exactly l

distinct holomorphic solutions λ1(ζ), ..., λl(ζ) of multiplicity m1, ...,ml (
∑l
j=1mj = m). Since Pm(ζ) 6= 0,

we conclude that λj(ζ) 6≡ 0. Moreover, degPj(ζ) ≤ j and degPm(ζ) = m, which gives

lim
ζ→∞

λj(ζ)/ζ = λj ∈ C \ {0}, (15)

where λj are the roots of the characteristic equation

Pm(λ, 1) = 0, or equivalently λm =
∑m
j=1 pjλ

m−j with pj := lim
ζ→∞

Pj(ζ)/ζj . (16)

Note that λj are not necessarily the distinct roots of (16). We admit the confluence of the roots

λi = lim
ζ→∞

λi(ζ)/ζ = lim
ζ→∞

λj(ζ)/ζ = λj and λi(ζ) 6= λj(ζ) for |ζ| > |ζ0|.

From (15) we can also assume that for |ζ| > |ζ0| the functions λj(ζ) are invertible, where the inverse functions
λ−1
j (τ) are the roots of the characteristic equation P (τ, λ−1) = 0.

Using the roots of the characteristic equation (14) one can find m linear independent solutions of the
difference equation (9)

λnj (ζ), nλnj (ζ), ...,
n!

(n−mj + 1)!
λnj (ζ) for j = 1, ..., l.

Hence for |ζ| > |ζ0|, the solution of (9) is given by

qn(ζ) =
l∑

j=1

λnj (ζ)
min{mj ,n+1}∑

k=1

cjk(ζ)
n!

(n− k + 1)!
. (17)

We can calculate the coefficients cjk(ζ) using the initial conditions (10) and solving the system of linear
equations. Observe that for sufficiently large |ζ|, say |ζ| > |ζ0|, the coefficients cjk(ζ) are holomorphic with
polynomial growth as |ζ| → ∞.

Now we describe the kernel function (13) by the following lemma, similar in spirit to Theorem 2.1 in [5].

Lemma 1. For a fixed value of z ∈ C \ {0}, the kernel function k(t, z) defined by (13) is analytic with
respect to t on the set {t ∈ C : |t| < |z|/K}. Moreover, this function is analytically continued into the
region

Gz := {t ∈ C : arg t 6= arg z − arg λj for j = 1, ..., l}
7



and is of exponential growth of order 1 as t→∞.
Strictly speaking,

k(t, z) = k̃(t, z) +
l∑

j=1

kj(t, z),

where k̃(t, z) ∈ O1
t (C2) and

kj(t, z) :=
mj∑
k=1

∫ ∞(θ)

ζ0

cjk(ζ)(λj(ζ)t)k−1eλj(ζ)te−zζ dζ with θ ∈ (−π/2− arg z, π/2− arg z)

is analytic with respect to t on the set {t ∈ C : |t| < |z|/K}. Moreover, kj(t, z) is analytically continued
into the region

G(λj)z := {t ∈ C : arg t 6= arg z − arg λj}
and is of exponential growth of order 1 as t→∞.

Proof. Let

q(t, ζ) :=
∞∑
n=0

tn

n!
qn(ζ) =

∞∑
n=0

tn

n!

n∑
k=0

qnkζ
k.

By (11) we can estimate this function as follows

|q(t, ζ)| ≤
∞∑
n=0

|t|n

n!
Qn(|ζ|) ≤

∞∑
n=0

|t|n(K|ζ|)n

n!
= eK|t||ζ|. (18)

It means that q(t, ζ) is an entire function of exponential growth in both variables. Now we fix z ∈ C \ {0}.
Taking θ = − arg z and applying (18) we see that integral∫ ∞(θ)

0

q(t, ζ)e−zζ dζ

is convergent for K|t| < |z|.
On the other hand, for any θ ∈ (−π/2− arg z, π/2− arg z) we have∫ ∞(θ)

0

q(t, ζ)e−zζ dζ =
∞∑
n=0

tn

n!

n∑
k=0

qnk

∫ ∞(θ)

0

ζke−zζ dζ =
∞∑
n=0

tn

n!

n∑
k=0

qnk
k!
zk+1

= k(t, z).

Hence for any fixed z ∈ C, z 6= 0, the function t 7→ k(t, z) is holomorphic on the set {t ∈ C : |t| < |z|/K}.
Using the solution (17), we have for |ζ| large enough

q(t, ζ) =
∞∑
n=0

qn(ζ)
tn

n!
=

l∑
j=1

mj∑
k=1

cjk(ζ)
∞∑

n=k−1

(λj(ζ)t)n

(n− k + 1)!
=

l∑
j=1

mj∑
k=1

cjk(ζ)(λj(ζ)t)k−1eλj(ζ)t.

Thus

k(t, z) =
∫ ∞(θ)

0

q(t, ζ)e−zζ dζ =
∫ ζ0

0

q(t, ζ)e−zζ dζ +
l∑

j=1

mj∑
k=1

∫ ∞(θ)

ζ0

cjk(ζ)(λj(ζ)t)k−1eλj(ζ)te−zζ dζ

= k̃(t, z) +
l∑

j=1

kj(t, z)

By (18) we have

k̃(t, z) =
∫ ζ0

0

q(t, ζ)e−zζ dζ ∈ O1
t (C2).
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To estimate kj(t, z) for j = 1, ..., l, observe that by (11), (15) and (17) we have |λj | < K and consequently
the function t 7→ kj(t, z) is analytic on {t ∈ C : |t| < |z|/K} for j = 1, ..., l. Moreover, by (15), for
sufficiently large ζ we have arg λj(ζ) ≈ arg ζ + arg λj . To show analytic continuation of kj(t, z), observe
that we may replace a direction arg ζ = θ by arg ζ = θj satisfying:

1. arg t+ arg λj + θj ∈ (π2 ,
3π
2 ) (in this case there exists A <∞ such that |eλj(ζ)t| ≤ A as ζ →∞),

2. arg z + θj ∈ (−π2 ,
π
2 ) (in this case there exists ε > 0 such that |e−zζ | ≤ e−ε|ζ| as ζ →∞),

under the condition arg t+ arg λj 6= arg z, or equivalently, t ∈ G(λj)z. Therefore the function

t 7→ kj(t, z) =
mj∑
k=1

∫ ∞(θj)

ζ0

cjk(ζ)(λj(ζ)t)k−1eλj(ζ)te−zζ dζ

is analytically continued to G(λj)z with exponential growth of order 1.
Finally, since Gz =

⋂
j=1,...,l

G(λj)z, we see that t 7→ k(t, z) ∈ O1(Gz).

�

Using the kernel function k(t, z) and Lemma 1, we show

Lemma 2. For t, z close to origin and sufficiently small ε > 0, the solution of (5) with initial conditions
(7) is given by the formula

v(t, z) =
l∑

j=1

vj(t, z),

where

vj(t, z) :=
1

2πi

∮
|w−z|=ε

ϕ(w)
∫ ∞(θj)

ζ0

mj∑
k=1

cjk(ζ)(λj(ζ)t)k−1eλj(ζ)te−(w−z)ζ dζ dw. (19)

Moreover, if j ∈ {1, ..., l}, s > 1 and ϕ(z) ∈ Os(S(d + arg λj , δ̃)) (with some δ̃ > 0), then vj(t, z) ∈
Ost (S(d, δ)×D(r)) (with some δ > 0 and r > 0)

Proof. By (12) and Lemma 1, for t, z close to origin and sufficiently small ε > 0 the solution of (5) with
the initial conditions (7) satisfies

v(t, z) =
1

2πi

∮
|w−z|=ε

ϕ(w)k(t, w − z) dw

=
1

2πi

∮
|w−z|=ε

ϕ(w)k̃(t, w − z) dw +
l∑

j=1

1
2πi

∮
|w−z|=ε

ϕ(w)kj(t, w − z) dw. (20)

Since the function w 7→ ϕ(w)k̃(t, w − z) is holomorphic for |w − z| ≤ ε, by the Cauchy integral theorem
the first summand on the right hand side of (20) vanishes. Hence v(t, z) =

∑l
j=1 vj(t, z), where vj(t, z) are

given by (19).
To estimate vj(t, z), fix z sufficiently close to the origin. In particular, we may assume that |z| < ε.

Repeating the proof of Theorem 3.1 in [5], we replace in (19) a path of integration |w − z| = ε by a
circle |w| = ε. If we take |z| sufficiently small then arg(w − z) ≈ argw along this new contour. Next we
split this circle into 2 arcs γ and γ̃, where γ extends between points of argument d + arg λj − δ̃/3 and
d + arg λj + δ̃/3. Finally, since ϕ(z) ∈ O(S(d + arg λj , δ̃)), we may deform γ into a path γR along the ray
argw = d+ arg λj − δ̃/3 to a point with modulus R (which can be chosen arbitrarily large), then along the
circle |w| = R to the ray argw = d+ arg λj + δ̃/3 and back along this ray to the original circle. So, we have

vj(t, z) =
1

2πi

∮
|w−z|=ε

ϕ(w)kj(t, w − z) dw =
1

2πi

∮
|w|=ε

ϕ(w)kj(t, w − z) dw

=
1

2πi

∮
γR

ϕ(w)kj(t, w − z) dw +
1

2πi

∮
γ̃

ϕ(w)kj(t, w − z) dw.

9



Since R may be chosen arbitrarily large and the function t 7→ kj(t, z) is analytic on |t| < |z|/K (see
Lemma 1), we can find δ > 0 such that the first integral on the right-hand side is analytically continued to
S(d, δ)×D(r). Estimating this integral we see that it is of exponential growth of order at most s as t→∞.

Moreover, since by Lemma 1 kj(t, z) is analytically continued into the region G(λj)z, we see that the
second integral on the right-hand side is also analytically continued to S(d, δ) × D(r) with appropriate
estimation as t→∞.

�

Let us introduce the idea of some kind of the pseudodifferential operators. To this end, let λ(ζ) be
a holomorphic function for |ζ| ≥ |ζ0| with a polynomial growth in infinity. Moreover, we assume that
ϕ(w) ∈ O(D(r̃)) (with some r̃ > 0), f(ζ, t, w) ∈ O(C × D(r) × D(r̃)) (with some r > 0 and r̃ > 0) and a
function

v(t, z) =
1

2πi

∮
|w−z|=ε

ϕ(w)
∫ ∞(θ)

ζ0

f(ζ, t, w)ezζ dζ dw

is well-defined and analytic in some complex neighbourhood of origin. Then we can define a pseudodifferential
operator λ(∂z) acting on v(t, z) as follows

λ(∂z)v(t, z) :=
1

2πi

∮
|w−z|=ε

ϕ(w)
∫ ∞(θ)

ζ0

λ(ζ)f(ζ, t, w)ezζ dζ dw. (21)

Remark2. Let s > 1. Observe that v(t, z) ∈ Osz(D(r) × S(d, δ)) if and only if λ(∂z)v(t, z) ∈ Osz(D(r) ×
S(d, δ)).

Remark3. Using the pseudodifferential operators we can write

P (∂t, ∂z)v(t, z) = (∂t − λ1(∂z))m1 ...(∂t − λl(∂z))mlv(t, z) = 0.

We show

Lemma 3. The functions vj(t, z) given by (19) satisfy pseudodifferential equations

(∂t − λj(∂z))mjvj(t, z) = 0 and (∂z − λ−1
j (∂t))mjvj(t, z) = 0 for j = 1, ..., l.

Proof. By (19) and (21) we have

(∂t − λj(∂z))mjvj(t, z) =

(∂t − λj(∂z))mj−1 1
2πi

∮
|w−z|=ε

ϕ(w)
∫ ∞(θj)

ζ0

mj∑
k=2

(k − 1)cjk(ζ)λk−1
j (ζ)tk−2eλj(ζ)te−wζezζ dζ dw = ...

= (∂t − λj(∂z))
1

2πi

∮
|w−z|=ε

ϕ(w)
∫ ∞(θj)

ζ0

(mj − 1)!cjmj
(ζ)λmj−1

j (ζ)eλj(ζ)te−wζezζ dζ dw = 0.

To show the second formula we use the substitution τ := λj(ζ) and the (k − 1)-fold integration by parts

vj(t, z) =
1

2πi

∮
|w−z|=ε

ϕ(w)
∫ ∞(θj)

ζ0

mj∑
k=1

cjk(ζ)(λj(ζ)t)k−1eλj(ζ)te−(w−z)ζ dζ dw

=
1

2πi

∮
|w−z|=ε

ϕ(w)
∫ ∞(θ̃j)

λj(ζ0)

mj∑
k=1

tk−1eτtcjk(λ−1
j (τ))τk−1e−(w−z)λ−1

j (τ)(λ−1
j (τ))′ dτ dw = ...

=
1

2πi

∮
|w−z|=ε

ϕ(w)
∫ ∞(θ̃j)

λj(ζ0)

mj∑
k=1

eτt
dk−1

dτk−1

(
cjk(λ−1

j (τ))τk−1e−(w−z)λ−1
j (τ)(λ−1

j (τ))′
)
dτ dw

10



with θ̃j = θj+arg λj . We will denote by fn(τ, w) (n = 0, ..., k−1) the holomorphic functions with polynomial
growth satisfying

k−1∑
n=0

fn(τ, w)zne−wλ
−1
j (τ)ezλ

−1
j (τ) =

dk−1

dτk−1

(
cjk(λ−1

j (τ))τk−1e−(w−z)λ−1
j (τ)(λ−1

j (τ))′
)
.

Hence we have

(∂z − λ−1
j (∂t))mjvj(t, z)

= (∂z − λ−1
j (∂t))mj

1
2πi

∮
|w−z|=ε

ϕ(w)
∫ ∞(θ̃j)

λj(ζ0)

mj∑
k=1

k−1∑
n=0

fn(τ, w)zne(z−w)λ−1
j (τ)eτt dτ dw

= (∂z − λ−1
j (∂t))mj−1 1

2πi

∮
|w−z|=ε

ϕ(w)
∫ ∞(θ̃j)

λj(ζ0)

mj∑
k=2

k−1∑
n=1

fn(τ, w)nzn−1e(z−w)λ−1
j (τ)eτt dτ dw

= ... = (∂z − λ−1
j (∂t))

1
2πi

∮
|w−z|=ε

ϕ(w)
∫ ∞(̃θj)

λj(ζ0)

fmj−1(τ, w)(mj − 1)!e(z−w)λ−1
j (τ)eτt dτ dw = 0.

�

Now we are ready to prove

Theorem 1. Let s > 1 and d ∈ R. Moreover, we assume that v(t, z) satisfies the equation (5) of
Kowalevskaya type with the initial data (6) and {λ1, ..., λl} is the set of the characteristic roots satisfy-
ing equation

Pm(λ, 1) = λm −
m∑
j=1

λm−jpj = 0 with pj := lim
ζ→∞

Pj(ζ)/ζj .

Then v(t, z) ∈ Ost (S(d, δ) × D(r)) (with some δ > 0 and r > 0) if and only if for every j = 1, ..., l and
n = 0, ...,m− 1, ϕn(z) ∈ Os(S(d+ arg λj , δ̃)) (with some δ̃ > 0)

Proof. (⇐=) By the principle of superposition of solutions of linear equations, we can assume that

ϕ0(z) = ϕ(z) ∈ Os(S(d+ arg λj , δ̃)) for j = 1, ..., l

and

ϕn(z) =
n∑
j=1

Pj(∂z)ϕn−j(z) for n = 1, ...,m− 1.

By Lemma 2

v(t, z) =
l∑

j=1

vj(t, z),

where vj(t, z) ∈ Ost (S(d, δ)×D(r)) for any j = 1, ..., l. It means that also v(t, z) ∈ Ost (S(d, δ)×D(r)).

(=⇒) If v(t, z) ∈ Ost (S(d, δ) ×D(r)) is a solution of (5) then v(t, z) also satisfies the following Cauchy
problem in z-direction

P (∂t, ∂z)v(t, z) = 0 (22)
∂nt v(t, 0) = ψn(t) ∈ Os(S(d, δ)) for n = 0, ...,m− 1,

11



where

P (∂t, ∂z) = ∂mt −
m∑
j=1

∂m−jt Pj(∂z) = c(∂mz −
m∑
j=1

∂m−jz P̃j(∂t)) with some polynomials P̃j(τ).

Observe that deg P̃j(τ) ≤ j and deg P̃m(τ) = m.
As in a previous case, we may clearly assume that

ψ0(t) = ψ(t) ∈ Os(S(d, δ)), ψn(t) =
∑n
j=1 P̃j(∂t)ψn−j(t) for n = 1, ...,m− 1.

Interchanging the roles of coordinates (t, z) and applying Lemma 2 we obtain

v(t, z) =
l∑

j=1

ṽj(t, z), (23)

where

ṽj(t, z) =
1

2πi

∮
|s−t|=ε

ψ(s)
∫ ∞(θ̃j)

τ0

mj∑
k=1

c̃jk(τ)(λ−1
j (τ)z)k−1eλ

−1
j (τ)ze−(s−t)τ dτ ds.

Moreover, since
d− arg( lim

τ→∞
λ−1
j (τ)/τ) = d− arg λ−1

j = d+ arg λj ,

we conclude that ṽj(t, z) ∈ Osz(D(r̃)× S(d+ arg λj , δ̃)).
By Lemma 3, ṽj(t, z) satisfies the formula

(∂t − λj(∂z))mj ṽj(t, z) = 0.

We show that

ṽj(t, z) =
mj∑
k=1

tk−1
∞∑
n=0

λnj (∂z)ϕ̃jk(z)
n!

tn (24)

with some functions ϕ̃jk(z). To this end observe that

(∂t − λj(∂z))mj ṽj(t, z) = (∂t − λj(∂z))mj−1

mj∑
k=2

(k − 1)tk−2
∞∑
n=0

λnj (∂z)ϕ̃jk(z)
n!

tn = ... = 0

and

(∂t − λj(∂z))k−1ṽj(0, z) = (k − 1)!ϕ̃jk(z) for k = 1, ...,mj .

It means that ϕ̃jk(z) ∈ Os(S(d+ arg λj , δ̃)). By (23) and (24) we have the system of m linear pseudodiffer-
ential equations 

v(0, z) = ϕ0(z) =
∑l
j=1 ϕ̃j1(z)

∂tv(0, z) = ϕ1(z) =
∑l
j=1

∑min{2,mj}
k=1 λ2−k

j (∂z)ϕ̃jk(z)
............................................................................................

∂m−1
t v(0, z) = ϕm−1(z) =

∑l
j=1

∑mj

k=1
(m−1)!
(m−k)!λ

m−k
j (∂z)ϕ̃jk(z).

(25)

Since the equation (22) is linear, without loss of generality we may assume that ϕ0(z) = ϕ(z) and ϕ1(z) =
... = ϕm−1(z) = 0. Hence, solving (25) with respect to ϕ̃jk(z) with k = 1, ...,m − 1 and j = 1, ..., l, we see
that

Qjk(∂z)ϕ̃jk(z) = Q̃jk(∂z)ϕ(z)

for some pseudodifferential operators Qjk(∂z) and Q̃jk(∂z).
Since ϕ̃jk(z) ∈ Os(S(d + arg λj , δ̃)), by Remark 2 we conclude that ϕ(z) ∈ Os(S(d + arg λj , δ̃)) for

j = 1, ..., l.
12



�

Since λj depends only on the principal part Pm(∂t, ∂z) of P (∂t, ∂z), immediately by Theorem 1 we have

Corollary 2. Let P (∂t, ∂z) = ∂mt −
∑m
j=1 ∂

m−j
t Pj(∂z) with degPj(y) ≤ j, degPm(y) = m. Moreover, let

v(t, z) and w(t, z) satisfy the Cauchy problems

P (∂t, ∂z)v = 0, ∂nt v(0, z) = ϕn(z) for n = 0, ...,m− 1,
Pm(∂t, ∂z)w = 0, ∂nt w(0, z) = ϕn(z) for n = 0, ...,m− 1,

where ϕn(z) are analytic in some complex neighbourhood of origin.
Then for every d ∈ R and s > 1 the function v(t, z) ∈ Ost (S(d, δ) ×D(r)) (with some δ > 0 and r > 0)

if and only if w(t, z) ∈ Ost (S(d, δ̃)×D(r̃)) (with some δ̃ > 0 and r̃ > 0).

5. Conclusions

As the corollary to Theorem 1 we have

Proposition 5. Let v(t, z) satisfies the initial value problem (4) and let s = q/(q − p). Then v(t, z) ∈
Ost (S((pd+2πn)/q, δ)×D(r)) (with some δ > 0 and r > 0) for n = 0, ..., q−1 if and only if the Cauchy data
ϕ(z) ∈ Os(S((pd+ argαj + 2πn)/q, δ̃)) (with some δ̃ > 0) for n = 0, ..., q − 1, j = 1, ..., l, where {α1, ..., αl}
is the set of the characteristic roots satisfying

αm −
m∑
j=1

αm−j p̃j = 0 with p̃j := lim
ζ→∞

Pqj(ζ)/ζqj . (26)

Proof. (=⇒) According to Theorem 1, if v(t, z) ∈ Ost (S((pd+ 2πn)/q, δ)×D(r)) then ϕ(z) ∈ Os(S((pd+
2πn)/q + arg λj , δ̃)) for n = 0, ..., q − 1 and j = 1, ..., l̃, where {λ1, ..., λl̃} is the set of the roots of the
characteristic equation

λmq −
m∑
j=1

λ(m−j)qp̃j = 0. (27)

Observe that λ is the root of (27) if and only if α = λq is the root of (26). It means that ϕ(z) ∈ Os(S((pd+
2πn+ argαj)/q, δ̃)) for n = 0, ..., q − 1, j = 1, ..., l.

(⇐=) If ϕ(z) ∈ Os(S((pd+2πn+argαj)/q, δ̃)) (n = 0, ..., q−1, j = 1, ..., l) then also ϕ(z) ∈ Os(S((pd+
2πn)/q + arg λj , δ̃)) (n = 0, ..., q − 1, j = 1, ..., l̃), where {λ1, ..., λl̃} is the set of the characteristic roots of
(27). Therefore by Theorem 1 we have v(t, z) ∈ Ost (S(pd+ 2πn)/q, δ)×D(r)) for n = 0, ..., q − 1.

�

Combining Propositions 2, 4, 5 and Remark 1 we obtain

Theorem 2 (Main theorem). Let û(t, z) be a formal power series solution of the initial value problem

∂mpt u(t, z) =
m∑
j=1

∂
(m−j)p
t Pjq(∂z)u(t, z), u(0, z) = ϕ(z), ∂tu(0, z) = ... = ∂mp−1

t u(0, z) = 0,

where t, z ∈ C, p, q,m ∈ N, p < q are coprime, Pjq(z) are polynomials of degree less than or equal to jq
(j = 1, . . . ,m), Pmq(z) is a polynomial of degree mq and ϕ(z) is analytic in a complex neighbourhood of the
origin.

Then a formal series û(t, z) is p/(q−p)-summable in a direction d if and only if the Cauchy data ϕ(z) is
analytically continued to the set S((pd+ argαj + 2πn)/q, δ̃) (with some δ̃ > 0) for n = 0, ..., q−1, j = 1, ..., l
and this analytic continuation is of exponential growth of order q/(q − p) as z → ∞, where {α1, ..., αl} is
the set of the roots satisfying the characteristic equation (26).
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6. The special case: quasi-homogeneous equations

Now, we consider the quasi-homogeneous type equation

∂mpt u =
m∑
j=1

aj∂
(m−j)p
t ∂jqz u, u(0, z) = ϕ(z), ∂tu(0, z) = ... = ∂mq−1

t u(0, z) = 0, (28)

where m, p, q ∈ N, p < q, aj ∈ C, am 6= 0 and ϕ(z) is analytic in some neighbourhood of origin.
Moreover, we assume that αk (k = 1, ..., l) are the distinct roots (with mk-multiplicity, where

∑l
k=1mk =

m) of the characteristic equation

αm −
m∑
j=1

ajα
m−j = 0.

K. Ichinobe [7] has showed that the formal solution û of (28) is p/(q − p)-summable in a direction d if
and only if ϕ(z) is analytically continued to some sectors in directions (pd + argαk + 2πn)/q (k = 1, ..., l,
n = 0, ..., q − 1) and is of exponential growth of order q/(q − p).

This achievement one can treat as the special case of Theorem 2. On the other hand one can give a
simpler proof of this result replacing general Theorem 1 by the following proposition:

Proposition 6. Let v(t, z) satisfies the initial problem

(∂t − λ1∂z)m1 ...(∂t − λl∂z)mlv = 0, ∂nt v(0, z) = ϕn(z) for n = 0, ...,m− 1, (29)

where m = m1 + ...+ml and ϕn(z) are analytic in some complex neighbourhood of origin. Then for every
s > 1 the function v(t, z) ∈ Ost (S(d, δ) × D(r)) (with some δ > 0 and r > 0) if and only if ϕn(z) ∈
Os(S(d+ arg λj , δ̃)) (with some δ̃ > 0) for n = 0, ...,m− 1, j = 1, ..., l.

Proof. (⇐=) Since (29) is a linear equation, without loss of generality we may assume that

ϕ0(z) = ϕ(z) ∈ Os(S(d+ arg λj , δ̃)) for j = 1, ..., l

and

ϕn(z) = 0 for n = 1, ...,m− 1.

The solution of this equation is given by the formula

v(t, z) =
l∑

j=1

mj−1∑
n=0

Cjn(λjt)nϕ(n)(z + λjt) =
l∑

j=1

mj−1∑
n=0

Cjn

∞∑
k=0

(λjt)n+kϕ(n+k)(z)
k!

(30)

with some constants Cjn satisfying the system of m linear equations

∑l
j=1 Cj0 = 1∑l
j=1

∑min{1,mj−1}
n=0 Cjnλj = 0∑l

j=1

∑min{2,mj−1}
n=0

2!
(2−n)!Cjnλ

2
j = 0

.............................................. ... ...∑l
j=1

∑mj−1
n=0

(m−1)!
(m−1−n)!Cjnλ

m−1
j = 0

Since ϕ(z) ∈ Os(S(d + arg λj , δ̃)), by (30) we conclude that v(t, z) ∈ Ost (S(d, δ) × D(r)) with some δ > 0
and r > 0.

(=⇒) If v(t, z) ∈ Ost (S(d, δ)×D(r)) is a solution of (29) then v(t, z) satisfies also the initial value problem
with respect to z {

(∂z − λ−1
1 ∂t)m1 ...(∂z − λ−1

l ∂t)mlv = 0,
∂jzv(t, 0) = ψj(t) for j = 0, ..,m− 1,
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where ψj(t) ∈ Os(S(d, δ)). As in a previous case, we can assume that ψ0(t) = ψ(t) and ψj(t) = 0 for
j = 1, ...,m− 1. Hence there are costants Djn such that

v(t, z) =
l∑

j=1

mj−1∑
n=0

Djn(λ−1
j z)nψ(n)(t+ λ−1

j z) =
l∑

j=1

vj(t, z),

where vj(t, z) :=
∑mj−1
n=0 Djn(λ−1

j z)nψ(n)(t+ λ−1
j z) ∈ Osz(D(r)× S(d+ arg λj , δ̃)).

Repeating the rest of the proof of Theorem 1 with ṽj(t, z) := vj(t, z) and λj(∂z) := λj∂z, we conclude
that ϕ(z) ∈ Os(S(d+ arg λj , δ̃)) for j = 1, ..., l.

�
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