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ABSTRACT

The problem of determining the interface separating a constant conductivity inclusion with

star-shaped support from boundary measurement data of a solution of the corresponding

PDEs is considered. An equivalent statement as a nonlinear integral equation is obtained.

The problem is analyzed and implemented numerically using truncated Fourier series ex-

pansion. Numerical experiments based on simplified iteratively regularized Gauss-Newton

method (sIRGNM) are presented.
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1 Introduction

Consider the following boundary value problem

∆u = S(x), in Ω1⊂ IR2; u = 0 on ∂Ω1, (1.1)

where Ω1 is a unit disc with boundary ∂Ω1, and ΩS ⊂ Ω1 is the support of S, i.e. ΩS = supp(S).

The inverse problem consist of identifying the shape of ΩS given the Neumann data ∂u
∂n of

the solution on ∂Ω1. Therefore, we define F as the operator mapping q to ∂u
∂n , where q is the

parameterization of the shape boundary of ΩS . Ring (Ring, 1995) studied S(x) = χΩS
, where

ΩS to be a star-shaped with respect to the origin and χΩS
denoted the characteristic function of

ΩS . He named the inverse problem as core identification. Hohage (Hohage, 2001) mentioned

briefly the shape identification of the inverse source problem (1.1) in general domain and for

general S(x) without details, complement the work of (Hettlich and Rundell, 1996), which is

more general than the study of (Ring, 1995) with different approach.

In this work, we are particularly interested in the case of S(x) of the form

S(x) = −∇a∇u0, 0 < a a constant, (1.2)



where the support of a, supp(a) ⊂⊂ Ω1, and u0 is the solution of the following boundary value

problem

∆u0 = 0, u0 = g on ∂Ω1. (1.3)

This work extends the work of Ring (Ring, 1995), and studying in more details of a particu-

lar case of Hohage (Hohage, 2001) work. Furthermore, this particular problem arises from

identification of conductivity inclusion shape from boundary measurement.

This work is organized into some sections and an appendix as follows. In the next section,

we state the inclusion problem in Electrical Impedance Tomography (EIT) as inverse source

problem particularly as core identification. The third section, we recall the results from core

identification and recast it to the problem at our hand. We owe much of these results in this

section to Ring (Ring, 1995). In this section, we also verify the singular system of the Fréchet

derivative at a particular situation, which demonstrate the degree of ill-posedness of the prob-

lem. Before closing by the last section, a section solely devoted to some numerical results, to

reconstruct the star-shaped support of conductivity inclusion using simpified Iteratively Reg-

ularized Gauss-Newton Method (sIRGNM). For the sake of conveniencies, we provide in the

appendix some nomenclatures and facts used in this work.

2 Object inclusion in Electrical Impedance Tomography and in verse source
problem of Poisson equation.

Consider the inverse boundary value problem of electric impedance tomography (EIT) in a

bounded simply connected domain Ω1 ⊂ IR2 :

Determine the conductivity κ : Ω1 → IR, with 0 < κm = κ(x) = κM < ∞, in the elliptic equation

∇ • (κ∇w) = 0 in Ω1, w = g on ∂Ω1, (2.1)

using all possible boundary measurement pairs (g, κ∂w
∂ν |∂Ω1

). Here, w is the electrostatic po-

tential, and g is the prescribed potential at the boundary. Due to the severe ill-posedness of

the problem, it is almost futile effort to build a reliable method for reconstructing general con-

ductivities. This is particularly true if only few of Cauchy data pairs (g, κ∂w
∂ν |∂Ω1

) are available,

which is often the case in practice.

One specific application of EIT which has practical importance is locating inhomogeneities

inside objects with known background conductivities. For example, finding tissue anomalies

from normal healthy background fall into this category of problem. Assuming the background

conductivity to be constant, say 1, our problem setting can be expressed as follow:

Assuming that

a := (κ − 1) has compact support within Ω1,

i.e., κ is 1 within the vicinity of the boundary of Ω1, find information of supp(a) from single (or a

few) Dirichlet-Neumann pair(s) of boundary data for problem (2.1).

Assuming that the conductivity perturbation a is small, let us linearize the equations with re-

spect to the conductivity perturbation. The linearized equation for small a is an equation for the

additional potential u = w − u0, and can be obtained by solving equations

∇(1 + a)∇w = 0 in Ω1 w = g on ∂Ω1 (2.2)



and

∆u0 = 0 in Ω1 u0 = g on ∂Ω1 . (2.3)

We assume that supp(a) = Ω̃1 for some subdomain Ω̃1 ⊂⊂ Ω1, and a(x) = 0 for x ∈ Ω1\Ω̃1,

and suppose that a ∈ L2(Ω̃1). Then from (2.2) and (2.3) we have equivalent system of elliptic

equations

∆u0 = 0 in Ω1 u0 = g on ∂Ω1,

∆u = −∇a∇u0 in Ω1 u = 0 on ∂Ω1.
(2.4)

Here g is applied boundary voltage, u0 is a potential of the electrical field in the model back-

ground problem, or a harmonic reference potential, and u is fluctuation of the potential due to

the presence of the inclusion.

From (2.4), by generating the corresponding harmonic reference potential u0, we can reduce

our problem to finding the support of the source in the following Poisson equation

∆u = S(x) in Ω1, u = 0 on ∂Ω1, (2.5)

where the source is expressed formally as S(x) = − ∇ · a ∇ u0.

Note that this notation has to be properly interpreted in a weak sense if κ lacks the appropriate

smoothness, but nonetheless, S is always supported within the support of a. Also note that

each pair of Dirichlet-to-Neumann data for problem (2.1) leads to a different source, and thus,

in principle, to additional information about the support of a. Furthermore, the smallness of a is

not necessarily to be of low-contrast conductivity but also of high-contrast conductivity as well

such as arises in the problem in geophysics, see for example (Cherkaeva and Tripp, 1996).

The inverse linearized problem is to find a conductivity distribution a which fits the measured

currents on the surface , ∂u
∂ν |∂Ω1

, of potential difference u satisfying (2.4)for the applied volt-

ages g.

Starshape Object Inclusion problem as core identification.

From now on, in this work, we consider Ω1 the unit disc. It is well known that the unique solution

to the problem (1.1) is given by

u(x) =

∫

Ω1

G(x, ξ)S(ξ)dξ, (2.6)

where

G(x, ξ) :=
1

2π
ln |x − ξ| −

1

2π
ln

(
|ξ| |x −

ξ

|ξ|2
|

)
,

is the Green’s function for Ω1. We assume that ΩS to be a star-shaped with respect to the

origin. We consider the particular case that a = χΩS
and Ω̄S ⊂⊂ Ω1, hence a|∂Ω1

= 0. Then

∂ΩS = {q(t)(cos t, sin t) : t ∈ [0, 2π]} for q which is a positive function and 2π−periodic.

Let Z0 = Z\{0}, the set of non-zero integers, and let the Poisson Kernel

P (r, s) =
1

2π

∑

n∈Z

(r)|n|ei ns, (2.7)



which is the Green’s function of Laplace equation in the unit disc Ω1 in polar coordinates (r, s).

We restrict ourselves by choosing the harmonic reference potential u0 of the form

u0 := Uk(r, s) =
r|k|

|k|
ei ks, k ∈ Z0,

which is the solution of boundary value problem (1.3) under scaled trigonometric function

g =
ei ks

|k|
, k ∈ Z0,

as a Dirichlet boundary value at ∂Ω1.

Forward Map F . The defined operator F mapping q to ∂u
∂n is by taking the normal derivative of

(2.6)

F (q)(t) =
∂u

∂νx
=

∂

∂νx

∫

Ω1

G(x, ξ)S(ξ)dξ,

=

∫

Ω1

∂

∂νx
G(x, ξ)∇ξa∇ξUk(ξ)dξ,

by applying Green’s second formula

and use the fact that a|∂Ω1
= 0

=

∫

ΩS

a∇ξ
∂

∂νx
G(x, ξ)∇ξUk(ξ)dξ,

due to change of variables from cartesian to polar

and the use of Poisson Kernel for Green’s function

also inserting a = χΩS

=

∫ 2π

0

∫ q(s)

0
∇ξP (r, t − s) · ∇ξUk(r, s)rdrds; ξ(r, s)

after inserting an explicit expression of the Poisson Kernel

=
1

2π

∫ 2π

0

∫ q(s)

0

∑

n6=0,n∈Z

|n|ei n(t−s)ei ksr|n|+|k|−2rdrds

We arrive at the forward map F mapping q to ∂u
∂n ,

F (q)(t) =
1

2π

∫ 2π

0

∑

n6=0,n∈Z

|n|

|n| + |k|
q(s)|n|+|k|ei ksei n(t−s)ds. (2.8)

In the next section we address some propeties of the forward operator (2.8) as we derived

above. We address the smoothness property of F (q)(t) and derive the Fréchet derivatives

of F.

3 Smoothness and differentiability

Denote, T = [0, 2π] and Zo = Z\{0}, then (2.8) is a well-defined map

F : Hs(T) ⊃ D(F ) → H
−1/2
� (T),

: q 7→ F (q)(t).



The domain for F is defined as the set

domF = {q ∈ H1(T) : 0 ≤ q(t) ≤ 1 for all t ∈ T}, (3.1)

and frequently we shall consider the interior (domF )◦ of domF in H1(T), given by

(domF )◦ = {q ∈ H1(T) : 0 < q(t) < 1 for all t ∈ T}. (3.2)

Proposition 3.1. Let F be as defined in (2.8) and suppose that domF and (domF )◦ are given

as in (3.1) and (3.2), respectively.

1. Then

F (q) ∈ H l(T)

for every q ∈ domF and l < 1
2 .

2. If q ∈ (domF )◦, then

F (q) ∈ C
∞(T).

3. For every q ∈ (domF )◦, there exists a neighbourhood U(q) of q in H1(T) such that

F : U(q) ⊂ H1(T) → H l(T)

is Lipschitz continuous for every l ∈ IR, with Lipschitz constant given by c̃, where c̃ is

depending on U(q) and l.

Proof. We follow in parallel to the proof of Proposition 4.1. in Ring (Ring, 1995).

1. Observe that,

‖F (q)‖2
Hl(T) = (

1

2π
)2
∑

n∈Z0

(1 + n2)l|

∫ 2π

0

|n|q(s)|n|+|k|

|n| + |k|
e−insds|2

≤
∑

n∈Z0

(1 + n2)l+1

|n| + |k|
.

Since (1+n2)l+1/(|n|+ |k|) ≤ (1 + n2)l+1/(|n| + 1) ≤ 2l+2|n|2l−2 for all l ≥ 0, |k| ≥ 1, and

|n| ≥ 1, the series converges if 2l − 2 < −1,i.e., if l < 1
2 .

Note that we also have a tighter bound due to the following inequality (1 + n2)l+1/(|n| +

1) ≤ 2l+2|n|2l+1, but we don’t use this tighter bound, as the current scale will be of the

similar result as in (Ring, 1995).

2. As argued in (Ring, 1995), suppose that q ∈ (domF )◦. The n-th terms of F (q) under

Fourier Transform is

|n||(F (q)) (̂n)| = |n|k
1

2π
|

∫ 2π

0

|n|q(s)|n|+|k|

|n| + |k|
e−in sds|

Since H1(T) ⊂ C(T), clearly sups∈T |q(s)| = ‖q‖∞ < 1, then we have

|n|k
1

2π
|

∫ 2π

0

|n|q(s)|n|+|k|

|n| + |k|
e−in sds| ≤

|n|k+1

|n| + |k|
‖q(s)|n|+|k|‖∞ → 0,

as |n| → ∞ since ‖q‖∞ < 1.



3. Since the embedding H1(T) ↪→ C(T) is bounded, we can find a neighbourhood U(q) of

q ∈ (domF )◦ such that m := {‖q̃‖∞ : q̃ ∈ U(q)} < 1. We will take a look at

F : U(q̃) ⊂ H1(T) → C∞(T) ⊂ H l(T)

with l ∈ IR. Therefore

‖F (q1) − F (q2)‖Hl(T) =


∑

n∈Z0

(1 + n2)l|
1

2π

∫ 2π

0

|n|(q
|n|+|k|
1 − q

|n|+|k|
2 )

|n| + |k|
e−insds|2




1/2

≤
1

2π


∑

n∈Z0

(1 + n2)l|n|2

(|n| + |k|)2
|

∫ 2π

0
(q

|n|+|k|
1 − q

|n|+|k|
2 )e−insds|2




1/2

≤
1

2π


∑

n∈Z0

(1 + n2)l+1

(|n| + |k|)2
×

(

∫ 2π

0
|q1 − q2||

|n|+|k|∑

j

qj
1q

|n|+|k|−j
2 |ds)2




1/2

≤ (
∑

n∈Z0

(1 + n2)l+1m2(|n|+|k|))1/2‖q1 − q2‖∞ (3.3)

≤ L‖q1 − q2‖Hl(T)

where

L := (
∑

n∈Z0

(1 + n2)l+1m2(|n|+|k|))1/2c1,

with c1 such that ‖f‖∞ ≤ c1‖f‖Hl(T). The series in (3.3) is convergent via the quotient criterion.

Hence we have demonstrated that for every l ∈ IR,

F : U(q̃) ⊂ H1(T) → H l(T),

is locally Lipschitz continuous.

Observe that in the above proposition, we also proved Lipschitz continuity of F with respect to

C(T)−norm on (domF )◦.

Derivative of F. Now we turn to deriving Fréchet derivative of F.

Proposition 3.2. The forward map F (q) : (domF )◦ ⊂ H1(T) → H l(T) is Fréchet differentiable

at every element q ∈ (domF )◦ with derivative given by

(DF [q]h)(t) =
1

2π

∫ 2π

0

∑

n∈Z0

|n|q(s)|n|+|k|ei k sh(s)ei n(t−s)ds, (3.4)

for all h ∈ H1(T). The Fourier transform of DF [q]h is given by

(DF [q]h)̂(n) =
1

2π

∫ 2π

0
|n|q(s)|n|+|k|ei k sh(s)e−i nsds, (3.5)

for all h ∈ H1(T) and n ∈ N.



Proof. Before we proceed to show differentiability of F, it is necessary first to show that (3.5)

is the Fourier Transform of (3.4). Observe that for q ∈ (domF )◦

|
∑

n∈Z0

|n|q(s)|n|+|k|ei k sei n(t−s)| ≤ ‖q‖|k|∞

‖q‖∞
(1 − ‖q‖∞)2

< ∞,

we interchange the summation and integration in (3.4) and obtain

(DF [q]h)(t) =
1

2π

∑

n∈Z0

∫ 2π

0
|n|q(s)|n|+|k|ei k sh(s)ei n(−s)ds ei nt,

which confirms (3.5) to be correct.

To prove Fréchet differentiability of F, it is sufficient to show the following

(1.) DF [q] : H1(T) → H l(T) is a bounded linear operator.

(2.) DF is a locally Lipschitz continuous dependent on q, i.e., there exists L(q) > 0, such that

‖F (q) − F (q̃)‖L(Hl(T),Hl(T)) ≤ L‖q − q̃‖Hl(T)

(3.) DF [q] is Gateaux derivative of F at q, i.e.

lim
τ→0

‖F (q + τh) − F (q) − τDF [q]h‖Hl(T) = 0,

where τ ∈ [0,∞) for every h ∈ H l(T).

Let us show first that DF [q] as defined in (3.4) is a bounded linear operator from H1(T) into

H l(T) for some arbitrary but fixed l ∈ IR. Using

‖DF [q]h‖Hl(T) =


∑

n∈Z0

(1 + n2)l|
1

2π

∫ 2π

0
|n|q(s)|n|+|k|ei k sh(s)ei n(t−s)ds|2




1/2

,

≤


∑

n∈Z0

(1 + n2)l|n|2‖q‖2(|n|+|k|)
∞ |

1

2π

∫ 2π

0
h(s)ei n(−s)ds|2




1/2

,

≤


(
∑

n∈Z0

(1 + n2)l(1 + n2)‖q‖2(|n|+|k|)
∞ |ĥ(n)|2)




1/2

,

≤


∑

n∈Z0

(1 + n2)(l+1)‖q‖2(|n|+|k|)
∞ |ĥ(n)|2




1/2

,

≤ c

(∑

n∈Z

|ĥ(n)|2

)1/2

< c‖h‖L2(T),

where we chose c sufficiently large such that (1 + n2)(l+1)/2‖q‖
(|n|+|k|)
∞ < c for all n ∈ Z. (Note

that ‖q‖∞ < 1 since q ∈ (domF )◦). Hence DF [q] : H1(T) ⊂ L2(T) → H l(T) is a bounded

linear operator. Moreover the results show a stronger result than we require and also DF [q]

can be uniquely extended to a bounded linear operator from L2(T) into H1(T).



For the proof of (2.) we pick a neighbourhood U(q) of q in H1(T) ⊂ L2(T) such that ‖q̃‖∞ ≤

m < 1, for all q̃. Then we have

‖DF [q]h − DF [q̃]h‖Hl(T) =


∑

n∈Z0

(1 + n2)l||n| ×

1

2π

∫ 2π

0
(q − q̃)[

|n|+|k|∑

j=0

qj q̃(|n|+|k|−j ]h(s)e−nsds|2




1/2

≤


∑

n∈Z0

(1 + n2)l|n|2(|n| + |k| + 1)2m2(|n|+|k|)|ĥ(n)|2




1/2

×

‖q − q̃‖∞

≤


∑

n∈Z0

(1 + n2)l+1(|n| + |k| + 1)2m2(|n|+|k|)|ĥ(n)|2




1/2

×

‖q − q̃‖∞

We choose c1 and c2 two constants such that ‖q − q̃‖∞ ≤ c1‖q − q̃‖H1(T) for all q̃ elements in

U(q), the neighbourhood of q, and

(1 + n2)l+1(|n| + |k| + 1)2m2(|n|+|k|) < c2
2, for all n ∈ Z.

Then we have

‖DF [q]h − DF [q̃]h‖Hl(T) ≤ L‖q − q̃‖Hl(T)‖h‖Hl(T),

with L = c1c2, and consequently

‖DF [q]h − DF [q̃]h‖L(H1(T),Hl(T)) ≤ L‖q − q̃‖Hl(T),

for all q̃ ∈ U(q).

Now, it remains to show that DF is the Gateaux derivative of F. We find that

‖F (q + τh) − F (q) − τDF [q]h‖Hl(T) =

=


∑

n∈Z0

(1 + n2)l|
1

2π

∫ 2π

0
(
|n|((q + τh)|n|+|k| − q|n|+|k|)

|n| + |k|
− τq|n|+|k||n|h(s))e−nsds|2




1/2

=
1

2π


∑

n∈Z0

(1 + n2)l|n|2|

∫ 2π

0
(
((q + τh)|n|+|k| − q|n|+|k|)

|n| + |k|
− τq|n|+|k|h(s))e−nsds|2




1/2

≤
1

2π


∑

n∈Z0

(1 + n2)(l+1)|

∫ 2π

0

1

|n| + |k|
[

|n|+|k|∑

j=2

(
|n|+|k|

j

)
τ jh(s)jq|n|+|k|−j ]e−nsds|2




1/2

≤
1

2π


∑

n∈Z0

(1 + n2)(l+1)|

∫ 2π

0

1

|n| + |k|
[

|n|+|k|∑

j=2

(
|n|+|k|

j

)
τ jh(s)jq|n|+|k|−j ]e−nsds|2




1/2

≤ τ


∑

n∈Z0

(1 + n2)(l+1)(
1

|n| + |k|
‖q + τ |h|‖|n|+|k|

∞ )2




1/2



where we used τk−1 ≤ τk/2 for all k ≥ 2 and τ ∈ (0, 1). The last series converges if ‖q +

τ |h|‖∞ < ∞ by the quotient criterion, hence the whole expression goes to 0 as τ → 0.

The following theorem is in parallel to the result of Theorem 4.5 in Ring (Ring, 1995).

Theorem 3.3. The operator DF [q] : H1(T) → H l
�(T) with l ∈ IR is injective for all q ∈ (domF )◦.

Proof. Let h(s) ∈ kerDF [q] ⊂ H1(T), then

0 =
1

2π

∫ 2π

0

∑

n∈Z0

|n|q(s)|n|+|k|ei k sh(s)ei nsds

after exchanging integral and sum, then

0 =
1

2π

∫ 2π

0
q(s)|n|+|k|ei k sh(s)ei nsds, for all n 6= 0, n ∈ Z.

Let h̃(s) = q(s)|k|−1ei k sh(s), this equivalently with

0 =
1

2π

∫ 2π

0
q(s)|n|+1h̃(s)ei nsds, for all n 6= 0, n ∈ Z.

It was shown in (Ring, 1995)[Theorem 4.5], that the functions {q(s)|n|ei ns; n ∈ Z} are dense in

H1(T), thus we may conclude that q(s)h̃(s) = 0. However, since q(s)|k|−1ei k s 6= 0, s ∈ T\{0}

and q(s) > 0, then leads to h(s) = 0, or h ∈ kerDF [q].

Theorem 3.4. The evaluation of adjoint operator DF [q]∗ of (3.4) is given by:

(DF [q]∗g)(s) = q(s)|k|ei ks 1

2π

∫ 2π

0

∑

n∈Z0

|n|q(s)|n|ei n(t−s)g(t)dt, (3.6)

for g(t) ∈ H l
�(T).

Proof. We follow in parallel to the idea of the proof of Theorem 5.1 and utilize some results of

the appendix in the works of Ring (Ring, 1995).

(The following geometric series: r/(1 − r)2 =
∑

n∈N0
nrn, |r| < 1, is needed in the proof.)

〈DF [q]h, g〉H−1/2(T),H1/2(T) =
1

2π

∫ 2π

0


 1

2π

∫ 2π

0

∑

n∈Z0

|n|q(s)|n|+|k|ei k sh(s)ei n(t−s)ds


 g(t) dt,

=
1

2π

∫ 2π

0
q(s)|k|ei k sh(s)


 1

2π

∫ 2π

0

∑

n∈Z0

|n|q(s)|n|ei n(t−s)g(t) dt


 ds. (3.7)

The order of integration can be reversed since we have

|
∑

n∈Z0

|n|q(s)|n|+|k|ei k sh(s)ei n(t−s)g(t)| ≤
‖q‖

|k|+1
∞ ‖h‖∞

(1 − ‖q‖∞)2
|g(t)|



for all (s, t) ∈ T × T and g ∈ H1/2 ⊂ L2(T). We put

g∗(s) = q(s)|k|ei k s


 1

2π

∫ 2π

0

∑

n∈Z0

|n|q(s)|n|ei n(t−s)g(t) dt


 . (3.8)

From

|
∑

n∈Z0

|n|q(s)|n|+|k|−1ei k sei n(t−s)g(t)| ≤
‖q‖

|k|
∞

(1 − ‖q‖∞)2
|g(t)|,

thus allows us to reorder the summation and integration in (3.8), so we obtain

g∗(s) =
∑

n∈Z0

|n|q(s)|n|q(s)|k|ei k s

(
1

2π

∫ 2π

0
ei n(t)g(t) dt

)
ei n(−s),

=
∑

n∈Z0

|n|q(s)|n|q(s)|k|ei k sĝ(n)ei n(−s). (3.9)

The following estimates
∑

n∈Z0

|ĝ(n)|2|n|‖q‖|n|∞ ≤
∑

n∈Z

|ĝ(n)|2|n|‖q‖|n|∞ ,

≤ (
∑

n∈Z

(1 + n2)1/2|ĝ(n)|2)1/2(
∑

n∈Z

(1 + n2)−1/2|n|2‖q‖2|n|
∞ )1/2,

≤ (
∑

n∈Z

(1 + n2)1/2|ĝ(n)|2)1/2(
∑

n∈Z

(1 + n2)1−1/2‖q‖2|n|
∞ )1/2,

≤ (‖g‖2
H1/2(T)

)(
∑

n∈Z

(1 + n2)1/2‖q‖2|n|
∞ )1/2,

< ∞,

imply the uniform convergence of the series (3.9) on T. Therefore we conclude that g∗ ∈ C(T) ⊂

H−1(T). Moreover (3.7) implies that

〈DF [q]h, g〉H−1/2(T),H1/2(T) = 〈h, g∗〉H1(T),H−1(T)

and consequently

(DF [q]∗g)(s) = q(s)|k|ei ks 1

2π

∫ 2π

0

∑

n∈Z0

|n|q(s)|n|ei n(t−s)g(t)dt. (3.10)

Singular system of DF [q0] for circular support inclusion.

Let q0, 0 < q0 < 1, be a constant radius of support inclusion.

Denote εj(s) = ei js, we have

(DF [q0]εj)(t) =
∑

n∈Z0

|n|

2π1|n|+|k|+1
q
|n|+|k|
0 ei nt

∫ 2π

0
ei jsei (k−n)sds (3.11)

Under complex unit monomial basis in T the entry of DF [q0] can be expressed as

(DF [q0])jn = 〈(DF [q0]εj)(t), εn(t)〉H−1/2(T),H1/2(T)

= |n|q
|n|+|k|
0 δj+k

n



for n 6= 0, n, j ∈ Z, and δ denoting delta Dirac notation. We observe here we have an infinite

matrix representation of DF [q0], which is a non-zero upper-lower k-diagonal or k-banded.

Let us make some notes related to the infinite matrix representation of DF [q0] induced by

harmonic reference potential u0.

Note 3.5. Observe that under ’harmonic reference potential’ u0 of the form of a finite linear

combination of elementary harmonic reference potential

u0 :=
∑

k∈K

αkUk(r, s)

=
∑

k∈K

αk(r)
kei ks, K = {ki ∈ Z0, i = 1, · · · , n},

which is the solution of boundary value problem (1.3) under boundary value

g =
∑

k∈K

αke
i ks, K = {ki ∈ Z0, i = 1, · · · , n},

the infinite matrix DF [q0] is a non-zero banded matrix with bandwidth |min{ki; ki ∈ K}| +

max{ki; ki ∈ K}.

In the case of ’harmonic reference potential’ is u0 := U c
k(r, s) = (rk cos ks)/k, k ∈ Z0, which is

the solution of boundary value problem (1.3) under cosine boundary value g = (cos ks)/k, k ∈

Z0, we observe that the infinite matrix DF [q0] under trigonometrical polynomial basis is a non-

zero symmetric k-bidiagonal.

While in the case of ’harmonic reference potential’ is u0 := U s
k(r, s) = (rk sin ks)/k, k ∈ Z0,

which is the solution of boundary value problem (1.3) under boundary value g = (sin ks)/k, k ∈

Z0, we obtain that the infinite matrix DF [q0] under trigonometrical polynomial basis is a non-

zero skew-symmetric k-bidiagonal.

Singular system of DF [q0].

Let εs
j(t) = (1 + j2)−s/2ei jt, then

(DF [q0]ε
s
j)(t) = (1 + j2)−s/2(DF [q0]εj)(t),

= (1 + j2)−s/2
∑

n∈Z0

|n|q
|n|+|k|
0 δj+k

n εn(t),

= (1 + j2)−s/2|j|q
|j|+|k|
0 εj+k(t).

Denote

σj = q
|k|+|j|
0 |j|(1 + j2)−s/2,

then from (3.6) and Theorem (3.3), we can show :

DF [q0]
∗εj+k(t) = σj εs

j(t).

Then we demonstrate that the triple {εs
j(t), εj+k(t), σj} is singular system of DF [q0], the Fréchet

derivative of F at positive constant q0, since {εs
j(t), j ∈ Z} and {ei jt, j ∈ Z0} are complete

orthonormal basis of Hs(T) and L2
�(T), respectively. Also it shows that DF [q0] is a compact

linear operator.



Remark 3.1. From the knowledge of the singular system of DF [q0], we could obtain the infor-

mation of modified source condition needed for the class of iterative method using fixed Fréchet

derivative such as simplified IRGNM, the method that we use in the numerical section later.

This method studied in details by Mahale & Nair (Mahale and Nair, 2009) and Jin (Jin, 2010),

and by following the argument given by (Hohage, 2001) in his discussion on source condition

for the inverse (constant) source problem, we might highlights the modified source condition

for simplified IRGNM. This issue will be addressed in the future works.

The following theorem highlights the degree of ill-posedness of DF [q0].

Theorem 3.6. Assume that 0 < q0(t) = q0 < 1, a positive constant. Then the operator

fp(DF [q0]
∗DF [q0]) : Hs(T) → Hs+p(T)

is bounded and boundedly invertible.

Proof. By the help of the singular system of DF [q0], we have

fp(DF [q0]
∗DF [q0])ε

s
j = fp(σ

2
j )ε

s
j .

Choosing λ0 = ‖DF [q0]‖ in the definition of fp, we obtain

fp(σ
2
j ) = (|j| + |k|) lnR + cR + s ln(1 + j2) − ln |j|, R := 1/q0.

Since

(|j| + |k|) lnR + cR + s ln(1 + j2) −
1

2
ln(1 + j2)| < (|j| + |k|) lnR + cR + s ln(1 + j2) − ln |j|,

then there exists c > 0 a constant, and for all j ∈ Z

c(
√

1 + j2) ≤ (|j| + |k|) lnR + cR + s ln(1 + j2) − ln |j|,

therefore

fp(σ
2
j ) ≤ c−p(1 + j2)−p/2.

This leads to

‖fp(DF [q0]
∗DF [q0])‖Hs(T)→Hs+p(T) ≤ c−p.

Using the fact − ln |j| < 0 for all j ∈ Z0, and use of the following inequality:

(|j| + |k|) lnR + cR + s ln(1 + j2) − ln |j| < (|j| + |k|) lnR + cR + s ln(1 + j2),

then there exists C > 0 a constant, and for all j ∈ Z0

(|j| + |k|) lnR + cR + s ln(1 + j2) ≤ C(
√

1 + j2),

therefore

C−p(1 + j2)−p/2 ≤ fp(σ
2
j ).

So we conclude

‖fp(DF [q0]
∗DF [q0])

−1‖Hs+p(T)→Hs(T) ≤ C−p.

Hence fp(DF [q0]
∗DF [q0]) is boundedly invertible.



Remark 3.2. The above result, highlights the degree of ill-posedness of the problem. Let

q] be the exact value, the condition q0 − q] = fp(DF [q0]
∗DF [q0])w for some w ∈ Hs(T) is

equivalent to the fact that q0 − q] ∈ Hs+p(T). Moreover, there are constants c, C such that

c‖w‖Hs(T) ≤ ‖q0 − q]‖Hs+p(T) ≤ C‖w‖Hs(T)

Remark 3.3. In the case inclusion of the form a(r), that is a known radial function, the forward

map (2.8) will be of the form

F (q)(t) =
∑

n6=0,n∈Z

|n|

2π

∫ 2π

0
ei n(t−s)ei ks

(∫ q(s)

0
r|n|+|k|−2a(r)rdr

)
ds.

Observe that in our case for star-shaped inclusion, it is necessary that radially supp(a(r)) is

an interval [0, b] ⊆ [0, 1], 0 < b ≤ 1. This condition rules out the following studies on non-

uniqueness result :

1. Counter example of constant radial object by Kang & Seo (Kang and Seo, 2001).

2. Identification of radial function by El Badia & Ha-Duong (Badia and Ha-Duong, 1998).

Assuming that a(r) is bounded over its support and with finite jump discontinuity, the results for

star-shaped constant conductivity support still valid without essential change in the proof.We

don’t pose the general radial case result in this work, as to maintain the simplicity of exposition

in mind.

4 Numerical Implementation.

We may follow the implementation of either (Ring, 1995) or (Hohage, 2001) for star-shaped

support of inverse source problem, for numerical implementation to reconstructs the shape of

conductivity inclusion. Rather than working in complex arithmetic as in (Ring, 1995), in this

work we follow the numerical implementation of (Hohage, 2001), hence we need to recast

the expression of the forward operator and the Fréchet derivative in terms of trigonometrical

polynomials. To ease the work, we consider three simple cases of general form.

Cosine boundary input. The first case is the case of uc
k(t) = rk

k cos(kt), or a harmonic reference

potential under boundary input of the form gc
k = cos(kt)

k , k 6= 0. We have the following expression

on the forward map F and its Fréchet derivative.

• Forward map from q(t) to ∂u
∂n :

F c
k (q)(t) =

1

π

∑

n∈N0

n

(n + k)

(
(

∫ 2π

0
q(s)n+k cos (k − n)s ds) cos nt −

(

∫ 2π

0
q(s)n+k sin (k − n)s ds) sinnt

)
. (4.1)

• Derivative :

(DF c
k [q]h)(t) =

1

π

∑

n∈N0

n

(
(

∫ 2π

0
q(s)n+k−1h(s) cos (k − n)s ds) cos nt −

(

∫ 2π

0
q(s)n+k−1h(s) sin (k − n)s ds) sinnt

)
. (4.2)



Sine boundary input. The second case is us
k(t) = rk

k sin(kt), or a harmonic reference potential

under scaled sine boundary input of the form gs
k = sin(kt)

k , k 6= 0. The corresponding forward

map F and its Fréchet derivative for this case are the following,

• Forward map from q(t) to ∂u
∂n :

F s
k (q)(t) =

1

π

∑

n∈N0

n

(n + k)

(
(

∫ 2π

0
q(s)n+k sin (k − n)s ds) cosnt+

(

∫ 2π

0
q(s)n+k cos (k − n)sds) sinnt

)
. (4.3)

• Derivative :

(DF s
k [q]h)(t) =

1

π

∑

n∈N0

n

(
(

∫ 2π

0
q(s)n+k−1h(s) sin (k − n)s ds) cos nt+

(

∫ 2π

0
q(s)n+k−1h(s) cos (k − n)s ds) sin nt

)
. (4.4)

Finite linear combination of Cosine & Sine boundary input case. And lastly, a case of u0(t) =∑
k∈K⊂N0

rk(gc
k cos(kt) + gs

k sin(kt))/k, K = {k1, · · · , kK} or a harmonic reference potential

under finite linear combination of scaled cosine and sine boundary input of the form g =∑
k∈K⊂N0

(gc
k cos(kt) + gs

k sin(kt))/k, the corresponding forwad map and it’s Fréchet derivative

provided as follows.

• Forward map from q(t) to ∂u
∂n :

F (q)(t) =
∑

k∈K⊂N0

1

π

∑

n∈N0

n

(n + k)
(

[

∫ 2π

0
q(s)n+k(gc

k cos (k − n)s + gs
k sin (k − n)s) ds ] cos nt+

[

∫ 2π

0
q(s)n+k(gs

k cos (k − n)s − gc
k sin (k − n)s) ds ] sinnt

)
.

• Derivative :

(DF [q]h)(t) =
∑

k∈K⊂N0

(gc
k(DF c

k [q]h)(t) + gs
k(DF s

k [q]h)(t)).

=
∑

k∈K⊂N0

1

π

∑

n∈N0

n

(n + k)
(

[

∫ 2π

0
q(s)n+k−1h(s)(gc

k cos (k − n)s + gs
k sin (k − n)s) ds ] cosnt+

[

∫ 2π

0
q(s)n+k−1h(s)(gs

k cos (k − n)s − gc
k sin (k − n)s) ds ] sinnt

)
.

For general case of a harmonic reference potential, we may take the last case as an example,

and extend it to suit the case.



Numerical Implementation (Discrete approximation).

To solve the inverse problem finding q from data ∂u
∂n = gδ, we use an iterative method called

the simplified iteratively regularized Gauss-Newton method (sIRGNM), defined by the iteration

process

qδ
(k+1) := qδ

k + (F ′[q0]
∗F ′[q0] + αkI)−1(F ′[q0]

∗(yδ − F (qδ
k)) + αk(q

δ
k − q0)), k ∈ N0, (4.5)

where F ′[q0] is the Fréchet derivative of F at initial guess q0, and αk is regularization parameter.

This method is a simplified version of iteratively regularized Gauss-Newton method (IRGNM),

which falls within the class of regularized Gauss-Newton method, and studied recently in de-

tails by Mahale & Nair (Mahale and Nair, 2009), Jin (Jin, 2010), and George (George, 2010).

The reader may consult the monograph by (Kaltenbacher, Neubauer and Scherzer, 2008)

or (Bakushinsky, Kokurin and Smirnova, 2011) on the subject of regularized Gauss-Newton

method for solving nonlinear inverse problem.

To arrive at a finite dimensional system, we introduce the space TM of trigonometric polynomi-

als of degree ≤ M, M is a positive integer, and solve the following minimization problem

‖PN (F ′[q0]hk + F (qk) − gδ)‖2
L2 + αk‖hk + qk − q0‖

2
Hs,K = min! (4.6)

over hk ∈ TM at each step. Here K and N are positive integers, PN is the orthogonal projection

onto TN in L2([0, 2π]) and ‖f‖2
Hs,K , s ∈ IN, is the approximation of ‖f‖2

Hs using the trapezoidal

rule with K equidistant grid points, i.e.

‖f‖2
Hs,K :=

1

2πK

K−1∑

k=0

(
|f(

k

2πK
)|2 + |f (s)(

k

2πK
)|2
)

.

It turns out that (4.6) is equivalent to a linear least squares problem for the Fourier coeffficients

of hk.

PN (F ′[q0]hk + F (qk) − gδ) is easily evaluated by truncating the series in (4.1) and (4.2). We

approximate the integrals in these formulas using the trapezoidal rule with Nt grid points. Since

the L2−norm of a function f(t) = a0 +
∑N

j=1 aj cos(jt) + bj sin(jt) provided by

‖f‖2
L2

:= a2
0 +

1

2

N∑

j=1

a2
j + b2

j ,

we obtain (2N + 1) linear equations for the 2M + 1 Fourier coefficients of hk from the term

‖PN (F ′[q0]hk+F (qk)−gδ)‖2
L2

in (4.6). The term ‖hk+qk−q0‖
2
Hs,K yields another 2K equations.

Hence in total we obtain a linear least squares problem with (2(N + K) + 1) equations for the

(2M + 1) Fourier coefficients of hk.

Test Cases

Two cases of conductivity inclusion shape have been tested, a rose petal and a dented circular

shapes. The first case, a rose petal shaped inclusion, a domain described parametrically by

the function

q1(t) := (0.5 + 0.1 cos(5 ∗ t)).
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Figure 1: We show the result of two test cases of conductivity star shape support and its

domain reconstruction for exact data. On the left column, we show the first case where the

shape support is q](t) := (0.5 + 0.1 cos(5 ∗ t)). While on the right column, we show the similar

result for the second test case where q](t) is a circle with inward dent. From top to bottom we

show the domain shape reconstruction at initial step, fifth step, and the fiftieth step.

The harmonic reference potential used in this case induced by boundary source g = cos(t).

The second case we chose a dented circular shaped domain described parametrically by the

function

q2(t) :=

{
0.5, t ∈ [0, π − 1/2] ∪ [π + 1/2, 2π],

0.5 − 0.1 ∗ exp(−( 1
1−4(t−π)2

)), t ∈ [π − 1/2, π + 1/2].

The harmonic reference potential used in this second case induced by boundary source g =

cos(3 ∗ t).

In both cases, the numerical experiment we perform using forward map F given in (4.1) and

its Fréchet derivative (4.2). The synthetic data generated using (4.1) over finer grid points than

the number of grid used in sIRGNM, to avoid an obvious inverse crime. The reconstruction and

the initial guess of both domain are shown in figure 1.On both numerical experiments, we use

M = 5, N = 32, Nt = 128, while the data generated using forward operator, using n = 256 grid

points to avoid inverse crime.



5 Concluding Remarks

We have presented a result to identify a star-shaped conductivity inclusion from boundary mea-

surement as a core identification problem. Using the Newton method requires the knowledge

of the derivative of the measurements with respect to the shape perturbation. This derivative

has been computed along the lines of the works of Ring for the core identification (Ring, 1995).

Based on this result we developed a numerical method for reconstructing the shape of the

conductivity inclusion.

The numerical implementation has made use of the simplified iteratively regularized Gauss-

Newton method in order to solve the inverse problem, the forward problem being solved by the

Fourier expansion method. Our method works satisfactorily to identify conductivity inclusion

with star-shaped boundary.
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Appendix A: Nomenclature and facts

Let H1(Ω1) is the sobolev space of all functions u ∈ L2(Ω1) for which ∂u
∂xi

∈ L2(Ω1) for i = 1, 2,

endowed with the inner product

〈u, v〉H1(Ω1) = 〈u, v〉L2(Ω1) + 〈
∂u

∂x1
,

∂u

∂x1
〉L2(Ω1) + 〈

∂u

∂x2
,

∂u

∂x2
〉L2(Ω1).

Moreover we define the Hilbert space

H(∆, Ω1) = {v ∈ H1(Ω1) : ∆v ∈ L2(Ω1)}, (5.1)

with inner product

〈u, v〉H(∆,Ω1) = 〈u, v〉H1(Ω1) + 〈∆u, ∆v〉L2(Ω1). (5.2)

Points on the boundary of Ω1 are identified with their corresponding angle in polar coordinates,

i.e. we set ∂Ω1 = {t + 2πZ : t ∈ R} = R/2πZ =: T. For l ≥ 0, the Sobolev space H l(T) is

defined by

H l(T) = {f ∈ L2(T)
∑

n∈Z

(1 + n2)l|f̃(n)|2 < ∞}, (5.3)

where

f̃(n) =
1

2π

∫ 2π

0
f(s)e−insds, (5.4)

denotes the Fourier transform of f . H l(T) is a Hilbert space with respect to the inner product

〈f, g〉Hl(T) =
∑

n∈Z

(1 + n2)lf̃(n) ̂̃g(n). (5.5)

The Sobolev space H l
�(T)(l ≥ 0) is defined by

H l(T) = {f ∈ L2(T)
∑

n∈Z0

(1 + n2)l|f̃(n)|2 < ∞}. (5.6)

By H−l(T)(l ≥ 0) we denote the dual of H l(T). With the Fourier transform defined on H−l(T)

by f̂(n) := 〈f, e−int〉H−l(T),Hl(T) we find

〈f, e−int〉H−l(T),Hl(T) =
∑

n∈Z

f̃(n) ̂̃g(n) (5.7)



for the duality pairing 〈., .〉H−l(T),Hl(T) and for f ∈ H−l(T) and g ∈ H l(T). Moreover, H−l(T) is

characterized by (5.3) and the inner product on H−l(T) is given by (5.7), in both cases with l

replaced by −l. We have

f =
∑

n∈Z

f̃(n)eint (5.8)

for f ∈ H l(T), l ∈ R, where the series (5.8) converges in H l(T). We define the differential

operator D : H l(T) → H l−1(T) by

Df =
∑

n∈Z

inf̃(n)eint. (5.9)

It is a bounded linear operator with ker(D) given by the constant functions on T. The space

C∞(T) of all infinitely differentiable functions on T is characterized by

C∞(T) = {f : T → C |n|k|f̃(n) → 0asn → ∞for all k ∈ N}. (5.10)

Those facts follows as a special case of theorems on Sobolev spaces on smooth compact

manifolds as given for example in Wloka (Wloka, 1987).


