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Abstract. We consider a generalized Schrödinger operator in L2(R2
) with an

attractive strongly singular interaction of δ′ type characterized by the coupling

parameter β > 0 and supported by a C4-smooth closed curve Γ of length L without

self-intersections. It is shown that in the strong coupling limit, β → 0+, the number of

eigenvalues behaves as 2L
πβ +O(| lnβ|), and furthermore, that the asymptotic behaviour

of the j-th eigenvalue in the same limit is − 4
β2 + µj +O(β| lnβ|), where µj is the j-th

eigenvalue of the Schrödinger operator on L2(0, L) with periodic boundary conditions

and the potential −1
4γ

2 where γ is the signed curvature of Γ.
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1. Introduction

Schrödinger operators with singular interactions supported by manifolds of a lower

dimension have been studied for several decades starting from early works [Ku78, BT92].

In recent years they attracted attention as a model of a quantum particle confined to

sets of nontrivial geometry, a possible alternative to the usual quantum graphs [BK13]

having two advantages over the latter. The first is that they lack the abundance of

free parameters associated with the vertex coupling, the second, physically maybe more

important, is that the confinement is not strict and a certain tunneling between parts of

the graph is allowed. One usually speaks about ‘leaky’ quantum graphs and describes

them by Hamiltonians which can be formally written as −∆− αδ(· − Γ), α > 0, where

Γ is the support of the attractive singular interaction. A discussion of such operators

and a survey of their properties can be found in [Ex08].

One can think of the singular interaction as of a δ potential in the direction

perpendicular to Γ, at least at the points where the manifold supporting the interaction

is smooth. If the codimension of Γ is one, however, there are other singular interactions

which can be considered, a prime example being the one coming from the one-

dimensional δ′ interaction [AGH05], that is, operators which can be formally written

as

H = −∆− β−1δ′(· − Γ) .

The formal expression has to be taken with a substantial grain of salt, of course, because

in contrast to the δ interaction which can be approximated by naturally scaled regular

potentials, the problem of approximating δ′ is considerably more complicated — see

[Še86, CS98, ENZ01] and also [CAZ03+, GH10]. What is important for our present

purpose, however, is that irrespective of the meaning of such an interaction, there

is a mathematically sound way how to define the above operator through boundary

conditions, and moreover, one can also specify it using the associated quadratic form

[BLL13].

Apart from the definition, one is naturally interested in spectral properties of such

operators, in particular, in relation to the geometry of Γ. In the case of δ-type singular

interaction we know, for instance, that Γ in the form of broken or bent line gives rise

to a nontrivial discrete spectrum [EI01] and a similar result can be proven also for the

δ′-interaction [BEL13]. In this paper we want demonstrate another manifestation of the

relation between eigenvalues of H and the shape of Γ. It is inspired by the paper [EY02]

in which it was shown how the eigenvalues coming from a δ interaction supported by a

C4 Jordan curve Γ behave in the strong-coupling regime, α → ∞, namely that after a

renormalization consisting of subtracting the Γ-independent divergent term they are in

the leading order given by the respective eigenvalue of a one-dimensional Schrödinger

operator with a potential determined by the curvature of Γ.

Here we are going to show that in the δ′ case, where the strong coupling limit is

β → 0+, we have an analogous result, namely that the asymptotic expansion of the

eigenvalues starts from a Γ-independent divergent term followed by the appropriate
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eigenvalues of a one-dimensional Schrödinger operator, the same one as in the δ case.

We will be also able to derive an asymptotic expression for the number of eigenvalues

dominated by a natural Weyl-type term. In the next section we state the problem

properly and formulate the indicated results, the next two sections are devoted to the

proofs. The technique is similar to that of [EY02], however, the argument is slightly

more complicated because the present form of the associate quadratic form does allow

one to estimate the operator in question by operators with separated variables. In

conclusion we shall comment briefly on possible extensions of the results.

2. Formulation of the problem and main results

We consider a closed curve Γ without self-intersections, conventionally parameterized

by its arc length,

Γ : [0, L] → R2 , s 7→ (Γ1(s),Γ2(s)) ,

with the component functions Γ1,Γ2 ∈ C4(R). The operator, we are interested in, can

acts as the Laplacian outside the interaction support,

(Hβψ)(x) = −(∆ψ)(x)

for x ∈ R2 \ Γ, and its domain is D(Hβ) = {ψ ∈ H2(R2 \ Γ) | ∂nΓ
ψ(x) = ∂−nΓ

ψ(x) =

ψ′(x)|Γ, −βψ′(x)|Γ = ψ(x)|∂+Γ−ψ(x)|∂−Γ}, where nΓ is the normal to Γ, for definiteness

supposed to be the outer one, and ψ(x)|∂±Γ are the appropriate traces of the function

ψ. The quadratic form associated with this operator is well known [BLL13, Prop. 3.15].

In order to write it, we employ the locally orthogonal curvilinear coordinates (s, u) in

the vicinity of the curve introduced in relation (3.1) below. With an abuse of notation

we write the value of a function ψ ∈ C(R2) ∩H1(R2 \ Γ) as ψ(s, u); then we have

hβ[ψ] = ∥∇ψ∥2 − β−1
∫
Γ
|ψ(s, 0+)− ψ(s, 0−)|2 ds .

To state our main theorem we introduce the following operator,

S = − ∂2

∂s2
− 1

4
γ(s)2 , (2.1)

where γ denotes the signed curvature of the loop, γ(s) := (Γ′′
1Γ

′
2−Γ′

1Γ
′′
2)(s). The domain

of this operator is D(S) = {ψ ∈ H2(0, L) | ψ(0) = ψ(L), ψ′(0) = ψ′(L)}. We denote by

µj the j-th eigenvalue of S with the multiplicity taken into account.

Theorem 2.1. One has σess(Hβ) = [0,∞) and to any n ∈ N there is a βn > 0 such that

#σdisc(Hβ) ≥ n holds for β ∈ (0, βn) .

For any such β we denote by λj(β) the j-th eigenvalue of Hβ, again counted with its

multiplicity. Then the asymptotic expansions

λj(β) = − 4

β2
+ µj +O(β| ln β|) , j = 1, . . . , n ,

are valid in the limit β → 0+.
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Theorem 2.2. The counting function β 7→ #σdisc(Hβ) admits the asymptotic expansion

#σdisc(Hβ) =
2L

πβ
+O(| ln β|) as β → 0+ .

3. Proof of Theorem 2.1

The essential spectrum of Hβ is found in [BLL13, Thm. 3.16]. To prove the claim about

the discrete one we need first a few auxiliary results. To begin with, we introduce locally

orthogonal curvilinear coordinates s and u which allow us to write points (x, y) in the

vicinity of the curve as

(x, y) = (Γ1(s) + uΓ′
2(s),Γ2(s)− uΓ′

1(s)) . (3.1)

Since Γ is supposed to be a C4 smooth closed Jordan curve, it is not difficult to establish

that the map (3.1) is injective for all u small enough; for a detailed proof see [EY02].

We choose a strip neighbourhood Ωa := {x ∈ R2 : dist (x,Γ) < a} of Γ with a small

enough to ensure the injectivity and use bracketing to get a two-sided estimate of the

operator Hβ by imposing Dirichlet and Neumann condition at the boundary of Ωa, i.e.

HN(β) ≤ Hβ ≤ HD(β) , (3.2)

where both the estimating operators correspond to the same differential expression

and D(HN(β)) = {ψ ∈ D(Hβ) | ∂u+ψ(s, a) = ∂u−ψ(s,−a) = 0} while the other is

D(HD(β)) = {ψ ∈ D(Hβ) | ψ(s, a) = ψ(s,−a) = 0}. The operators HD(β) and HN(β)

are obviously direct sums of operators corresponding to the parts of the plane separated

by the boundary conditions, and since their parts referring to R2 \ Ωa are positive, we

can neglect them when considering the discrete spectrum. The parts of HN(β) and

HD(β) referring to the strip Ωa are associated with the following quadratic forms,

hN,β[f ] = ∥∇f∥2 − β−1
∫
Γ
|f(s, 0+)− f(s, 0−)|2 ds ,

hD,β[g] = ∥∇g∥2 − β−1
∫
Γ
|g(s, 0+)− g(s, 0−)|2 ds ,

respectively, the former being defined on H1(Ωa \Γ), the latter on H1
0 (Ωa \Γ). Our first

task is to rewrite these forms in terms of the curvilinear coordinates s and u.

Lemma 3.1. Quadratic forms hN,β, hD,β are unitarily equivalent to quadratic forms

qN,β and qD,β which can be written as

qD[f ] = ∥∂sf
g

∥2 + ∥∂uf∥2 + (f, V f)− β−1
∫ L

0
|f(s, 0+)− f(s, 0−)|2 ds

+
1

2

∫ L

0
γ(s)(|f(s, 0+)|2 − |f(s, 0−)|2) ds

qN [g] = qD[g]−
∫ L

0

γ(s)

2(1 + aγ(s))
|f(s, a)|2 ds+

∫ L

0

γ(s)

2(1− aγ(s))
|f(s,−a)|2 ds

defined on H1
0 ((0, L)× ((−a, 0)∪ (0, a))) and H1((0, L)× ((−a, 0)∪ (0, a))), respectively,

with periodic boundary conditions in the variable s. The geometrically induced potential

in these formulæ is given by V = uγ′′

2g3
− 5(uγ′)2

4g4
− γ2

4g2
with g(s) := 1 + uγ(s).
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Proof. Using the conventional shorthands, ∂s =
∂
∂s

etc., we express ∂s and ∂u as linear

combinations of ∂1 and ∂2 with the coefficients ∂sx1 = Γ′
1 + uΓ′′

2, ∂sx2 = Γ′
2 − uΓ′′

1,

∂ux1 = Γ′
2, and ∂ux2 = −Γ′

1. Inverting these relations we get

∂1 = g−1(− Γ′
1∂s − (Γ′

2 − uΓ′′
1)∂u) , ∂2 = g−1(− Γ′

2∂s + (Γ′
1 + uΓ′′

2)∂u) ,

where g = (Γ′
1+uΓ

′′
2)Γ

′
1+(Γ′

2−uΓ′′
1)Γ

′
2 = Γ′′

2Γ
′
1−Γ′

2Γ
′′
1 = 1+uγ because Γ′2

1 +Γ′2
2 = 1 holds

by assumption. The last relation gives Γ′2
1 +Γ′2

2 = 1 which in turn implies γ2 = Γ′′2
1 +Γ′′2

2 .

Using these identities we can check by a direct computation that

qj,β[Uf ] = hj,β[f ]

with (Uf)(s, u) :=
√
1 + uγ(s) f(x1(s, u), x2(s, u)) holds for j = D,N and all functions

f ∈ D(hi,β), which proves the claim.

The forms qN,β and qD,β are still not easy to handle and we are going to replace the

estimate (3.2) by a cruder one in terms of following forms associated with operators. As

for the upper bound, we introduce the quadratic form q+a,β acting as

q+a,β[f ] = ∥∂uf∥2 + (1− aγ+)
−2∥∂sf∥2 + (f, V (+)f)

− β−1
∫ l

0
|f(s, 0+)− f(s, 0−)|2ds+

1

2

∫ l

0
γ(s)(|f(s, 0+)|2 − |f(s, 0−)|2) ds

where V (+) :=
aγ′′

+

2(1−aγ+)3
− γ2

4(1+aγ+)2
with γ′′+ := (γ′′)+ and the positive (negative) part

given by the standard convention, f± := 1
2
(|f | ± f); we have neglected here the non-

positive term −5
4
(uγ′)2g−4. In contrast to the argument used in the δ interaction case

[EY02] the operator Q+
a,β associated with this form does not have separated variables,

however, one can write it as Q+
a,β = U+

a ⊗ I +
∫⊕
[0,L) T

+
a,β(s) ds and we are going to show

that the spectrum of second part associated with the form

t+a,β(s)[f ] := ∥f ′∥2 − 1

β
|f(0+)− f(0−)|2 +

1

2
γ(s)(|f(s, 0+)|2 − |f(s, 0−)|2)

is independent of s. The operator itself acts as T+
a,β(s)f = −f ′′ with the domain

D(T+
a,β(s)) = {f ∈ H2((−a, a) \ {0}) | f(a) = f(−a) = 0 ,

f ′(0−) = f ′(0+) = −β−1(f(0+)− f(0−)) +
1

2
γ(s)(f(0+) + f(0−))}

Lemma 3.2. The operators T+
a,β(s) has exactly one negative eigenvalue t+ = −κ2+

provided a
β
> 2 which is independent of s and such that

κ+ =
2

β
− 4

β
e−4a/β +O(β−1e−8a/β) holds as β → 0 .

Proof. An eigenfunction corresponding to the eigenvalue−κ2 and obeying the conditions

f(±a) = 0 and f ′(0−) = f ′(0+) is, up to a multiplicative constant, equal to sinh(κ(x∓a))
for ±x ∈ (0, a). The function is odd, hence f(0−) = −f(0+) and the s-dependent term

does not influence the eigenvalue; the spectral condition is easily seen to be

κ =
2

β
tanh(κa) . (3.3)
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We are interested in the asymptotic behaviour of the solution as β → 0+. Let us rewrite

the condition as β = 2
κ
tanh(κa); since the right-hand side is monotonous as a function

of κ it is clear that there is at most one eigenvalue and that this happens if β < 2a.

Furthermore, the right-hand side is less that 2
κ
which means that κ < 2β−1 and the

inequality turns to equality as β → 0 and κ→ ∞. Next we employ Taylor expansion

2

β
tanh(κa) =

2

β

(
1− 2e−2κa + 2e−4κa +O(e−6κa)

)
,

and since κ→ 2
β
as β → 0, relation (3.3) yields the sought result.

Next we estimate in a similar fashion the operator with Neumann boundary

condition which we need to get a lower bound. To this aim we employ the quadratic

form q−a,β defined as

q−a,β[f ] = ∥∂uf∥2 + (1 + aγ+)
−2∥∂sf∥2 + (f, V (−)f)

− β−1
∫ l

0
|f(s, 0+)− f(s, 0−)|2 ds−

1

2

∫ l

0
γ(s)(|f(s, 0+)|2 − |f(s, 0−)|2) ds

− γ+

∫ l

0
|f(s, a)|2 ds− γ+

∫ l

0
|f(s,−a)|2 ds

where V (−) = − aγ′′
+

2(1−aγ+)3
− 5(aγ′

+)2

4(1−aγ+)4
− γ2

4(1−aγ+)2
. As in the previous case, the operator

associated with the quadratic form can be written as Q−
a,β = U−

a ⊗ I +
∫⊕
[0,L) T

−
a,β(s) ds,

where the operator T−
a,β(s) referring to the transverse variable acts for any s ∈ [0, L) as

T−
a,β(s)f = −f ′′ with the domain

D(T−
a,β(s)) = {f ∈ H2((−a, a) \ {0}) | ∓γ+f(±a) = f ′(±a) , (3.4)

f ′(0−) = f ′(0+) = −β−1(f(0+)− f(0−)) +
1

2
γ(s)(f(0+) + f(0−))}

We are going to estimate the spectrum of T−
a,β(s) and to check its independence of s.

Lemma 3.3. The operator T−
a,β(s) has exactly one negative eigenvalue t− = −κ2− as

long as 2
β
> γ+; it is independent of s and for β → 0 we have

κ− =
2

β
+

4

β

2− βγ+
2 + βγ+

e−4a/β +O

− 4

β

(
2− βγ+
2 + βγ+

)2

e−8a/β

 .

Proof. The function satisfying f ′′(x) = κ2f(x) for x ̸= 0 together with the boundary

conditions ∓γ+f(±a) = f ′(±a), which has its derivative continuous at x = 0, is of the

form

f(x) =

 A eκx +B e−κx if x ∈ (−a, 0)
C eκx +D e−κx if x ∈ (0, a)

The constant A is arbitrary, while for the others the requirements imply B = AZ e−2κa

with Z := κ−γ+
κ+γ+

and D = −A, C = −B. The remaining property from (3.4) leads to

κ(A−B) =
1

β
(A+B − C −D) +

1

2
γ(s) (A+B + C +D) ,
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and since the last term vanishes we can rewrite the spectral condition as

κ =
2

β

1 + Z e−2κa

1− Z e−2κa
.

As before we are interested in the regime β → 0+. Note that as long as Z > 0 we have

κ > 2β−1, hence κ is large and ξ = Z e−2κa is small and the expansion

κ =
2

β

1 + ξ

1− ξ
=

2

β
(1 + ξ)(1 + ξ + ξ2 +O(ξ3))

yields the stated behaviour of κ as β → 0+. The assumption Z > 0 is satisfied for

2β−1 > γ+, and the uniqueness of the eigenvalue is a consequence of the above spectral

condition and the monotonicity of the function κ 7→ 1
κ

1+Z e−2κa

1−Z e−2κa .

Next we estimate the eigenvalues of the operators U+
a and U−

a referring to the

longitudinal variable s in a way similar to [EY02].

Lemma 3.4. There is a positive C independent of a and j such that

|µ±
j (a)− µj| ≤ Caj2

holds for j ∈ N and 0 < a < 1
2γ+

, where µ±
j (a) are the eigenvalues of U±

a , respectively,

with the multiplicity taken into account.

Proof. We employ the operator S0 = −∂2s with the periodic boundary conditions, i.e.

the domain D(S0) = {f ∈ L2((0, L)) | f(0) = f(L), f ′(0) = f ′(L)}; its eigenvalues,

counting multiplicity, are 4
[
j
2

]2
π2

L2 , j = 1, 2, . . . , where [·] denotes as usual the entire

part. Its difference from our comparison operator (2.1) on L2(0, L) is easily estimated,

∥S − S0∥ ≤ 1

4
γ2+ ,

and consequently, by min-max principle we have∣∣∣∣∣µj − 4
[
j

2

]2 π2

l2

∣∣∣∣∣ ≤ 1

4
γ2+ (3.5)

for j ∈ N. Next we can use another simple estimate,

U+
a − 1

(1− aγ+)2
S =

aγ′′+
2(1− aγ+)3

− γ2

4(1 + aγ+)2
+

γ2

4(1− aγ+)2
,

and since the last two terms equal aγ+γ
2(1− a2γ2+)

−2, we infer that∣∣∣∣∣µ+
j − µj

(1− aγ+)2

∣∣∣∣∣ ≤ c0a (3.6)

holds for some c0 > 0 and any j ∈ N. Combining now (3.5) and (3.6) we get

|µ+
j − µj| ≤

∣∣∣∣∣µ+
j − µj

(1− aγ+)2

∣∣∣∣∣+ |µj| ·
∣∣∣∣∣1− (1− aγ+)

2

(1− aγ+)2

∣∣∣∣∣
≤ c0a+ c1a|µj| ≤ Caj2
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with suitable constants. The second inequality is checked in a similar way: we use

U−
a − 1

(1 + aγ+)2
S = −

aγ′′+
2(1− aγ+)3

−
5a2(γ′+)

2

4(1− aγ+)4
− aγ+

(1− aγ+)2(1 + aγ+)2
γ2

which implies ∣∣∣∣∣U−
a − 1

(1 + aγ+)2
S

∣∣∣∣∣ ≤ c0a+ c1a
2 ≤ c2a ,

where in the second inequality we employed the fact that a is bounded. With help of

min-max principle we then get∣∣∣∣∣µ−
j − µj

(1 + aγ+)2

∣∣∣∣∣ ≤ c2a

hence finally we arrive at the inequality

|µ−
j − µj| ≤ c2a+ |µj|

∣∣∣∣∣1− (1 + aγ+)
2

(1 + aγ+)2

∣∣∣∣∣ ≤ c2a+ c3a|µj| ≤ Caj2

valid for a suitable C which completes the proof.

Now we are ready to prove our first main result:

We define a(β) = −3
4
β ln β and denote the eigenvalues of the operators T±

a(β),β as tj±,β,

respectively, their multiplicities being taken into account. From Lemmata 3.2 and 3.3

we know that t1±,β = t± for β small enough, while tj±,β ≥ 0 holds for j > 1. Collecting

the estimates worked out above we have

Q−
a(β),β = U−

a(β) ⊗ I +
∫ ⊕

(0,L)
T−
a(β),β(s)Ds ≤ HN(β) ≤ Hβ

≤ U+
a(β) ⊗ I +

∫ ⊕

(0,L)
T+
a(β),β(s) ds = Q+

a(β),β (3.7)

and the eigenvalues of the operators Q±
a(β),β between which we squeeze our singular

Schrödinger operator Hβ are naturally tk±,β +µ±
j (a(β)) with k, j ∈ N. Those with k ≥ 2

and j ∈ N are uniformly bounded from below in view of the inequality

tk±,β + µ±
j (a(β)) ≥ µ±

1 (a(β)) = µ1 +O(−β ln(β)) , (3.8)

hence we can focus on k = 1 only. For j ∈ N we denote

ωj
±,β = t1±,β + µ±

j (a(β))

With our choice of a(β) we have e−4κa = β3 so from the above lemmata we get

κ± = 2
β
+O(β) and µ±

j (a(β)) differ from µj by O(−βj2| ln β|); putting these estimates

together we can conclude that

ωj
±,β = − 4

β2
+ µj +O(−β ln β) as β → 0+ (3.9)

with the error term in general dependent on j. Combining (3.8) and (3.9) we can

conclude that to any n ∈ N there is a β(n) > 0 such that

ωn
+,β ≤ 0 , ωn

+,β < tk+,β + µ+
j (a(β)) and ωn

−,β < tk−,β + µ−
j (a(β))
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holds for β ≤ β(n), k ≥ 2, and j ≥ 1. Hence j-th eigenvalue of Q±
a(β),β, counting

multiplicity, is ωj
±,β for all j ≤ n and β ≤ β(n). Furthermore, for β ≤ β(n) we denote

ξj+(β) and ξ
j
−(β) the j-th eigenvalue of HD(β) and HN(β), respectively; then from (3.7)

and the min-max principle we obtain

ωn
−,β ≤ ξj−(β) ξj+(β) ≤ ωn

+,β

for j = 1, 2, . . . , n , which in particular implies ξn+(β) < 0. Using the min-max principle

once again we conclude that Hβ has at least n eigenvalues in the interval (−∞, ξn+(β))

and for any 1 ≤ j ≤ n we have ξj−(β) ≤ λj ≤ ξj+(β) which completes the proof.

4. Proof of Theorem 2.2

For a self-adjoint operator A with inf σess(A) = 0 we put N−(A) := #{σd(A)∩(−∞, 0)}.
In view of (3.7) the eigenvalue number of Hβ can be estimated as

N−(Q−
a,β) ≤ N−(HNβ) ≤ #σd(Hβ) ≤ N−(HD(β)) ≤ N−(Q+

a,β) (4.1)

In order to use this estimate we define

K±
β = {j ∈ N| ωj

±,β < 0}

and derive the following asymptotic expansions of these quantities.

Lemma 4.1. In the strong coupling limit, β → 0+, we have

#K±
β =

2L

πβ
+O(| ln β|) . (4.2)

Proof. We choose K such that β−1 > K > 0 and (β−1 − K)2 < β−2 − 4β − 16−1γ2+.

With the preceding proof in mind we can write

K+
β = {j ∈ N | t1+,β + µ+

j (a(β)) < 0} .

Lemma 3.2 allows us to make the following estimate,

K+
β ⊃

{
j ∈ N | µj + Ca(β)j2 <

4

β2
− 16

β2
e−4a(β)/β =

4

β2
− 16β

}
;

using further (3.5) and the indicated choice of K we infer that

K+
β ⊃

{
j ∈ N

∣∣∣ 4 [j
2

]2 π2

L2
+ Ca(β)j2 <

4

β2
− 16β − 1

4
γ2+

}

⊃

j ∈ N
∣∣∣ j2 π2

L2
− 3

4
C β ln β j2 < 4

(
1

β
−K

)2


⊃

j ∈ N
∣∣∣ j < 2

(
1

β
−K

)(
π2

L2
− 3

4
Cβ ln β

)−1/2
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We employ the Taylor expansion (M + x)−1/2 = M−1/2 − 1
2
xM−3/2 + O(x2); since we

are interested in the asymptotics β → 0+, we rewrite the right-hand side of the last

inequality as

2

(
1

β
−K

)(
π2

L2
− 3

4
C ln β

)− 1
2

≃ 2

(
1

β
−K

)[
L

π
+

3

8
C β ln β

(
L

π

)3
]
,

which allows us to infer that

#K+
β ≥ 2L

πβ
+O(| ln β|) (4.3)

holds as β → 0+. In a similar way we estimate #K−
β . First we choose a number K ′

satisfying 0 < K ′ < (4β +
γ2
+

16
)1/2 and note that 1

β2 + 4β +
γ2
+

16
<
(
1
β
+K ′

)2
. Then we

have

K−
β =

{
j ∈ N | t1−,β + µ−

j (a(β)) < 0
}

⊂
{
j ∈ N

∣∣∣ µj − Ca(β)j2 <
4

β2
+

16

β2

2− βγ+
2 + βγ+

e−4a(β)/β

}

⊂
{
j ∈ N

∣∣∣ µj +
3

4
Cβ ln β j2 <

4

β2
+ 16β

2− βγ+
2 + βγ+

}
With help of the fact that 2(j − 1) ≥ j for j > 1 we further have

K−
β ⊂ {1} ∪

j ≥ 2
∣∣∣ ((j − 1)π

L

)2

+
3

4
Cβ ln β (j − 1)2 <

4

β2
+ 16β +

γ2+
4


⊂ {1} ∪

j ≥ 2
∣∣∣ (j − 1)2 <

(
4

β2
+ 16β +

γ2+
4

)((
π

L

)2

+
3

4
Cβ ln β

)−1


⊂ {1} ∪

j ≥ 2
∣∣∣ j < 1 + 2

(
1

β
+K ′

)((
π

L

)2

+
3

4
Cβ ln β

)−1/2


Now we can estimate the expression on the right-hand side of the last inequality in the

asymptotic regime β → 0+ as

2

(
1

β
+K ′

)((
π

L

)2

+
3

4
Cβ ln β

)− 1
2

≃ 2L

πβ
+O(| ln β|) .

In combination with the above inclusions this leads to

#K−
β ≤ 2l

πβ
+O(| ln β|) (4.4)

as β → 0+. Finally, we know that t1+,β < t1−,β which implies K+
β ⊂ K−

β , and this together

with (4.3) and (4.4) concludes the proof.

We also need to estimate the second eigenvalue of the operators T−
a(β),β(s).

Lemma 4.2. T−
a,β(s) with a fixed s ∈ [0, L) has no eigenvalues in

[
0,min

{
γ+
2a
, ( π

4a
)2
})

provided 0 < β < 2a.
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Proof. Let us check first that zero is not an eigenvalue. The corresponding eigenfunction

should have to be linear and the conditions ∓γ+f(±a) = f ′(±a) and f ′(0−) = f ′(0+)

would require f(x) = ±A(∓γ+x + 1 + γ+a) for ±x ∈ (0, a), and as in Lemma 3.3 the

spectral condition would read −γ+ = 2
β
(1 + γ+a) which cannot be true because the

right-hand side is positive. Furthermore, the spectral condition for an eigenvalue k2 > 0

is found again as in Lemma 3.3; after s simple calculation we find that it reads

1

2
β =

1

k

γ+ tan ka+ k

γ+ − k tan ka

The right-hand side can be estimated by 1+γ+a
γ+−k2a

provided that ka < π
2
and at the same

time γ+ − k tan ka > 0; finding the value for which this expression equals 1
2
β we would

obviously get a lower bound to k. Rewriting the condition as

−ka2 = (1 + γ+a)
2

β
− γ+

we see that the left-hand side is negative while the right-hand side is positive under

our assumption, hence one has to ask about the restriction coming from the condition

γ+ − k tan ka > 0. In particular, for ka < 1
4
π this is true provided γ+− 2k2a > 0, which

means that the spectral problem has no solution is k2 is smaller either than γ+
2a

or
(

π
4a

)2
which concludes the argument.

Now we are ready to prove our second main result:

We begin by showing that the relation

N−(Q−
a(β),β) = #K−

β (4.5)

holds for any sufficiently small β > 0. We know that all the eigenvalues of Q−
a(β),β can

be written as {tj−,β +µ
−
k (a(β))}j,k∈N with the multiplicity taken into account. From the

previous lemma we have t2−,β > min
{

γ+
2a
,
(

π
4a

)2}
which together with |µ−

j (a)−µj| ≤ Caj2

implies existence of a β0 such that

tk−,β + µ−
j (a(β)) > 0

holds for j > 1, k ≥ 1, and β ∈ (0, β0). This implies

N−(Q−
a(β),β) = #{(k, j) ∈ N2 | tk−,β + µ−

j (a(β)) < 0}

= #{j ∈ N | t1−,β + µ−
j (a(β)) < 0} =: K−

β ,

i.e. the relation (4.5); combining it with (4.1) we obtain

#K+
β ≤ #σd(Hβ) ≤ N−(Q−

a,β) = #K−
β

which by virtue of Lemma 4.1 concludes the proof.
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5. Concluding remarks

We have seen that, despite very different eigenfunctions, the δ′ ‘leaky loops’ behave in

the strong-coupling regime similarly to their δ counterparts: the number of negative

eigenvalues is given in the leading order by a Weyl-type term, and the eigenvalues

themselves are after a natural renormalization determined by the one-dimensional

Schrödinger operator with the known curvature-induced potential.

The question is whether and how the current results can be extended. The

bracketing technique we used would work for infinite smooth curves Γ without ends

provided we impose suitable regularity assumptions. If, on the other hand, the curve

is finite or semi-infinite the situation becomes more complicated because one has to

impose appropriate boundary conditions at the endpoints of the interval on which the

comparison operator (2.1) is defined. One can modify the present argument to get an

estimate on the number of eigenvalues because there those boundary conditions play

no role, the counting functions in the Dirichlet and Neumann case differing by an O(1)

term. For an eigenvalue position estimate, on the other hand, this is not sufficient

and one conjectures that the Dirichlet comparison operator has to be used. For a

two-dimensional open arc Γ supporting a δ interaction this conjecture has been proved

recently [EP12]; the argument is more complicated because one cannot use operators

with separating variables. We believe that the same method could work in the δ′ case

too, however, the question is not simple and we postpone discussing it to another paper.

On the other hand, finding the asymptotics in the case when Γ is not smooth, or

even has branching points, represents a much harder problem and the answer is not

known even in the δ case, although some inspiration can be found in squeezing limits of

Dirichlet tubes — see, e.g., [CE07].
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