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1. Main results

We study the absolutely continuous spectrum of a Schrödinger operator

(1) H = −∆ + V + V+ + αV0,

acting in the space L2(Rd). Here, V , V+ and V0 are real valued potentials; α is a real parameter.

Definition. We say that the absolutely continuous spectrum of the operator H is essentially sup-
ported by a set containing [0,∞), if the spectral projection E(Ω) of H corresponding to any set
Ω ⊂ [0,∞) is different from zero E(Ω) 6= 0 as soon as the Lebesgue measure of Ω is positive.

While the potential V0 is a function of x ∈ Rd, we shall also study the dependence of V0 on the
spherical coordinates r = |x| and θ = x/|x|. Therefore, sometimes the value of V0 at x ∈ Rd will be
denoted by V0(r, θ). Even less often the radial variable will be denoted by ρ. Let

(2) W0(r, θ) =

∫ r

0
V0(ρ, θ)dρ, ∀r > 0.

Assume that W0 belongs to the space H1
loc(Rd) of functions having (generalized) locally square inte-

grable derivatives. Suppose that

(3)

∫
Rd

|∇W0|2

|x|d−1
dx <∞.

Note that in d = 1, condition (3) turns into

(4)

∫
R
|V0|2dx <∞.

Operators with such potentials were studied in the work of Deift and Killip [3], the main result of
which states that absolutely continuous spectrum of the operator −d2/dx2 + V0 covers the positive
half-line [0,∞), if V0 satisfies (4).

While V and V0 are assumed to be bounded

V ∈ L∞(Rd), V0 ∈ L∞(Rd),

the potential V+ ≥ 0 does not have to be bounded on Rd globally:

V+ ∈ L∞loc(Rd).
Nevertheless, we would like to have some control on the behavior of the function V+ at the infinity, so
we impose the condition

(5) lim
|x|→∞

V+(x)

exp(ε|x|)
= 0, ∀ε > 0.
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We shall also suppose that

(6)

∫
Rd

V+

|x|d−1
dx <∞.

The function V will be oscillating, because we shall assume that there exists a vector potential Q :
Rd → Rd, such that

(7) V = |x|(d−1)/2divQ, and Q ∈ L2(Rd).

The next condition shows clearly that our assumptions about V and V+ are not independent:

(8) V+ ≥ τ
(
|x|d−1|Q|2 +

(d− 1)

2
|x|(d−3)/2|Q|

)
, for some τ > 1,

which implies, in particular, that Q is locally bounded in the region Rd \ {0}.
Our main result is the following

Theorem 1.1. Let V and V+ obey conditions (5)-(8). Let V0 be a real potential satisfying conditions
(2) and (3). Then the absolutely continuous spectrum of the operator (1) is essentially supported by a
set containing [0,∞) for almost every α ∈ R.

Since the potential V+ might be unbounded, the operator H can not be defined as the sum of
two operators −∆ and V + V+ + αV0. Instead of that, one defines H as the self-adjoint operator
corresponding to the quadratic form

h[u] =

∫
Rd

|∇u|2 dx+

∫
Rd

(
V (x) + V+(x) + αV0

)
|u|2 dx.

The domain d(h) of this quadratic form consists of all H1-functions for which the integral∫
Rd

V+(x)|u|2 dx <∞

is finite. The quadratic form h generates the sesquilinear form (which is denoted by the same symbol):

h[u, v] =
1

4

(
h[u+ v]− h[u− v] + i(h[u+ iv]− h[u− iv])

)
.

Obviously, h[u] = h[u, u].
According to the general theory of self-adjoint operators, a function u ∈ d(h) belongs to the domain

of H, if and only if there exists w ∈ L2(Rd) such that

h[u, v] = (w, v)

for all v from the domain of the quadratic form. Moreover, in this case, Hu = w.
The potentials for which the presence of the a.c. spectrum is already established can be conditionally

divided in the three groups. These three groups correspond to our choice of the functions V , V+ and
V0. Functions of the form V can be called oscillating functions. Such potentials are studied in the
paper [8], which suggested the idea to study the a.c. spectrum of operator families for the first time.
Potentials of the form V0 were studied in [22]. Finally, conditions that are imposed on V+ were first
introduced in [11]. In the present paper, we interpolate between the three separate cases. The main
technical difficulty appearing on our way is that the dependence of the spectral measure of the operator
H on the potential is not linear.

One of the reasons why such an interpolation might be important is the following. Let Ω be a
bounded smooth domain in Rd−1. Suppose that

V ∈ L2
(

Ω× R
)
∩ L∞

(
Ω× R

)
, V = V .
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Then V is representable as a sum of two real-valued bounded functions

V = V1 + V2,

such that V2 ∈ L2 depends only on the last variable and V1 = divQ with Q ∈ L2
(

Ω×R
)

. Therefore,

potentials of the form V1 + αV2 are similar to potentials considered in Theorem 1.1. This might be
helpful in understanding of the structure of the a.c. spectrum of a Schrödinger operator on the strip
Ω× R.

Remark. We do not claim in Theorem 1.1, that the essential support of the absolutely continuous
spectrum is [0,∞), because of the following reason. One could easily construct a potential V satisfying∫

Rd

V 2

|x|d−1
dx <∞, d ≥ 3,

and such that the a.c. spectrum of −∆ + V is [−1,∞).

In fact, this construction is very simple. Let Γ ⊂ Rd be the straight line {x : x = te, t ∈ R},
where e is a fixed non-zero vector. Define V setting

V (x) =

{
−A, if dist {x, Γ} < 1

0, otherwise.

Now choose A > 0 so that the bottom of the spectrum of the operator −∆ +V is −1. This is a model
where the variables can be separated. The corresponding waves propagate in direction of the vector e
and are therefore not spherically symmetric.

We conclude this section by giving an interesting example of applicaion of Theorem 1.1. Let φ
be a smooth compactly supported real function on Rd. Let ωn be bounded independent identically
distributed random variables, n ∈ Zd. Assume that all odd moments of the random variables are equal
to zero:

E
[
ω2j+1
n

]
= 0, for all j ∈ N = {0, 1, 2, . . . }.

Set now

(9) V (x) = (1 + |x|)−1/2−ε
∑
n∈Zd

ωnφ(x− n), ε > 0,

and define V+ by

(10) V+(x) =
1

(1 + |x|)(1 + log+ |x|)p
, p > 1.

Theorem 1.2. Let V and V+ be defined by (9) and (10). Let V0 be a real bounded potential such that
W0 in (2) obeys (3). Then for almost every choice of ωn, the a.c. spectrum of H = −∆+V +V+ +αV0

is essentially supported by a set containing the positive half-line [0,∞) for almost every α.

Proof. Representation (7) with Q satisfying

|Q(x)| ≤ C

(1 + |x|)1/2+ε1
, ε1 > 0,

was established in [6]. Even though, the constant C in this bound depends on the choice of random
variables, we still have (8) outside of a large ball {x : |x| > R}. The radius of this ball depends on
ωn as well. However, once it is finite, we can remove a compactly supported part of V so that (8) will
hold everywhere. In order to complete the proof, it is enough to notice that the latter operation does
not change the absolutely continuous spectrum (see Proposition 5.1). �
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Notations. Throughout the text, Re z and Im z denote the real and imaginary parts of a complex
number z. The notation S stands for the unit sphere in Rd. Its area is denoted by |S|.

2. Entropy

Let µ be a positive finite Borel measure on the real line R. As any other measure it is decomposed
uniquely into a sum of three terms

µ = µpp + µac + µsc,

where the first term is pure point, the second term is absolutely continuous and the last term is a
continuous but singular measure on R. Obviously, µ(−∞, λ) is a monotone function of λ, therefore,
it is differentiable almost everywhere. In particular, the limit

µ′(λ) = lim
ε→0

µ(λ− ε, λ+ ε)

2ε

exists for almost every λ ∈ R. It is also clear that

µac(Ω) =

∫
Ω
µ′(λ) dλ, ∀Ω ⊂ R,

which means µ′ = µ′ac.
Let Ω0 = {λ : µ′(λ) > 0} A measurable set Ω ⊂ R is called an essetial support of µac, if the

Lebesgue measure of the symmetric difference

Ω04Ω :=
(

Ω0 \ Ω
)
∪
(

Ω \ Ω0

)
is zero. So, an essential support of µac coincides with the set where µ′ > 0 up to a set of measure zero.
As we see, the study of the essential support of the a.c. part of the measure µ is reduced to the study
of the set Ω0 = {λ : µ′(λ) > 0}. Let Ω be a measurable set. One of the ways to show that µ′(λ) > 0
for almost every λ ∈ Ω relies on the study of the quantity

SΩ(µ) :=

∫
Ω

logµ′(λ) dλ.

Due to Jenssen’s inequality, SΩ < ∞, if |Ω| < ∞. So, the entropy can diverge only to the negative
infinity.

But if |Ω| <∞ and

SΩ(µ) > −∞,
then

µ′(λ) > 0, a.e. on Ω.

Very often one can obtain an estimate for µ′ by an analytic function from below. In this case we
will use the following statement

Proposition 2.1. Let a function F (λ) 6= 0 be analytic in the neighborhood of an interval [a, b] ⊂ R.
Suppose that

(11) µ′(λ) > c0|F (λ)|2, for all λ ∈ Ω ⊂ [a, b].

Then

SΩ(µ) :=

∫
Ω

logµ′(λ) dλ ≥ C > −∞,

where the constant C = C(c0, F,Ω) depends on c0, F and Ω.
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The proof is left to the reader as an exercise. We only mention that zeros of an analytic function
are always isolated zeros of a finite order.

In applications to Schrödinger operators, one often has an estimate of the form (11) for a sequence
of measures µn that converges to µ weakly

µn → µ (weakly).

In this situation, one can still derive a certain information about the limit measure µ from the infor-
mation about µn.

Definition. Let ρ, ν be finite Borel measures on a compact Hausdorff space, X. We define the
entropy of ρ relative to ν by

(12) S(ρ|ν) =

{
−∞, if ρ is not ν−ac

−
∫
X log( dρdν )dρ, if ρ is ν−ac.

Theorem 2.1. (cf.[10]) The entropy S(ρ|ν) is jointly upper semi-continuous in ρ and ν with respect
to the weak topology. That is, if ρn → ρ and νn → ν as n→∞, then

S(ρ|ν) ≥ lim sup
n→∞

S(ρn|νn).

Now, we will use this theorem in order to prove the following statement.

Proposition 2.2. Let a < b. Let F (λ) 6= 0 be a function analytic in the neighborhood of [a, b]. Let
µn be a sequence of positive finite measures on the real line R converging to µ weakly. Suppose that

µ′n(λ) > c0|F (λ)|2, for all λ ∈ Ωn ⊂ [a, b],

where the measurable sets Ωn satisfy ∣∣∣[a, b] \ Ωn

∣∣∣ ≤ ε.
Then µ′(λ) > 0 on a subset of [a, b] whose measure is not smaller than b− a− ε

Proof. Let us denote the characteristic function of the set Ωn by χn. Since L2-norms of χn are
uniformly bounded, this sequence of functions has a weakly convergent subsequence. Therefore without
loss of generality, one can assume that

χn → χ, weakly in L2(R).

This, of cause, implies that the corresponding measures χndλ also converge weakly to χdλ. Even
though, R is not compact, we can still use Theorem 2.1 and show (see [21]) that∫

R
log
(µ′(λ)

χ(λ)

)
χ(λ) dλ ≥ lim sup

n→∞

∫
R

log
(µ′n(λ)

χn

)
χn(λ) dλ > −∞

Even though this means that µ′ > 0 on the support of the function χ, we still need to know how big
this set is. For that purpose we estimate the integral∫ b

a
χ(λ) dλ = lim

n→∞

∫
R
χn(λ) dλ ≥ b− a− ε.

If we combine this with the fact that 0 ≤ χ ≤ 1, then we will realize that the Lebesgue measure of
the support of the function χ is not smaller than b− a− ε. �

Since we deal with a family of operators depending on a parameter α, we also need a modification
of the previous statement, suitable in the case when measures depend on the parameter α as well. Let
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S be the sigma-algebra of Borel subsets of R. By an α-dependent family of positive finite measures
on R, we mean a function

µ : S× R 7→ [0,∞),

such that µ(·, α) is a positive measure for each α ∈ R.

Proposition 2.3. Let a < b. Let F (λ) 6= 0 be a function analytic in the neighborhood of [a, b]. Let
µn(·, α) be a sequence of α-dependent families of positive finite measures on R converging to µ(·, α)
weakly for every α ∈ R. Suppose that the derivatives of µn with respect to dλ satisfy

µ′n(λ, α) > c0|F (λ)|2, for all (λ, α) ∈ Ωn ⊂ [a, b]× [α1, α2],

where the measurable sets Ωn obey ∣∣∣[a, b]× [α1, α2] \ Ωn

∣∣∣ ≤ ε.
Then µ′(λ, α) > 0 on a subset of [a, b]× [α1, α2] whose measure is not smaller than (b−a)(α2−α1)−ε.

The proof of this statement is a counterpart of the proof of Proposition 2.2 and it is left to the
reader as an exercise. A similar statement is proven in [21].

We conclude this section by a discussion of the situation when derivative of a measure can be
estimated by the square of an analytic function.

Proposition 2.4. Let a < b and let α1 < α2. Let F (λ) 6= 0 be a function analytic in the neighborhood
of [a, b]. Let µ(·, α) be an α-dependent family of positive finite measures on R. Suppose that the
derivatives of µ with respect to dλ satisfy the estimate

µ′(λ, α) ≥ |F (λ)|2(1−Ψ(λ, α)), where

∫ α2

α1

∫ b

a
|Ψ(λ, α)| dλdα ≤ ε/2.

Then

µ′(λ, α) ≥ 1

2
|F (λ)|2, for all (λ, α) ∈ Ω ⊂ [a, b]× [α1, α2],

where the measurable set Ω obeys

(13)
∣∣∣[a, b]× [α1, α2] \ Ω

∣∣∣ ≤ ε.
Prrof. Due to Chebyshev’s inequality,

Ψ(λ, α) ≤ 1/2

on a set Ω satisfying (13). �

3. Spectral measures

The theory of spectral measures is based on the theory of the usual scalar measure and on the
properties of orthogonal projections. We deal only with spectral measures on the real line R. Let S
be the sigma-algebra of Borel subsets of R, let H be a separable Hilbert space and let P(H) be the set
of all operators of orthogonal projection acting in H.

Definition. By a spectral measure on R we mean a map E : S 7→ P(H) having the following
properties:

1. Sigma-additivity: If {δn} is a countable ( or finite) collection of disjoint Borel sets, then

E
(
∪nδn

)
f =

∑
n

E(δn)f, ∀f ∈ H.

2. Completeness: E(R) = I.
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Every spectral measure generates a family of finite positive measures defined for f ∈ H by

(14) µf (δ) := (E(δ)f, f).

We are going to study the relation between the properties of the measures E and µf .

Definition. A Borel set X ⊂ R is called an essential support of the absolutely continuous part of a
spectral measure E, if

1. There exists a set Y ⊂ R \X of zero Lebesgue measure such that

E
(
R \X

)
= E(Y ).

2. For any Borel subset δ ⊂ X, it holds E(δ) 6= 0 as soon as the Lebesgue measure of δ is positive.

Since this definition does not require understanding of what the absolutely continuous part of E is,
we do not provide its description here.

Proposition 3.1. Let [a, b] be a finite interval of the real line R. Let E be a spectral measure on R
and let µf be the family of measures defined by (14). Suppose that for any ε > 0 there exists a Borel
subset δ ⊂ [a, b] and f ∈ H such that

(15) |δ| > b− a− ε, and µ′f (λ) > 0 a.e. on δ.

Then the interval [a, b] is contained in an essential support of the absolutely continuous part of the
measure E.

Proof. Assume the opposite: that [a, b] is not contained in any essential support of the measure E.
This means that there exists a Borel subset Ω ⊂ [a, b] such that

|Ω| > 0, but E(Ω) = 0.

Let now ε < |Ω|. Select δ having the property (15). If δ and Ω were disjoint, then the measure of
their union would satisfy the estimate

|δ ∪ Ω| = |δ|+ |Ω| ≥ b− a− ε+ |Ω| > b− a.
This would contradict the condition δ ∪Ω ⊂ [a, b]. Consequently, δ ∩Ω 6= ∅. Moreover, this argument
proves that

(16) |δ ∩ Ω| > 0,

because otherwise they would become disjoint after one removes a set of measure zero. Combining
(14) with (16), we obtain that

(E(δ ∩ Ω)f, f) =

∫
δ∩Ω

dµf (λ) > 0.

On the other hand one can easily show that E(δ∩Ω) = E(δ)E(Ω), which implies that E(Ω) 6= 0. This
contradict our assumption. �

Since we deal with a family of operators depending on a parameter α, we will also need a modification
of the previous statement, suitable in the case when spectral measures depend on the parameter α
as well. Let S be the sigma-algebra of Borel subsets of R and let P(H) be the set of all orthogonal
projections acting in H. By an α-dependent family of spectral measures on R, we mean a function

E : S× R 7→ P(H),

such that E(·, α) is a spectral measure for each α ∈ R. Sometimes we use a different notation for a
family of spectral measures:

Eα(·) = E(·, α).
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Proposition 3.2. Let [a, b] and [α1, α2] be two finite intervals of the real line R. Let Eα be a family
of spectral measures on R depending on α ∈ R. Suppose that for any ε > 0 there exists a Borel subset
δ ⊂ [a, b]× [α1, α2] satisfying

(17) |[a, b]× [α1, α2] \ δ| ≤ ε,

and having the property that there exists a function f : [α1, α2] 7→ H such that

(18)
d(Eα(λ)f(α), f(α))

dλ
> 0 for a.e. (λ, α) ∈ δ.

Then the interval [a, b] is contained in an essential support of the absolutely continuous part of the
measure Eα for almost every α ∈ [α1, α2].

Proof. Let ε > 0 and let χε(λ, α) be the characteristic function of the set [a, b]× [α1, α2] \ δ, where
δ is the same as above. Define eε(α) by

eε(α) :=

∫ b

a
χε(λ, α) dλ.

According to Proposition 3.1, it is sufficient to show that infε[eε(α)] = 0 for almost every α ∈ [α1, α2].
Suppose the opposite: that

inf
ε>0

eε(α) > 0, on a set Ω ⊂ [α1, α2] with |Ω| > 0.

This would mean that there exists a positive (measurable ) function ψ > 0 such that

eε(α) ≥ ψ(α), on Ω.

The latter would imply that

ε ≥ |[a, b]× [α1, α2] \ δ| =
∫ α2

α1

eε(α) dα ≥
∫

Ω
ψ(α) dα > 0.

This contradicts the fact that ε > 0 can be arbitrarily small. �
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Spectral theorem

Let E be a spectral measure in a Hilbert space H defined on Borel subsets of R. One can define the
inegral

(19) H =

∫
R
t dE(t)

representing a self-adjoint operator in H. The domain of definition of this operator is the set D(H)
defined by

D(H) = {f ∈ H :

∫
R
t2dµf (t) <∞},

where µf is defined in the same way as in (14). In order to understand the relation (19), we define

Hn :=

n2∑
k=−n2

k

n
E
(

[
k

n
,
k + 1

n
)
)

for any positive integer n. If f ∈ D(H), then Hnf is a Cauchy sequence and we set

Hf = lim
n→∞

Hnf.

It turns out that any self-adjoint operator admits such a representation.

Theorem 3.1. Let H be a self-adjoint operator in a separable Hilbert space H . There exists a unique
spectral measure E in H defined on Borel subsets of R, such that (19) holds.

The measure E is called the spectral measure of the operator H.

Now, given a self-adjoint operator H and a real valued Borel-measurable function φ on R, we can
define φ(H), by setting

φ(H) =

∫
R
t dẼ(t),

where Ẽ is the spectral measure satisfying

Ẽ(δ) = E(φ−1(δ)), ∀δ ∈ S.

If φ = φ1 + iφ2 is a complex valued function, we set φ(H) = φ1(H) + iφ2(H). This definition is
consistent with other definitions of functions of an operator. In particular, if Im z 6= 0 and n ∈ N,
then

(H − z)−n = φ(H), with φ(t) = (t− z)−n.
Moreover, one can also show that if φ is bounded, then

(20) (φ(H)f, f) =

∫
R
φ(t) dµf (t), ∀f ∈ H.

In particular,

(21) ((H − z)−1f, f) =

∫ ∞
−∞

dµf (t)

t− z
, Im z 6= 0.

which implies that

(22) Im((H − z)−1f, f) = π

∫ ∞
−∞
Pε(λ, t)dµf (t), z = λ+ iε, ε > 0,

where Pε is the Poisson kernel,

Pε(λ, t) =
ε

π((t− λ)2 + ε2)
.
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There is a beautiful theory of integrals (22) based on the Hardy-Littlewood maximal inequality. One
of the main results in this theory is the following statement.

Theorem 3.2. Let µ be a positive finite Borel measure on the real line R and let

gε(λ) =

∫ ∞
−∞
Pε(λ, t)dµ(t), ε > 0.

Then gε(λ)→ µ′(λ) as ε→ 0 for almost every λ ∈ R.

This means in particular, that the limit is finite almost everywhere. Using this fact, one can aslo
show that if

φε(λ) =

∫ ∞
−∞

dµ(t)

t− λ− iε
, ε > 0,

then the limit
lim
ε→0

φε(λ)

exists for almost every λ ∈ R. For that purpose, one introduces

F (z) = exp(iφε(λ)), where z =
λ+ iε− i
λ+ iε+ i

.

After that one notices that F (z) is a bounded analytic function in the unit disc and such functions
have finite boundary values a.e. on the unit circle. One should take additional care of the possibility
that the boundary values of F (z) are zeros. But this is excluded by Theorem 3.2.

The said above allows us to use the following notation. For a selfadjoint operator H = H∗ in a
Hilbert space H and a vector f ∈ H the expression ((H − λ − i0)−1f, f) is always understood as the
limit (

(H − λ− i0)−1f, f
)

= lim
ε→0

(
(H − λ− iε)−1f, f

)
, ε > 0, λ ∈ R.

Note that relation (21) implies that this limit exists for almost every λ ∈ R.
The following simple and very well known statement plays very important role in the proof of

Theorem 1.1..

Lemma 3.1. Let B be a self-adjoint operator in a separable Hilbert space H and let g ∈ H. Then the
function

η(k) := Im
(

(B − k − i0)−1g, g
)
≥ 0,

is integrable over R. Moreover, ∫ ∞
−∞

η(k)dk ≤ π||g||2.

and ∫ ∞
−∞

η(k)

k2 + 1
dk ≤ π||(B2 + I)−1/2g||2.

Proof. Let E be the spectral measure of the operator B. Then

((B − z)−1g, g) =

∫ ∞
−∞

d(E(t)g, g)

t− z
, Im z 6= 0.

Accoriding to Theorem 3.2,

π−1η(k) =
d(E(k)g, g)

dk
,

which implies that for any positive bounded Borel measurable function φ : R 7→ R+,

π−1

∫
R
φ(k)η(k) dk ≤

∫
R
φ(k)d(E(k)g, g).
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Note now that formula (20) written for an operator H and a vector f can be also written for the
operator B and the vector g. The latter would imply that

π−1

∫
R
φ(k)η(k) dk ≤ (φ(B)g, g).

It remains to take either φ = 1 or φ(k) = (k2 + 1)−1. �

4. Proof of Theorem 1.1

Our proof is based on the relation between the derivative of the spectral measure and the so called
scattering amplitude. While the spectral measure is defined for any self-adjoint operator, the scattering
amplitude will be introduced only for a Schrödinger operator. Let f be a vector in the Hilbert space
H and H be a self-adjoint operator in H. According to (21), the quadratic form of the resolvent of H
can be written as a Cauchy integral

((H − z)−1f, f) =

∫ ∞
−∞

dµ(t)

t− z
, Im z 6= 0.

(Here we write µ instead of µf omitting the subindex.) The measure µ in this representation is called
the spectral measure of H corresponding to the element f .

Proposition 4.1. Let µ be the spectral measure of a self-adjoint operator H corresponding to an
element f . Then

µ′(λ) = π−1 lim
ε→0

Im
(

(H − λ− iε)−1f, f
)
, ε > 0.

Let us introduce the scattering amplitude. First of all, assume that the support of the potentials
V and V0 are compact. Take any compactly supported function f . For any z ∈ C \R, we introduce k
setting

k2 = z, Im k > 0.

In these notations (see [25], p. 40-42),

(23) (H − z)−1f =
eik|x|

|x|(d−1)/2

(
Af (k, θ) +O(|x|−1)

)
, as |x| → ∞, θ =

x

|x|
.

This asymptotic relation is valid even when k is real. In this case, the left hand side is understood as
a limit. If d = 3, then this asymtotic formula follows from the fact that

(H − z)−1f =

∫
Rd

eik|x−y|

4π|x− y|
f0(y)dy, where f0 = f − (V + V+ + αV0)(H − z)−1f.

If d 6= 3 then (23) is still valid but is less obvious. Note that according to (23),

(H − z)−1f = φ1(x) + φ2(x),

where

φ1(x) =
eik|x|

|x|(d−1)/2
Af (k, θ), and lim sup

z→λ+i0
||φ2||2 <∞.

Therefore,

µ′(λ) = π−1 lim
z→λ+i0

Im ((H − z)−1f, f) = π−1 lim
z→λ+i0

Im z||(H − z)−1f ||2

implies that (see [25], p. 40-42, again)

(24) πµ′(λ) =
√
λ

∫
S
|Af (k, θ)|2 dθ, k2 = λ > 0.
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Formula (24) is a very important equality that relates the absolutely continuous spectrum to so-called
extended states. The rest of the proof will be devoted to a lower estimate of |Af (k, θ)|.

Consider first the case d = 3. For our purposes, it is sufficient to assume that f is the characteristic
function of the unit ball. Traditionally, H is viewed as an operator obtained by a perturbation of

H0 = −∆.

In its turn, (H − z)−1 can be viewed as an operator obtained by a perturbation of (H0 − z)−1. The
theory of such perturbations is often based on the second resolvent identity

(25) (H − z)−1 = (H0 − z)−1 − (H − z)−1 (V + V+ + αV0)(H0 − z)−1,

which turns out to be useful for our reasoning. As a consequence of (25), we obtain that

(26) Af (k, θ) = F (k)−Ag(k, θ), z = k2 + i0, k > 0,

where

g(x) = (V (x) + V+(x) + αV0(x))(H0 − z)−1f

and F (k) is defined by

(27) (H0 − z)−1f = eik|x|
F (k)

|x|(d−1)/2
, for |x| > 1 (recall that d = 3).

Without loss of generality, one can assume that V (x) = V+(x) = V0(x) = 0 inside the unit ball. In
this case,

(28) g = F (k)hk, where hk(x) = (V + V+ + αV0)eik|x||x|(1−d)/2.

According to (26),

2

∫
S
|Af (k, θ)|2 dθ ≥ |F (k)|2|S| − 2

∫
S
|Ag(k, θ)|2 dθ,

which can be written in the form

(29) 2πµ′(λ) ≥ |F (k)|2
(
|S|
√
λ− 2 Im

(
(H − z)−1hk, hk

))
, z = λ+ i0,

due to (24) and to Proposition 4.1 combined with (28). Therefore, in order to establish the presence

of the absolutely continuous spectrum, we need to show that the quantity Im
(

(H − z)−1hk, hk

)
is

small.

Proposition 4.2. Let ε > 0. Suppose that λ1 > 0. Let

(30) Ψ(λ, α) :=
2

|S|
√
λ

Im
(

(H − λ− i0)−1hk, hk

)
, k =

√
λ > 0.

If ∫ α2

α1

∫ λ2

λ1

Ψ(λ, α)dλdα ≤ ε/2,

then

4πµ′(λ) ≥ |F (k)|2|S|
√
λ

on a set Ω ⊂ [λ1, λ2]× [α1, α2] satisfying

|[λ1, λ2]× [α1, α2] \ Ω| ≤ ε.

This statement is a direct consequence of Proposition 2.4. The next result plays the key role in the
proof of Theorem 1.1.
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Lemma 4.1. Let λ1 > 0. Let Ψ be the same as in (30). Assume also that W0 is compactly supported.
Then there is a positive constant C0 that depends only on the edges of the intervals [λ1, λ2] and [α1, α2]
such that

(31)

∫ α2

α1

∫ λ2

λ1

Ψ(λ, α)dλdα ≤ C0

(∫
Rd

|∇W0|2

|x|d−1
dx+

∫
Rd

V+

|x|d−1
dx
)
.

Proof. Observe that Im ((H − z)−1hk, hk) is a positive quadratic form (in hk). Therefore,

Im
(

(H − z)−1hk, hk

)
≤ 2 Im

(
(H − z)−1h+

k , h
+
k

)
+ 2 Im

(
(H − z)−1h−k , h

−
k

)
where the vectors h±k are defined by

h−k (x) = αV0e
ik|x||x|(1−d)/2, h+

k (x) = (V + V+)eik|x||x|(1−d)/2.

Consider first the function

η0(k, α) :=
k

α2
Im
(

(H − z)−1h−k , h
−
k

)
≥ 0, z = (k + i0)2.

Obviously, η0 is positive for all real k 6= 0, because z = k2 ± i0 if ±k > 0. This is very convenient.
Since η0 > 0, we can conclude that η0 is small on a rather large set if the integral of this function is
small. That is why we will try to estimate
(32)

J :=

∫ ∞
−∞

∫ ∞
−∞

η0(k, α)

(α2 + k2)(k2 + 1)(|α|+ |k|)
|k||α| dkdα =

∫ ∞
−∞

∫ ∞
−∞

η0(k, tk)

(k2 + 1)(t2 + 1)(|t|+ 1)
|t|dkdt.

Proposition 4.3. Let J be the quantity, defined in (32). Let Hε = −∆ + V + V+ + εI and let B be
the bounded selfadjoint operator defined by

B = H−1/2
ε

(
−2i

∂

∂r
− i(d− 1)

|x|
+ tV0

)
H−1/2
ε , t ∈ R, ε > 0,

where r denotes the radial variable in spherical coordinates. Then

(33) J ≤ π lim inf
ε→0

∫ ∞
−∞

1

(1 + t2)(|t|+ 1)
||B−1H−1/2

ε v||2 |t|dt

where v = V0|x|(1−d)/2.

Proof. The reader can easily establish that B is not only self-adjoint but bounded for ε > 0. Let
us introduce

ηε(k, α) =
k

α2
Im
(

(H + ε− z)−1h−k , h
−
k

)
.

Note that

η0(k, α) = lim
ε→0

ηε(k, α) a.e. on R× R,

which, due to Fatou’s lemma, implies that

J ≤ lim inf
ε→0

∫ ∞
−∞

∫ ∞
−∞

ηε(k, α)

(α2 + k2)(k2 + 1)(|α|+ |k|)
|k||α| dkdα.

Now we look at the values of ηε at the points (k, α) that belong to the line α = kt. It turns out that

(34) ηε(k, kt) = Im
(

(B + 1/k − i0)−1H−1/2
ε v, H−1/2

ε v
)
.
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In order to justify (34) at least formally, one has to introduce the operator U of multiplication by the
function exp(ik|x|). Using this notation, we can represent ηε in the following form

ηε(k, tk) = kIm
(
U−1(H + ε− z)−1Uv, v

)
.

Since we deal with a unitary equivalence of operators, we can employ the formula

U−1(H + ε− z)−1U = (U−1HU + ε− z)−1.

On the other hand, since H is a differential operator and U is an operator of multiplication, the
commutator [H,U ] := HU − UH can be easily found[

H,U
]

= kU
(
−2i

∂

∂r
− i(d− 1)

|x|
+ k
)
.

The latter equality implies that

U−1HU + ε− z = Hε + k
(
−2i

∂

∂r
− i(d− 1)

|x|
+ tV0

)
= H1/2

ε (I + kB)H1/2
ε .

Consequently,

(35) kU−1(H + ε− z)−1U = H−1/2
ε (B + 1/k)−1H−1/2

ε .

Let us have a look at the formula (34). If k belongs to the upper half plane then so does −1/k. Since
B is a self-adjoint operator, π−1ηε(k, kt) coincides with the derivative of the spectral measure of the

operator B corresponding to the element H
−1/2
ε v. According to Lemma 3.1, the latter observation

implies that ∫ ∞
−∞

ηε(k, kt)

(1 + k2)
dk ≤ π

(
(B2 + I)−1H−1/2

ε v,H−1/2
ε v

)
,

which leads to ∫ ∞
−∞

ηε(k, kt)

(1 + k2)
dk ≤ π

(
B−1H−1/2

ε v,B−1H−1/2
ε v

)
= π||B−1H−1/2

ε v||2.

The statement of the proposition follows now by Fatou’s lemma. �

Our further arguments will be related to the estimate of the quantity in the right hand side of (33).

Proposition 4.4. There is a positive constant C, such that

(36) lim
ε→0
||B−1H−1/2

ε v||2 ≤ C
(∫

Rd

|∇W0|2

|x|d−1
dx+

1

|t|

∫
Rd

V+

|x|d−1
dx
)
.

Moreover, the limit in the left hand side of (36) is uniform in t.

Proof. In order to prove this estimate, we use the representation

(37) B−1H−1/2
ε = H1/2

ε T−1,

where T ⊂ T ∗ is the first order differential operator, defined by

T = −2i
∂

∂r
− i(d− 1)

|x|
+ tV0, D(T ) = D(H1/2

ε ).

The representation (37) is a simple consequence of the fact that B = H
−1/2
ε TH

−1/2
ε . The study of the

basic properties of the operator T is rather simple, because one can derive an explicit formula for its
inverse. For that purpose, one needs to recall the theory of ordinary differential equations, which says
that the equation

y′ + p(t)y = f(t), y = y(t), t ∈ R,
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is equivalent to the relation (
e
∫
p dty

)′
= e

∫
p dtf.

Put differently,

y′ + p(t)y = e−
∫
p dt
(
e
∫
p dty

)′
.

This gives us a clear idea of how to handle the operator T . Let U0 and U1 be the operators of
multiplication by |x|(d−1)/2 and by exp(2−1itW0), then

T = −2iU−1
1 U−1

0

[ ∂
∂r

]
U0U1, and T−1 =

i

2
U−1

1 U−1
0

[ ∂
∂r

]−1
U0U1.

Since [ ∂∂r ]−1 means just the simple integration with respect to r and ∂W0/∂r = V0,

T−1v =
i

2
e−2−1itW0 |x|−(d−1)/2

∫ r

0
e2−1itW0V0dr =

1

t
e−2−1itW0 |x|−(d−1)/2(e2−1itW0 − 1) =

1

t
|x|−(d−1)/2(1− e−2−1itW0).

(38)

Note, that T−1v turns out to be compactly supported, which leaves no doubt about the relation
v ∈ D(T−1). Combining (37) with (38), we conclude that

lim
ε→0
||B−1H−1/2

ε v||2 = lim
ε→0
||H1/2

ε T−1v||2 =

||∇T−1v||2 +

∫
Rd

(V + V+)|T−1v|2dx+ lim
ε→0

ε||T−1v||2 ≤

C
(∫

Rd

|W0|2

|x|d+1
dx+ +

∫
Rd

|∇W0|2

|x|d−1
dx+

1

|t|

∫
Rd

|Q|2dx+
1

|t|

∫
Rd

V+

|x|d−1
dx
)
.

In order to complete the proof, it is sufficient to use the Hardy inequality∫
Rd

|W0|2

|x|d+1
dx+ ≤ 4

∫
Rd

|∇W0|2

|x|d−1
dx,

and recall that

|Q|2 ≤ V+

|x|d−1
. �

We remind the reader that (33), (36) are needed to estimate the quantity J from (32). We can
conclude now that the following statement holds.

Proposition 4.5. Let J be the quantity (32). Then there exists a constant C > 0 such that

J ≤ C
(∫

Rd

|∇W0|2

|x|d−1
dx+

∫
Rd

V+

|x|d−1
dx
)
.

We shall now obtain an integral estimate for the function η+
0 defined by

η+
0 (k, α) := k Im

(
(H − z)−1h+

k , h
+
k

)
≥ 0, z = (k + i0)2.

It is clear that η+
0 (k, α) is positive for all real k 6= 0. Since η+

0 > 0, we can conclude that η+
0 is small

on a rather large set if the following integral

(39) J+ :=

∫ ∞
−∞

∫ ∞
−∞

η+
0 (k, α)

|k|(k2 + α2)
dk dα

is small.
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Proposition 4.6. Let Hε = −∆ + V + V+ + ε and let v+ = |x|−(d−1)/2(V + V+). Then the quantity
J+ from (39) satisfies the relation

J+ ≤ π2 lim inf
ε→0

||H−1/2
ε v+||2, ε > 0.

Proof. We employ the same tricks as before. Let us introduce

η+
ε (k, α) := kIm

(
(H + ε− z)−1h+

k , h
+
k

)
.

Since

η+
0 (k, α) = lim

ε→0
η+
ε (k, α) a.e. on R× R,

we conclude according to Fatou’s lemma, that

J+ ≤ lim inf
ε→0

∫ ∞
−∞

∫ ∞
−∞

η+
ε (k, α)

|k|(k2 + α2)
dk dα.

We also set α = kt and represent η+
ε in the form

(40) η+
ε (k, kt) = Im

(
(B + 1/k − i0)−1H−1/2

ε v+, H
−1/2
ε v+

)
where B is the same as before

B = H−1/2
ε

(
−2i

∂

∂r
− i(d− 1)

|x|
+ tV0

)
H−1/2
ε .

The symbol r in the latter formula denotes the radial variable r = |x|. Recall that (40) was already
justified.

Let us look at the formula (40). Since B is a self-adjoint operator, π−1η+
ε (k, kt) coincides with the

derivative of the spectral measure of the operator B corresponding to the element H
−1/2
ε v+. According

to Lemma 3.1, ∫ ∞
−∞

η+
ε (k, kt) k−2dk ≤ π||H−1/2

ε v+||2.

The latter inequality implies that J+ from (39) satisfies the relation

J+ ≤ π2 lim inf
ε→0

||H−1/2
ε v+||2. �

In order to proceed further, we have to establish two inequalities.

Proposition 4.7. The operator Hε satisfies

(41) Hε ≥ (τ−1 − 1)∆ + ε

and

(42) Hε ≥ (1− τ−1)V+ + ε.

Proof. Both estimates follow from the simple fact that

−t−1∆ + divQ0 + t|Q0|2 = (it−1/2∇+ t1/2Q0)∗(it−1/2∇+ t1/2Q0) ≥ 0, ∀t > 0,

for any smooth compactly supported vector potential Q0. In particular, if we take t = τ and set
Q0 = |x|(d−1)/2Q, then we will obtain (41). Inequality (42) is obtained in the case t = 1. �
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Proposition 4.8. The quantity (39) satisfies the estimate

(43) J+ ≤ C
∫
Rd

V+

|x|d−1
dx.

where the constant C depends on τ but is otherwise independent of the potentials V , V+ and V0.

Proof. Define v1 = V |x|−(d−1)/2 and v2 = V+|x|−(d−1)/2. Since v+ = v1 + v2, we obtain that

J+ ≤ π2 lim inf
ε→0

||H−1/2
ε v+||2 ≤ 2π2 lim inf

ε→0

(
||H−1/2

ε v1||2 + ||H−1/2
ε v2||2

)
≤

2π2 lim inf
ε→0

(
||
(
(τ−1 − 1)∆ + ε

)−1/2
v1||2 + ||

(
(1− τ−1)V+ + ε

)−1/2
v2||2

)
≤

Cτ

(∫
Rd

|W (ξ)|2

|ξ|2
dξ +

∫
Rd

V+

|x|d−1
dx
)
.

where W is the Fourier transform of the function V |x|−(d−1)/2. In order to complete the proof of
Proposition 4.8, it is sufficient to note that∫

Rd

|W (ξ)|2

|ξ|2
dξ ≤

∫
Rd

V+

|x|d−1
dx,

because obviously, ∫
Rd

|W (ξ)|2

|ξ|2
dξ ≤

∫
Rd

|Q|2dx. �

Lemma 4.1 follows now from Propositions 4.5, 4.8 and the fact that there exists a constant C > 0
depending on the edges of the intervals [α1, α2] and [λ1, λ2], such that∫ α2

α1

∫ λ2

λ1

Ψ(λ, α)dλdα ≤ C(J + J+)

5. End of the proof of Theorem 1.1

Now, let us complete the proof of Theorem 1.1 and mention what ingredients were missing. We
need to transfer the estimates obtained in the previous section to the case of potentials with infinite
supports. We will need the following statement from the Scattering theory.

Proposition 5.1. Let Ṽ , Ṽ+ and Ṽ0 be three real valued locally bounded functions on Rd, that are
equal to V, V+ and V0 in the region |x| > R for some R > 0. Let E and Ẽ be the spectral measures

of the operators H and H̃ := −∆ + Ṽ + Ṽ+ + αṼ0. Then for any f̃ ∈ L2(Rd) there exists a function
f ∈ L2(Rd) such that the absolutely continuous parts of the positive measures

µ(·) = (E(·)f, f) and µ̃(·) = (Ẽ(·)f̃ f̃)

coincide.

The proof of this statement can be found in [13]. According to this result, we can assume without
loss of generality that the integrals (3) and (6) are small. Recall that similar integrals appear in (31).

Proposition 5.2. Let V , V+ and V0 be the same as in Theorem 1.1. For any ε > 0 there exists a
region {x : |x| > R} where V, V+ and V0 are equal to locally bounded functions Ṽ , Ṽ+ and Ṽ0 , such
that

1) the function

(44) W̃0(r, θ) :=

∫ r

0
Ṽ0(ρ, θ)dρ
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satisfies the estimate ∫
Rd

|∇W0|2

|x|d−1
dx < ε;

2) Ṽ = |x|(d−1)/2div Q̃, with Q̃ ∈ L2(Rd);
3) Ṽ+ ≥ τ

(
|x|d−1|Q̃|2 + (d−1)

2 |x|
(d−3)/2|Q̃|

)
and∫

Rd

Ṽ+

|x|d−1
dx < ε.

The proof of this statement is left to the reader as an exercise.

Approximations.

Now we will approximate Ṽ , Ṽ+ and Ṽ0 from Proposition 5.2 by compactly supported functions.
Let us first describe our choice of compactly supported functions V 0

n approximating the given potential
V0. Let us choose a spherically symmetric function ζ ∈ H1(Rd) such that

ζ(x) =

{
1, if |x| < 1;

0, if |x| > 2.

Assume for simplicity that 0 ≤ ζ ≤ 1 and |∇ζ| ≤ 1. Define

ζn(x) = ζ(x/n).

Note that ∇ζn 6= 0 only in the spherical layer {x : n ≤ |x| ≤ 2n}. Moreover |∇ζn| ≤ 1/n, which leads
to the estimate

|∇ζn(x)| ≤ 2/|x|.
Our approximations of V will be the functions Vn defined as

(45) V 0
n =

∂

∂r
(ζnW̃0),

where W̃0 is the function from (44). Thus, approximations of V0 by V 0
n correspond to approximations

of W̃0 by

(46) W 0
n := ζnW̃0.

Observe that, in this case,∫
Rd

|∇W 0
n(x)|2

|x|d−1
dx ≤

∫
|x|<2n

2|∇W̃0(x)|2 + 8|x|−2|W̃0(x)|2

|x|d−1
dx ≤ 34

∫
Rd

|∇W̃0(x)|2

|x|d−1
dx.

Therefore,

(47) sup
n

∫
Rd

|∇W 0
n(x)|2

|x|d−1
dx < 34ε.

The potential Ṽ will be approximated by the sequence Vn := |x|(d−1)/2div
(
ζnQ̃

)
. Finally, approxi-

mations of Ṽ+ will be the functions V +
n := ζnṼ+.Obviously, V +

n ≥ τ
(
|x|d−1|ζnQ̃|2+ (d−1)

2 |x|
(d−3)/2|ζnQ̃|

)
and

(48) sup
n

∫
Rd

V +
n

|x|d−1
dx < ε.
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Define the measures µn setting

((−∆ + Vn + V +
n + αV 0

n − z)−1f, f) =

∫ ∞
−∞

dµn(t)

t− z
, Im z 6= 0,

where f is the characteristic function of the unit ball {x : |x| < 1}. Combining Lemma 4.1 with
Proposition 4.2 we obtain that conditions (47) and (48) guarantee that µ′n > 0 on a rather large set
of pairs (λ, α).

Lemma 5.1. Let µn be as described above. Let C0 be the constant from the inequality (31). Then

(49) πµ′n(λ) ≥ |F (
√
λ)|2 |S|

√
λ

4
, ∀(λ, α) ∈ Ωn,

where the set Ωn ⊂ [λ1, λ2]× [α1, α2] satisfies

|[λ1, λ2]× [α1, α2] \ Ωn| ≤ 35C0ε.

Observe that Ṽ , Ṽ+ and Ṽ0 are the pointwise limits of the sequences Vn, V +
n and V 0

n . We will also
show (see Section 6) that

(50) µn → µ̃ as n→∞

weakly. Here µ̃ is the spectral measure of −∆ + Ṽ + Ṽ+ +αṼ0 constructed for the same element f as
before.

The following statement follows directly from Proposition 2.3.

Proposition 5.3. Let ε > 0 and let Ṽ , Ṽ+ and Ṽ0 be the same as in Proposition 5.2. Let also C0 be
the constant from the inequality (31). Then

(51) µ̃′(λ) > 0

on a set Ω ⊂ [λ1, λ2]× [α1, α2] satisfying

|[λ1, λ2]× [α1, α2] \ Ω| ≤ 35C0ε.

Finally, combining this statement with Propositions 3.2 and 5.1, we obtain that the essential support
of the absolutely continuous part of the spectral measure E of the operator H contains the interval
[λ1, λ2] for almost every α ∈ [α1, α2]. It remains to note that these intervals are arbitrary. This
completes the proof of Theorem 1.1 for d = 3.

Now, if d 6= 3, then equality of the form (27) is incorrect. The ratio in the right hand side is only
the asymptotics of the function in the left hand side, so (27) holds only up to terms of smaller order.
If we want to avoid the difficulty of dealing with these terms, we need to replace H0 = −∆ by the
operator

H0 = −∆− κdχ̃

|x|2
P0, κd =

(d− 2

2

)2
− 1

4
,

where P0 is the projection onto the space of spherically symmetric functions and χ̃ is the characteristic
function of the compliment of the unit ball. Provided that H0 is defined as above, relation (27) holds
without terms of smaller order and all proofs of the statements in this paper can be repeated literally.
(see [21] for details)

In conclusion of this section, we would like to draw your attention to the papers [1]-[2], [5]-[9], [12],
[14]-[23] which contain an important work on the absolutely continuous spectrum of multi-dimensional
Schrödinger operators. Surveys of these results are given in [4] and [19].
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6. Weak convergence of spectral measures

The proof of convergence of spectral measures is based on the fact that Green’s function of the
Scrödinger operator operator decays exponentially fast. Since all potentials appearing in the previous
sections are bounded from below, without loss of generality we can assume that they are positive.

Proposition 6.1. Let V be a locally bounded positive potential. Let f be the characteristic function
of the unit ball {x : |x| < 1}. Then for any z with Im z 6= 0 , the function

u = (−∆ + V − z)−1f

satisfies

(52)

∫
|x|>r

|u|2dx ≤ C exp(−εr), r > 1,

with some C and ε > 0 independent of R. Moreover, the parameter ε and the constant C are separated
from zero and infinity correspondingly when z belongs to a compact set in the open upper half-plane.

Proof. Denote A := −∆ + V . It is easy to see, that the resolvent operator (A − z)−1 can be
considered as a continuous map from L2 to H1. Denote the square of the norm of this map by C0. In
particular, we have

(53) ||∇u||2 + ||u||2 ≤ C0||f ||2, ∀f ∈ L2.

Note, that inequality (52) is interesting only for large values of R. So, we shall assume that R is large.
Take a family of functions ζR ∈ C∞0 (Rd) having the following properties

ζR(x) =

{
1, if |x| > R,

0, if |x| < R− L

with some fixed L > 0. We can select L so large that

(54) 2|∇ζR|+ |∆ζR| ≤
1

2C0
.

The supports of the functions f and ζ do not intersect, if R is large enough. Therefore we have(
A1/2ζRu, A

1/2φ
)
− z
(
ζRu, φ

)
=∫

∇φ̄∇(ζRu)dx+

∫
(V − z)ζRuφ̄dx =

−
∫

2φ̄∇ζR∇udx−
∫

(∆ζR)uφ̄dx, ∀φ ∈ D((A+ I)1/2),

which means that

(A− z)ζRu = −2∇ζR∇u− (∆ζR)u.

The latter relation together with (53) and (54) leads to∫
|x|>R

(
|∇u|2 + |u|2

)
dx ≤ 1

2

∫
R−L<|x|<R

(
|∇u|2 + |u|2

)
dx.

We are going to use this inequality to estimate the norm of the function in the spherical layer of a
larger radius by the norm of u in the layer of a smaller radius. The corresponding constant will be
equal to 1/2. A recursive application of this inequality leads to multiplication of the constants, which
means that we will get 1/2n in front of the integral in the right hand side. The only restriction on R
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that we have is that R > L + 1. For instance, if L > 1, then we can take R = 2L. Consequently, we
obtain

(55)

∫
(n+1)L<|x|<(n+2)L

(
|∇u|2 + |u|2

)
dx ≤ 1

2n

∫
L<|x|<2L

(
|∇u|2 + |u|2

)
dx, ∀n ∈ N.

It is an exercise to the reader to prove that (55) implies∫
|x|>(n+2)L

(
|∇u|2 + |u|2

)
dx ≤ 1

2n

∫
L<|x|<2L

(
|∇u|2 + |u|2

)
dx, ∀n ∈ N.

Thus, ∫
|x|>r

(
|∇u|2 + |u|2

)
dx ≤ C0 exp

(
− ln 2

(r − 3L)

L

)
||f ||2

for r > 3L. It remains to note that since C0 ≤ ||(A + I)1/2(A − z)−1||2 it can be estimated by the
maximum of the function

ψ(t) = (t+ 1)1/2|t− z|−1, t > 0.

This maximum is separated from zero on compact sets in the upper half-plane. The parameter L can
be expressed in terms of C0 explicitly and behaves as a · C0 with some universal constant a. This
completes the proof of the statement. �

Corollary 6.1. Let V be a positive locally bounded potential and let A = −∆ + V . Let also f be the
characteristic function of the unit ball. Then for any z with Im z 6= 0 , the function

u = (A− z)−1f

satisfies

(56)

∫
|x|>1

exp(ε|x|)|u|2dx ≤ C, ε > 0,

with some C and ε separated from infinity and zero (correspondingly) when z runs over a compact set
in the open upper half-plane.

The exponential decay of Green’s function is crucial for convergence of spectral measures.

Let V be a positive locally bounded potential satisfying

lim
n→∞

V (x)

exp(ε|x|)
= 0, ∀ε > 0,

and let Vn be the sequence of compactly supported bounded functions, such that

(57) lim
n→∞

sup
x

{
(V (x)− Vn(x))2 exp(−ε|x|)

}
= 0, ∀ε > 0.

Define measures µn setting

(58) ((−∆ + Vn − z)−1f, f) =

∫ ∞
−∞

dµn(t)

t− z
, Im z 6= 0,

where f is the characteristic function of the unit ball {x : |x| < 1}. Define also the measure µ by

(59) ((−∆ + V − z)−1f, f) =

∫ ∞
−∞

dµ(t)

t− z
, Im z 6= 0,

Proposition 6.2. The sequence of measures µn converges to µ weakly:

µn → µ as n→∞.
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Proof. Since any compacly supported continuous function can be approximated by a finite linear
combinations of functions of the form Im 1/(t−z) in C(R)-topology, due to (59) and (58), it is sufficient
to prove that

((−∆ + Vn − z)−1f, f)→ ((−∆ + V − z)−1f, f), as n→∞,
uniformly on compact sets in the upper half-plane. The latter simply follows from the fact that

(−∆ + Vn − z)−1f − (−∆ + V − z)−1f = (−∆ + Vn − z)−1(Ṽ − Vn)(−∆ + V − z)−1f

converges to zero in L2. Indeed, since the norm of (−∆ + Vn − z)−1 is bounded, it is enough to show
that (V − Vn)u converges to zero for u = (−∆ + V − z)−1f . But

||(V − Vn)u||2 ≤ sup
x

{
(V − Vn)2 exp(−ε|x|)

}∫
|x|>1

exp(ε|x|)|u|2dx

which tends to zero due to (56) and (57). This completes the proof of the proposition. �
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