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Abstract. We consider real analytic Hamiltonians on R
n × R

n whose flow depends linearly on
time. Trivial examples are Hamiltonians H(q, p) that depend only on the coordinate p ∈ R

n.
By a theorem of Moser [5], every cubic Hamiltonian reduces to a Hamiltonian of this type via a
linear symplectic change of variables. We show that the same does not hold for polynomials of
degree ≥ 4. But we give a condition that implies linear-symplectic conjugacy to another simple
class of Hamiltonians. The condition is shown to hold for all nondegenerate Hamiltonians that
are homogeneous of degree 4.

1. Introduction and main results

Polynomial Hamiltonians and maps have been studied extensively and for a variety of
different reasons. Among other things, they constitute local normal forms for more general
Hamiltonians and maps, and they provide a convenient testing ground for new ideas in
dynamical systems. The restriction to polynomials also adds interesting algebraic aspects
to the problem. This includes the possibility of classifying polynomial maps with a given
property, and of decomposing them into simpler ones.

The maps considered here are symplectic and arise from Hamiltonian flows. We use
the standard symplectic form on R

n, so a differentiable map F : R2n → R
2n is symplectic

if and only if

DF (x)⊤JDF (x) = J , J =

[

0 I
−I 0

]

, x ∈ R
2n . (1.1)

Here DF (x) denotes the derivative of F at x, and DF (x)⊤ denotes its transpose (as a
matrix). Let H be a smooth function on R

2n. One of the basic facts from Hamiltonian
mechanics is that the vector field X = J∇H defines a flow Φ : (t, x) 7→ Φt(x) whose time-t
maps Φt are symplectic. We will mainly consider Hamiltonians of the following type:

Definition 1.1. We say that a Hamiltonian H is affine-integrable if its flow Φ is linear in
time:

Φt = I + tX , X = J∇H , t ∈ R . (1.2)

Equivalently, a Hamiltonian is affine-integrable if and only if the corresponding vector
field X is constant along each orbit. In particular, X ◦ (I+X) = X. General (polynomial)
maps F = I+X with this property are also called quasi-translations. They arise naturally
in the study of singular Hessians [7]. The identity X ◦ (I + tX) = X for t = 1 extends
to t ∈ Z by induction, and to t ∈ C if X is a polynomial. Differentiating it with respect
to t yields (DX)X = 0, or equivalently, (X⊤∇)2ℓ = 0 for all linear functions ℓ. This
“local nilpotency” property is an alternative way of characterizing quasi-translations [10]
and affine-integrable Hamiltonians [4,6].

1
Department of Mathematics, University of Texas at Austin, Austin, TX 78712

2
Department of Mathematics, Instituto Tecnológico Autónomo de México, México DF 01000, Mexico
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2 On Hamiltonian flows whose orbits are straight lines

In numerical analysis and physics, symplectic quasi-translations are also called jolt
maps. They constitute the basic building blocks in the so-called Dragt-Finn factorization
[2] of more general symplectic maps. This factorization has proved to be very useful in
symplectic numerical schemes, including the simulation of Hamiltonian flows in plasmas
[4,9].

From a dynamical systems point of view, affine-integrable Hamiltonians are rather
simple. Not only is the vector field X constant along each orbit, but its components Xj

are Poisson-commuting invariants, as we will see later. So an affine-integrable Hamiltonian
H is Liouville integrable, at least if it satisfies a suitable nondegeneracy condition. In
addition, the geometry defined by the invariants Xj is quite restricted:

Theorem 1.2. Let H be a real analytic affine-integrable Hamiltonian on R
2n. Then H

and its vector field X are constant on the affine subspaces x + range(DX(x)). If DX(x)
has rank n then x+ range(DX(x)) is a local level set for X.

The only affine-integrable Hamiltonians that we have been able to find in the literature
are all linear-symplectically conjugate to Hamiltonians of the form H(q, p) = K(p). The
time-t map for such a Hamiltonian is a shear: Φt(q, p) =

(

q + t∇K(p), p
)

.

Definition 1.3. We call H : R2n → R a shear Hamiltonian if there exists a linear symplec-
tic change of variables U : R2n → R

2n such that (H ◦ U)(q, p) = K(p) for some function
K : Rn → R.

Remark 1. As we will describe later, the linear map U in the above definition can be
chosen both symplectic and orthogonal (as a matrix).

One of our goals is to find an affine-integrable Hamiltonian that is not a shear, or
to prove that there is no such Hamiltonian. Partial non-existence results can be obtained
by restricting the class of Hamiltonians being considered. A trivial case: If n = 1 then
line-orbits are necessarily parallel, so if H : R2 → R is affine-integrable, then there exists
a rotation U of R2, such that (H ◦ U)(q, p) is independent of q. In other cases the Defi-
nition 1.3 cannot be used directly. The following theorem gives a coordinate-independent
characterization of shear Hamiltonians. It is a slight generalization of a result in [8] on
Hamiltonians that are homogeneous polynomials of degree ≥ 3. Homogeneous vector fields
(of positive degree) vanish at the origin; and if X = J∇H vanishes at some point, then H
is regular in the following sense:

Definition 1.4. We say that a Hamiltonian H is regular if there exists a point x where
X(x) belongs to the range of DX(x).

Theorem 1.5. A regular real analytic function H on R
2n is a shear Hamiltonian if and

only if DX(x)DX(y) = 0 holds for all x, y ∈ R
2n.

To continue our discussion of special cases, assume that H is regular and affine-
integrable. Then (DX)2 = 0, as we will see later. In particular, if H is quadratic then
Theorem 1.5 implies that H is a shear Hamiltonian. The cubic case is covered by a result
of Moser [5] on quadratic symplectic maps on R

2n. It states that every such map F admits
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a decomposition F = A◦S ◦L into three simple symplectic maps: an affine map A, a shear
S(q, p) = (q+ s(p), p), and a linear map L. It is not hard to show that this result implies –
and is essentially equivalent to – the statement that every homogeneous affine-integrable
Hamiltonian of degree 3 is a shear. A direct proof is given in Section 2.

This raises the question [8] whether every homogeneous affine-integrable Hamiltonian
on R

2n is a shear. Locally, much more is true: It is well known that every smooth Hamil-
tonian H is of the form H(q, p) = K(p) in some local symplectic chart, near any point
where the vector field does not vanish. The local conjugacy (chart) is nonlinear in general.
But if all orbits for H are straight lines with constant velocity, as is the case for affine-
integrable Hamiltonians, and if X is constant on n-dimensional affine subspaces, then one
might think that this conjugacy can be chosen to be linear. However, this is not true in
general:

Theorem 1.6. The following Hamiltonian on R
8 is affine-integrable but not a shear:

H(q, p) = q1p
3
3 +

√
3q2p

2
3p4 + p1p

3
4 −

√
3p2p3p

2
4 , q, p ∈ R

4 . (1.3)

In addition, H is nondegenerate in the sense defined below.

Definition 1.7. A real analytic vector field X on R
2n is said to be nondegenerate if

DX(x) has rank ≥ n at some point x ∈ R
2n. If X = J∇H then we also say that H is

nondegenerate.

We note that, if X = J∇H, then the rank of DX(x) can be no larger than n. And if
X is analytic, then the rank is constant outside some analytic set of codimension one.

The example (1.3) belongs to a simple class of Hamiltonians that we shall now describe.
Let 0 ≤ d < n. To simplify the description, we write q = (Q, q̄) and p = (P, p̄), where
Q,P ∈ R

d and q̄, p̄ ∈ R
n−d. Consider a Hamiltonian of the form

H(q, p) = K(p̄) +Q⊤V (p̄) + P⊤W (p̄) , (1.4)

with K : Rn−d → R and V,W : Rn−d → R
d differentiable. Notice that H does not depend

on q̄, and thus p̄ stays fixed under the flow. Furthermore, the coordinates Q and P evolve
linearly (in time) under the flow. If q̄ evolves linearly as well, then H is affine-integrable.
As we will see later, this is the case if and only if

W (p̄)⊤DV (p̄)− V (p̄)⊤DW (p̄) = 0 . (1.5)

If d = 0, then P = Q = 0 and p̄ can be identified with p. In this case, (1.4) becomes
H(q, p) = K(p), so H is a shear Hamiltonian.

Remark 2. For reference below, we note that the Hamiltonian (1.4) can be written as
the sum of H1 = Q⊤V (p̄) and H2 = K(p̄) + P⊤W (p̄). What makes this decomposition
interesting is that the Poisson bracket {H1, H2} = (∇H1)

⊤J(∇H2) of H1 and H2 Poisson-
commutes with both H1 and H2.
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Theorem 1.8. Let H be a nondegenerate real analytic affine-integrable Hamiltonian on
R

2n. Then H is linear-symplectically conjugate to a Hamiltonian of the form (1.4) if and
only if DX(x)DX(y)DX(z) = 0 for all x, y, z ∈ R

2n.

Here, as in Theorem 1.2, a simple class of affine-integrable Hamiltonian is characterized
by a nilpotency-type condition on the derivative of the vector field. This suggest there may
be a natural hierarchy of such conditions, which characterize classes of increasingly complex
affine-integrable Hamiltonians.

We will prove that the condition on DX in Theorem 1.8 holds if H is a homogeneous
polynomials of degree 4. As a result we obtain

Theorem 1.9. Let H be a nondegenerate affine-integrable Hamiltonian on R
2n. If H is

homogeneous of degree 4 then H is is linear-symplectically conjugate to a Hamiltonian of
the form (1.4).

Homogeneous affine-integrable Hamiltonians can be obtained from symplectic maps
F : R2n → R

2n for which X = F−I is a homogeneous polynomial for degree ≥ 2. Any map
with this property is the time-one map of an affine-integrable Hamiltonian [8]. Combining
this result with Theorem 1.9, and using the decomposition described in Remark 2, we
obtain the following theorem.

Theorem 1.10. Let F be a symplectic map on R
2n such that X = F − I is homogeneous

of degree 3 and nondegenerate. Then F admits a decomposition F = F1 ◦ F4, where F1

and F4 are the time-one maps of two shear Hamiltonians.

For the proofs of Theorems 1.2, 1.5, 1.6, 1.8, 1.9, and 1.10, we refer to Sections 3, 2, 6,
4, 5, and 7, respectively. Some additional results can be found in Section 2.

2. Basic properties

In the remaining part of this paper we always assume that H is a real analytic Hamiltonian
on R

2n. Furthermore, by a “homogeneous” Hamiltonian we always mean a homogeneous
polynomial of degree ≥ 3.

As is true generally, the Hamiltonian H is invariant under the flow that it generates, so
(DH)X = 0. Assuming thatH is affine-integrable, X◦(I+tX) = X, and thus (DX)X = 0.
Furthermore, Φt = I + tX is symplectic, which by (1.1) yields

J + t
[

(DX)⊤J + JDX
]

+ t2
[

(DX)⊤JDX
]

= J . (2.1)

Using that the terms of order t and t2 have to vanish separately, we get (DX)2 = 0.
Differentiating the identity X ◦ (I + tX) = X yields [DX ◦ (I + tX)](I + tDX) = DX.
Multiplying on the right by (I− tDX) and using that (DX)2 = 0, we find in addition that
DX ◦ (I + tX) = DX. In summary, we have the following

Lemma 2.1. Let H be an affine-integrable Hamiltonian. Then the functions H and X
and DX are constant along every orbit. Furthermore, (DH)X = 0 and (DX)X = 0 and
(DX)2 = 0.
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An equivalent formulation can be given in terms of Poisson brackets. Assume that
H is affine-integrable. Let ℓ(x) = (Ju)⊤x for some vector u ∈ R

2n. Then {ℓ,H} is the
directional derivative of H in the direction u, which we denote by ∂uH. Being linear in
the coordinate x, ℓ evolves linearly in time, so {ℓ,H} = ∂uH is invariant under the flow.
This implies the first identity in

{∂uH,H} = 0 , {∂u∂vH,H} = 0 , {∂uH, ∂vH} = 0 . (2.2)

The second and third identities are obtained from the first by applying a derivative ∂v.
This yields {∂u∂vH,H} + {∂uH, ∂vH} = 0, and the two terms have to vanish separately
since the first is symmetric in (u, v) and the second antisymmetric. If H is nondegenerate,
then (2.2) shows that n of the vector field components Xj constitute a maximal set of
Poisson-commuting invariants. So H is Liouville integrable, as mentioned earlier.

Let x be a fixed but arbitrary point in R
2n. In the canonical splitting R

2n = R
n×R

n,
we can represent the derivative of X and the Hessian H(x) = ∇DH(x) as 2 × 2 matrices
whose entries are n× n matrices,

DX(x) =

[

Z(x)⊤ A(x)
−B(x) −Z(x)

]

, H(x) =

[

B(x) Z(x)
Z(x)⊤ A(x)

]

. (2.3)

Given that X = J∇H, we have DX = JH. Since H is symmetric, so are A and B. In
the case of an affine-integrable Hamiltonian, AZ is symmetric as well, as a result of the
identity (DX)2 = 0.

Lemma 2.2. A regular Hamiltonian is of the form H(q, p) = K(p) if and only if Z(x) = 0
and B(x) = 0 for all x.

Proof. The necessity of the conditions Z = 0 and B = 0 is obvious. Assume now that they
are satisfied. Let x0 = (q0, p0) be a point where X(x0) =

(

∇pH(x0),−∇qH(x0)
)

belongs
to the range of DX(x0). At this point we have ∇qH(x0) = 0. Given that D2

qH = 0
by assumption, this implies that the function q 7→ H(q, p0) is constant. Furthermore,
DpH(q, p) does not depend on q, since DqDpH = 0. So H(q, p) is independent of q as well,

since H(q, p) = H(q, p0) +
∫ 1

0
DpH(q, p0 + sv)v ds with v = p− p0. QED

Lemma 2.3. Let H be an affine-integrable Hamiltonian. Given x ∈ R
2n, there exists an

orthogonal symplectic 2n× 2n matrix U , and a diagonal n× n matrix A, such that

U−1DX(x)U =

[

0 A
0 0

]

, U⊤
H(x)U =

[

0 0
0 A

]

. (2.4)

Proof. Let d be the rank of M = H(x). Let (u1, u2, . . . , ud) be an orthonormal set of
eigenvectors for the nonzero eigenvalues of M . Since MJM = 0, the vectors Juj are
eigenvectors of M for the eigenvalue 0. Consider first the case d = n. Let U be the 2n×2n
matrix whose columns vectors are Ju1, . . . , Jun, u1, . . . , un, in this order. Clearly, U is
orthogonal and U⊤MU diagonal. A simple computation shows that U is symplectic.
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If d < n, consider the orthogonal projection P onto the span of Ju1, . . . , Jud, u1, . . . , ud.
Then P commutes with both M and J. So we can choose an orthonormal set of vectors
Jud+1, . . . , Jun, ud+1, . . . , un in the null space of P and define U as above. QED

The same construction can be used to give a

Proof of Theorem 1.5. The necessity of the condition DX(x)DX(y) = 0 is obvious.
Assume now that this condition holds, for all x, y ∈ R

2n, and that H is regular.

First, we show that H is affine-integrable. By regularity, there exist x0, w ∈ R
n such

that DX(x0)w = X(x0). Thus X(x) = DX(x0)w +
∫ 1

0
DX(x0 + sv)v ds, for any given

x ∈ R
2n, where v = x− x0. This shows that DX(x)X(x) = 0 for all x, which implies that

H is affine-integrable.

Let (u1, u2, . . . , ud) be an orthonormal basis for the subspace spanned by all vectors
H(y)z with y, z ∈ R

2n. Then H(x)Juj = 0 for all x and all j. Defining U as in the proof
of Lemma 2.3, we obtain (2.4) simultaneously for all x. (The matrix A can depend on x
and need not be diagonal.) So (H ◦ U)(q, p) is independent of q by Lemma 2.2, implying
that H is a shear Hamiltonian. QED

As a corollary we obtain

Theorem 2.4. [5] Every affine-integrable Hamiltonian H that is homogeneous of degree
3 is a shear.

Proof. By (2.2) we have {∂k
uH,H} = 0 for k ≤ 2. The same holds for k ≥ 3 since H is

of degree 3. It follows that {H(.+ u), H} = 0 for all u. Or equivalently, X(x)⊤JX(y) = 0
for all x and y. From this we get DX(x)DX(y) = 0 by differentiation, and the assertion
follows from Theorem 1.5. QED

The matrix U described in Lemma 2.3 is both symplectic and orthogonal. This means
that U⊤JU = J and U⊤U = I. As a result, we also have JU = UJ. In fact, any two of the
three properties imply the third. This is know as the 2-out-of-3 property of the unitary
group U(n) = O(n) ∩ Sp(2n,R) ∩ GL(n,C). The complex structure here is given by the
matrix J, and the equation JU = UJ simply says that U is “complex”. Using the properties
U⊤U = I and JU = UJ, any matrix U ∈ U(n) can be written as

U =

[

S T
−T S

]

, S⊤S + T⊤T = I , S⊤T = T⊤S . (2.5)

We will refer to such a 2n× 2n matrix as being unitary. The n× n submatrices S and T
will be referred to as the real and imaginary parts of U , respectively.

Concerning the claim in Remark 1, we note that any symplectic matrix M can be
written as a product M = UAN , where U is unitary, A positive diagonal, and N unipotent
upper-triangular. This is the standard Iwasawa decomposition [3]. If H is a Hamiltonian
such that (H ◦M)(q, p) is independent q, then (H ◦ U)(q, p) is independent of q as well.
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By Lemma 2.3, the Hessian H(x) of an affine-integrable Hamiltonian H is always of
the form

H(x) =

[

S T
−T S

] [

0 0
0 A

] [

S⊤ −T⊤

T⊤ S⊤

]

=

[

TAT⊤ TAS⊤

SAT⊤ SAS⊤

]

, (2.6)

for any given x ∈ R
2n, where the matrix A can be chosen to be diagonal. This representa-

tion is unique if H(x) has n distinct nonzero eigenvalues, and if the diagonal elements of
A are required to be in some prescribed order.

If we do not require that the matrix A be diagonal, then we could replace S, T , and
A by SV , TV and V −1AV , respectively, where V can be any orthogonal n × n matrix.
This fact is used in the lemma below.

Example 3. Let M be an m × n matrix of rank m ≤ n, and let f : Rm → R
n be

real analytic. Assuming Mf = 0, the equation q̇ = f(Mq) defines a flow on R
n that is

linear in time: q(t) = q0 + f(Mq0). This is similar to the flow considered in [11, Lemma
5]. As every flow on R

n, it extends to a Hamiltonian flow on R
2n. The Hamiltonian is

H(q, p) = p⊤f(Mq). Using Theorem 1.5, is is easy to check that H is a shear Hamiltonian.
In fact, H can be trivialized explicitly: If we set T = M⊤(MM⊤)−1M and S = I − T ,
then (2.5) defines a matrix U ∈ U(n), and we get (H ◦ U)(q, p) = H(p, p).

Definition 2.5. We say that H(x) is in semi-normal form if Z(x) = 0 and B(x) = 0.

Lemma 2.6. Let H be an affine-integrable Hamiltonian and x ∈ R
2n. If A(x) is nonsin-

gular then U⊤
H(x)U is in semi-normal form for the matrix

U = exp

[

0 θ
−θ 0

]

, θ(x) = tan−1
(

ζ(x)
)

, ζ(x) = Z(x)A(x)−1 . (2.7)

Proof. Define ζ = ζ(x) as above. A comparison with (2.6) shows that ζ = TS−1. The
conditions in (2.5) on S and T imply that ζ is symmetric, and that S⊤(I + ζ2)S = I.
Since SV = |S| for some orthogonal matrix V , we can choose S to be a positive definite
symmetric matrix. The choice is then unique: S = (I + ζ2)−1/2. Setting θ = tan−1

(

ζ) we
obtain S = cos(θ) and T = ζS = sin(θ), which leads to the expression (2.7) for U . QED

This offers another way of checking whether H is a shear Hamiltonian. First, we
note that a nondegenerate affine-integrable Hamiltonian H is regular: X(x) belongs to
the range of DX(x) at every point x where DX(x) has rank n, since DX(x)X(x) = 0 by
Lemma 2.1.

Lemma 2.7. LetH be an affine-integrable Hamiltonian. Assume thatA(x0) is nonsingular
at some point x0. Then H is a shear if and only if ζ is constant near x0.

Proof. First, assume that ζ is constant near x0. So near x0, the matrix U in Lemma 2.6
is independent of x, and H ◦ U is in semi-normal form for a fixed unitary matrix U . By
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analyticity, this property extends to all x ∈ R
2n. Furthermore, H(x0) has rank n, as (2.6)

shows, implying that H is regular. So H is a shear Hamiltonian by Lemma 2.2.
Conversely, assume that (H ◦ U)(q, p) is independent of q for some linear symplectic

matrix U . Then U can in fact be chosen unitary, as was shown the proof of Theorem 1.5.
If S and T are the real and imaginary parts of U , as defined by (2.5), then we have
Z(x)A−1(x) = TS−1 at every point x where A(x) is nonsingular. QED

For completeness, let us mention that there is an alternative representation of H(x)
via the shear map (q, p) 7→ (q, p+ ζq). Assuming that H is affine-integrable and A = A(x)
nonsingular,

H(x) =

[

I ζ
0 I

] [

0 0
0 A

] [

I 0
ζ I

]

=

[

ζAζ ζA
Aζ A

]

. (2.8)

This shear is not unitary. But it is symplectic, since ζ is symmetric. Furthermore, these
shear maps form a group. Notice also that B(x) = Z(x)ζ(x). So the condition B(x) = 0
in Definition 2.5 is redundant if H is affine-integrable and A(x) nonsingular.

3. Invariant affine subspaces

In this section we give a proof of Theorem 1.2 and some related results. It is always
assumed that H is affine-integrable and real analytic.

Besides the flow Φ for the Hamiltonian H, consider also the flows Ψj for the Hamilto-
nians ∂jH, where ∂jH denotes the j-th partial derivative of H. By standard ODE results,
Ψt

j(x) is well defined for all times t in some open neighborhood of zero in C (which may
depend on x). By (2.2) the flows Ψj commute with each other and with Φ. So the flow
Ψw for ∂wH is given by

Ψtw = Ψtw1

1 ◦Ψtw2

2 ◦ · · · ◦Ψtw2n

2n . (3.1)

Again, Ψw(x) is well defined for all w in some open ball B(x) ⊂ C
2n centered at the origin.

Furthermore, the “group property” Ψu(Ψw(x)) = Ψu+w(x) holds whenever w,w+u ∈ B(x)
and u ∈ B(Ψw(x)).

Lemma 3.1. Let u ∈ R
2n. If the derivative of ∂uH vanishes at some point x, then it

vanishes at Ψw(x) for every w ∈ B(x).

Proof. Define (G)t = G ◦Ψtw for any function G on R
2n. Let now G = ∂uH. Then

0 =
(

∂j{G, ∂wH}
)

t
=

(

{∂jG, ∂wH}+ {G, ∂j∂wH}
)

t

= {(∂jG)t, ∂wH}+ {G, (∂j∂wH)t} .
(3.2)

Here, we have used that ∂wH and G are invariant under the flow Ψw, and that the maps
Ψtw are symplectic. Thus, we have

d

dt
(∂jG)t = {(∂jG)t, ∂wH} = −{G, (∂j∂wH)t} = −

∑

σ,τ

(∂σG)Jσ,τ∂τ (∂j∂wH)t . (3.3)
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Due to the factors ∂σG that all vanish at x, the value (∂jG)t(x) is independent of t and
thus (∂jG)

(

Ψtw(x)
)

= (∂jG)t(x) = (∂jG)(x) = 0, for all t in some open neighborhood of
zero. The assertion now follows from the above-mentioned group property of Ψ and the
analyticity of G. QED

Corollary 3.2. Let u ∈ R
n. If Hu vanishes at some point x, then Hu vanishes at Ψw(x)

for every w ∈ B(x). In other words, the null space (and thus the range) of H is invariant
under Ψw.

Notice that the same holds for DX = JH.

Corollary 3.3. Let x ∈ R
2n and R(x) = range(DX(x)). Then Ψw(x) belongs to the affine

space x+R(x) for all w ∈ B(x). Furthermore, w 7→ Ψw(x) is locally (near zero) invertible
as a map from JR(x) to x+R(x).

Proof. Consider the curve u(t) = Ψtw(x)−x. Clearly u(0) belongs to R(x). The derivative
u′(t) = DX(Ψtw(x))w belongs to the range of DX(Ψtw(x)), which agrees with R(x) by
Corollary 3.2. Thus, u(t) belongs to R(x) whenever tw ∈ B(x). Since H(x) is symmetric,
DX(x) is invertible as a map from JR(x) to R(x). Thus, by the implicit function theorem,
the same holds locally (near zero) for the map w 7→ Ψw(x)− x, whose derivative at w = 0
is DX(x). QED

Proof of Theorem 1.2. For each y in x + R(x) there exists an open neighborhood
By of y in x + R(x) that is included in the range of fy : w 7→ Ψw(y). This follows from
Corollary 3.3. The vector field X is constant on each By since each component Xj is
invariant under the flow Ψw. Similarly for H. Furthermore, the open sets By cover the
affine space x + R(x), and since this space is connected, it follows that X and H are
constant on x+R(x).

Assume now that DX(x) has rank n. If y = x+ u+ v, with u ∈ R(x) and v ∈ R(x)⊥,
then

X(y) = X(x) +DX(x+ u)v +O
(

|v|2
)

. (3.4)

If y 6= x is sufficiently close to x then |DX(x + u)v| is bounded from below by a positive
constant times |v|, so we have X(y) = X(x) if and only if y − x = u ∈ R(x). QED

4. Proof of Theorem 1.8

We will write the given nilpotency condition on DX in the form

H(x′′)JH(x)JH(x′) = 0 , x′′, x, x′ ∈ R
2n . (4.1)

It is straightforward to check that this condition is necessary for H to be linear-symplectic-
ally conjugate to a Hamiltonian of the form (1.4).

Assume now that H is a nondegenerate (and thus regular) real analytic affine-integra-
ble Hamiltonian that satisfies (4.1). Consider a point x0 = (q0, p0) where H(x0) has rank
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n. By performing a unitary change of variables, if necessary, we may assume that H(x0)
is in semi-normal form,

H(x0) =

[

0 0
0 A(x0)

]

. (4.2)

In the case where x′ = x′′ = x0, the property (4.1) implies that D2
qH = 0, so that

H(x) =

[

0 Z(x)
Z(x)⊤ A(x)

]

, x ∈ R
2n . (4.3)

Thus, our Hamiltonian H has to be of the form

H(q, p) = K(p) + q⊤V(p) , (4.4)

with K : Rn → R and V : Rn → R
n real analytic. Another consequence of (4.1) is that the

range of

JH(x)JH(x′) =

[

Z(x)⊤Z(x′)⊤ Z(x)⊤A(x′)−A(x)Z(x′)
0 Z(x)Z(x′)

]

(4.5)

is contained in the null space of H(x′′), for every x′′. If we take x′′ = x0 then this implies
that Z(x)Z(x′) vanishes. But Z(q, p) = DV(p) and thus

DV(p)DV(p′) = 0 , p, p′ ∈ R
n . (4.6)

Finally, multiplying (4.5) on the left by H(x′′) and using that the result has to be the zero
matrix, we find that Z(x′′)⊤A(x)Z(x′) vanishes. In particular,

DV(p′′)⊤K(p)DV(p′) = 0 , p′′, p, p′ ∈ R
n , (4.7)

where K = ∇DK is the Hessian of K.

Let R be the linear span of all vectors V(p), with p ∈ R
n. Or equivalently, R is the

linear span of all vectors DV(p)u with p, u ∈ R
n. Here we have used that V(p0) = 0. Then

(4.6) and (4.7) imply that

V(p+ v) = V(p) , K(p+ v) = K(p) +DK(p)v , v ∈ R . (4.8)

Let d be the dimension of R. If d = 0 then there is nothing left to prove. Consider now
the case where d > 0. Since V(p) = 0 for all p ∈ R, we also have d < n. Let R⊥ be the
orthogonal complement of R in R

n. Notice that q⊤V(p) vanishes whenever q ∈ R⊥.
Next we apply a unitary change of variables. To simplify the description, we rename

current quantities by adding a subscript “old”. The change of variables is (qold, pold) =
(Sq, Sp), with S orthogonal, such that R = S−1Rold is the span of all vectors P =
(p1, . . . , pd, 0, . . . , 0). Then R⊥ is the span of all vectors p̄ = (0, . . . , 0, pd+1, . . . , pn). And
V = S−1VoldS takes values in R. From (4.8) we see that V(p) does not depend on P , and
that K(p) is an affine function of P . Setting Q = (q1, . . . , qd, 0, . . . , 0), the new Hamiltonian
H is of the form (1.4). This concludes the proof of Theorem 1.8.
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5. Commutators and quadratic functions

The main goal in this section is to give a proof of Theorem 1.9 on quartic Hamiltonians.
But some of the observations and computations apply to other Hamiltonians as well.

The Hessian H(u) at any point u ∈ R
2n defines a quadratic function x 7→ 1

2x
⊤
H(u)x.

The flow generated by this function is linear in time, sinceDX(u)2 = 0. It is useful to know
how these flows for different vectors u are related, as the hypotheses in Theorem 1.5 and
Theorem 1.8 show. What simplifies the situation for homogeneous quartic Hamiltonians
is that x⊤

H(u)x = u⊤
H(x)u = ∂2

uH(x), and if H is affine-integrable, then ∂2
uH commutes

with H by (2.2). This fact will be exploited below.
First we note that the Poisson bracket of two homogeneous quadratic functions

F (x) = 1
2x

⊤Fx , G(x) = 1
2x

⊤Gx , (5.1)

is again a homogeneous quadratic function,

{F,G}(x) = 1
2x

⊤Ex , JE = 1
2 (JF)(JG)− 1

2 (JG)(JF) . (5.2)

Here, F , G, and E are symmetric 2n × 2n matrices. The corresponding matrices JF , JG,
and JE belong to sp(2n,R).

We also need to compute some double commutators, and not all functions involved
are quadratic. To simplify the expressions, we use the operator notation [[H]]F = {F,H}.
A straightforward computation shows that

∂u∂v[[H]] = [[∂vH]]∂u + [[∂uH]]∂v + [[H]]∂u∂v + [[∂u∂vH]]

= ∂u[[∂vH]] + [[∂uH]]∂v + [[H]]∂u∂v .
(5.3)

Let now F be is a polynomial of degree ≤ 2. Then ∂u∂vF is constant and thus commutes
with every function. If in addition F commutes with H, then (5.3) yields

−[[∂u∂vH]]F = [[∂vH]]∂uF + [[∂uH]]∂vF ,

0 = ∂u[[∂vH]]F + [[∂uH]]∂vF .
(5.4)

So far we have not used any properties of H other than differentiability.

Proof of Theorem 1.9. Assume now that H is homogeneous of degree 4. Let F be a
polynomial of degree ≤ 2 that commutes with H. Then the second identity in (5.4) implies
that

[[∂v′H]]∂u′ [[∂vH]]∂uF = −[[∂v′H]][[∂u′H]]∂v∂uF = 0 . (5.5)

Assume in addition that H is affine-integrable. Then H satisfies (2.2). By Jacobi’s identity
for the Poisson bracket, if F and G commute with H, then so does [[G]]F . In particular,
[[∂u∂vH]]F commutes with H. Using (5.4) and (5.5), we find that

[[∂u′∂v′H]][[∂u∂vH]]F =
(

[[∂v′H]]∂u′ + [[∂u′H]]∂v′

)(

[[∂vH]]∂u + [[∂uH]]∂v
)

F = 0 . (5.6)
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SinceH is homogeneous of degree 4, the second derivatives ofH are homogeneous quadratic
polynomials. They commute with H by (2.2). So as a special case of (5.6) we have

[[∂2
uH]][[∂2

vH]]∂2
uH = 0 . (5.7)

Applying (5.2) with F = ∂2
uH and G = ∂2

vH yields JE = 2JH(u)JH(v) − 2JH(v)JH(u).
According to (5.7) we have JEJH(u)− JH(u)JE = 0, which implies that

H(u)JH(v)JH(u) = 0 , u, v ∈ R
2n . (5.8)

Here we have used that H(u)JH(u) = 0. The identity (5.8) also be written as

D3X(u, u, w)⊤H(v)D3X(u, u, z) = 0 , u, v, w, z ∈ R
2n . (5.9)

By Lemma 5.1 below, the same holds if each of the arguments u is replaced by a different
vector in R

2n. In particular, we have (4.1) and thus DX(x′′)DX(x)DX(x′) = 0 for all
x′′, x, x′ ∈ R

2n. The assertion now follows from Theorem 1.8. QED

Lemma 5.1. Let X,Y, Z be vector spaces. Let 〈. . .〉 : X3 → Y be a symmetric cubic form
and ⊙ : Y 2 → Z be a symmetric quadratic form. Assume that 〈p, p, u〉 ⊙ 〈p, p, v〉 = 0 for
all p, u, v ∈ X. Then 〈u1, u2, u3〉 ⊙ 〈v1, v2, v3〉 = 0 for any ui, vj ∈ X.

Proof. Under the given assumption we have 〈p, p, p〉 ⊙ 〈p, p, p〉 = 0. Now “differentiate”
this identity twice: Replace p by p + u + v, expand, and then collect all terms that are
bilinear in (u, v). The result is

12〈p, u, v〉 ⊙ 〈p, p, p〉+ 18〈p, p, u〉 ⊙ 〈p, p, v〉 = 0 . (5.10)

By assumption, the second term vanishes, so 〈p, u, v〉 ⊙ 〈p, p, p〉 = 0. Differentiating this
identity once we get

〈w, u, v〉 ⊙ 〈p, p, p〉+ 3〈p, u, v〉 ⊙ 〈p, p, w〉 = 0 . (5.11)

Similarly, differentiating 〈p, p, u〉 ⊙ 〈p, p, v〉 = 0 once yields

2〈p, w, u〉 ⊙ 〈p, p, v〉+ 2〈p, p, u〉 ⊙ 〈p, w, v〉 = 0 . (5.12)

Now (5.11) can be used to rewrite (5.12) as

−2

3
〈v, w, u〉 ⊙ 〈p, p, p〉 − 2

3
〈p, p, p〉 ⊙ 〈u,w, v〉 = 0 . (5.13)

Or simplified, 〈p, p, p〉 ⊙ 〈u, v, w〉 = 0. The assertion now follows by polarization. QED
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6. The example from Theorem 1.6

Consider the Hamiltonian (1.4), with the variables (Q, q̄;P, p̄) renamed to x = (q, y; p, z),

H(x) = K(z) + q⊤V (z) + p⊤W (z) , (6.1)

where q, p ∈ R
d and y, z ∈ R

n−d. The corresponding vector field X = (q̇, ẏ; ṗ, ż) is given
by ż = 0 and

q̇ = W (z) , ṗ = −V (z) , ẏj = ∂jK(z) + q⊤
[

∂jV (z)
]

+ p⊤
[

∂jW (z)
]

. (6.2)

Since ż = 0, the Hamiltonian H is affine-integrable if and only if

ÿj = q̇⊤
[

∂jV (z)
]

+ ṗ⊤
[

∂jW (z)
]

= W (z)⊤
[

∂jV (z)
]

− V (z)⊤
[

∂jW (z)
] (6.3)

is equal to zero for all j. This is precisely the condition (1.5). According to Theorem 1.5,
H is a shear if and only if DX(x)DX(x′) vanishes for all x and x′. Or equivalently, if and
only if

−X(x)⊤JX(x′) = W (z)⊤V (z′)− V (z)⊤W (z′) (6.4)

vanishes for all x and x′.
It should be noted that the case d = 1 is trivial: If v(s) = V1(x + s(x′ − x)) and

w(s) = W1(x+s(x′−x)) satisfy wv′−vw′ = 0, then by the quotient rule of differentiation,
the functions v and w are constant multiples of each other. So (6.4) follows from (6.3). In
this case, H(q, p) can be made either independent of q via a change of variables (q, p) 7→
(q, p+ cq), or independent of p via a change of variables (q, p) 7→ (q + cp, p). Thus, H is a
shear Hamiltonian if d = 1.

Notice also that, if the right hand side of (6.3) is equal to zero, then it remains zero if
∂j is replaced by ∂2

j . Thus, the right hand side of (6.4) is of the order |z − z′|3. This has
motivated our choice of V and W below.

The Hamiltonian (1.3) can be written as

H(q, y; p, z) = q1V1(z) + q2V2(z) + p1W1(z) + p2W2(z) , (6.5)

where q, y, p, z ∈ R
2 and

V1(z) = z31 , W1(z) = z32 , V2(z) =
√
3z21z2 , W2(z) = −

√
3z1z

2
2 .

Let us compute the right hand side of (6.4), with z′ replaced by w in order to simplify
notation. If w2 = z2 then

[

W1(z)V1(w) +W2(z)V2(w)
]

−
[

V1(z)W1(w) + V2(z)W2(w)
]

= z32w
3
1 − 3z1z

2
2w

2
1z2 − z31z

3
2 + 3z21z2w1z

2
2

=
(

w3
1 − 3z1w

2
1 − z31 + 3z21w1

)

z32

= (w1 − z1)
3z32 .

(6.6)
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This is clearly nonzero at some points, so H cannot be a shear. On the other hand,

[

W1(z)∂jV1(z) +W2(z)∂jV2(z)
]

−
[

V1(z)∂jW1(z) + V2(z)∂jW2(z)
]

= 0 (6.7)

holds for j = 1, due to the factor (w1 − z1)
3 in (6.6). By symmetry, we have an expression

analogous to (6.6) if w1 = z1, with the cubic factor being (w2 − z2)
3. So (6.7) holds for

j = 2 as well. Thus, H is a shear Hamiltonian, as claimed in Theorem 1.6.

A straightforward computation shows that the Hamiltonian (6.5) is nondegenerate:
The Hessian H(x) has rank n = 4 whenever z1z2 6= 0. Another noteworthy fact is that the
matrix ζ(x) defined in (2.7) depends on x only via the ratio z1/z2. But the dependence is
nontrivial, so by Lemma 2.7, this shows again that H cannot be a shear Hamiltonian.

7. Elementary factorization

A classical theorem by Jung [1] asserts that the group (under composition) of polynomial
maps of the plane R

2 is generated by affine maps and elementary shears (q, p) 7→ (q +
s(p), p). No general result of this type is known in dimensions higher than 2. Theorem 1.10
covers the special case of symplectic maps F = I +X, with X homogeneous of degree 3.
Its proof is based on the following observation.

Lemma 7.1. Let H0 be a polynomial affine-integrable Hamiltonian of the from (1.4).
Write H0 = H1 +H2, where H1 = Q⊤V (p̄) and H2 = K(p̄) + P⊤W (p̄). Then H1 and H2

Poisson-commute with H3 = 1
2{H1, H2}. Furthermore, H1 and H4 = H2 −H3 are shear

Hamiltonians, and the corresponding time-one maps satisfy

Φ1
H0

= Φ1
H1

◦ Φ1
H4

. (7.1)

Proof. A straightforward calculation yields H3 = 1
2V (p̄)⊤W (p̄). So each of the Hamiltoni-

ans Hj is of the form (1.4). Here, and in what follows, 0 ≤ j ≤ 4. In addition, Hj satisfies
the affine-integrability condition (1.5). Thus, the adjoint map [[Hj ]] : G 7→ {G,Hj} has the

following nilpotency property: If f is any polynomial, then [[Hj ]]
k
f = 0 for sufficiently large

k. Furthermore, Hj commutes with H3, since H3 only depends on the variable p̄, while
Hj is independent of the variable q̄. Thus, by the Baker-Campbell-Hausdorff formula,

et[[H0]]f = et[[H1]]et[[H2]]e−t2[[H3]]f = et[[H1]]et[[H2−tH3]]f , (7.2)

for every polynomial f . To be more precise, (7.2) is an identity for formal power series. But
due to the above-mentioned nilpotency property, only finitely many terms of the series are
nonzero. So (7.2) holds as an identity between polynomials. Using that f ◦Φt

Hj
= et[[Hj ]]f

for any polynomial f , we obtain (7.1) from (7.2).
Let j ≥ 1. Then the vector field Xj = J∇Hj satisfies Xj(x)

⊤JXj(x
′) = 0 for all x

and all x′, as can be seen from (6.4). This shows that Hj is a shear Hamiltonian. QED

Remark 4. The time-one map forH4 is an elementary shear, Φ1
H4

(q, p) = (q+∇h4(p), p),
where h4(p) = H4(p, p). The time-one map for H1 is unitarily conjugate to an elementary
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shear S1(q, p) = (q + ∇h1(p), p). A straightforward computation, similar to the one in
Example 3, shows that h1(p) = H1(p, p).

Proof of Theorem 1.10. Let F be a symplectic map on R
2n such that X = F − I

is a homogeneous polynomial of degree m ≥ 2. First, we prove that X = J∇H for
some affine-integrable Hamiltonian H. The symplecticity condition (1.1) implies that X
satisfies the equation (2.1) for t = 1. In this equation, the terms in square brackets have
to vanish separately, since they have different degrees of homogeneity. The first of the
resulting identities implies that the derivative of JX is a symmetric matrix. Thus, by
the Poincaré Lemma, JX is the gradient of a function −H. The second identity implies
that (DX)2 = 0. Thus, (DX)X = 0, since X(x) = m−1DX(x)x by homogeneity. This
shows that the flow for X is linear in time. In conclusion, F is the time-one map of an
affine-integrable Hamiltonian H that is homogeneous of degree m+ 1.

Consider now m = 3, and assume that X is nondegenerate. By Theorem 1.9, there
exists a linear symplectic map U on R

2n, such that H0 = H ◦U−1 is a Hamiltonian of the
form (1.4). In fact, U is unitary, as seen in Section 4. Using Lemma 7.1, we have

F = Φ1
H = U−1 ◦ Φ1

H0
◦ U = U−1 ◦ Φ1

H1
◦ Φ1

H4
◦ U = Φ1

H1◦U ◦ Φ1
H4◦U , (7.3)

where H1 and H4 (and thus H1 ◦ U and H4 ◦ U) are shear Hamiltonians. QED
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