On Hamiltonian flows whose orbits are straight lines

Hans Koch ${ }^{1}$ and Héctor E. Lomelí ${ }^{2}$

Abstract

We consider real analytic Hamiltonians on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ whose flow depends linearly on time. Trivial examples are Hamiltonians $H(q, p)$ that depend only on the coordinate $p \in \mathbb{R}^{n}$. By a theorem of Moser [5], every cubic Hamiltonian reduces to a Hamiltonian of this type via a linear symplectic change of variables. We show that the same does not hold for polynomials of degree ≥ 4. But we give a condition that implies linear-symplectic conjugacy to another simple class of Hamiltonians. The condition is shown to hold for all nondegenerate Hamiltonians that are homogeneous of degree 4 .

1. Introduction and main results

Polynomial Hamiltonians and maps have been studied extensively and for a variety of different reasons. Among other things, they constitute local normal forms for more general Hamiltonians and maps, and they provide a convenient testing ground for new ideas in dynamical systems. The restriction to polynomials also adds interesting algebraic aspects to the problem. This includes the possibility of classifying polynomial maps with a given property, and of decomposing them into simpler ones.

The maps considered here are symplectic and arise from Hamiltonian flows. We use the standard symplectic form on \mathbb{R}^{n}, so a differentiable map $F: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is symplectic if and only if

$$
D F(x)^{\top} \mathrm{J} D F(x)=\mathrm{J}, \quad \mathrm{~J}=\left[\begin{array}{cc}
0 & \mathrm{I} \tag{1.1}\\
-\mathrm{I} & 0
\end{array}\right], \quad x \in \mathbb{R}^{2 n} .
$$

Here $D F(x)$ denotes the derivative of F at x, and $D F(x)^{\top}$ denotes its transpose (as a matrix). Let H be a smooth function on $\mathbb{R}^{2 n}$. One of the basic facts from Hamiltonian mechanics is that the vector field $X=\mathrm{J} \nabla H$ defines a flow $\Phi:(t, x) \mapsto \Phi^{t}(x)$ whose time- t maps Φ^{t} are symplectic. We will mainly consider Hamiltonians of the following type:

Definition 1.1. We say that a Hamiltonian H is affine-integrable if its flow Φ is linear in time:

$$
\begin{equation*}
\Phi^{t}=\mathrm{I}+t X, \quad X=\mathrm{J} \nabla H, \quad t \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

Equivalently, a Hamiltonian is affine-integrable if and only if the corresponding vector field X is constant along each orbit. In particular, $X \circ(\mathrm{I}+X)=X$. General (polynomial) maps $F=\mathrm{I}+X$ with this property are also called quasi-translations. They arise naturally in the study of singular Hessians [7]. The identity $X \circ(\mathrm{I}+t X)=X$ for $t=1$ extends to $t \in \mathbb{Z}$ by induction, and to $t \in \mathbb{C}$ if X is a polynomial. Differentiating it with respect to t yields $(D X) X=0$, or equivalently, $\left(X^{\top} \nabla\right)^{2} \ell=0$ for all linear functions ℓ. This "local nilpotency" property is an alternative way of characterizing quasi-translations [10] and affine-integrable Hamiltonians $[4,6]$.

[^0]In numerical analysis and physics, symplectic quasi-translations are also called jolt maps. They constitute the basic building blocks in the so-called Dragt-Finn factorization [2] of more general symplectic maps. This factorization has proved to be very useful in symplectic numerical schemes, including the simulation of Hamiltonian flows in plasmas [4,9].

From a dynamical systems point of view, affine-integrable Hamiltonians are rather simple. Not only is the vector field X constant along each orbit, but its components X_{j} are Poisson-commuting invariants, as we will see later. So an affine-integrable Hamiltonian H is Liouville integrable, at least if it satisfies a suitable nondegeneracy condition. In addition, the geometry defined by the invariants X_{j} is quite restricted:

Theorem 1.2. Let H be a real analytic affine-integrable Hamiltonian on $\mathbb{R}^{2 n}$. Then H and its vector field X are constant on the affine subspaces $x+\operatorname{range}(D X(x))$. If $D X(x)$ has rank n then $x+\operatorname{range}(D X(x))$ is a local level set for X.

The only affine-integrable Hamiltonians that we have been able to find in the literature are all linear-symplectically conjugate to Hamiltonians of the form $H(q, p)=K(p)$. The time- t map for such a Hamiltonian is a shear: $\Phi^{t}(q, p)=(q+t \nabla K(p), p)$.

Definition 1.3. We call $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ a shear Hamiltonian if there exists a linear symplectic change of variables $U: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ such that $(H \circ U)(q, p)=K(p)$ for some function $K: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Remark 1. As we will describe later, the linear map U in the above definition can be chosen both symplectic and orthogonal (as a matrix).

One of our goals is to find an affine-integrable Hamiltonian that is not a shear, or to prove that there is no such Hamiltonian. Partial non-existence results can be obtained by restricting the class of Hamiltonians being considered. A trivial case: If $n=1$ then line-orbits are necessarily parallel, so if $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is affine-integrable, then there exists a rotation U of \mathbb{R}^{2}, such that $(H \circ U)(q, p)$ is independent of q. In other cases the Definition 1.3 cannot be used directly. The following theorem gives a coordinate-independent characterization of shear Hamiltonians. It is a slight generalization of a result in [8] on Hamiltonians that are homogeneous polynomials of degree ≥ 3. Homogeneous vector fields (of positive degree) vanish at the origin; and if $X=J \nabla H$ vanishes at some point, then H is regular in the following sense:

Definition 1.4. We say that a Hamiltonian H is regular if there exists a point x where $X(x)$ belongs to the range of $D X(x)$.

Theorem 1.5. A regular real analytic function H on $\mathbb{R}^{2 n}$ is a shear Hamiltonian if and only if $D X(x) D X(y)=0$ holds for all $x, y \in \mathbb{R}^{2 n}$.

To continue our discussion of special cases, assume that H is regular and affineintegrable. Then $(D X)^{2}=0$, as we will see later. In particular, if H is quadratic then Theorem 1.5 implies that H is a shear Hamiltonian. The cubic case is covered by a result of Moser [5] on quadratic symplectic maps on $\mathbb{R}^{2 n}$. It states that every such map F admits
a decomposition $F=A \circ S \circ L$ into three simple symplectic maps: an affine map A, a shear $S(q, p)=(q+s(p), p)$, and a linear map L. It is not hard to show that this result implies and is essentially equivalent to - the statement that every homogeneous affine-integrable Hamiltonian of degree 3 is a shear. A direct proof is given in Section 2.

This raises the question [8] whether every homogeneous affine-integrable Hamiltonian on $\mathbb{R}^{2 n}$ is a shear. Locally, much more is true: It is well known that every smooth Hamiltonian H is of the form $H(q, p)=K(p)$ in some local symplectic chart, near any point where the vector field does not vanish. The local conjugacy (chart) is nonlinear in general. But if all orbits for H are straight lines with constant velocity, as is the case for affineintegrable Hamiltonians, and if X is constant on n-dimensional affine subspaces, then one might think that this conjugacy can be chosen to be linear. However, this is not true in general:

Theorem 1.6. The following Hamiltonian on \mathbb{R}^{8} is affine-integrable but not a shear:

$$
\begin{equation*}
H(q, p)=q_{1} p_{3}^{3}+\sqrt{3} q_{2} p_{3}^{2} p_{4}+p_{1} p_{4}^{3}-\sqrt{3} p_{2} p_{3} p_{4}^{2}, \quad q, p \in \mathbb{R}^{4} \tag{1.3}
\end{equation*}
$$

In addition, H is nondegenerate in the sense defined below.

Definition 1.7. A real analytic vector field X on $\mathbb{R}^{2 n}$ is said to be nondegenerate if $D X(x)$ has rank $\geq n$ at some point $x \in \mathbb{R}^{2 n}$. If $X=J \nabla H$ then we also say that H is nondegenerate.

We note that, if $X=\mathrm{J} \nabla H$, then the rank of $D X(x)$ can be no larger than n. And if X is analytic, then the rank is constant outside some analytic set of codimension one.

The example (1.3) belongs to a simple class of Hamiltonians that we shall now describe. Let $0 \leq d<n$. To simplify the description, we write $q=(Q, \bar{q})$ and $p=(P, \bar{p})$, where $Q, P \in \mathbb{R}^{d}$ and $\bar{q}, \bar{p} \in \mathbb{R}^{n-d}$. Consider a Hamiltonian of the form

$$
\begin{equation*}
H(q, p)=K(\bar{p})+Q^{\top} V(\bar{p})+P^{\top} W(\bar{p}), \tag{1.4}
\end{equation*}
$$

with $K: \mathbb{R}^{n-d} \rightarrow \mathbb{R}$ and $V, W: \mathbb{R}^{n-d} \rightarrow \mathbb{R}^{d}$ differentiable. Notice that H does not depend on \bar{q}, and thus \bar{p} stays fixed under the flow. Furthermore, the coordinates Q and P evolve linearly (in time) under the flow. If \bar{q} evolves linearly as well, then H is affine-integrable. As we will see later, this is the case if and only if

$$
\begin{equation*}
W(\bar{p})^{\top} D V(\bar{p})-V(\bar{p})^{\top} D W(\bar{p})=0 \tag{1.5}
\end{equation*}
$$

If $d=0$, then $P=Q=0$ and \bar{p} can be identified with p. In this case, (1.4) becomes $H(q, p)=K(p)$, so H is a shear Hamiltonian.

Remark 2. For reference below, we note that the Hamiltonian (1.4) can be written as the sum of $H_{1}=Q^{\top} V(\bar{p})$ and $H_{2}=K(\bar{p})+P^{\top} W(\bar{p})$. What makes this decomposition interesting is that the Poisson bracket $\left\{H_{1}, H_{2}\right\}=\left(\nabla H_{1}\right)^{\top} \mathrm{J}\left(\nabla H_{2}\right)$ of H_{1} and H_{2} Poissoncommutes with both H_{1} and H_{2}.

Theorem 1.8. Let H be a nondegenerate real analytic affine-integrable Hamiltonian on $\mathbb{R}^{2 n}$. Then H is linear-symplectically conjugate to a Hamiltonian of the form (1.4) if and only if $D X(x) D X(y) D X(z)=0$ for all $x, y, z \in \mathbb{R}^{2 n}$.

Here, as in Theorem 1.2, a simple class of affine-integrable Hamiltonian is characterized by a nilpotency-type condition on the derivative of the vector field. This suggest there may be a natural hierarchy of such conditions, which characterize classes of increasingly complex affine-integrable Hamiltonians.

We will prove that the condition on $D X$ in Theorem 1.8 holds if H is a homogeneous polynomials of degree 4. As a result we obtain

Theorem 1.9. Let H be a nondegenerate affine-integrable Hamiltonian on $\mathbb{R}^{2 n}$. If H is homogeneous of degree 4 then H is is linear-symplectically conjugate to a Hamiltonian of the form (1.4).

Homogeneous affine-integrable Hamiltonians can be obtained from symplectic maps $F: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ for which $X=F-\mathrm{I}$ is a homogeneous polynomial for degree ≥ 2. Any map with this property is the time-one map of an affine-integrable Hamiltonian [8]. Combining this result with Theorem 1.9, and using the decomposition described in Remark 2, we obtain the following theorem.

Theorem 1.10. Let F be a symplectic map on $\mathbb{R}^{2 n}$ such that $X=F-\mathrm{I}$ is homogeneous of degree 3 and nondegenerate. Then F admits a decomposition $F=F_{1} \circ F_{4}$, where F_{1} and F_{4} are the time-one maps of two shear Hamiltonians.

For the proofs of Theorems $1.2,1.5,1.6,1.8,1.9$, and 1.10 , we refer to Sections $3,2,6$, 4,5 , and 7 , respectively. Some additional results can be found in Section 2.

2. Basic properties

In the remaining part of this paper we always assume that H is a real analytic Hamiltonian on $\mathbb{R}^{2 n}$. Furthermore, by a "homogeneous" Hamiltonian we always mean a homogeneous polynomial of degree ≥ 3.

As is true generally, the Hamiltonian H is invariant under the flow that it generates, so $(D H) X=0$. Assuming that H is affine-integrable, $X \circ(\mathrm{I}+t X)=X$, and thus $(D X) X=0$. Furthermore, $\Phi^{t}=\mathrm{I}+t X$ is symplectic, which by (1.1) yields

$$
\begin{equation*}
\mathrm{J}+t\left[(D X)^{\top} \mathrm{J}+\mathrm{J} D X\right]+t^{2}\left[(D X)^{\top} \mathrm{J} D X\right]=\mathrm{J} \tag{2.1}
\end{equation*}
$$

Using that the terms of order t and t^{2} have to vanish separately, we get $(D X)^{2}=0$. Differentiating the identity $X \circ(\mathrm{I}+t X)=X$ yields $[D X \circ(\mathrm{I}+t X)](\mathrm{I}+t D X)=D X$. Multiplying on the right by $(\mathrm{I}-t D X)$ and using that $(D X)^{2}=0$, we find in addition that $D X \circ(\mathrm{I}+t X)=D X$. In summary, we have the following

Lemma 2.1. Let H be an affine-integrable Hamiltonian. Then the functions H and X and $D X$ are constant along every orbit. Furthermore, $(D H) X=0$ and $(D X) X=0$ and $(D X)^{2}=0$.

An equivalent formulation can be given in terms of Poisson brackets. Assume that H is affine-integrable. Let $\ell(x)=(\mathrm{J} u)^{\top} x$ for some vector $u \in \mathbb{R}^{2 n}$. Then $\{\ell, H\}$ is the directional derivative of H in the direction u, which we denote by $\partial_{u} H$. Being linear in the coordinate x, ℓ evolves linearly in time, so $\{\ell, H\}=\partial_{u} H$ is invariant under the flow. This implies the first identity in

$$
\begin{equation*}
\left\{\partial_{u} H, H\right\}=0, \quad\left\{\partial_{u} \partial_{v} H, H\right\}=0, \quad\left\{\partial_{u} H, \partial_{v} H\right\}=0 \tag{2.2}
\end{equation*}
$$

The second and third identities are obtained from the first by applying a derivative ∂_{v}. This yields $\left\{\partial_{u} \partial_{v} H, H\right\}+\left\{\partial_{u} H, \partial_{v} H\right\}=0$, and the two terms have to vanish separately since the first is symmetric in (u, v) and the second antisymmetric. If H is nondegenerate, then (2.2) shows that n of the vector field components X_{j} constitute a maximal set of Poisson-commuting invariants. So H is Liouville integrable, as mentioned earlier.

Let x be a fixed but arbitrary point in $\mathbb{R}^{2 n}$. In the canonical splitting $\mathbb{R}^{2 n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$, we can represent the derivative of X and the Hessian $\mathbb{H}(x)=\nabla D H(x)$ as 2×2 matrices whose entries are $n \times n$ matrices,

$$
D X(x)=\left[\begin{array}{cc}
\mathcal{Z}(x)^{\top} & \mathcal{A}(x) \tag{2.3}\\
-\mathcal{B}(x) & -\mathcal{Z}(x)
\end{array}\right], \quad \mathbb{H}(x)=\left[\begin{array}{cc}
\mathcal{B}(x) & \mathcal{Z}(x) \\
\mathcal{Z}(x)^{\top} & \mathcal{A}(x)
\end{array}\right]
$$

Given that $X=J \nabla H$, we have $D X=J \mathbb{H}$. Since \mathbb{H} is symmetric, so are \mathcal{A} and \mathcal{B}. In the case of an affine-integrable Hamiltonian, $\mathcal{A Z}$ is symmetric as well, as a result of the identity $(D X)^{2}=0$.

Lemma 2.2. A regular Hamiltonian is of the form $H(q, p)=K(p)$ if and only if $\mathcal{Z}(x)=0$ and $\mathcal{B}(x)=0$ for all x.

Proof. The necessity of the conditions $\mathcal{Z}=0$ and $\mathcal{B}=0$ is obvious. Assume now that they are satisfied. Let $x_{0}=\left(q_{0}, p_{0}\right)$ be a point where $X\left(x_{0}\right)=\left(\nabla_{p} H\left(x_{0}\right),-\nabla_{q} H\left(x_{0}\right)\right)$ belongs to the range of $D X\left(x_{0}\right)$. At this point we have $\nabla_{q} H\left(x_{0}\right)=0$. Given that $D_{q}^{2} H=0$ by assumption, this implies that the function $q \mapsto H\left(q, p_{0}\right)$ is constant. Furthermore, $D_{p} H(q, p)$ does not depend on q, since $D_{q} D_{p} H=0$. So $H(q, p)$ is independent of q as well, since $H(q, p)=H\left(q, p_{0}\right)+\int_{0}^{1} D_{p} H\left(q, p_{0}+s v\right) v d s$ with $v=p-p_{0} . \quad$ QED

Lemma 2.3. Let H be an affine-integrable Hamiltonian. Given $x \in \mathbb{R}^{2 n}$, there exists an orthogonal symplectic $2 n \times 2 n$ matrix U, and a diagonal $n \times n$ matrix A, such that

$$
U^{-1} D X(x) U=\left[\begin{array}{cc}
0 & A \tag{2.4}\\
0 & 0
\end{array}\right], \quad U^{\top} \mathbb{H}(x) U=\left[\begin{array}{ll}
0 & 0 \\
0 & A
\end{array}\right]
$$

Proof. Let d be the rank of $M=\mathbb{H}(x)$. Let $\left(u_{1}, u_{2}, \ldots, u_{d}\right)$ be an orthonormal set of eigenvectors for the nonzero eigenvalues of M. Since $M J M=0$, the vectors $\mathrm{J} u_{j}$ are eigenvectors of M for the eigenvalue 0 . Consider first the case $d=n$. Let U be the $2 n \times 2 n$ matrix whose columns vectors are $\mathrm{J} u_{1}, \ldots, \mathrm{~J} u_{n}, u_{1}, \ldots, u_{n}$, in this order. Clearly, U is orthogonal and $U^{\top} M U$ diagonal. A simple computation shows that U is symplectic.

If $d<n$, consider the orthogonal projection P onto the span of $\mathrm{J} u_{1}, \ldots, \mathrm{~J} u_{d}, u_{1}, \ldots, u_{d}$. Then P commutes with both M and J. So we can choose an orthonormal set of vectors $\mathrm{J} u_{d+1}, \ldots, \mathrm{~J} u_{n}, u_{d+1}, \ldots, u_{n}$ in the null space of P and define U as above.

QED

The same construction can be used to give a
Proof of Theorem 1.5. The necessity of the condition $D X(x) D X(y)=0$ is obvious. Assume now that this condition holds, for all $x, y \in \mathbb{R}^{2 n}$, and that H is regular.

First, we show that H is affine-integrable. By regularity, there exist $x_{0}, w \in \mathbb{R}^{n}$ such that $D X\left(x_{0}\right) w=X\left(x_{0}\right)$. Thus $X(x)=D X\left(x_{0}\right) w+\int_{0}^{1} D X\left(x_{0}+s v\right) v d s$, for any given $x \in \mathbb{R}^{2 n}$, where $v=x-x_{0}$. This shows that $D X(x) X(x)=0$ for all x, which implies that H is affine-integrable.

Let $\left(u_{1}, u_{2}, \ldots, u_{d}\right)$ be an orthonormal basis for the subspace spanned by all vectors $\mathbb{H}(y) z$ with $y, z \in \mathbb{R}^{2 n}$. Then $\mathbb{H}(x) \mathrm{J} u_{j}=0$ for all x and all j. Defining U as in the proof of Lemma 2.3, we obtain (2.4) simultaneously for all x. (The matrix A can depend on x and need not be diagonal.) So $(H \circ U)(q, p)$ is independent of q by Lemma 2.2, implying that H is a shear Hamiltonian.

QED
As a corollary we obtain
Theorem 2.4. [5] Every affine-integrable Hamiltonian H that is homogeneous of degree 3 is a shear.

Proof. By (2.2) we have $\left\{\partial_{u}^{k} H, H\right\}=0$ for $k \leq 2$. The same holds for $k \geq 3$ since H is of degree 3. It follows that $\{H(.+u), H\}=0$ for all u. Or equivalently, $X(x)^{\top} \mathrm{J} X(y)=0$ for all x and y. From this we get $D X(x) D X(y)=0$ by differentiation, and the assertion follows from Theorem 1.5.

QED

The matrix U described in Lemma 2.3 is both symplectic and orthogonal. This means that $U^{\top} J U=\mathrm{J}$ and $U^{\top} U=\mathrm{I}$. As a result, we also have $\mathrm{J} U=U \mathrm{~J}$. In fact, any two of the three properties imply the third. This is know as the 2 -out-of- 3 property of the unitary group $\mathrm{U}(n)=\mathrm{O}(n) \cap \mathrm{Sp}(2 n, \mathbb{R}) \cap \mathrm{GL}(n, \mathbb{C})$. The complex structure here is given by the matrix J , and the equation $\mathrm{J} U=U \mathrm{~J}$ simply says that U is "complex". Using the properties $U^{\top} U=\mathrm{I}$ and $\mathrm{J} U=U \mathrm{~J}$, any matrix $U \in \mathrm{U}(n)$ can be written as

$$
U=\left[\begin{array}{cc}
S & T \tag{2.5}\\
-T & S
\end{array}\right], \quad S^{\top} S+T^{\top} T=\mathrm{I}, \quad S^{\top} T=T^{\top} S
$$

We will refer to such a $2 n \times 2 n$ matrix as being unitary. The $n \times n$ submatrices S and T will be referred to as the real and imaginary parts of U, respectively.

Concerning the claim in Remark 1, we note that any symplectic matrix M can be written as a product $M=U A N$, where U is unitary, A positive diagonal, and N unipotent upper-triangular. This is the standard Iwasawa decomposition [3]. If H is a Hamiltonian such that $(H \circ M)(q, p)$ is independent q, then $(H \circ U)(q, p)$ is independent of q as well.

By Lemma 2.3, the Hessian $\mathbb{H}(x)$ of an affine-integrable Hamiltonian H is always of the form

$$
\mathbb{H}(x)=\left[\begin{array}{cc}
S & T \tag{2.6}\\
-T & S
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & A
\end{array}\right]\left[\begin{array}{cc}
S^{\top} & -T^{\top} \\
T^{\top} & S^{\top}
\end{array}\right]=\left[\begin{array}{cc}
T A T^{\top} & T A S^{\top} \\
S A T^{\top} & S A S^{\top}
\end{array}\right]
$$

for any given $x \in \mathbb{R}^{2 n}$, where the matrix A can be chosen to be diagonal. This representation is unique if $\mathbb{H}(x)$ has n distinct nonzero eigenvalues, and if the diagonal elements of A are required to be in some prescribed order.

If we do not require that the matrix A be diagonal, then we could replace S, T, and A by $S V, T V$ and $V^{-1} A V$, respectively, where V can be any orthogonal $n \times n$ matrix. This fact is used in the lemma below.

Example 3. Let M be an $m \times n$ matrix of rank $m \leq n$, and let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be real analytic. Assuming $M f=0$, the equation $\dot{q}=f(M q)$ defines a flow on \mathbb{R}^{n} that is linear in time: $q(t)=q_{0}+f\left(M q_{0}\right)$. This is similar to the flow considered in [11, Lemma 5]. As every flow on \mathbb{R}^{n}, it extends to a Hamiltonian flow on $\mathbb{R}^{2 n}$. The Hamiltonian is $H(q, p)=p^{\top} f(M q)$. Using Theorem 1.5, is is easy to check that H is a shear Hamiltonian. In fact, H can be trivialized explicitly: If we set $T=M^{\top}\left(M M^{\top}\right)^{-1} M$ and $S=\mathrm{I}-T$, then (2.5) defines a matrix $U \in \mathrm{U}(n)$, and we get $(H \circ U)(q, p)=H(p, p)$.

Definition 2.5. We say that $\mathbb{H}(x)$ is in semi-normal form if $\mathcal{Z}(x)=0$ and $\mathcal{B}(x)=0$.
Lemma 2.6. Let H be an affine-integrable Hamiltonian and $x \in \mathbb{R}^{2 n}$. If $\mathcal{A}(x)$ is nonsingular then $U^{\top} \mathbb{H}(x) U$ is in semi-normal form for the matrix

$$
U=\exp \left[\begin{array}{cc}
0 & \theta \tag{2.7}\\
-\theta & 0
\end{array}\right], \quad \theta(x)=\tan ^{-1}(\zeta(x)), \quad \zeta(x)=\mathcal{Z}(x) \mathcal{A}(x)^{-1}
$$

Proof. Define $\zeta=\zeta(x)$ as above. A comparison with (2.6) shows that $\zeta=T S^{-1}$. The conditions in (2.5) on S and T imply that ζ is symmetric, and that $S^{\top}\left(\mathrm{I}+\zeta^{2}\right) S=\mathrm{I}$. Since $S V=|S|$ for some orthogonal matrix V, we can choose S to be a positive definite symmetric matrix. The choice is then unique: $S=\left(\mathrm{I}+\zeta^{2}\right)^{-1 / 2}$. Setting $\theta=\tan ^{-1}(\zeta)$ we obtain $S=\cos (\theta)$ and $T=\zeta S=\sin (\theta)$, which leads to the expression (2.7) for U. QED

This offers another way of checking whether H is a shear Hamiltonian. First, we note that a nondegenerate affine-integrable Hamiltonian H is regular: $X(x)$ belongs to the range of $D X(x)$ at every point x where $D X(x)$ has rank n, since $D X(x) X(x)=0$ by Lemma 2.1.

Lemma 2.7. Let H be an affine-integrable Hamiltonian. Assume that $\mathcal{A}\left(x_{0}\right)$ is nonsingular at some point x_{0}. Then H is a shear if and only if ζ is constant near x_{0}.

Proof. First, assume that ζ is constant near x_{0}. So near x_{0}, the matrix U in Lemma 2.6 is independent of x, and $H \circ U$ is in semi-normal form for a fixed unitary matrix U. By
analyticity, this property extends to all $x \in \mathbb{R}^{2 n}$. Furthermore, $\mathbb{H}\left(x_{0}\right)$ has rank n, as (2.6) shows, implying that H is regular. So H is a shear Hamiltonian by Lemma 2.2.

Conversely, assume that $(H \circ U)(q, p)$ is independent of q for some linear symplectic matrix U. Then U can in fact be chosen unitary, as was shown the proof of Theorem 1.5. If S and T are the real and imaginary parts of U, as defined by (2.5), then we have $\mathcal{Z}(x) \mathcal{A}^{-1}(x)=T S^{-1}$ at every point x where $\mathcal{A}(x)$ is nonsingular.

QED
For completeness, let us mention that there is an alternative representation of $\mathbb{H}(x)$ via the shear map $(q, p) \mapsto(q, p+\zeta q)$. Assuming that H is affine-integrable and $\mathcal{A}=\mathcal{A}(x)$ nonsingular,

$$
\mathbb{H}(x)=\left[\begin{array}{ll}
\mathrm{I} & \zeta \tag{2.8}\\
0 & \mathrm{I}
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & \mathcal{A}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{I} & 0 \\
\zeta & \mathrm{I}
\end{array}\right]=\left[\begin{array}{cc}
\zeta \mathcal{A} \zeta & \zeta \mathcal{A} \\
\mathcal{A} \zeta & \mathcal{A}
\end{array}\right]
$$

This shear is not unitary. But it is symplectic, since ζ is symmetric. Furthermore, these shear maps form a group. Notice also that $\mathcal{B}(x)=\mathcal{Z}(x) \zeta(x)$. So the condition $\mathcal{B}(x)=0$ in Definition 2.5 is redundant if H is affine-integrable and $\mathcal{A}(x)$ nonsingular.

3. Invariant affine subspaces

In this section we give a proof of Theorem 1.2 and some related results. It is always assumed that H is affine-integrable and real analytic.

Besides the flow Φ for the Hamiltonian H, consider also the flows Ψ_{j} for the Hamiltonians $\partial_{j} H$, where $\partial_{j} H$ denotes the j-th partial derivative of H. By standard ODE results, $\Psi_{j}^{t}(x)$ is well defined for all times t in some open neighborhood of zero in \mathbb{C} (which may depend on x). By (2.2) the flows Ψ_{j} commute with each other and with Φ. So the flow Ψ^{w} for $\partial_{w} H$ is given by

$$
\begin{equation*}
\Psi^{t w}=\Psi_{1}^{t w_{1}} \circ \Psi_{2}^{t w_{2}} \circ \cdots \circ \Psi_{2 n}^{t w_{2 n}} \tag{3.1}
\end{equation*}
$$

Again, $\Psi^{w}(x)$ is well defined for all w in some open ball $B(x) \subset \mathbb{C}^{2 n}$ centered at the origin. Furthermore, the "group property" $\Psi^{u}\left(\Psi^{w}(x)\right)=\Psi^{u+w}(x)$ holds whenever $w, w+u \in B(x)$ and $u \in B\left(\Psi^{w}(x)\right)$.

Lemma 3.1. Let $u \in \mathbb{R}^{2 n}$. If the derivative of $\partial_{u} H$ vanishes at some point x, then it vanishes at $\Psi^{w}(x)$ for every $w \in B(x)$.

Proof. Define $(G)_{t}=G \circ \Psi^{t w}$ for any function G on $\mathbb{R}^{2 n}$. Let now $G=\partial_{u} H$. Then

$$
\begin{align*}
0 & =\left(\partial_{j}\left\{G, \partial_{w} H\right\}\right)_{t}=\left(\left\{\partial_{j} G, \partial_{w} H\right\}+\left\{G, \partial_{j} \partial_{w} H\right\}\right)_{t} \tag{3.2}\\
& =\left\{\left(\partial_{j} G\right)_{t}, \partial_{w} H\right\}+\left\{G,\left(\partial_{j} \partial_{w} H\right)_{t}\right\} .
\end{align*}
$$

Here, we have used that $\partial_{w} H$ and G are invariant under the flow Ψ^{w}, and that the maps $\Psi^{t w}$ are symplectic. Thus, we have

$$
\begin{equation*}
\frac{d}{d t}\left(\partial_{j} G\right)_{t}=\left\{\left(\partial_{j} G\right)_{t}, \partial_{w} H\right\}=-\left\{G,\left(\partial_{j} \partial_{w} H\right)_{t}\right\}=-\sum_{\sigma, \tau}\left(\partial_{\sigma} G\right) \mathrm{J}_{\sigma, \tau} \partial_{\tau}\left(\partial_{j} \partial_{w} H\right)_{t} \tag{3.3}
\end{equation*}
$$

Due to the factors $\partial_{\sigma} G$ that all vanish at x, the value $\left(\partial_{j} G\right)_{t}(x)$ is independent of t and thus $\left(\partial_{j} G\right)\left(\Psi^{t w}(x)\right)=\left(\partial_{j} G\right)_{t}(x)=\left(\partial_{j} G\right)(x)=0$, for all t in some open neighborhood of zero. The assertion now follows from the above-mentioned group property of Ψ and the analyticity of G.

Corollary 3.2. Let $u \in \mathbb{R}^{n}$. If $\mathbb{H} u$ vanishes at some point x, then $\mathbb{H} u$ vanishes at $\Psi^{w}(x)$ for every $w \in B(x)$. In other words, the null space (and thus the range) of \mathbb{H} is invariant under Ψ^{w}.

Notice that the same holds for $D X=\mathrm{JH}$.
Corollary 3.3. Let $x \in \mathbb{R}^{2 n}$ and $R(x)=\operatorname{range}(D X(x))$. Then $\Psi^{w}(x)$ belongs to the affine space $x+R(x)$ for all $w \in B(x)$. Furthermore, $w \mapsto \Psi^{w}(x)$ is locally (near zero) invertible as a map from $\mathrm{J} R(x)$ to $x+R(x)$.

Proof. Consider the curve $u(t)=\Psi^{t w}(x)-x$. Clearly $u(0)$ belongs to $R(x)$. The derivative $u^{\prime}(t)=D X\left(\Psi^{t w}(x)\right) w$ belongs to the range of $D X\left(\Psi^{t w}(x)\right)$, which agrees with $R(x)$ by Corollary 3.2. Thus, $u(t)$ belongs to $R(x)$ whenever $t w \in B(x)$. Since $\mathbb{H}(x)$ is symmetric, $D X(x)$ is invertible as a map from $\mathrm{J} R(x)$ to $R(x)$. Thus, by the implicit function theorem, the same holds locally (near zero) for the map $w \mapsto \Psi^{w}(x)-x$, whose derivative at $w=0$ is $D X(x)$.

Proof of Theorem 1.2. For each y in $x+R(x)$ there exists an open neighborhood B_{y} of y in $x+R(x)$ that is included in the range of $f_{y}: w \mapsto \Psi^{w}(y)$. This follows from Corollary 3.3. The vector field X is constant on each B_{y} since each component X_{j} is invariant under the flow Ψ^{w}. Similarly for H. Furthermore, the open sets B_{y} cover the affine space $x+R(x)$, and since this space is connected, it follows that X and H are constant on $x+R(x)$.

Assume now that $D X(x)$ has rank n. If $y=x+u+v$, with $u \in R(x)$ and $v \in R(x)^{\perp}$, then

$$
\begin{equation*}
X(y)=X(x)+D X(x+u) v+\mathcal{O}\left(|v|^{2}\right) \tag{3.4}
\end{equation*}
$$

If $y \neq x$ is sufficiently close to x then $|D X(x+u) v|$ is bounded from below by a positive constant times $|v|$, so we have $X(y)=X(x)$ if and only if $y-x=u \in R(x)$.

QED

4. Proof of Theorem 1.8

We will write the given nilpotency condition on $D X$ in the form

$$
\begin{equation*}
\mathbb{H}\left(x^{\prime \prime}\right) \mathrm{J} H(x) \mathbb{J} H\left(x^{\prime}\right)=0, \quad x^{\prime \prime}, x, x^{\prime} \in \mathbb{R}^{2 n} \tag{4.1}
\end{equation*}
$$

It is straightforward to check that this condition is necessary for H to be linear-symplectically conjugate to a Hamiltonian of the form (1.4).

Assume now that H is a nondegenerate (and thus regular) real analytic affine-integrable Hamiltonian that satisfies (4.1). Consider a point $x_{0}=\left(q_{0}, p_{0}\right)$ where $\mathbb{H}\left(x_{0}\right)$ has rank
n. By performing a unitary change of variables, if necessary, we may assume that $\mathbb{H}\left(x_{0}\right)$ is in semi-normal form,

$$
\mathbb{H}\left(x_{0}\right)=\left[\begin{array}{cc}
0 & 0 \tag{4.2}\\
0 & \mathcal{A}\left(x_{0}\right)
\end{array}\right]
$$

In the case where $x^{\prime}=x^{\prime \prime}=x_{0}$, the property (4.1) implies that $D_{q}^{2} H=0$, so that

$$
\mathbb{H}(x)=\left[\begin{array}{cc}
0 & \mathcal{Z}(x) \tag{4.3}\\
\mathcal{Z}(x)^{\top} & \mathcal{A}(x)
\end{array}\right], \quad x \in \mathbb{R}^{2 n}
$$

Thus, our Hamiltonian H has to be of the form

$$
\begin{equation*}
H(q, p)=\mathcal{K}(p)+q^{\top} \mathcal{V}(p) \tag{4.4}
\end{equation*}
$$

with $\mathcal{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\mathcal{V}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ real analytic. Another consequence of (4.1) is that the range of

$$
\operatorname{JH}(x) \mathrm{JH}\left(x^{\prime}\right)=\left[\begin{array}{cc}
\mathcal{Z}(x)^{\top} \mathcal{Z}\left(x^{\prime}\right)^{\top} & \mathcal{Z}(x)^{\top} \mathcal{A}\left(x^{\prime}\right)-\mathcal{A}(x) \mathcal{Z}\left(x^{\prime}\right) \tag{4.5}\\
0 & \mathcal{Z}(x) \mathcal{Z}\left(x^{\prime}\right)
\end{array}\right]
$$

is contained in the null space of $\mathbb{H}\left(x^{\prime \prime}\right)$, for every $x^{\prime \prime}$. If we take $x^{\prime \prime}=x_{0}$ then this implies that $\mathcal{Z}(x) \mathcal{Z}\left(x^{\prime}\right)$ vanishes. But $\mathcal{Z}(q, p)=D \mathcal{V}(p)$ and thus

$$
\begin{equation*}
D \mathcal{V}(p) D \mathcal{V}\left(p^{\prime}\right)=0, \quad \quad p, p^{\prime} \in \mathbb{R}^{n} \tag{4.6}
\end{equation*}
$$

Finally, multiplying (4.5) on the left by $\mathbb{H}\left(x^{\prime \prime}\right)$ and using that the result has to be the zero matrix, we find that $\mathcal{Z}\left(x^{\prime \prime}\right)^{\top} \mathcal{A}(x) \mathcal{Z}\left(x^{\prime}\right)$ vanishes. In particular,

$$
\begin{equation*}
D \mathcal{V}\left(p^{\prime \prime}\right)^{\top} \mathbb{K}(p) D \mathcal{V}\left(p^{\prime}\right)=0, \quad p^{\prime \prime}, p, p^{\prime} \in \mathbb{R}^{n} \tag{4.7}
\end{equation*}
$$

where $\mathbb{K}=\nabla D \mathcal{K}$ is the Hessian of \mathcal{K}.
Let \mathcal{R} be the linear span of all vectors $\mathcal{V}(p)$, with $p \in \mathbb{R}^{n}$. Or equivalently, \mathcal{R} is the linear span of all vectors $D \mathcal{V}(p) u$ with $p, u \in \mathbb{R}^{n}$. Here we have used that $\mathcal{V}\left(p_{0}\right)=0$. Then (4.6) and (4.7) imply that

$$
\begin{equation*}
\mathcal{V}(p+v)=\mathcal{V}(p), \quad \mathcal{K}(p+v)=\mathcal{K}(p)+D \mathcal{K}(p) v, \quad v \in \mathcal{R} \tag{4.8}
\end{equation*}
$$

Let d be the dimension of \mathcal{R}. If $d=0$ then there is nothing left to prove. Consider now the case where $d>0$. Since $\mathcal{V}(p)=0$ for all $p \in \mathcal{R}$, we also have $d<n$. Let \mathcal{R}^{\perp} be the orthogonal complement of \mathcal{R} in \mathbb{R}^{n}. Notice that $q^{\top} \mathcal{V}(p)$ vanishes whenever $q \in \mathcal{R}^{\perp}$.

Next we apply a unitary change of variables. To simplify the description, we rename current quantities by adding a subscript "old". The change of variables is ($q_{\text {old }}, p_{\text {old }}$) $=$ ($S q, S p$), with S orthogonal, such that $\mathcal{R}=S^{-1} \mathcal{R}_{\text {old }}$ is the span of all vectors $P=$ $\left(p_{1}, \ldots, p_{d}, 0, \ldots, 0\right)$. Then \mathcal{R}^{\perp} is the span of all vectors $\bar{p}=\left(0, \ldots, 0, p_{d+1}, \ldots, p_{n}\right)$. And $\mathcal{V}=S^{-1} \mathcal{V}_{\text {old }} S$ takes values in \mathcal{R}. From (4.8) we see that $\mathcal{V}(p)$ does not depend on P, and that $\mathcal{K}(p)$ is an affine function of P. Setting $Q=\left(q_{1}, \ldots, q_{d}, 0, \ldots, 0\right)$, the new Hamiltonian H is of the form (1.4). This concludes the proof of Theorem 1.8.

5. Commutators and quadratic functions

The main goal in this section is to give a proof of Theorem 1.9 on quartic Hamiltonians. But some of the observations and computations apply to other Hamiltonians as well.

The Hessian $\mathbb{H}(u)$ at any point $u \in \mathbb{R}^{2 n}$ defines a quadratic function $x \mapsto \frac{1}{2} x^{\top} \mathbb{H}(u) x$. The flow generated by this function is linear in time, since $D X(u)^{2}=0$. It is useful to know how these flows for different vectors u are related, as the hypotheses in Theorem 1.5 and Theorem 1.8 show. What simplifies the situation for homogeneous quartic Hamiltonians is that $x^{\top} \mathbb{H}(u) x=u^{\top} \mathbb{H}(x) u=\partial_{u}^{2} H(x)$, and if H is affine-integrable, then $\partial_{u}^{2} H$ commutes with H by (2.2). This fact will be exploited below.

First we note that the Poisson bracket of two homogeneous quadratic functions

$$
\begin{equation*}
F(x)=\frac{1}{2} x^{\top} \mathcal{F} x, \quad G(x)=\frac{1}{2} x^{\top} \mathcal{G} x \tag{5.1}
\end{equation*}
$$

is again a homogeneous quadratic function,

$$
\begin{equation*}
\{F, G\}(x)=\frac{1}{2} x^{\top} \mathcal{E} x, \quad \mathrm{~J} \mathcal{E}=\frac{1}{2}(\mathrm{JF})(\mathrm{JG})-\frac{1}{2}(\mathrm{JG})(\mathrm{JF}) \tag{5.2}
\end{equation*}
$$

Here, \mathcal{F}, \mathcal{G}, and \mathcal{E} are symmetric $2 n \times 2 n$ matrices. The corresponding matrices JF, JG, and $J \mathcal{E}$ belong to $\operatorname{sp}(2 n, \mathbb{R})$.

We also need to compute some double commutators, and not all functions involved are quadratic. To simplify the expressions, we use the operator notation $\llbracket H \rrbracket F=\{F, H\}$. A straightforward computation shows that

$$
\begin{align*}
\partial_{u} \partial_{v} \llbracket H \rrbracket & =\llbracket \partial_{v} H \rrbracket \partial_{u}+\llbracket \partial_{u} H \rrbracket \partial_{v}+\llbracket H \rrbracket \partial_{u} \partial_{v}+\llbracket \partial_{u} \partial_{v} H \rrbracket \tag{5.3}\\
& =\partial_{u} \llbracket \partial_{v} H \rrbracket+\llbracket \partial_{u} H \rrbracket \partial_{v}+\llbracket H \rrbracket \partial_{u} \partial_{v} .
\end{align*}
$$

Let now F be is a polynomial of degree ≤ 2. Then $\partial_{u} \partial_{v} F$ is constant and thus commutes with every function. If in addition F commutes with H, then (5.3) yields

$$
\begin{align*}
-\llbracket \partial_{u} \partial_{v} H \rrbracket F & =\llbracket \partial_{v} H \rrbracket \partial_{u} F+\llbracket \partial_{u} H \rrbracket \partial_{v} F, \\
0 & =\partial_{u} \llbracket \partial_{v} H \rrbracket F+\llbracket \partial_{u} H \rrbracket \partial_{v} F . \tag{5.4}
\end{align*}
$$

So far we have not used any properties of H other than differentiability.
Proof of Theorem 1.9. Assume now that H is homogeneous of degree 4. Let F be a polynomial of degree ≤ 2 that commutes with H. Then the second identity in (5.4) implies that

$$
\begin{equation*}
\llbracket \partial_{v^{\prime}} H \rrbracket \partial_{u^{\prime}} \llbracket \partial_{v} H \rrbracket \partial_{u} F=-\llbracket \partial_{v^{\prime}} H \rrbracket \llbracket \partial_{u^{\prime}} H \rrbracket \partial_{v} \partial_{u} F=0 . \tag{5.5}
\end{equation*}
$$

Assume in addition that H is affine-integrable. Then H satisfies (2.2). By Jacobi's identity for the Poisson bracket, if F and G commute with H, then so does $\llbracket G \rrbracket F$. In particular, $\llbracket \partial_{u} \partial_{v} H \rrbracket F$ commutes with H. Using (5.4) and (5.5), we find that

$$
\begin{equation*}
\llbracket \partial_{u^{\prime}} \partial_{v^{\prime}} H \rrbracket \llbracket \partial_{u} \partial_{v} H \rrbracket F=\left(\llbracket \partial_{v^{\prime}} H \rrbracket \partial_{u^{\prime}}+\llbracket \partial_{u^{\prime}} H \rrbracket \partial_{v^{\prime}}\right)\left(\llbracket \partial_{v} H \rrbracket \partial_{u}+\llbracket \partial_{u} H \rrbracket \partial_{v}\right) F=0 . \tag{5.6}
\end{equation*}
$$

Since H is homogeneous of degree 4, the second derivatives of H are homogeneous quadratic polynomials. They commute with H by (2.2). So as a special case of (5.6) we have

$$
\begin{equation*}
\llbracket \partial_{u}^{2} H \rrbracket \llbracket \partial_{v}^{2} H \rrbracket \partial_{u}^{2} H=0 \tag{5.7}
\end{equation*}
$$

Applying (5.2) with $F=\partial_{u}^{2} H$ and $G=\partial_{v}^{2} H$ yields $\mathrm{JE}=2 \mathrm{JH}(u) \mathrm{JH}(v)-2 \mathrm{JH}(v) \mathrm{JH}(u)$. According to (5.7) we have $\mathrm{JE} \mathrm{J} \mathbb{H}(u)-\mathrm{JH}(u) \mathrm{JE}=0$, which implies that

$$
\begin{equation*}
\mathbb{H}(u) \mathrm{J} H(v) \mathrm{J} H(u)=0, \quad u, v \in \mathbb{R}^{2 n} \tag{5.8}
\end{equation*}
$$

Here we have used that $\mathbb{H}(u) \mathbb{J} \mathbb{H}(u)=0$. The identity (5.8) also be written as

$$
\begin{equation*}
D^{3} X(u, u, w)^{\top} \mathbb{H}(v) D^{3} X(u, u, z)=0, \quad u, v, w, z \in \mathbb{R}^{2 n} \tag{5.9}
\end{equation*}
$$

By Lemma 5.1 below, the same holds if each of the arguments u is replaced by a different vector in $\mathbb{R}^{2 n}$. In particular, we have (4.1) and thus $D X\left(x^{\prime \prime}\right) D X(x) D X\left(x^{\prime}\right)=0$ for all $x^{\prime \prime}, x, x^{\prime} \in \mathbb{R}^{2 n}$. The assertion now follows from Theorem 1.8.

QED
Lemma 5.1. Let X, Y, Z be vector spaces. Let $\langle\ldots\rangle: X^{3} \rightarrow Y$ be a symmetric cubic form and $\odot: Y^{2} \rightarrow Z$ be a symmetric quadratic form. Assume that $\langle p, p, u\rangle \odot\langle p, p, v\rangle=0$ for all $p, u, v \in X$. Then $\left\langle u_{1}, u_{2}, u_{3}\right\rangle \odot\left\langle v_{1}, v_{2}, v_{3}\right\rangle=0$ for any $u_{i}, v_{j} \in X$.

Proof. Under the given assumption we have $\langle p, p, p\rangle \odot\langle p, p, p\rangle=0$. Now "differentiate" this identity twice: Replace p by $p+u+v$, expand, and then collect all terms that are bilinear in (u, v). The result is

$$
\begin{equation*}
12\langle p, u, v\rangle \odot\langle p, p, p\rangle+18\langle p, p, u\rangle \odot\langle p, p, v\rangle=0 . \tag{5.10}
\end{equation*}
$$

By assumption, the second term vanishes, so $\langle p, u, v\rangle \odot\langle p, p, p\rangle=0$. Differentiating this identity once we get

$$
\begin{equation*}
\langle w, u, v\rangle \odot\langle p, p, p\rangle+3\langle p, u, v\rangle \odot\langle p, p, w\rangle=0 . \tag{5.11}
\end{equation*}
$$

Similarly, differentiating $\langle p, p, u\rangle \odot\langle p, p, v\rangle=0$ once yields

$$
\begin{equation*}
2\langle p, w, u\rangle \odot\langle p, p, v\rangle+2\langle p, p, u\rangle \odot\langle p, w, v\rangle=0 . \tag{5.12}
\end{equation*}
$$

Now (5.11) can be used to rewrite (5.12) as

$$
\begin{equation*}
-\frac{2}{3}\langle v, w, u\rangle \odot\langle p, p, p\rangle-\frac{2}{3}\langle p, p, p\rangle \odot\langle u, w, v\rangle=0 . \tag{5.13}
\end{equation*}
$$

Or simplified, $\langle p, p, p\rangle \odot\langle u, v, w\rangle=0$. The assertion now follows by polarization.

6. The example from Theorem 1.6

Consider the Hamiltonian (1.4), with the variables $(Q, \bar{q} ; P, \bar{p})$ renamed to $x=(q, y ; p, z)$,

$$
\begin{equation*}
H(x)=K(z)+q^{\top} V(z)+p^{\top} W(z), \tag{6.1}
\end{equation*}
$$

where $q, p \in \mathbb{R}^{d}$ and $y, z \in \mathbb{R}^{n-d}$. The corresponding vector field $X=(\dot{q}, \dot{y} ; \dot{p}, \dot{z})$ is given by $\dot{z}=0$ and

$$
\begin{equation*}
\dot{q}=W(z), \quad \dot{p}=-V(z), \quad \dot{y}_{j}=\partial_{j} K(z)+q^{\top}\left[\partial_{j} V(z)\right]+p^{\top}\left[\partial_{j} W(z)\right] . \tag{6.2}
\end{equation*}
$$

Since $\dot{z}=0$, the Hamiltonian H is affine-integrable if and only if

$$
\begin{align*}
\ddot{y}_{j} & =\dot{q}^{\top}\left[\partial_{j} V(z)\right]+\dot{p}^{\top}\left[\partial_{j} W(z)\right] \\
& =W(z)^{\top}\left[\partial_{j} V(z)\right]-V(z)^{\top}\left[\partial_{j} W(z)\right] \tag{6.3}
\end{align*}
$$

is equal to zero for all j. This is precisely the condition (1.5). According to Theorem 1.5, H is a shear if and only if $D X(x) D X\left(x^{\prime}\right)$ vanishes for all x and x^{\prime}. Or equivalently, if and only if

$$
\begin{equation*}
-X(x)^{\top} \mathrm{J} X\left(x^{\prime}\right)=W(z)^{\top} V\left(z^{\prime}\right)-V(z)^{\top} W\left(z^{\prime}\right) \tag{6.4}
\end{equation*}
$$

vanishes for all x and x^{\prime}.
It should be noted that the case $d=1$ is trivial: If $v(s)=V_{1}\left(x+s\left(x^{\prime}-x\right)\right)$ and $w(s)=W_{1}\left(x+s\left(x^{\prime}-x\right)\right)$ satisfy $w v^{\prime}-v w^{\prime}=0$, then by the quotient rule of differentiation, the functions v and w are constant multiples of each other. So (6.4) follows from (6.3). In this case, $H(q, p)$ can be made either independent of q via a change of variables $(q, p) \mapsto$ $(q, p+c q)$, or independent of p via a change of variables $(q, p) \mapsto(q+c p, p)$. Thus, H is a shear Hamiltonian if $d=1$.

Notice also that, if the right hand side of (6.3) is equal to zero, then it remains zero if ∂_{j} is replaced by ∂_{j}^{2}. Thus, the right hand side of (6.4) is of the order $\left|z-z^{\prime}\right|^{3}$. This has motivated our choice of V and W below.

The Hamiltonian (1.3) can be written as

$$
\begin{equation*}
H(q, y ; p, z)=q_{1} V_{1}(z)+q_{2} V_{2}(z)+p_{1} W_{1}(z)+p_{2} W_{2}(z), \tag{6.5}
\end{equation*}
$$

where $q, y, p, z \in \mathbb{R}^{2}$ and

$$
V_{1}(z)=z_{1}^{3}, \quad W_{1}(z)=z_{2}^{3}, \quad V_{2}(z)=\sqrt{3} z_{1}^{2} z_{2}, \quad W_{2}(z)=-\sqrt{3} z_{1} z_{2}^{2}
$$

Let us compute the right hand side of (6.4), with z^{\prime} replaced by w in order to simplify notation. If $w_{2}=z_{2}$ then

$$
\begin{align*}
{\left[W_{1}(z) V_{1}(w)+W_{2}(z) V_{2}(w)\right] } & -\left[V_{1}(z) W_{1}(w)+V_{2}(z) W_{2}(w)\right] \\
& =z_{2}^{3} w_{1}^{3}-3 z_{1} z_{2}^{2} w_{1}^{2} z_{2}-z_{1}^{3} z_{2}^{3}+3 z_{1}^{2} z_{2} w_{1} z_{2}^{2} \\
& =\left(w_{1}^{3}-3 z_{1} w_{1}^{2}-z_{1}^{3}+3 z_{1}^{2} w_{1}\right) z_{2}^{3} \tag{6.6}\\
& =\left(w_{1}-z_{1}\right)^{3} z_{2}^{3}
\end{align*}
$$

This is clearly nonzero at some points, so H cannot be a shear. On the other hand,

$$
\begin{equation*}
\left[W_{1}(z) \partial_{j} V_{1}(z)+W_{2}(z) \partial_{j} V_{2}(z)\right]-\left[V_{1}(z) \partial_{j} W_{1}(z)+V_{2}(z) \partial_{j} W_{2}(z)\right]=0 \tag{6.7}
\end{equation*}
$$

holds for $j=1$, due to the factor $\left(w_{1}-z_{1}\right)^{3}$ in (6.6). By symmetry, we have an expression analogous to (6.6) if $w_{1}=z_{1}$, with the cubic factor being $\left(w_{2}-z_{2}\right)^{3}$. So (6.7) holds for $j=2$ as well. Thus, H is a shear Hamiltonian, as claimed in Theorem 1.6.

A straightforward computation shows that the Hamiltonian (6.5) is nondegenerate: The Hessian $\mathbb{H}(x)$ has rank $n=4$ whenever $z_{1} z_{2} \neq 0$. Another noteworthy fact is that the matrix $\zeta(x)$ defined in (2.7) depends on x only via the ratio z_{1} / z_{2}. But the dependence is nontrivial, so by Lemma 2.7, this shows again that H cannot be a shear Hamiltonian.

7. Elementary factorization

A classical theorem by Jung [1] asserts that the group (under composition) of polynomial maps of the plane \mathbb{R}^{2} is generated by affine maps and elementary shears $(q, p) \mapsto(q+$ $s(p), p)$. No general result of this type is known in dimensions higher than 2. Theorem 1.10 covers the special case of symplectic maps $F=\mathrm{I}+X$, with X homogeneous of degree 3 . Its proof is based on the following observation.

Lemma 7.1. Let H_{0} be a polynomial affine-integrable Hamiltonian of the from (1.4). Write $H_{0}=H_{1}+H_{2}$, where $H_{1}=Q^{\top} V(\bar{p})$ and $H_{2}=K(\bar{p})+P^{\top} W(\bar{p})$. Then H_{1} and H_{2} Poisson-commute with $H_{3}=\frac{1}{2}\left\{H_{1}, H_{2}\right\}$. Furthermore, H_{1} and $H_{4}=H_{2}-H_{3}$ are shear Hamiltonians, and the corresponding time-one maps satisfy

$$
\begin{equation*}
\Phi_{H_{0}}^{1}=\Phi_{H_{1}}^{1} \circ \Phi_{H_{4}}^{1} . \tag{7.1}
\end{equation*}
$$

Proof. A straightforward calculation yields $H_{3}=\frac{1}{2} V(\bar{p})^{\top} W(\bar{p})$. So each of the Hamiltonians H_{j} is of the form (1.4). Here, and in what follows, $0 \leq j \leq 4$. In addition, H_{j} satisfies the affine-integrability condition (1.5). Thus, the adjoint map $\llbracket H_{j} \rrbracket: G \mapsto\left\{G, H_{j}\right\}$ has the following nilpotency property: If f is any polynomial, then $\llbracket H_{j} \rrbracket^{k} f=0$ for sufficiently large k. Furthermore, H_{j} commutes with H_{3}, since H_{3} only depends on the variable \bar{p}, while H_{j} is independent of the variable \bar{q}. Thus, by the Baker-Campbell-Hausdorff formula,

$$
\begin{equation*}
e^{t \llbracket H_{0} \rrbracket} f=e^{t \llbracket H_{1} \rrbracket} e^{t \llbracket H_{2} \rrbracket} e^{-t^{2} \llbracket H_{3} \rrbracket} f=e^{t \llbracket H_{1} \rrbracket} e^{t \llbracket H_{2}-t H_{3} \rrbracket} f, \tag{7.2}
\end{equation*}
$$

for every polynomial f. To be more precise, (7.2) is an identity for formal power series. But due to the above-mentioned nilpotency property, only finitely many terms of the series are nonzero. So (7.2) holds as an identity between polynomials. Using that $f \circ \Phi_{H_{j}}^{t}=e^{t \llbracket H_{j} \rrbracket} f$ for any polynomial f, we obtain (7.1) from (7.2).

Let $j \geq 1$. Then the vector field $X_{j}=\mathrm{J} \nabla H_{j}$ satisfies $X_{j}(x)^{\top} \mathrm{J} X_{j}\left(x^{\prime}\right)=0$ for all x and all x^{\prime}, as can be seen from (6.4). This shows that H_{j} is a shear Hamiltonian. QED

Remark 4. The time-one map for H_{4} is an elementary shear, $\Phi_{H_{4}}^{1}(q, p)=\left(q+\nabla h_{4}(p), p\right)$, where $h_{4}(p)=H_{4}(p, p)$. The time-one map for H_{1} is unitarily conjugate to an elementary
shear $S_{1}(q, p)=\left(q+\nabla h_{1}(p), p\right)$. A straightforward computation, similar to the one in Example 3, shows that $h_{1}(p)=H_{1}(p, p)$.

Proof of Theorem 1.10. Let F be a symplectic map on $\mathbb{R}^{2 n}$ such that $X=F-\mathrm{I}$ is a homogeneous polynomial of degree $m \geq 2$. First, we prove that $X=\mathrm{J} \nabla H$ for some affine-integrable Hamiltonian H. The symplecticity condition (1.1) implies that X satisfies the equation (2.1) for $t=1$. In this equation, the terms in square brackets have to vanish separately, since they have different degrees of homogeneity. The first of the resulting identities implies that the derivative of $J X$ is a symmetric matrix. Thus, by the Poincaré Lemma, $\mathrm{J} X$ is the gradient of a function $-H$. The second identity implies that $(D X)^{2}=0$. Thus, $(D X) X=0$, since $X(x)=m^{-1} D X(x) x$ by homogeneity. This shows that the flow for X is linear in time. In conclusion, F is the time-one map of an affine-integrable Hamiltonian H that is homogeneous of degree $m+1$.

Consider now $m=3$, and assume that X is nondegenerate. By Theorem 1.9, there exists a linear symplectic map U on $\mathbb{R}^{2 n}$, such that $H_{0}=H \circ U^{-1}$ is a Hamiltonian of the form (1.4). In fact, U is unitary, as seen in Section 4. Using Lemma 7.1, we have

$$
\begin{equation*}
F=\Phi_{H}^{1}=U^{-1} \circ \Phi_{H_{0}}^{1} \circ U=U^{-1} \circ \Phi_{H_{1}}^{1} \circ \Phi_{H_{4}}^{1} \circ U=\Phi_{H_{1} \circ U}^{1} \circ \Phi_{H_{4} \circ U}^{1} \tag{7.3}
\end{equation*}
$$

where H_{1} and H_{4} (and thus $H_{1} \circ U$ and $H_{4} \circ U$) are shear Hamiltonians.
QED

References

[1] H.W.E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 161-174 (1942).
[2] A.J. Dragt and J.M. Finn, Lie series and invariant functions for analytic symplectic maps, J. Math. Phys. 17 2215-2227 (1976).
[3] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York (1978).
[4] A.J. Dragt and D.T. Abell, Jolt Factorization of Symplectic Maps, Int. J. Mod. Phys. A (Proc. Suppl.) 2B, 1019-1021 (1993).
[5] J. Moser, On quadratic symplectic mappings, Math. Z. 216, 417-430 (1994).
[6] K. Feng and D.-L. Wang, Variations on a theme by Euler, J. Comput. Math. 16, 97-106 (1998).
[7] M. de Bondt, A. van den Essen, Singular Hessians, J. Algebra 282, 195-204 (2004).
[8] H.E. Lomelí, Symplectic homogeneous diffeomorphisms, Cremona maps and the jolt representation, Nonlinearity 18, 1065-1071 (2005).
[9] E. Forest, Geometric integration for particle accelerators, J. Phys. A: Math. Gen. 39, 5321-5377 (2006)
[10] M. de Bondt, Quasi-translations and counterexamples to the Homogeneous Dependence Problem, Proc. Amer. Math. Soc. 134, 2849-2856 (2006).
[11] R.I. McLachlan, H.Z. Munthe-Kaas, G.R.W. Quispel, A. Zanna, Explicit Volume-Preserving Splitting Methods for Linear and Quadratic Divergence-Free Vector Fields, Found. Comput. Math. 8 335-355 (2008).

[^0]: 1 Department of Mathematics, University of Texas at Austin, Austin, TX 78712
 2 Department of Mathematics, Instituto Tecnológico Autónomo de México, México DF 01000, Mexico Current address: Department of Mathematics, University of Texas at Austin, Austin, TX 78712

