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Abstract

We study a family of singularly perturbed q−difference-differential equations in the complex
domain. We provide sectorial holomorphic solutions in the perturbation parameter ε. Moreover,
we achieve the existence of a common formal power series in ε which represents each actual
solution, and establish q−Gevrey estimates involved in this representation. The proof of the main
result rests on a new version of the so-called Malgrange-Sibuya Theorem regarding q−Gevrey
asymptotics. A particular Dirichlet like series is studied on the way.
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1 Introduction

We study a family of q−difference-differential equations of the form

(1) ε∂t∂
S
z X(ε, t, z) + a∂Sz X(ε, t, z) =

∑
κ=(κ0,κ1)∈N

bκ(ε, z)(∂κ0
t ∂

κ1
z X)(ε, qmκ,1t, qmκ,2z),

under appropriate initial conditions

(2) (∂jzX)(ε, t, 0) = φj(ε, t), 0 ≤ j ≤ S − 1.

Here, S is an integer with S ≥ 1 , and a ∈ C? := C \ {0}. N stands for a finite subset of
N2, where N := {0, 1, 2, ...} is the set of nonnegative integers. For every (κ0, κ1) ∈ N , bκ(ε, z)
turns out to be a polynomial in the variable z with holomorphic and bounded coefficients in a
neighborhood of the origin in the parameter, and mκ,1,mκ,2 ∈ N.

From now on, q stands for a fixed real number with 0 < q < 1.
We construct actual holomorphic solutions X(ε, t, z) for the previous Cauchy problem in

E ×T ×C, where E is a bounded open sector in the complex plane with vertex at the origin, and
T is an unbounded well-chosen open set. The procedure is based on the use of the map t 7→ t/ε
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which was firstly considered by M. Canalis-Durand, J. Mozo-Fernandez and R. Schäfke in [10] to
transform a singularly perturbed equation into an auxiliary regularly perturbed equation, easier
to handle. This celebrated technique has also been used in the study of singularly perturbed
partial differential equations (see [29] and [33] for example), q−difference-differential equations
(like in [32] or [28]), and more recently to the study of difference-differential equations (see [34]).

Indeed, the present work is motivated by a previous work [34], where the second author
studies a singularly perturbed difference-differential equation with small delay. This work can be
seen as a continuation of that one. The dynamics appearing in that previous work involve a small
shift in variable t with respect to ε, meaning that they are of the form (ε, t, z) 7→ (ε, t+ κ2ε, z),
whereas the actual work deals with a shrinking behaviour in both t and z variables.

In [34], a Gevrey 1+ phenomenon, with estimates associated to the sequence
(

( n
logn)n

)
n≥0

,

is observed for the series solution of the problem. This sequence naturally appears when working
with difference equations (see [9], [8] for example). Now, a q−Gevrey like behaviour, related
to the sequence of estimates (q−n

2
)n≥0, appears. This behaviour comes up in the context of

q−difference equations (see [17], [36]). One can observe that 1+ sequence is asymptotically upper
bounded by Gevrey sequence (n!)n≥0, and this one is upper bounded by q−Gevrey sequence

(q−n
2
)n≥0.

The main aim of this work is to construct actual holomorphic solutions X(ε, t, z) of (1)+(2)
and obtain sufficient conditions for the existence and unicity of a formal power series in the
parameter ε, X̂(ε, t, z) =

∑
β≥0 X̂β(t, z) ε

β

β! , owing its coefficients in an adequate functional space,

and such that X is represented by X̂ in a sense to precise (see Theorem 5). This representation
is measured in terms of q−Gevrey bounds due to the appearance of q−difference operators on
the right-hand side in (1).

The Cauchy problem (1)+(2) we consider in this paper comes also within the framework of
the asymptotic analysis of linear differential and partial differential equations with multiplicative
delays.

In the context of differential equations most of the statements in the literature are dedicated
to linear problems of the form

(3) x′(t) = F (t, x(λ1t), . . . , x(λnt), x
′(λ1t), . . . , x

′(λnt))

where F are vector valued polynomial functions in t and linear in its other arguments, where
0 < λj < 1, for 1 ≤ j ≤ n are real numbers, and concern the study of asymptotic behaviour of
some of their solutions x(t) as t tends to infinity for given initial data x(0). When F is real or
matrix valued and with constant coefficients, we quote [11], [21], [24], [25]. For polynomial F
in t, we notice [14], [20]. For studies in a complex variable t, we refer to [19], [39]. For more
general delay functional equations, we indicate [13].

In the framework of linear partial differential equations, we mention a series of papers devoted
to general results on the existence and unicity of holomorphic solutions to generalized Cauchy-
Kowalevski type problems with shrinkings of the form

∂mt u(t, x) = f(t, x, u(t, x), (∂lxu(t, x), ∂pxu(α(t)t, x), ∂qxu(t, β(t, x)x))(l,p,q)∈I)

for some integer m ≥ 1, a finite set I, and where f is analytic or of Gevrey type function and such
that the functions α(t) and β(t, x) satisfy the shrinking constraints |α(t)| < 1 and |β(t, x)| < 1
for given initial data (∂jt u)(0, x), 0 ≤ j ≤ m− 1 that belong to some functional space. We refer
to [3], [26], [27]. For partial differential problems with contractions dealing with less regular
solution spaces like Sobolev spaces, we quote [37], for instance.
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Let us briefly reproduce the strategy followed. We consider a finite family of sectors with ver-
tex at the origin (Ei)0≤i≤ν which provides a good covering at 0 in the variable ε (see Definition 4).
Let i ∈ {0, 1, ..., ν − 1}. One can consider an auxiliary Cauchy problem

∂SzW (ε, τ, z) =
∑

κ=(κ0,κ1)∈N

bκ(ε, z)

(a− τ)qmκ,1(κ0+1)

(
−τ
ε

)κ0

(∂κ1
z W )

(
ε, q−mκ,1τ, qmκ,2z

)
,

with initial conditions (∂jzW )(ε, τ, 0) = Wj(ε, τ), 0 ≤ j ≤ S−1. We assume Wj is a holomorphic
function in (D(0, r0) \ {0}) × D(0, R̂0) for some r0, R̂0 > 0, for every 0 ≤ j ≤ S − 1, which is
upper bounded in terms of q−Gevrey bounds (see (28)). Moreover, we assume each Wj can be
extended to Ei×S, where S is a sector with vertex at the origin, and verifying q−Gevrey bounds
in Ei×S0, with S0 := {z ∈ S : |z| ≥ R0} (see (14)). Under these hypotheses, one can construct a

formal solution to the auxiliary Cauchy problem, W (ε, τ, z) =
∑

β≥0Wβ(ε, τ) z
β

β! , where Wβ(ε, τ)
turns out to be a holomorphic function in (D(0, r0) \ {0}) × (Dβ \ {0}). Here, Dβ is a disc
centered at the origin with radius decreasing to 0 whenever β tends to infinity, and reproducing
q−Gevrey bounds given by the initial conditions (see (29)). Moreover, each Wβ(ε, τ) can be
extended to Ei × Sβ under q−Gevrey bounds (see (15)), where Sβ := {z ∈ S : |z| > Rβ}, with
(Rβ)β≥0 being a sequence of positive numbers that decrease to 0. We assume Sβ ∩Dβ 6= ∅ for
every β ≥ 0. The decrease rate of both Rβ and the radius of Dβ has to be chosen adequately,

in accordance to the elements of a q−Gevrey sequence such as (qαβ
2
)β≥0 for some α > 0.

The main difficulty in this work is the occurrence of propagation of singularities in the
coefficients of the auxiliary problem which leads to a small divisor phenomenon. The singular
points form a sequence of complex numbers tending to 0. As a result, one can only obtain a
formal solution for the auxiliary problem. In [30], a small divisor phenomenon comes from the
Fuchsian operator studied in the main Cauchy problem. There, q ∈ C is chosen to have |q| > 1,
whilst in the present work q ∈ R with 0 < q < 1. A suchlike phenomenon also appears in [29],
where the asymptotics in the parameter suffers the effect of a small divisor, and it is solved
studying a Dirichlet like series.

General Dirichlet series of the form ∑
n≥0

ane
−λnz

have been throughly studied in the case when (λn)n≥0 is an increasing sequence of real numbers
to∞ (see [22], [38], [2]) or a sequence of complex numbers with |λn| → ∞ (see [31]). This theory
has also been developed when working with almost periodic functions, introduced by H. Bohr
(see [6], [5], [15]), which are the uniform limits in R of exponential polynomials

∑n
k=1 ake

iskx,
where the values sk belong to the so-called spectrum Λ ⊆ R. However, we are more interested in
the behaviour of the sum when x tends to ∞ in he positive imaginary axis. Our technique rests
on Euler-Mac-Laurin formula, Watson’s Lemma and the equivalence between null q−Gevrey
asymptotics and the fact of being q−exponentially small.

In [29], we solve the problem by means of a Dirichlet series with a spectrum being of the
form ( 1

(k+1)α )k≥0. Now, the spectrum which helps us to achieve our purpose is of geometric

nature (see Lemma 10).
The growth properties of Wβ for β ≥ 0 allow us to apply a Laplace like transform on each of

them with respect to the variable τ in order to provide a holomorphic solution Xi(ε, τ, z) of the
main problem, defined in Ei × T ×C, for some appropriate unbounded open set T . In addition
to this, one has null q−Gevrey asymptotic bounds for the difference of Xi and Xi+1 when the
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domain of the variable z is restricted to a bounded set, meaning that for every ρ > 0, there exist
L1, L2 > 0 such that

sup
t∈τ

z∈D(0,ρ)

|Xi+1(ε, t, z)−Xi(ε, t, z)| ≤ L1e
−L2

1
(− log(q))2

log2 |ε|
,

for every ε ∈ Ei ∩ Ei+1.
Finally, a novel version regarding q−Gevrey asymptotics of Malgrange-Sibuya Theorem

(Theorem 4) leads us to the main result in the present work (Theorem 5), where we guarantee
the existence of a formal power series in ε,

X̂(ε, t, z) =
∑
β≥0

Xβ(t, z)

β!
εβ ∈ HT ,ρ[[ε]],

with coefficients in the Banach space of bounded holomorphic functions defined in T ×D(0, ρ),
which is common for every 0 ≤ i ≤ ν−1, and such that Xi admits X̂ as its q−Gevrey asymptotic
expansion of some positive type in he variable ε (see (60)).

It is worth pointing out that a q−Gevrey version of Malgrange-Sibuya Theorem was already
obtained in [28], when dealing with q ∈ C, |q| > 1. There, the type in the asymptotic expansion
involved suffers some increasement. This is so due to the need of extension results in ultradif-
ferentiable classes of functions (see [7], [12]) to be applied along the proof. Here, the geometry
of the problem changes so that we are able to maintain the type q−Gevrey. The proof rests on
the classical Malgrange-Sibuya Theorem (see [23]).

The paper is organized as follows.
In Section 2 and Section 3, we introduce Banach spaces of formal power series in order to solve

auxiliary Cauchy problems with the help of fixed point results involving complete metric spaces.
In Section 2, this result is achieved when dealing with formal power series with holomorphic
coefficients in a product of a finite sector with vertex at the origin times an infinite sector, while
in Section 3 the result is obtained when dealing with a product of two punctured discs at 0.

In Section 4, we first recall the definition and main properties of a Laplace like transform,
and q−Gevrey asymptotic expansions (Subsection 4.1). Next, we construct analytic solutions for
the main problem and determine flat q−Gevrey bounds for the difference of two solutions when
the intersection of the domains in the perturbation parameter is not empty (Subsection 4.2). In
the proof, a Dirichlet type series is studied. The section is concluded proving the existence of a
formal power series in the perturbation parameter which represents every solution in some sense
which is specified (Subsection 4.3).

2 A Cauchy problem in weighted Banach spaces of Taylor power
series

M,A1, C, δ1 > 0 are fixed positive real numbers throughout the present work. Let q ∈ R with
0 < q < 1 and (Rβ)β≥0 be a sequence of positive real numbers.

We consider an open and bounded sector E with vertex at the origin and we fix an open
and unbounded sector S with vertex at the origin having positive distance to a fixed complex
number a ∈ C?, it is to say, there exists M1 > 0 such that |τ − a| > M1 for every τ ∈ S. We
write Sβ for the subset of S defined by

Sβ := {z ∈ S : |z| > Rβ} .



5

The incoming definition of Banach spaces of functions and formal power series turns out to
be an adaptation of the corresponding one in [28]. Here, the symmetry of these norms at 0 and
the point of infinity in the τ variable has to be removed, so that a Laplace like transform of the
elements in these Banach spaces makes sense.

Definition 1 Let ε ∈ E and β ∈ N. Eβ,ε,Sβ denotes the vector space of functions v ∈ O(Sβ)
such that

‖v(τ)‖β,ε,Sβ := sup
τ∈Sβ

{
|v(τ)|

e
M log2

(
|τ |
|ε|+δ1

) ∣∣∣τ
ε

∣∣∣−Cβ} q−A1β2

is finite.
Let δ > 0. H(ε, δ,S) denotes the complex vector space of all formal power series v(τ, z) =∑
β≥0 vβ(τ) z

β

β! with vβ ∈ O(Sβ) for every β ≥ 0 and such that

‖v(τ, z)‖(ε,δ,S) :=
∑
β≥0

‖vβ(τ)‖β,ε,Sβ
δβ

β!
<∞.

It is straightforward to check that the pair (H(ε, δ,S), ‖·‖(ε,δ,S)) is a Banach space.

For our purposes, the elements in the sequence (Rβ)β≥0 are chosen to be related to the ones
in a q−Gevrey sequence. This choice would provide that Sβ tends to S when β →∞.

Let (Eβ)β≥0 be a family of complex functional Banach spaces. For every v(τ, z) =
∑

β≥0 vβ(τ) τ
β

β! ∈
(∪β≥0Eβ) [[z]], we consider the formal integration operator ∂−1

z defined on (∪β≥0Eβ) [[z]] by

∂−1
z (v(τ, z)) :=

∑
β≥1

vβ−1(τ)
zβ

β!
.

Lemma 1 Let s, `0, `1,m1,m2 ∈ N, δ > 0 and ε ∈ E. We assume that

(4) C(`1 + s)− `0 − 2m1M(− log(q)) ≥ 0.

In addition to this, we consider the elements in (Rβ)β≥0 are such that

(5) Rβ ≥ qm1Rβ−`1−s,

for every β ≥ `1 + s. Moreover, we assume there exist constants d1, d2 > 0 such that

(6) Rβ ≥ d1q
d2β,

for every β ≥ 0. In addition to this, we assume

(7) m2 − 2A1(`1 + s)−m1C + d2 [`0 − 2m1M log(q)− C(`1 + s)] > 0.

Under the previous assumptions, there exists a positive constant C11, which does not depend
on ε nor δ, such that∥∥∥∥zs (−τε )`0 1

qm1(`0+1)
(∂−`1z v)(τq−m1 , zqm2)

∥∥∥∥
(ε,δ,S)

≤ C11δ
`1+s ‖v(τ, z)‖(ε,δ,S) ,

for every v ∈ H(ε, δ,S).
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Proof Let v(τ, z) =
∑

β≥0 vβ(τ) z
β

β! ∈ H(ε, δ,S). We have that

(8)

∥∥∥∥zs (−τε )`0 1

qm1(`0+1)
(∂−`1z v)(τq−m1 , zqm2)

∥∥∥∥
(ε,δ,S)

=

∥∥∥∥∥∥
∑

β≥`1+s

vβ−`1−s(τq
−m1)qm2(β−s)−m1(`0+1) β!

(β − s)!

(
−τ
ε

)`0 zβ
β!

∥∥∥∥∥∥
(ε,δ,S)

.

From (5), one derives that for every τ ∈ Sβ, vβ−`1−s(τq
−m1) is well defined and the function

τ 7→ vβ−`1−s(q
−m1τ) is holomorphic in Sβ for every β ≥ `1 + s. The expression in (8) equals

(9)
∑

β≥`1+s

∥∥∥∥vβ−`1−s(τq−m1)qm2(β−s)−m1(`0+1) β!

(β − s)!

(
−τ
ε

)`0∥∥∥∥
β,ε,Sβ

δβ

β!
.

Let β ≥ `1 + s. From the definition of the norm ‖·‖β,ε,Sβ , we get∥∥∥∥vβ−`1−s(τq−m1)qm2(β−s)−m1(`0+1) β!

(β − s)!

(
−τ
ε

)`0∥∥∥∥
β,ε,Sβ

= sup
τ∈Sβ

{
|vβ−`1−s(τq−m1)|

(
|τ |q−m1

|ε|

)−C(β−`1−s)
e
−M log2

(
|τ |
|ε| q
−m1+δ1

)

×
∣∣∣τ
ε

∣∣∣`0 ( |τ |q−m1

|ε|

)C(β−`1−s)
e
M log2

(
|τ |q−m1

|ε| +δ1

) ∣∣∣τ
ε

∣∣∣−Cβ e−M log2(
|τ |
|ε|+δ1)

}

× β!

(β − s)!
qm2(β−s)−m1(`0+1)q−A1β2

qA1(β−`1−s)2
q−A1(β−`1−s)2

.(10)

It is immediate to check that
(11)

e
−M log2(

|τ |
|ε|+δ1)+M log2

(
|τ |q−m1

|ε| +δ1

)
≤ C01e

−M log2
(
|τ |
|ε|

)
+M log2

(
|τ |q−m1

|ε|

)
≤ C02

(
|τ |
|ε|

)−2m1M log(q)

,

for some positive constants C01 and C02 only depending on q,m1,M . Moreover,

(|τ |q−m1)C(β−`1−s) = C03q
−m1Cβ|τ |C(β−`1−s),

for some constant C03 > 0 depending on q,m1, `1, s. This last equality and (4) yield∣∣∣τ
ε

∣∣∣`0 ( |τ |q−m1

|ε|

)C(β−`1−s) ∣∣∣τ
ε

∣∣∣−Cβ ( |τ ||ε|
)−2m1M log(q)

= C04

(
|ε|
|τ |

−`0+C(`1+s)+2m1M log(q)
)

≤ C05|τ |`0−2m1M log(q)−C(`1+s)q−m1Cβ,

for some positive constants C04 and C05 depending on q,m, `0, `1, s, C and E . From the hypoth-
esis (6) on Rβ, the last expression is upper bounded by

C05q
(−m1C+d2(`0−2m1M log(q)−C(`1+s)))β,
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for some positive constant C05 only depending on q, m1, `0, `1, s, E , C and d1. Now, from (7)
one gets that β!/(β − s)!qp1(β) is upper bounded by a constant C06 > 0 which does not depend
on β, where

p1(β) = m2(β−s)−m1(`0+1)−A1β
2+A1(β−`1−s)2−m1Cβ+d2 [`0 − 2m1M log(q)− C(`1 + s))] .

Taking into account all these computations, one achieves that (10) can be upper bounded by

C05 sup
τ∈Sβ

{
|vβ−`1−s(τq−m1)|

(
|τ |q−m1

|ε|

)−C(β−`1−s)
e
−M log2(

|τ |q−m1

|ε| +δ1)

}
q−A1(β−`1−s).

The lemma follows bearing in mind (5) and the definition of the norms in Eβ−(`1+s),ε,Sβ−(`1+s)

and of H(ε, δ,S). 2

Remark: The hypotheses made in (5), (6) and (7) are veryfied if one departs from Rβ =
d1q

d2β for some small enough positive d2, and any d1 > 0, provided (4) is satisfied and m2 −
2A1(`1 + s)−m1C > 0.

Lemma 2 Let F (ε, τ) be a holomorphic and bounded function defined on E × S. Then, there
exists a constant C12 = C12(F, E ,S) > 0 such that

‖F (ε, τ)vε(τ, z)‖(ε,δ,S) ≤ C12 ‖vε(τ, z)‖(ε,δ,S)

for every ε ∈ E, every δ > 0 and all vε ∈ H(ε, δ,S).

Proof Direct calculations on the definition of the norms in the space H(ε, δ,S) allow us to
conclude when taking C12 := max{|F (ε, τ)| : ε ∈ E , τ ∈ S}. 2

Let S ≥ 1, and N be a finite subset of N2. We also fix a ∈ C \R+, where R+ stands for the
set {z ∈ C : Re(z) ≥ 0, Im(z) = 0}.

For every κ = (κ0, κ1) ∈ N , letmκ,1, mκ,2 be nonnegative integers and bκ(ε, z) ∈ O(D(0, r0))[z],
where r0 > 0 is such that E ⊆ D(0, r0). We write bκ(ε, z) =

∑
s∈Iκ bκ,s(ε)z

s, where Iκ is a finite

subset of N for every κ ∈ N . We assume that 1 ≤ κ1 < S for every κ = (κ0, κ1) ∈ N .
We consider the functional equation

(12) ∂SzW (ε, τ, z) =
∑

κ=(κ0,κ1)∈N

bκ(ε, z)

(a− τ)qmκ,1(κ0+1)

(
−τ
ε

)κ0

(∂κ1
z W )

(
ε, q−mκ,1τ, qmκ,2z

)
with initial conditions

(13)
(
∂jzW

)
(ε, τ, 0) = Wj(ε, τ) , 0 ≤ j ≤ S − 1,

where the function (ε, τ) 7→Wj(ε, τ) is an element in O(E × S) for every 0 ≤ j ≤ S − 1.
We make the following
Assumption (A) For every κ = (κ0, κ1) ∈ N and every s ∈ Iκ, we assume

C(S − κ1 + s)− κ0 − 2mκ,1M(− log(q)) ≥ 0,[
C(S − κ1 + s)− κ0 − 2mκ,1M(− log(q))

]
d2 < mκ,2 − 2A1(S − κ1 + s)−mκ,1C.

Assumption (B) Rβ ≥ qmκ,1Rβ−κ1−s, and there exist d1, d2 > 0 with Rβ ≥ d1q
d2β, for

every κ = (κ0, κ1) ∈ N and every s ∈ Iκ.
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Theorem 1 Let Assumption (A) and Assumption (B) be fulfilled. We assume that the initial
conditions in (13) verify there exist ∆ > 0 and 0 < M̃ < M such that for every 0 ≤ j ≤ S − 1

(14) |Wj(ε, τ)| ≤ ∆e
M̃ log2(

|τ |
|ε|+δ1)|ε|K0 ,

for every τ ∈ S0, ε ∈ E, where K0 = max{κ0 : (κ0, κ1) ∈ N}. Then, there exists W (ε, τ, z) =∑
β≥0Wβ(ε, τ) z

β

β! , formal solution of (12)+(13), where Wβ ∈ O(E × Sβ).
Then, there exist positive constants C13, and C14 (only depending on q, d1, d2, C, S, δ1, A1),

and δ > 0 such that

(15) |Wβ(ε, τ)| ≤ C13β!

(
C14

δ

)β
e
M log2(

|τ |
|ε|+δ1)

∣∣∣τ
ε

∣∣∣Cβ qA1β2
,

for every β ≥ 0, all ε ∈ E and every τ ∈ Sβ.

Proof Let ε ∈ E . We put E := {O(Sβ) : β ≥ 0} and define the map Aε from E[[z]] into itself by

Aε(W̃ (τ, z)) :=
∑

κ=(κ0,κ1)∈N

bκ(ε, z)

(a− τ)qmκ,1(κ0+1)

(
−τ
ε

)κ0
[
(∂κ1−S
z W̃ )

(
q−mκ,1τ, qmκ,2z

)
+∂κ1

z wε(q
−mκ,1τ, qmκ,2z)

]
,(16)

where wε(τ, z) =
∑S−1

j=0 Wj(ε, τ) z
j

j! . For an appropriate choice of δ,∆ > 0, the map Aε turns out
to be a Lipschitz shrinking map.

Lemma 3 There exist R, δ,∆ > 0 (not depending on ε) such that:

1.
∥∥∥Aε(W̃ (τ, z))

∥∥∥
(ε,δ,S)

≤ R for every W̃ (τ, z) ∈ B(0, R). B(0, R) denotes the closed ball

centered at 0 with radius R in H(ε, δ,S).

2. ∥∥∥Aε(W̃1(τ, z))−Aε(W̃2(τ, z))
∥∥∥

(ε,δ,S)
≤ 1

2

∥∥∥W̃1(τ, z)− W̃1(τ, z)
∥∥∥

(ε,δ,S)

for every W̃1, W̃2 ∈ B(0, R).

Proof Let R > 0 and δ > 0. In order to prove the first enunciate, we take W̃ (τ, z) ∈ B(0, R) ⊆
H(ε, δ,S). From Lemma 1 and Lemma 2 we deduce that

(17)
∥∥∥Aε(W̃ (τ, z)

∥∥∥
(ε,δ,S)

≤
∑

κ=(κ0,κ1)∈N

∑
s∈Iκ

Mκs

M1

[
C01δ

S−κ1+s
∥∥∥W̃ (τ, z)

∥∥∥
(ε,δ,S)

+

∥∥∥∥ zs

qmκ,1(κ0+1)

(
−τ
ε

)κ0

∂κ1wε(q
−mκ,1τ, qmκ,2z)

∥∥∥∥
(ε,δ,S)

]
,

with Mκs = supε∈E |bκs(ε)| <∞ for every κ ∈ N and s ∈ Iκ.
Let us fix κ = (κ0, κ1) ∈ N and s ∈ Iκ. Taking into account the definition of H(ε, δ,S)), we

derive ∥∥∥∥ zs

qmκ,1(κ0+1)

(
−τ
ε

)κ0

∂κ1wε(q
−mκ,1τ, qmκ,2z)

∥∥∥∥
(ε,δ,S)
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=

S−1−κ1−s∑
j=s

∥∥∥Wj+κ1−s(ε, q
−mκ,1τ)

(
−τ
ε

)κ0
∥∥∥
j,ε,Sj

qmκ,2(j−s)−mκ,1(κ0+1) j!

(j − s)!
δj

j!

≤ C14

S−1−κ1−s∑
j=s

sup
τ∈Sj

∣∣Wj+κ1−s(ε, q
−mκ,1τ)

∣∣ ∣∣∣τ
ε

∣∣∣κ0
∣∣∣τ
ε

∣∣∣−Cj e−M log2(
|τ |
|ε|+δ1)

δj ,(18)

for some C14 > 0 which only depends on the parameters defining equation (12). The terms
of the form |ε|Cj in the previous expression can be upper bounded by an adequate constant.
Taking into account (14), usual estimates in (18) derive∥∥∥Aε(W̃ (τ, z))

∥∥∥
(ε,δ,S)

≤
∑

κ=(κ0,κ1)∈N

∑
s∈Iκ

Mκs

M1

[
C01δ

S−κ1+s
∥∥∥W̃ (τ, z)

∥∥∥
(ε,δ,S)

+ C15

]
,

for some C15 depending on the parameters defining the equation, and such that tends to 0
whenever both ∆ and δ tend to 0. An appropriate choice for these constants allow us to
conclude the first part of the proof.

The second part of the lemma follows similar arguments as before. Let W̃1, W̃2 ∈ B(0, R) ⊆
H(ε, δ,S). One has∥∥∥Aε(W̃1)−Aε(W̃2)

∥∥∥
(ε,δ,S)

≤
∑

κ=(κ0,κ1)∈N

∑
s∈Iκ

Mκs

M1
C01δ

S−κ1+s
∥∥∥W̃1 − W̃2

∥∥∥
(ε,δ,S)

.

The result is achieved with an adequate choice of δ > 0. 2

Let R, ∆ and δ be as in the previous lemma. Bearing in mind Lemma 3 one can apply the
shrinking map theorem on complete metric spaces to guarantee the existence of a fixed point

for Aε in B(0, R) ⊆ H(ε, δ,S), say W̃ε, which verifies
∥∥∥W̃ε(τ, z)

∥∥∥
(ε,δ,S)

≤ R, and Aε(W̃ε(τ, z)) =

W̃ε(τ, z). Let us define

(19) Wε(τ, z) = ∂−Sz W̃ε(τ, z) + wε(τ, z).

We put W̃ (ε, τ, z) := W̃ε(τ, z), and W (ε, τ, z) := ∂−Sz W̃ (ε, τ, z) + wε(τ, z). Then, W (ε, τ, z) can
be written as a formal power series in z,

W (ε, τ, z) =
∑
β≥0

Wβ(ε, τ)
zβ

β!
,

where Wβ+S(ε, τ) = W̃β,ε(τ) for every β ≥ 0.

From the construction of W (ε, τ, z), we have W (ε, τ, z) =
∑

β≥0Wβ(ε, τ) z
β

β! is a formal solu-
tion of (12)+(13). Moreover, from the domain of holomorphy of the initial conditions in (13)
and the recursion formula satisfied by the coefficients in W (ε, τ, z):
(20)
Wh+S(ε, τ)

h!
=

∑
κ=(κ0,κ1)∈N

∑
h1+h2=h,h1∈Iκ

bκ,h1(ε)
(
−τ
ε

)κ0 qmκ,2h2

(a− τ)h2!qmκ,1(κ0+1)
Wh2+κ1(ε, q−mκ,1τ),

we can conclude the function (ε, τ) 7→Wβ ∈ O(E × S) for every β ≥ 0.
Finally, the estimates in (15) are obtained for every β ≥ 0 from the fact that W̃ε ∈ B(0, R) ⊆

H(ε, δ,S). The definition of the elements in H(ε, δ,S) lead us to∥∥∥W̃β,ε

∥∥∥
β,ε,Sβ

≤ Rβ!

(
1

δ

)β
,
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so that

|Wβ(ε, τ)| = |W̃β−S,ε(τ)| ≤ R(β − S)!

(
1

δ

)β−S
e
M log2

(
|τ |
|ε|+δ1

) ∣∣∣τ
ε

∣∣∣C(β−S)
qA1(β−S)2

,

for every β ≥ S. In addition to this, Assumption (B) and usual estimates allow us to refine the
previous estimates leading to

|Wβ(ε, τ)| ≤ C13β!

(
C14

δ

)β
e
M log2(

|τ |
|ε|+δ1)

∣∣∣τ
ε

∣∣∣Cβ qA1β2
,

for some constants C13 > 0 and C14 > 0 which only depend on q, d1, d2, C, S, δ1 and A1. This is
valid for every ε ∈ E and τ ∈ Sβ. The hypothesis (14) in the enunciate allows us to affirm that
(15) is also valid for 0 ≤ β ≤ S − 1.

2

Remark: One derives holomorphy of Wβ in the variable τ in the whole sector S, and not
only in Sβ for every β ≥ S whilst the estimates are only given for τ ∈ Sβ. It is also worth saying
that R > 0 can be arbitrarily chosen whenever s > 0 for every s ∈ Iκ, κ ∈ N .

3 Second Cauchy problem in a weighted Banach space of Taylor
series

We provide the solution of a Cauchy problem with analogous equation as the one studied in
the previous section, written as a formal power series in z with coefficients in an appropriate
Banach space of functions in the variable τ and the perturbation parameter ε. In Section 2, the
domain of holomorphy of the coefficients remains invariant from the domain of holomorphy of
the initial conditions. This happens so because the dilation operator τ 7→ q−1τ sends points in
any infinite sector in the complex plane with vertex at the origin into itself. Now, the domain
of holomorphy of the coefficients for the formal solution of the Cauchy problem under study
depends on the index considered. More precisely, if the initial conditions present a singularity at
some point a ∈ C in the variable τ , the coefficients of the formal solution of the Cauchy problem
have singularities in τ that tend to 0, providing a small divisor phenomenon.

For every ρ > 0, Ḋρ stands for the set D(0, ρ) \ {0}. We preserve the value of the positive
constants M,A1, C and δ1 from the previous section. Let r0 > 0 with E ⊆ D(0, r0) and (R̂β)β≥0

be a sequence of positive real numbers.

Definition 2 Let β ∈ N. For r0 > 0 and ε ∈ D(0, r0)\{0}, E2
β,ε,ḊR̂β

stands for the vector space

of functions v ∈ O(ḊR̂β
) such that

|v(τ)|β,ε,ḊR̂β
:= sup

τ∈ḊR̂β

{
|v(τ)| |ε|Cβ

eM log2(|τ |+δ1)

}
q−A1β2

is finite. Let δ > 0. We write H2(ε, δ) for the vector space of all formal power v(τ, z) =∑
β≥0 vβ(τ)zβ/β! such that vβ ∈ E2

β,ε,ḊR̂β

with

|v(τ, z)|(ε,δ) :=
∑
β≥0

|vβ(τ)|β,ε,ḊR̂β
δβ

β!
<∞.

The pair (H2(ε, δ), | · |(ε,δ)) is a Banach space.
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Lemma 4 Let s, `0, `1,m1,m2 ∈ N, δ > 0 and ε ∈ D(0, r0) \ {0}. We assume that

(21) C(`1 + s)− `0 ≥ 0, m2 − 2A1(`1 + s) > 0.

Moreover, we assume that the elements of the sequence (R̂β)β≥0 are such that

(22) R̂β ≤ qm1R̂β−`1−s,

for every β ≥ `1 + s.
Under the previous assumptions, there exists a positive constant C21 which depends on

C, q,m1,m2, s, `0, `1,M,A1, δ1, r0 (not depending on ε nor δ), such that∣∣∣∣zs (−τε )`0 1

qm1(`0+1)
(∂−`1z v)(τq−m1 , zqm2)

∣∣∣∣
(ε,δ)

≤ C21δ
`1+s |v(τ, z)|(ε,δ) ,

for every v ∈ H2(ε, δ).

Proof Let v(τ, z) =
∑

β≥0 vβ(τ) z
β

β! be an element of H2(ε, δ). We have

(23)

∣∣∣∣zs (−τε )`0 1

qm1(`0+1)
(∂−`1z v)(τq−m1 , zqm2)

∣∣∣∣
(ε,δ)

=

∣∣∣∣∣∣
∑

β≥`1+s

vβ−`1−s(τq
−m1)qm2(β−s)−m1(`0+1) β!

(β − s)!

(
−τ
ε

)`0 zβ
β!

∣∣∣∣∣∣
(ε,δ)

.

From (22), one derives that for every τ ∈ ḊR̂β−`1−s
, vβ−`1−s(τq

−m1) is well defined. In addition

to this, the function τ 7→ vβ−`1−s(τq
−m1) is holomorphic in ḊR̂β

for every β ≥ `1 + s. The

expression in (23) equals

(24)
∑

β≥`1+s

∣∣∣∣vβ−`1−s(τq−m1)qm2(β−s)−m1(`0+1) β!

(β − s)!

(
−τ
ε

)`0∣∣∣∣
β,ε,ḊR̂β

δβ

β!
.

Let β ≥ `1 + s. From the definition of the norm |·|β,ε,ḊR̂β
, we get

∣∣∣∣vβ−`1−s(τq−m1)qm2(β−s)−m1(`0+1) β!

(β − s)!

(
−τ
ε

)`0∣∣∣∣
β,ε,ḊR̂β

= sup
τ∈ḊR̂β

{
|vβ−`1−s(τq−m1)| |ε|

C(β−`1−s)

e
M log2

(
|τ |
qm1 +δ1

)

×
∣∣∣τ
ε

∣∣∣`0 |ε|C(`1+s)e
M

(
log2

(
|τ |
qm1 +δ1

)
−log2(|τ |+δ1)

)}
qp1(β) β!

(β − s)!
q−A1(β−`1−s)2

,(25)

with p1(β) = m2(β − s)−m1(`0 + 1)−A1β
2 +A1(β − `1 − s)2.

The result follows provided that one is able to estimate the expression

qp1(β) β!

(β − s)!
|τ |`0 |ε|C(`1+s)−`0e

M
(

log2
(
|τ |
qm1 +δ1

)
−log2(|τ |+δ1)

)
.
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From the first of the hypotheses made in (21), |ε|C(`1+s)−`0 is upper bounded by a constant.
Also, taking into account (22), there exists R̂ > 0 such that |τ | ≤ R̂ for every τ ∈ ∪β≥0ḊR̂β

, so

that
|τ |`0 exp

(
M(log2(|τ |q−m1 + δ1)− log2(|τ |+ δ1))

)
≤ D21(q,m1, δ1,M, `0),

for some positive constant D21. The result immediately follows from (21) that guarantees that
β!/(β − s)!qp1(β) is bounded from above.

2

Let R̂ > 0 be as in the proof of the previous lemma, i.e. R̂ ≥ R̂β for every β ≥ 0.

Lemma 5 Let F (ε, τ) be a holomorphic and bounded function defined on D(0, r0)×D(0, R̂).
Then, there exists a constant C22 = C22(F ) > 0 such that

|F (ε, τ)vε(τ, z)|(ε,δ) ≤ C22 |vε(τ, z)|(ε,δ)

for every ε ∈ D(0, r0) \ {0}, every δ > 0 and all vε ∈ H2(ε, δ).

Proof Direct calculations on the definition of the norms in the space H2(ε, δ) allow us to conclude
when taking C22 := max{|F (ε, τ)| : ε ∈ D(0, r0), τ ∈ D(0, R̂)}. 2

Let S ≥ 1, and N be a finite subset of N2. We also fix a ∈ C \ R+ such that |a| ≥ R̂, with
R̂ as before.

Let mκ,1, mκ,2 and bκ be as in Section 2, for every κ = (κ0, κ1).
We consider the functional equation

(26) ∂SzW (ε, τ, z) =
∑

κ=(κ0,κ1)∈N

bκ(ε, z)

(a− τ)qmκ,1(κ0+1)

(
−τ
ε

)κ0

(∂κ1
z W )

(
ε, q−mκ,1τ, qmκ,2z

)
with initial conditions

(27)
(
∂jzW

)
(ε, τ, 0) = Wj(ε, τ) , 0 ≤ j ≤ S − 1,

where the function (ε, τ) 7→ Wj(ε, τ) is an element in O((D(0, r0) \ {0}) × ḊR̂0
) for every 0 ≤

j ≤ S − 1.
We make the following
Assumption (A’) For every κ = (κ0, κ1) ∈ N and every s ∈ Iκ, we assume

C(S − κ1 + s)− κ0 ≥ 0, mκ,2 − 2A1(S − κ1 + s) > 0.

Remark: Observe that Assumption (A) implies Assumption (A’).
Assumption (B’) We assume R̂β ≤ qmκ,1R̂β−κ1−s for every κ = (κ0, κ1) ∈ N , every s ∈ Iκ

and every β ≥ κ1 + s.
We first state a result which provides a concrete value for the elements in (R̂β)β≥0 under

Assumption (B’). The choice is made in two respects: first, to clarify how the singularities
suffer propagation in the formal solution of (26)+(27), with respect to the variable τ ; and
second, to provide acceptable domains of holomorphy for such coefficients when regarding this
phenomenon of propagation of singularities. Any other appropriate choice for the elements in
(R̂β)β≥0 regarding these issues would also be fairish for our purpose.
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Lemma 6 Let d̂1, d̂2 > 0 and ε ∈ D(0, r0) \ {0}.
We put R̂β := R̂0 for β = 0, 1, ..., S − 1, and R̂β = d̂1q

d̂2β for every β ≥ S. Let us assume

that (26)+(27) has a formal solution in z, W (ε, τ, z) =
∑

β≥0Wβ(ε, τ) z
β

β! . Then, there exists d̂20

such that for every d̂2 ≥ d̂20, the function τ 7→Wβ(ε, τ) belongs to O(ḊR̂β
) for every β ≥ S and

all ε ∈ D(0, r0) \ {0}.

Proof Let W (ε, τ, z) be a formal power series in z of the form
∑

β≥0Wβ(ε, τ) z
β

β! . One can
plug the formal power series into equation (26) to obtain the recursion formula in (20) for the
coefficients (Wβ)β≥S . From this recurrence, one derives the domain of holomorphy for Wh+S

in the variable τ depends on the domain of holomorphy on τ of Wh2+κ1 and also on q−mκ,1 for
every κ = (κ0, κ1) ∈ N , every 0 ≤ h2 ≤ h such that h− h2 ∈ Iκ.

The initial conditions W0, ...,WS−1 are holomorphic functions in ḊR̂0
.

Lemma 7 For every N ≥ 1 the coefficients WNS−(N−1)κ10
, ...,W(N+1)S−Nκ10

turn out to be

holomorphic functions in Ḋ
q
Nmκ,1 R̂0

, for κ10 := max{κ1 : (κ0, κ1) ∈ N} and mκ,1 := max{mκ,1 :

κ ∈ N}.

Proof
We prove it by recurrence on N and regarding the recursion formula (20).
Let N = 1. One has h2 + κ1 ≤ S − 1 for any h2, κ1 as in (20) if and only if h2 ≤ S − 1− κ1

for every (κ0, κ1) ∈ N , it is to say, if and only if h2 ≤ S − 1 − κ10. In this case, Wh+S only
depends on the initial conditions (Wj)0≤j≤S−1. Moreover,

h+ S ∈ {S, S + 1, ..., 2S − κ10 − 1},

and the dilation on the variable τ allow us to obtain that WS ,...,W2S−κ10−1 are holomorphic
functions in Ḋ

q
mκ,1 R̂0

.
The proof can be followed recursively for every N ≥ 2 by considering analogous blocks of

indices as before. 2

Regarding Lemma 7, the proof of Lemma 6 is concluded if one can check that for every
N ≥ 1, R̂β ≤ R̂0q

Nmκ,1 whenever

β ∈ {NS − (N − 1)κ10, ..., (N + 1)S −Nκ10 − 1} = {N(S − κ10) + κ10, ..., N(S − κ10) + S − 1}.

Let N ≥ 1 and β = N(S − κ10) + L, with κ10 ≤ L ≤ S − 1. Let d̂1 ≤ R̂0. We have

R̂β = d̃1q
d̃2[N(S−κ10)+L] ≤ R̂0q

Nmκ,1 if and only if Nmκ,1 ≤ d̃2[N(S − κ10) + L]. The result

follows for any d̃2 ≥
mκ,1
S−κ10

. 2

Lemma 8 Let R̂β be defined as in Lemma 6. Then, (R̂β)β≥0 satisfies Assumption (B’).

Proof From the definition of R̂β, the lemma follows when taking d̃2 ≥
mκ,1
κ1+s for every κ =

(κ0, κ1) ∈ N , and every s ∈ Iκ. 2

Assumption (B”): We assume R̂β = R̂0 for 0 ≤ β ≤ S − 1 and R̂β := d̂1q
d̂2β for any

d̂2 ≥ d̂20, with d̂20 > 0 as in Lemma 6.
As it has been pointed out before, the Assumption (B’) is substituted in the present work by

Assumption (B”) with the cost of losing some generality, but giving concrete values for R̂β, for
every β ≥ 0. The incoming theorem is valid when considering any other choice of the elements
in (R̂β)β≥0 satisfying Assumption (B’).
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Theorem 2 Let Assumption (A’) and Assumption (B”) be fulfilled. We also make the next
assumption on the initial conditions (27): there exist ∆ > 0 and 0 < M̃ < M such that

(28) |Wj(ε, τ)| ≤ ∆eM̃ log2(|τ |+δ1)|ε|K0 ,

for every τ ∈ D(0, R̂0), ε ∈ D(0, r0) \ {0} and 0 ≤ j ≤ S − 1, where K0 = max{κ0 : (κ0, κ1) ∈
N}. Then, there exists a formal power series W (ε, τ, z) =

∑
β≥0Wβ(ε, τ) z

β

β! , with Wβ(ε, τ) ∈
O((D(0, r0)\{0})× ḊR̂β

), which provides a formal solution of (26)+(27). Moreover, there exist

positive constants C23 and C24 (only depending on r0, R̂0, q, C, S, A1, δ1, M), and 0 < δ < 1
such that

(29) |Wβ(ε, τ)| ≤ C23β!

(
C24

δ

)β
|ε|−CβeM log2(|τ |+δ1)qA1β2

,

for every ε ∈ D(0, r0) \ {0}, τ ∈ ḊR̂β
, and for every β ∈ N.

Proof The proof follows analogous steps as the one of Theorem 1, so we do not enter into details
not to repeat arguments.

Let ε ∈ D(0, r0) \ {0} and 0 < δ < 1. The set E is taken to be {O(ḊR̂β
) : β ≥ 0}. We

consider the map Aε from E[[z]] into itself defined in the same way as in (16).
From Lemma 6 and Assumption (B”), the unique formal solution of (26)+(27), determined by

the recursion formula (20), W (ε, τ, z) =
∑

β≥0Wβ(ε, τ) z
β

β! , is such that Wβ(ε, τ) ∈ O(Ḋ(0, R̂β))
for every β ≥ 0.

Regarding the initial conditions of the Cauchy problem, one can reduce d̂1, if necessary,
so that R̂j+sq

−mκ,1 ≤ R̂0 and so the map τ 7→ Wj+κ1(ε, q−mκ,1τ) is well defined, for every
κ = (κ0, κ1) ∈ N , every s ∈ Iκ and j = 0, 1, ..., S − 1− κ1. Moreover, from (28), the expression∣∣∣∣ zs

qmκ,1(κ0 + 1)

(
−τ
ε

)κ0

∂κ1
z wε(q

−mκ,1τ, qmκ,2z)

∣∣∣∣
(ε,δ)

can be estimated in an analogous manner as in the corresponding step of the proof of Theorem 1,
for every κ = (κ0, κ1) ∈ N and all s ∈ Iκ. 2

4 Analytic solutions in a parameter of singularly perturbed
Cauchy problem

4.1 Laplace transform and q−Gevrey asymptotic expansion

In this subsection, we recall some identities for the Laplace transform, and state some definitions
and first results on q−Gevrey asymptotic expansions. The next lemma can be found in [34].

Lemma 9 Let m ∈ N, and w1(τ) be a holomorphic function in an unbounded sector U such
that there exist C,K > 0 with

(30) |w(τ)| ≤ C exp(K|τ |),

for every τ ∈ U . Let D be an unbounded sector with vertex at 0 which veryfies that

d+ arg(t) ∈ (−π
2
,
π

2
), cos(d+ arg(t)) ≥ δ2,
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for some d ∈ R and δ2 > 0. Then,

t 7→
∫
Ld

w(τ)e−tτdτ

is a holomorphic and bounded function defined for t ∈ D∩{|t| > K/δ2}. Moreover, the following
identities hold:

(31)

∫
Ld

τme−tτdτ =
m!

tm+1
, ∂t

(∫
Ld

w(τ)e−tτdτ

)
=

∫
Ld

(−τ)w(τ)e−tτdτ,

where Ld = R+e
id ⊆ U ∪ {0}, for all t ∈ D ∩ {|t| > K/δ2}.

In the sequel, we work with functions which satisfy more restrictive bounds that the ones
in (30). Indeed, we deal with bounds of the form C exp(K log2 |τ |), for some C,K > 0. This
alters the asymptotic behaviour of the Laplace transform and cause the appearance of q−Gevrey
asymptotic expansions, associated to estimates related to the sequence (q−n

2
)n≥0.

For any open sector S = {z ∈ C : a < arg(z) < b, |z| < ρ} in the complex plane with vertex at
0 with ρ fintite or infinite, and 0 ≤ a < b ≤ 2π, we say the finite sector S̃ with vertex at the origin
is a proper subsector of S, and we denote it S̃ ≺ S, if S̃ = {τ ∈ C? : a1 < arg(τ) < b1, |z| < ρ̃}
for some 0 ≤ a < a1 < b1 < b ≤ 2π, and some ρ̃ ∈ R, 0 < ρ̃ < ρ.

H stands for a complex Banach space.
We preserve the Definition of q−Gevrey asymptotic expansion established in [28], in order

to be coherent with the definitions in that work.

Definition 3 Let S be a sector in C? with vertex at the origin, and A > 0. We say a holomor-
phic function f : S → H admits the formal power series f̂ =

∑
n≥0 fnε

n ∈ H[[ε]] as its q−Gevrey

asymptotic expansion of type A in S if for every S̃ ≺ S there exist C1, H > 0 such that

(32)

∥∥∥∥∥f(ε)−
N∑
n=0

fnε
n

∥∥∥∥∥
H

≤ C1H
Nq−A

N2

2
|ε|N+1

(N + 1)!
, N ≥ 0,

for every ε ∈ S̃.

The next proposition, detailed in [28] in the more general geometry of q−spirals, characterises
null q−Gevrey asymptotic expansion.

Proposition 1 Let A > 0 and f : S → H a holomorphic function in a sector S with vertex at
the origin. Then,

i) If f admits the power series with null coefficients, which is denoted by 0̂, as its q−Gevrey
asymptotic expansion of type A, then for every S̃ ≺ S there exists C1 > 0 with

‖f(ε)‖H ≤ C1e
− 1
ã

1
2(− log(q))

log2 |ε|
,

for every ε ∈ S̃ and every ã > A.

ii) If for every S̃ ≺ S there exists C1 > 0 with

‖f(ε)‖H ≤ C1e
− 1
A

1
2(− log(q))

log2 |ε|
,

for every ε ∈ S̃ then f admits 0̂ as its q−Gevrey asymptotic expansion of type ã in S, for
every ã > A.
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4.2 Analytic solutions in a parameter of singularly perturbed Cauchy prob-
lem

We recall the definition of a good covering.

Definition 4 Let {Ei}0≤i≤ν−1 be a finite family of open sectors with vertex at the origin and
finite radius ε0. We assume that Ei ∩ Ei+1 6= ∅ for 0 ≤ i ≤ ν − 1 (we put Eν := E0), and also
that D(0, ν0) \ {0} ⊆ ∪ν−1

i=0 Ei for some ν0 > 0. Then, the family {Ei}1≤i≤ν−1 is known as a good
covering in C?.

Definition 5 Let {Ei}0≤i≤ν−1 be a good covering in C?. We consider a family {{S̃i}0≤i≤ν−1, T }
such that:

1. There exist di ∈ [0, 2π), 0 < θi <
π
2 such that

S̃i = S̃i(di, θi) :=

{
t ∈ C? : | arg(t)− di| <

θi
2

}
,

for every 0 ≤ i ≤ ν − 1.

2. T is an unbounded subset of an open sector with vertex at the origin. We assume |t| ≥ rT
for every t ∈ T .

3. For every 0 ≤ i ≤ ν − 1 and τ ∈ S̃i, there exists δ3 > 0 such that |a− τ | > δ3.

4. For every 0 ≤ i ≤ ν − 1, t ∈ T and ε ∈ Ei, one has t/ε ∈ S̃i.

Under the previous settings, we say the family {{S̃i}0≤i≤ν−1, T } is associated to the good covering
{Ei}0≤i≤ν−1.

Let us consider a good covering in C?, {Ei}0≤i≤ν−1.
Let S ≥ 1 and a ∈ C\R+. We consider a finite subset of N2, N . For every κ = (κ0, κ1) ∈ N ,

let mκ,1,mκ,2 ∈ N, and bκ(ε, z) a holomorphic and bounded function on D(0, r0)× C, for some
r0 > 0. For each 0 ≤ i ≤ ν − 1, we consider the main Cauchy problem in the present work:

(33) ε∂t∂
S
z Xi(ε, t, z) + a∂Sz Xi(ε, t, z) =

∑
κ=(κ0,κ1)∈N

bκ(ε, z)(∂κ0
t ∂

κ1
z Xi)(ε, q

mκ,1t, qmκ,2z),

with initial conditions

(34) (∂jzXi)(ε, t, 0) = φi,j(ε, t) 0 ≤ j ≤ S − 1,

where the functions φi,j(ε, t) are constructed as follows. Let {{S̃i}0≤i≤ν−1, T } be a family of
open sets associated to the good covering {Ei}0≤i≤ν−1.

From now on, we assume the values of (Rβ)β≥0 and (R̂β)β≥0 are those in the preceeding

sections. If necessary, one can adjust the values of d1, d2, d̂1 and d̂2 so that Rβ < R̂β for every
β ≥ 0 so that ḊR̂β

∩ S̃i,β 6= ∅ for every β ≥ 0 and every 0 ≤ i ≤ ν − 1. Here, we have put

S̃i,β :=
{
τ ∈ C? : τ ∈ S̃i, |τ | > Rβ

}
, β ≥ 0, 0 ≤ i ≤ ν − 1.
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For every 0 ≤ j ≤ ν − 1, we assume that (ε, τ) 7→ Wj(ε, τ) is a bounded and holomorphic
function on (D(0, r0) \ {0})× ḊR̂j

verifying

|Wj(ε, τ)| ≤ ∆e
M̃ log2(

|τ |
|ε|+δ1)|ε|K0 ,

for every (ε, τ) ∈ (D(0, r0) \ {0}) × ḊR̂j
. Here M̃,K0,∆, δ1 are the constants provided in

Theorem 1. Assume moreover that Wj(ε, τ) can be extended to an analytic function (ε, τ) 7→
WEi,Sj ,j(ε, τ) defined on Ei × S̃i,j and

|WEi,S̃i,j ,j(ε, τ)| ≤ ∆eM̃ log2(|τ |+δ1)|ε|K0 ,

for every (ε, τ) ∈ Ei × S̃i,j .
Take γi such that R+e

γi
√
−1 ⊆ DR̂j

∪ S̃i,j . We put

φi,j(t, ε) :=

∫
Lγi

WEi,Sj ,j(ε, τ)e−
tτ
ε dτ,

for every (ε, t) ∈ Ei × T . One can check that φi,j is well defined and holomorphic in T × Ei.
Indeed, there exists δ2 > 0 such that cos(γj − arg(t/ε)) > δ2 for every (t, ε) ∈ Ei×T . Moreover,
from the growth properties of WEi,S̃i,j ,j(ε, τ), one deduces∣∣∣∣∣
∫
Lγi

WEi,Sj ,j(ε, τ)e−
tτ
ε dτ

∣∣∣∣∣ ≤
∫ ∞

0
|WEi,Sj ,j(ε, se

√
−1γi)|e−

|t|δ2s
|ε| ds ≤ ∆|ε|K0

∫ ∞
0

e
M̃ log2( s|ε|+δ1)

e
− sδ2rT|ε| ds,

which is convergent for every (ε, t) ∈ Ei × T .

Theorem 3 Let Assumptions (A), (B) and (B”) be fulfilled. For every 0 ≤ i ≤ ν − 1, we
consider the problem (33)+(34) with initial conditions constructed as above. Then, the problem
(33)+(34) admits a solution Xi(ε, t, z) which is holomorphic and bounded in Ei × T × C.

Moreover, for every 0 ≤ i ≤ ν − 1 and for every ∆ > 1 there exists E1 > 0 (not depending
on ε), such that

(35) sup
t∈T

z∈D(0,ρ)

|Xi+1(ε, t, z)−Xi(ε, t, z)| ≤ E1e
− A1

2d22∆

1
(− log(q))

log2 |ε|
,

for every ε ∈ Ei ∩ Ei+1 (where, by convention, Xν := X0).

Proof Let 0 ≤ i ≤ ν−1 and ε ∈ Ei. We consider the Cauchy problem (12) with initial conditions
given by

(36) (∂jzW )(ε, τ, 0) = WEi,S̃i,j ,j(ε, τ), 0 ≤ j ≤ S − 1.

Theorem 1 shows that the problem (14)+(36) has a formal solutionW (ε, τ, z) =
∑

β≥0Wβ(ε, τ) z
β

β! ,

with Wβ ∈ O(Ei × S̃i,β) for every β ≥ 0. Moreover, for every β ≥ 0 one has

(37) |Wβ(ε, τ)| ≤ C13β!

(
C14

δ

)β
e
M log2(

|τ |
|ε|+δ1)

∣∣∣τ
ε

∣∣∣Cβ qA1β2
,
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for every (ε, τ) ∈ Ei × S̃i,β, where C13, C14 and δ are positive constants provided in the proof
of Theorem 1. In a paralel direction, one can consider the same Cauchy problem with initial
conditions given by

(38) (∂jzW )(ε, τ, 0) = Wj(ε, τ), 0 ≤ j ≤ S − 1,

where Wj ∈ O((D(0, r0) \ {0})× ḊR̂j
) are as above.

From Theorem 2, one concludes that the formal power series W (ε, τ, z) is such that Wβ can
be extended to a holomorphic function defined in (D(0, r0) \ {0}) × ḊR̂β

, for every β ≥ 0. We

preserve notation for these extensions. Moreover, for every β ≥ 0 one has

(39) |Wβ(ε, τ)| ≤ C23β!

(
C24

δ

)β
|ε|−CβeM log2(|τ |+δ1)qA1β2

,

for every (ε, τ) ∈ (D(0, r0) \ {0}) × ḊR̂β
, and some positive constants C23 and C24 determined

in the proof of Theorem 2.
We put Xi(ε, τ, z) =

∑
β≥0Xi,β(t, ε) z

β

β! , where

Xi,β(ε, t) :=

∫
Lγi

Wβ(τ, ε)e−
τt
ε dτ.

We fist check that Xi is, at least formally, a solution of (33)+(34). From (31), one can check
by inserting the formal power series Xi in (33), that it turns out to be a formal solution in the
variable z of (33)+(34) if and only if W (ε, τ, z) is a formal solution of (12)+(13) and (26)+(27).

Bearing in mind that Wβ verifies (38) and (39), one derives Xi,β is well defined in Ei×T , for
every β ≥ 0. We now state a proof for the fact that (ε, τ, z) 7→ Xi(ε, τ, z) is indeed a holomorphic
solution of (33)+(34) in Ei × T × C. Let ε ∈ Ei, t ∈ T , and β ∈ N. One has
(40)∣∣∣∣∣
∫
Lγi

Wβ(τ, ε)e−
tτ
ε dτ

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
Lγi,1

Wβ(τ, ε)e−
tτ
ε dτ

∣∣∣∣∣+
∣∣∣∣∣
∫
Lγi,2

Wβ(τ, ε)e−
tτ
ε dτ

∣∣∣∣∣+
∣∣∣∣∣
∫
Lγi,3

Wβ(τ, ε)e−
tτ
ε dτ

∣∣∣∣∣ ,
where Lγi,1 := Lγi ∩DR̂β

, Lγi,2 := Lγi ∩ S̃i,β and Lγi,3 := Lγi ∩ ḊR̂β
∩ S̃i,β. We only give details

on the first and second integrals appearing on the right-hand side of the previous inequality.
The first integral on the right-hand side of (40) can be upper bounded by means of (39), and
the choice of direction γi.∣∣∣∣∣

∫
Lγi,1

Wβ(τ, ε)e−
τ
εtdτ

∣∣∣∣∣ ≤
∫ R̂β

0
|Wβ(se

√
−1γi , ε)|e−

s|t|
|ε| cos(γi−arg(t/ε))

ds

≤ C23β!

(
C24

δ

)β
qA1β2

∫ R̂β

0
|ε|−CβeM log2( s|ε|+δ1)

e
− sδ2rT|ε| ds.(41)

One has

|ε|−CβeM log2
(
s
|ε|+δ1

)
e
− sδ2rT|ε| ≤ C̃23|ε|−Cβe−

sδ2rT
2|ε| ,

for some C̃23 > 0. Now, the function x 7→ x−Cβe
− sδ2rT|ε| attains its maximum at x = Cβ2

sδ2rT
.

One can reduce r0, if neccesary, to conclude that this function is increasing for x ∈ [0, ε0]. The
expression in (41) is upper bounded by

C23β!

(
C24

δrC0

)β
qA1β2

∫ ∞
0

e
− sδ2rT

2r0 ds.
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This yields

(42)

∣∣∣∣∣
∫
Lγi,1

Wβ(τ, ε)e−
tτ
ε dτ

∣∣∣∣∣ ≤ C31β!Cβ32q
A1β2

,

for some constants C31, C32 > 0 only depending on δ, r0, R0, q, S, A1 , C, δ1, M , rT , δ2. We
now consider the second integral appearing on the right-hand side of (40). From (37) and similar
estimates as before we get

(43)

∣∣∣∣∣
∫
Lγi,2

Wβ(τ, ε)e−
tτ
ε dτ

∣∣∣∣∣ ≤ C13β!

(
C14

δ

)β
qA1β2

∫ ∞
Rβ

e
M log2( s|ε|+δ1)

(
s

|ε|

)Cβ
e
− sδ2rT|ε| ds.

The function x 7→ g1(x) = eM log2(x+δ1)xCβ, x ≥ 0 is such that g1(x) ≤ g2(x) for all x ≥ 0,

where g2(x) = C̃13e
M log2(x)xCβ, for some positive constant C̃13, not depending on β. g2 attains

its maximum value at x0 = exp(− Cβ
2M ) so that g(x) ≤ g(x0) = exp(−C2β2

4M ), for every x > 0.
This implies

e
M log2

(
s
|ε|+δ1

)(
s

|ε|

)Cβ
e
− sδ2rT|ε| ≤ e−

C2

4M
β2
e
− sδ2rT|ε| .

From (43) we derive
(44)∣∣∣∣∣
∫
Lγi,2

Wβ(τ, ε)e−
tτ
ε dτ

∣∣∣∣∣ ≤ C13

∫ ∞
0

e
− sδ2rT

2r0 dsβ!qA1β2
e−

C2

4M
β2
e
−
Rβδ2rT

2r0 = C̃14β!q

(
A1− C2

4M log(q)

)
β2

,

for some C̃13 > 0.
From (42) and (44), we lead to the existence of positive constants C41, C42, not depending

on β, such that ∣∣∣∣∣∣
∑
β≥0

Xi,β(t, ε)
zβ

β!

∣∣∣∣∣∣ ≤ C41

∑
β≥0

Cβ42q
A1β2 |z|β,

for every z ∈ C. This allows us to conclude the first part of the proof.
Let 0 ≤ i ≤ ν − 1 and ρ > 0. For every (ε, t, z) ∈ (Ei ∩ Ei+1)× T ×D(0, ρ) we have

|Xi+1(ε, t, z)−Xi(ε, t, z)| ≤
∑
β≥0

|Xi+1,β(ε, t)−Xi,β(ε, t)|ρ
β

β!
.

We can write

Xi+1,β(ε, t)−Xi,β(ε, t) =

∫
Lγi+1,2

Wβ(τ, ε)e−
tτ
ε dτ −

∫
Lγi,2

Wβ(τ, ε)e−
tτ
ε dτ

+

∫
Lγi+1,4

−Lγi,4
Wβ(τ, ε)e−

tτ
ε dτ,

where Lγi+1,4 − Lγi,4 stands for the path consisting of two parts: the first one going from

Rβe
√
−1γi+1 to 0 along the segment [0, Rβe

√
−1γi+1 ] and the path going from 0 to Rβe

√
−1γi

following direction γi.
This integral has already been estimated in (44), for the first part of the proof, so we omit the

details. We also omit the details on the integral concerning the path Lγi+1,2 which is analogous.
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In order to estimate the integral along the path Lγi+1,4 − Lγi,4, one can observe that the
function involved in the integrand does not depend on the index i considered, for this function
is well defined for (ε, τ) ∈ (D(0, r0) \ {0})× ḊR̂β

. One can apply Cauchy Theorem to derive∫
L
Wβ(τ, ε)e−

tτ
ε dτ = 0,

where L = Lγi+1,4 − Lγi,4 − L1 is the closed path with s ∈ [γi, γi+1] → L1(s) = Rβe
√
−1s.

Moreover,
∣∣∣∫Lγi+1,4

−Lγi,4
Wβ(τ, ε)e−

tτ
ε dτ

∣∣∣ equals

∣∣∣∣∫
L1

Wβ(τ, ε)e−
tτ
ε dτ

∣∣∣∣ ≤ C23β!

(
C24

δ

)β
|ε|−CβeM log2(Rβ+δ1)qA1β2

Rβ

∫ γi+1

γi

e
−
Rβ |t| cos(θ−arg(t/ε))

|ε| dθ

≤ Ĉ23β!

(
C24

δ

)β
|ε|−CβqA1β2

Rβ

∫ γi+1

γi

e
−
RβrT δ2

2|ε| ds

≤ C̆23β!

(
C24

δ

)β
qA1β2 |ε|−Cβe−

RβrT δ2
2|ε| e

−
RβrT δ2

2|ε| .(45)

for some Ĉ23, C̆23 > 0. It only rests to take into account that the function x ∈ (0, r0) 7→

x−Cβe−
RβrT δ2

2x is monotone increasing in (0, r0), so that |ε|−Cβe−
RβrT δ2

2|ε| can be included in the
constants C̆23 and C24.

From (44) and (45) one gets the existence of positive constants C6, C7 such that

|Xi+1,β(ε, t)−Xi,β(ε, t)| ≤ C6β!Cβ7 q
A1β2

e
− d1δ2rT

2
qd2β

|ε| ,

for every (ε, t) ∈ (Ei ∩ Ei+1)×T . Taking this last estimate into the expression of Xi+1 −Xi one
can conclude that

|Xi+1(ε, t, z)−Xi(ε, t, z)| ≤ C6

∑
β≥0

(C7ρ)βqA1β2
e
− d1δ2rT

2
qd2β

|ε| ,

for every (ε, t, z) ∈ (Ei ∩ Ei+1)× T ×D(0, ρ). The proof of the second statement in the theorem
leans on the incoming lemma whose proof is left until the end of the current section. It provides
information on the estimates for a Dirichlet type series. A similar argument concerning a
Dirichlet series of different nature can be found in [29], Lemma 9, when dealing with Gevrey
asymptotic expansions.

Lemma 10 Let A1, D1, D2, d2 be positive constants, with D2 > 1. Then, for every ∆ > 1 there
exist E1 > 0 and δ > 0 such that

(46)
∑
β≥0

Dβ
1 q

A1β2
e−D2

qd2β

ε ≤ E1e
− A1
d22∆

1
(− log(q))2

log2 ε
,

for every ε ∈ (0, δ].

2

The proof of Lemma 10 heavily rests on the q−Gevrey version of some preliminary results
which are classical in Gevrey case (see [29] and the references therein). Their proofs do not
differ from the classical ones, so we omit them.
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Lemma 11 Let b > 0 and f : [0, b] → C a continuous function having the formal expansion∑
n≥0 ant

n ∈ C[[t]] as its q-asymptotic expansion of type A1 > 0 at 0, meaning there exist
C,H > 0 such that ∣∣∣∣∣f(t)−

N−1∑
n=0

ant
n

∣∣∣∣∣ ≤ CHNq−
A1N

2

2
|t|N

N !
,

for every N ≥ 1 and t ∈ [0, δ], for some 0 < δ < b.
Then, the function

I(x) =

∫ b

0
f(s)e−

s
xds

admits the formal power series
∑

n≥0 ann!εn+1 ∈ C[[ε]] as its q−Gevrey asymptotic expansion of

type A1 at 0. It is to say, there exist C̃, H̃ > 0 such that∣∣∣∣∣I(x)−
N−1∑
n=0

ann!xn+1

∣∣∣∣∣ ≤ C̃H̃N+1q−
A1(N+1)2

2
|x|N+1

(N + 1)!
,

for every N ≥ 0 and x ∈ [0, δ′] for some 0 < δ′ < b.

One can adapt the proof of Proposition 4 in [28] in our framework.

Lemma 12 Let A1, δ > 0 and ψ : [0, δ]→ C be a continuous function. Then,

1. If there exist C,H > 0 such that |ψ(x)| ≤ CHnq−
A1n

2

2
|x|n
n! , for every n ∈ N, n ≥ 0 and

x ∈ [0, δ], then for every Ã1 > A1 there exists C̃ > 0 such that

|ψ(x)| ≤ C̃e−
1
Ã1

1
(− log(q))2

log2 |x|
,

for every x ∈ (0, δ].

2. If there exists C > 0 such that |ψ(x)| ≤ Ce
− 1
A1

1
(− log(q))2

log2 |x|
, for every n ∈ N, and

x ∈ [0, δ], then for every Ã1 > A1 there exists C̃, H̃ > 0 such that

|ψ(x)| ≤ C̃H̃nq−
Ã1n

2

2
|x|n

n!
,

for every n ∈ N and for every x ∈ (0, δ].

proof of Lemma 10:
Let f : [0,+∞) → R be a C1 function. For every n ∈ N, one can apply Euler-Mac-Laurin

formula
n∑
κ=0

f(κ) =
1

2
(f(0) + f(n)) +

∫ n

0
f(t)dt+

∫ n

0
B1(t− btc)f ′(t)dt,

where B1(s) = s − 1
2 is the Bernoulli polynomial and b·c stands for the floor function, to

f(s) = Ds
1q
A1s2e−D2

qd2s

ε . One leads to

n∑
κ=0

Dκ
1q
A1κ2

e−D2
qd2κ

ε =
1

2
(e−

D2
ε +Dn

1 q
A1n2

e−D2
qd2n

ε ) +

∫ n

0
Dt

1q
A1t2e−D2

qd2t

ε dt

+

∫ n

0
B1(t− btc)Dt

1q
A1t2e−D2

qd2t

ε (log(D1) + log(q)A12t−D2
log(q)d2

ε
)dt.(47)
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Taking the limit when n tends to infinity in the previous expression we arrive at an equality for
a convergent series:

∞∑
κ=0

Dκ
1q
A1κ2

e−D2
qd2κ

ε =
1

2
e−

D2
ε +

∫ ∞
0

Dt
1q
A1t2e−D2

qd2t

ε dt

+

∫ ∞
0

B1(t− btc)Dt
1q
A1t2e−D2

qd2t

ε (log(D1) + log(q)A12t−D2
log(q)d2

ε
)dt.

Let I1 :=
∫∞

0 f(t)dt, and I2 :=
∫∞

0 B1(t−btc)
(

log(D1) + log(q)A12t−D2
log(q)d2

ε q
D2t
ε

)
f(t)dt.

From the fact that B1(t− btc) ≤ 1/2 for every t ≥ 0 and the change of variable D2q
d2t = u,

one gets

I1 =

∫ D2

0
f1(u)e−

u
ε du, where f1(u) := D

log(u/D2)
log(q)d2

1 q
A1 log2(u/D2)

log2(q)d22
1

d2(− log(q))u

and

I2 ≤
1

2

∫ D2

0
(f2(u) + f3(u) + f4(u))e−

u
ε du,

with f2(u) := log(D1)f1(u), f3(u) := 2A1
d2

log(u/D2)f1(u), f4 := (− log(q))d2

ε e
D2 log(u/D2)

d2ε f1(u),
for every u ∈ (0, D2]. Bearing in mind that f3(u) < 0 for u ∈ (0, D2], and from usual estimates

we derive I2 ≤ C1

(
1 + 1

ε

) ∫ D2

0 f1(u)e−
u
ε du for some C1 > 0. The proof is complete if one

can estimate e−D2/ε, I1 and 1/εI1 appropriately. The first expression is clearly upper bounded
according to (46).

From usual estimates we arrive at

I1 ≤ C3

∫ D2

0
e
− A1

(− log(q))d22
log2(u/D2)

e−
u
ε du = C3

∫ D3

0
f̃(u)e−

u
ε ,

for some C3 > 0. From Lemma 12, the function g̃ defined by u ∈ [0, 1] 7→ f̃(D2u) (extended by
continuity to u = 0) is such that for every ∆̃ > 1 there exist C̃, H̃ > 0 with

|g̃(u)| ≤ C̃H̃nq
− d

2
2∆̃2

A1
n2 |u|n

n!
,

for every u ∈ [0, D2] and for every n ≥ 0. From Lemma 11, the functions I1(ε) and 1
ε I1(ε)

admit the series with null coefficients as q−asymptotic expansion of type (d2
2∆̃)/A1. Again,

from Lemma 12, one can conclude that for every ∆ > ∆̃ there exists C4 > 0 such that both I1

and 1
ε I1 are upper bounded by C4e

− A1
d22∆

1
(− log(q))2

log2(ε)
, for every ε ∈ (0, ε1], for some ε1 > 0.

2

4.3 Existence of formal series solutions in the complex parameter

In this last subsection we obtain a q−Gevrey version of a Malgrange-Sibuya type Theorem. A
result in this direction has already been obtained by the authors in [28] when dealing with q ∈ C,
|q| > 1. In that work, the geometry of the problem differs from the one in the present work.
Indeed, the result is settled in terms of discrete q−spirals tending to the origin, and with q ∈ C.

Given q ∈ C with 0 < |q| < 1 and a nonempty open subset U ⊂ C?, the discrete q−spiral
associated to U and q consists of the products of an element in U and qm, for some m ∈ N. For
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our purpose, q is a real number and U is chosen in such a way that the discrete q−spiral turns
out to be a sector with vertex at the origin.

The proof of the q−Gevrey version of Malgrange-Sibuya Theorem in [28] is based on the use of
extension results on ultradifferential spaces of weighted functions which preserve the information
of q−Gevrey bounds but causes that the q−Gevrey type involved in the q−Gevrey asymptotic
suffers an increasement. Here, one can follow similar steps as for the classical proof Malgrange-
Sibuya theorem based on Cauchy-Heine transform, so that the q−Gevrey type is preserved.
In [34], an analogous demonstration for the Gevrey version of the result can be found. We have
decided to include the whole proof of the result in order to facilitate comprehension and clarity
of the result.

Theorem 4 (q-MS)

Let (E, ||.||E) be a Banach space over C and {Ei}0≤i≤ν−1 be a good covering in C∗. For all
0 ≤ i ≤ ν − 1, let Gi be a holomorphic function from Ei into the Banach space (E, ||.||E) and let
the cocycle ∆i(ε) = Gi+1(ε) − Gi(ε) be a holomorphic function from the sector Zi = Ei+1 ∩ Ei
into E (with the convention that Eν = E0 and Gν = G0). We make the following assumptions.

1) The functions Gi(ε) are bounded as ε ∈ Ei tends to the origin in C, for all 0 ≤ i ≤ ν − 1.

2) ∆i has a q−exponential decreasing of some type L > 0, for every 0 ≤ i ≤ ν − 1, meaning
there exists Ci > 0 such that

(48) ‖∆i(ε)‖E ≤ Cie
− 1
L

1
(− log(q))2

log2 |ε|
,

for every ε ∈ Ei ∩ Ei+1, and 0 ≤ i ≤ ν − 1.
Then, there exists a formal power series Ĝ(ε) ∈ E[[ε]] such that Gi(ε) admits Ĝ(ε) as its

q−Gevrey asymptotic expansion of type L on Ei, for every 0 ≤ i ≤ ν − 1.

Proof
We first state an auxiliary result.

Lemma 13 For all 0 ≤ i ≤ ν − 1, there exist bounded holomorphic functions Ψi : Ei → C such
that

(49) ∆i(ε) = Ψi+1(ε)−Ψi(ε)

for all ε ∈ Zi, where by convention Ψν(ε) = Ψ0(ε). Moreover, there exist ϕm ∈ E, m ≥ 0, such
that for each 0 ≤ l ≤ ν − 1, any L̂ > L and every W ≺ El, there exist K̂l, M̂l > 0 with

(50) ||Ψl(ε)−
M−1∑
m=0

ϕmε
m||E ≤ K̂l(M̂l)

Mq−L̂
(M−1)2

2
|ε|M

M !

for all ε ∈ W, all M ≥ 2.

Proof
We follow analogous arguments as in Lemma XI-2-6 from [23] with appropriate modifications

in the asymptotic expansions of the functions constructed with the help of the Cauchy-Heine
transform.
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For all 0 ≤ l ≤ ν − 1, we choose a segment

Cl = {te
√
−1θl , t ∈ [0, r]} ⊂ El ∩ El+1.

These ν segments divide the open punctured disc D(0, r) \ {0} into ν open sectors Ẽ0, . . . , Ẽν−1

where
Ẽl = {ε ∈ C∗/θl−1 < arg(ε) < θl, |ε| < r} , 0 ≤ l ≤ ν − 1,

where by convention θ−1 = θν−1. Let

Ψl(ε) =
−1

2π
√
−1

ν−1∑
h=0

∫
Ch

∆h(ξ)

ξ − ε
dξ

for all ε ∈ Ẽl, for 0 ≤ l ≤ ν− 1, be defined as a sum of Cauchy-Heine transforms of the functions
∆h(ε). By deformation of the paths Cl−1 and Cl without moving their endpoints and letting the
other paths Ch, h 6= l−1, l untouched (with the convention that C−1 = Cν−1), one can continue
analytically the function Ψl onto El. Therefore, Ψl defines a holomorphic function on El, for all
0 ≤ l ≤ ν − 1.

Now, take ε ∈ El ∩ El+1. In order to compute Ψl+1(ε)−Ψl(ε), we write

(51) Ψl(ε) =
−1

2π
√
−1

∫
Ĉl

∆l(ξ)

ξ − ε
dξ +

−1

2π
√
−1

ν−1∑
h=0,h 6=l

∫
Ch

∆h(ξ)

ξ − ε
dξ,

Ψl+1(ε) =
−1

2π
√
−1

∫
Čl

∆l(ξ)

ξ − ε
dξ +

−1

2π
√
−1

ν−1∑
h=0,h6=l

∫
Ch

∆h(ξ)

ξ − ε
dξ

where the paths Ĉl and Čl are obtained by deforming the same path Cl without moving its
endpoints in such a way that:
(a) Ĉl ⊂ El ∩ El+1 and Čl ⊂ El ∩ El+1,
(b) Γl,l+1 := −Čl + Ĉl is a simple closed curve with positive orientation whose interior contains
ε.

Therefore, due to the residue formula, we can write

(52) Ψl+1(ε)−Ψl(ε) =
1

2π
√
−1

∫
Γl,l+1

∆l(ξ)

ξ − ε
dξ = ∆l(ε)

for all ε ∈ El ∩ El+1, for all 0 ≤ l ≤ ν − 1 (with the convention that Ψν = Ψ0).
In a second step, we derive asymptotic properties of Ψl. We fix an 0 ≤ l ≤ ν − 1 and a

proper closed sector W contained in El. Let C̃l (resp. C̃l−1) be a path obtained by deforming
Cl (resp. Cl−1) without moving the endpoints in order that W is contained in the interior of
the simple closed curve C̃l−1 + γl − C̃l (which is itself contained in El), where γl is a circular arc

joining the two points re
√
−1θl−1 and re

√
−1θl . We get the representation

(53) Ψl(ε) =
−1

2π
√
−1

∫
C̃l

∆l(ξ)

ξ − ε
dξ +

−1

2π
√
−1

∫
C̃l−1

∆l−1(ξ)

ξ − ε
dξ

+
−1

2π
√
−1

ν−1∑
h=0,h6=l,l−1

∫
Ch

∆h(ξ)

ξ − ε
dξ
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for all ε ∈ W. One assumes that the path C̃l is given as the union of a segment Ll = {te
√
−1wl : t ∈

[0, r1]} where r1 < r and wl > θl and a curve Γl = {µl(τ) : τ ∈ [0, 1]} such that µl(0) = r1e
√
−1wl ,

µl(1) = re
√
−1θl and r1 ≤ |µl(τ)| < r for all τ ∈ [0, 1). We also assume that there exists a positive

number σ < 1 with |ε| ≤ σr1 for all ε ∈ W. By construction of the path Γl, we get that the

function ε 7→ 1
2π
√
−1

∫
Γl

∆l(ξ)
ξ−ε dξ defines an analytic function on the open disc D(0, r1).

It remains to give estimates for the integral 1
2π
√
−1

∫
Ll

∆l(ξ)
ξ−ε dξ. Let M ≥ 0 be an integer.

From the usual geometric series expansion, one can write

(54)
1

2π
√
−1

∫
Ll

∆l(ξ)

ξ − ε
dξ =

M∑
m=0

αl,mε
m + εM+1El,M+1(ε)

where

(55) αl,m =
1

2π
√
−1

∫
Ll

∆l(ξ)

ξm+1
dξ , El,M+1(ε) =

1

2π
√
−1

∫
Ll

∆l(ξ)

ξM+1(ξ − ε)
dξ

for all ε ∈ W.
Gathering (48) and (55), we get

(56) ||αl,m||E ≤
Kl

2π

∫ r1

0

e
− 1
L

1
(− log(q))2

log2 τ

τm+1
dτ

The changes of variable log(τ) = s first, and s =
√

2L(− log(q))t afterwards, transform the
right-hand side of (56) into

Kl

2π

∫ log(r1)

−∞

e
− 1
L

1
(− log(q))2

s2

esm
ds =

Kl

√
2L(− log(q))

2π

∫ log(r1)√
2L(− log(q))

−∞
exp(−t2 −m

√
2L(− log(q))t)dt

≤
Kl

√
2L(− log(q))

2π

∫ ∞
−∞

exp(−t2 −m
√

2L(− log(q))t)dt.

The application of

e
a2

4
√
π =

∫ ∞
−∞

e−x
2−axdx,

for every a ∈ R, which can be found in [1] (Chapter 10, p. 498), leads us to

(57) ||αl,m||E ≤
√

2L(− log(q))Kl

2
√
π

q−L
m2

2 .

Moreover, as above, one can choose a positive number η > 0 (depending on W) such that
|ξ− ε| ≥ |ξ| sin(η) for all ξ ∈ Ll and all ε ∈ W. Again by (48) and (55), and following analogous
calculations as before we obtain

(58) ||El,M+1(ε)||E ≤
Kl

2π sin(η)

∫ r1

0

e
− 1
L

1
2(− log(q))

log2 τ

τM+2
dτ ≤

√
2L(− log(q))Kl

2 sin(ν)
√
π

q−L
(M+1)2

2

for all ε ∈ W. Using comparable arguments, one can give analogous estimates when estimating
the other integrals

−1

2π
√
−1

∫
C̃l−1

∆l−1(ξ)

ξ − ε
dξ ,

−1

2π
√
−1

∫
Ch

∆h(ξ)

ξ − ε
dξ
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for all h 6= l, l − 1.
As a consequence, for any 0 ≤ l ≤ ν − 1, there exist ϕl,m ∈ E, for all m ≥ 0 and a constant

K̂l > 0 such that

(59) ||Ψl(ε)−
M−1∑
m=0

ϕl,mε
m||E ≤ K̂lq

−LM
2

2 |ε|M

for all M ≥ 2, all ε ∈ W.
Taking into account Proposition 1, we deduce that for every Êi,i+1 ≺ El ∩ El+1 and for every

L̂ > L, the function Ψl+1(ε)−Ψl(ε) has the formal series 0̂ as q−Gevrey asymptotic expansion
of type L̂ in Êi,i+1. From the unicity of the asymptotic expansions on sectors, we deduce that
all the formal series

∑
m≥0 ϕl,mε

m, 0 ≤ l ≤ ν − 1, are equal to some formal series denoted

Ĝ(ε) =
∑

m≥0 ϕmε
m ∈ E[[ε]].

2

We consider now the bounded holomorphic functions

ai(ε) = Gi(ε)−Ψi(ε)

for all 0 ≤ i ≤ ν − 1, all ε ∈ Ei. By definition, for any i ∈ {0, ..., ν − 1}, we have that

ai+1(ε)− ai(ε) = Gi+1(ε)−Gi(ε)−∆i(ε) = 0

for all ε ∈ Zi. Therefore, each ai(ε) is the restriction on Ei of a holomorphic function a(ε) on
D(0, r) \ {0}. Since a(ε) is moreover bounded on D(0, r) \ {0}, the origin turns out to be a
removable singularity for a(ε) which, as a consequence, defines a convergent power series on
D(0, r).

Finally, one can write
Gi(ε) = a(ε) + Ψi(ε)

for all ε ∈ Ei, all 0 ≤ i ≤ ν−1. Moreover, a(ε) is a convergent power series, and for every L̂ > L,
Ψi(ε) has the series Ĝ(ε) =

∑
m≥0 ϕmε

m as q−Gevrey asymptotic expansion of type L̂ on Ei, for
all 0 ≤ i ≤ ν − 1.

2

We are under conditions to enunciate the main result in the present work.

Theorem 5 Let ρ > 0.
Under the same hypotheses as in Theorem 3, we denote HT ,ρ the Banach space of holomorphic

and bounded functions in T × D(0, ρ) with the supremum norm. Then, there exists a formal
power series

X̂(ε, t, z) =
∑
k≥0

Xk(t, z)

k!
εk ∈ HT ,ρ[[ε]],

formal solution of

ε∂t∂
S
z X̂(ε, t, z) + a∂Sz X̂(ε, t, z) =

∑
κ=(κ0,κ1)∈N

bκ(ε, z)(∂κ0
t ∂

κ1
z X̂)(ε, qmκ,1t, qmκ,2z).

Moreover, for every 0 ≤ i ≤ ν − 1 and every L2 >
d2

2
A1

, the function Xi(ε, t, z) constructed in

Theorem 3 admits X̂(ε, t, z) as its q−Gevrey asymptotic expansion of type L2 in Ei, meaning
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that for every 0 ≤ i ≤ ν − 1 and Ẽi ≺ Ei, there exist L0, L1 > 0 such that

(60) sup
t∈T

z∈D(0,ρ)

∣∣∣∣∣X(ε, t, z)−
N∑
k=0

Xk(t, z)

k!
εk

∣∣∣∣∣ ≤ L0L
N
1 q
−L2

N2

2
|ε|N+1

(N + 1)!
,

for every N ≥ 0 and all ε ∈ Ẽi.

Proof Let us consider the family (Xi(ε, t, z))0≤i≤ν−1 constructed in Theorem 3. For every
0 ≤ i ≤ ν − 1, we define the function ε ∈ Ei 7→ Gi(ε) := Xi(ε, t, z), which belongs to the
space ET ,ρ. From (35), we derive the cocycle ∆i := Gi+1(ε)−Gi(ε) verifies (48) in Theorem 4,
with 1/L := A1

d2
2∆

for some fixed 0 < ∆ < 1. Theorem 4 guarantees the existence of a formal

power series X̂(ε) ∈ HT ,ρ[[ε]], such that for every L2 > L, Gi(ε) admits Ĝ(ε) as its q−Gevrey
asymptotic expansion of type L2 on Ei. This is valid for every 0 ≤ i ≤ ν− 1. This concludes the
second part of the result.

It only rests to verify that X̂ is a formal solution of (33)+(34).

If we write X̂(ε, t, z) :=
∑

k≥0
Xk(t,z)
k! εk, we have

(61) lim
ε→0

ε∈Ẽi

sup
(t,z)∈T ×D(0,ρ)

∣∣∣∂`εXi(t, z, ε)−X`(t, z)
∣∣∣ = 0,

for every 0 ≤ i ≤ ν − 1 and all ` ≥ 0.
Let 0 ≤ i ≤ ν − 1. By construction, Xi satisfies (33)+(34). We differenciate in the equality

(33) ` ≥ 1 times with respect to ε. By Leibniz’s rule, we deduce that ∂`εXi(ε, t, z) satisfies

ε∂`ε∂t∂
S
z Xi(ε, t, z) + `∂`−1

ε ∂t∂
S
z Xi(ε, t, z) + a∂Sz Xi(ε, t, z)

=
∑

κ=(κ0,κ1)∈N

∑
`0+`1=`

`!

`0!`1!
∂`1ε bκ(ε, z)(∂`1ε ∂

κ0
t ∂

κ1
z Xi)(ε, q

mκ,1t, qmκ,2z),

for every (ε, t, z) ∈ Ei ×T ×D(0, ρ). Let ε→ 0 in the previous expression. From (61) we obtain

∂t∂
S
z

(
X`−1(t, z)

(`− 1)!

)
+ a∂Sz

(
X`(t, z)

`!

)
=

∑
κ=(κ0,κ1)∈N

∑
`0+`1=`

(
∂`0ε bκ(0, z)

`0!

)(
∂κ0
t ∂

κ1
z X`1(qmκ,1t, qmκ,2z)

`1!

)
.(62)

bκ(z, ε) is holomorphic wih respect to ε for every κ ∈ N . This entails bκ(ε, z) =
∑

h≥0
∂hε bκ(0,z)

h! εh,

for every (ε, z) in a neighborhood of the origin in C2. From this, and (62), we deduce X̂(ε, t, z) =∑
k≥0

Xk(t,z)
k! εk ∈ HT ,ρ[[ε]] is a formal solution of (33)+(34). 2
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[3] A. Augustynowicz, H. Leszczyński, W. Walter, Cauchy-Kovalevskaya theory for equations
with deviating variables. Aequationes Math. 58 (1999), no. 1-2, 143–156.

[4] W. Balser, Formal power series and linear systems of meromorphic ordinary differential
equations, Springer-Verlag, New-York, 2000.

[5] A. S. Besicovitch, Almost periodic functions, Dover, New York, 1954.

[6] H. Bohr, Almost periodic functions, Chelsea, New York, 1947.

[7] J. Bonet, R.W. Braun, R. Meise, B. A. Taylor Whitney’s extension theorem for nonquasi-
analytic classes of ultradifferentiable functions, Stud. Math. 99 (2) (1991), 155–184.

[8] B. Braaksma, B. Faber, Multisummability for some classes of difference equations. Ann.
Inst. Fourier (Grenoble) 46 (1996), no. 1, 183–217.

[9] B. Braaksma, B. Faber, G. Immink, Summation of formal solutions of a class of linear
difference equations. Pacific J. Math. 195 (2000), no. 1, 35–65.

[10] M. Canalis-Durand, J. Mozo-Fernandez, R. Schäfke, Monomial summability and doubly
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