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1 Introduction

In the seminal paper [1] Uzy Smilansky discussed a simple example of quan-
tum dynamics which could exhibit a behavior one can regard as irreversible.
The model in which it can be demonstrated allows for interpretation in differ-
ent ways, as a one-dimensional system coupled to a heat bath, as a particular
quantum graph, or as a two-dimensional quantum system described by the
Hamiltonian

HSm = − ∂2

∂x2
+

1

2

(
− ∂2

∂y2
+ y2

)
+ λyδ(x) . (1.1)

It was argued in [1] that the behavior of the system depends crucially on the
coupling parameter: if |λ| > 1 the particle can escape to infinity along the
singular ‘channel’ in the y direction.
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The claim can be made mathematically rigorous in terms of the spectral
properties of such an operator: one can prove that that for |λ| exceeding the
critical value the operator has an additional branch of absolutely continuous
spectrum which is not bounded from below [2]. The model was subsequently
generalized to the situation when one has more than one singular ‘channel’ —
cf. [3,4] — and its further properties were studied, in particular, the discrete
spectrum in the subcritical case.

It has appeared that there is also another motivation to investigate such
systems. Recently Guarneri has used the model — or rather its modification
in which the motion in the x direction is restricted to a finite interval with
periodic boundary conditions — to describe quantum measurements [5]; he
studied the time evolution in such a situation identifying the escape along a
particular ‘channel’ with reduction of the wave packet.

The paper [5] concludes with expressing the hope that ‘similar behavior
may be reproducible with smoother interaction potentials and also in purely
classical models’. The aim of the present paper is demonstrate that this is in-
deed the case. We are going to investigate a model in which the δ interaction
with y-dependent strength is replaced by a smooth potential channel of in-
creasing depth, and to show that it exhibits the analogous spectral transition
as the coupling parameter exceeds a critical value.

Replacing the δ interaction by a regular potentials, however, requires
modifications, in particular, the coupling cannot be linear in y and the profile
of the channel has to change with y; in this respect our present problem is
similar to another model we have investigated recently [6]. To understand the
reason one should realize that the essence of the effect lays in the fact that
far from the x-axis the variables in the solution to the Schrödinger equation
effectively decouple — one can regard it as a sort of adiabatic approximation
— and the oscillator potential competes with the principal eigenvalue of the
‘transverse’ part of the operator, which in the singular case equals to 1

4
λ2y2.

If we want to approximate the δ interaction by a family of shrinking potential
in the usual way [7, Sec. I.3.2] we have to match the integral of the potential
with the δ coupling constant,

∫
U(x, y) dx ∼ y, which can be achieved, e.g.,

by choosing U(x, y) = λy2V (xy) for a fixed function V .
Inspired by these considerations we are going to investigate the model

described by the partial differential operator on L2(R2) acting as

H = − ∂2

∂x2
− ∂2

∂y2
+ ω2y2 − λy2V (xy)χ{|x|≤a}(y), (1.2)
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where ω, a are positive constants, χ{|y|≤a} is the indicator function of the
interval (−a, a), and the potential V with suppV ⊂ [−a, a] is a nonneg-
ative function with bounded first derivative. By Faris-Lavine theorem [8,
Thms. X.28 and X.38] the above operator is essentially self-adjoint on C∞

0 (R2);
the same is true for its generalization,

H = − ∂2

∂x2
− ∂2

∂y2
+ ω2y2 −

N∑
j=1

λjy
2Vj(xy)χ{|x−bj |≤aj}(y) (1.3)

with a finite number of potential channels, where the functions Vj are positive
with bounded first derivative, with the supports contained in the intervals
(bj − aj, bj + aj) and such that suppVj ∩ suppVk = ∅ holds for j ̸= k.

Our aim in the present paper is to demonstrate existence of a critical cou-
pling separating two different situations: below it the spectrum is bounded
from below while above it covers the whole real line. Discussion of further
properties such as the discrete spectrum in the subcritical case or time evolu-
tion of wave packets is postponed to a later paper. We note that the results
discussed here depend substantially on the asymptotic behavior of the poten-
tial channels and would not change if the potential is modified in the vicinity
of the x-axis, for instance, by replacing the cut-off functions in (1.2) and
(1.3) with χ|y|≥a and χ|y|≥aj , respectively. It is also not important that in
contrast to the original model with the Hamiltonian (1.1) we assume that the
potential channels depth increases in both directions parallel to the y-axis.

2 Subcritical case

To state the result we will employ a one-dimensional comparison operator

L = − d2

dx2
+ ω2 − λV (x) (2.1)

on L2(R) with the domain H2(R); as long as there is no danger of misunder-
standing we refrain from labeling the symbol by ω, λ and V . The important
property will be the sign of its spectral threshold; since V is supposed to be
nonnegative, the latter is a monotonous function of λ and there is a λcrit > 0
at which the sign changes.

We shall first focus on the subcritical coupling case.
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Theorem 2.1. Under the stated assumption, the spectrum of operator H
given by (1.2) is bounded from below provided the operator L is positive.

Proof. It is obvious it sufficient to prove the claim for λ = 1. We em-
ploy Neumann bracketing. Let hn and h̃n be the restrictions of opera-
tor H to the strips Gn = R × {y : lnn < y ≤ ln(n+ 1)} and G̃n = R ×
{y : − ln(n+ 1) < y ≤ − lnn} , n = 1, 2, . . ., with Neumann boundary con-
ditions. Then we have the inequality

H ≥
∞⊕
n=1

hn ⊕ h̃n , (2.2)

and to prove the claim we have to demonstrate that the sets σ(hn) and σ(h̃n)
have a uniform lower bound as n → ∞. Using the fact that the function V
has a bounded derivative we find

V (xy)− V (x lnn) = O
(

1

n lnn

)
, y2 − ln2 n = O

(
lnn

n

)
,

for any (x, y) ∈ Gn, and consequently

y2V (xy)− ln2nV (x lnn) = O
(
lnn

n

)
.

Similarly, we have

y2V (xy)− ln2nV (−x lnn) = O
(
lnn

n

)
.

for for any (x, y) ∈ G̃n. These relations yield asymptotic inequalities

inf σ(hn) ≥ inf σ(ln) +O
(
lnn

n

)
,

(2.3)

inf σ
(
h̃n

)
≥ inf σ

(
l̃n

)
+O

(
lnn

n

)
,

in which the Neumann operators ln := − ∂2

∂x2 − ∂2

∂y2
+ ω2 ln2n− ln2nV (x lnn)

on Gn and l̃n := − ∂2

∂x2 − ∂2

∂y2
+ω2 ln2n− ln2nV (−x lnn) on G̃n have separated

variables. Since the minimal eigenvalue of− d2

dy2
on the interval with Neumann
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boundary conditions defined on intervals (lnn < y ≤ ln(n+1)), n = 1, 2, . . . ,

is zero, we have inf σ(ln) = inf σ
(
l
(1)
n

)
, where

l(1)n = − d2

dx2
+ ω2 ln2n− ln2nV (x lnn)

acts on L2(R). Note that the cut-off function χ{|x|≤a} in (1.2) plays no role
in the asymptotic estimate as it affects a finite number of terms only. By the
change of variable x = t

lnn
the last operator is unitarily equivalent to ln2nL

which is positive as long as L is positive. In the same way one proves that
l̃n is positive under the assumption of the theorem; this in combination with
(2.3) concludes the proof.

By a straightforward modification of the proof we get the following claim.

Corollary 2.2. Let H be the operator on (−c, c) × R for some c ≥ a given
the differential expression (1.2) with Dirichlet (Neumann, periodic) bound-
ary conditions in the variable x. The spectrum of H is bounded from below
if L ≥ 0 holds, where L is the operator (2.1) on L2(−c, c) with Dirichlet
(respectively, Neumann or periodic) boundary conditions.

3 Supercritical case

Let us turn to the case when the ‘escape to infinity’ is possible.

Theorem 3.1. Under our hypotheses, σ(H) = R holds if inf σ(L) < 0.

Proof. To prove that any real number µ belongs to essential spectrum of
operator H we are going to use Weyl’s criterion [8, Thm. VII.12]: we have
to find a sequence {ψk}∞k=1 ⊂ D(H) such that ∥ψk∥ = 1 which contains no
convergent subsequence and

∥Hψk − µψk∥ → 0, as k → ∞

holds. Since the claim is invariant under scaling transformations we can
suppose without loss of generality that inf σ(L) = −1. The spectral threshold
is easily seen to be a simple isolated eigenvalue; we denote the corresponding
normalized eigenfunction of L by h. Our aim is to show first that 0 ∈ σess(H).
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We fix a positive ε and choose a natural number k = k(ε) with which we
associate a function χk ⊂ C2

0(1, k) satisfying the following conditions∫ k

1

1

z
χ2
k(z) dz = 1 and

∫ k

1

z(χ′
k(z))

2 dz < ε. (3.1)

To give an example, consider the function

χ̃k(z) =
8 ln3 z

ln3 k
χ{1≤z≤

√
k}(z) +

2 ln k − 2 ln z

ln k
χ{√k+1≤z≤k−1}(z)

+gk(z)χ{√k<z<
√
k+1}(z) + qk(z)χ{k−1<z≤k}(z),

where gk and qk are interpolating functions chosen in such a way that χ̃k ∈
C2

0(1, k). The first integral in (3.1) is positive for χ̃k, in fact we have∫ √
k

1
1
z
χ̃2
k(z) dz ≥ 1

4
, hence we can define χk(z) =

(∫ k

1
1
z
χ̃2
k(z) dz

)−1/2

χ̃k(z).

This function satisfies by definition the first condition of (3.1) and one can
check that it also satisfies the second one provided k is sufficiently large; this
follows from the fact that

∫ k

1
z(χ′

k(z))
2 dz = O

(
1

ln k

)
as k → ∞.

Such functions allow us to construct the Weyl sequence we seek. Given
a function χk with the described properties, we define

ψk(x, y) := h(xy) eiy
2/2χk

(
y

nk

)
+
f(xy)

y2
eiy

2/2χk

(
y

nk

)
, (3.2)

where f(t) := − i
2
t2h(t), t ∈ R, and nk ∈ N is a positive integer to chosen

later. For the moment we just note that choosing nk large enough for a given
k one can achieve that ∥ψk∥L2(R2) ≥ 1

2
as the following estimates show,∫

R2

∣∣∣∣h(xy) eiy2/2χk

(
y

nk

)∣∣∣∣2 dx dy =

∫ knn

nk

∫
R

∣∣∣∣h(xy)χk

(
y

nk

)∣∣∣∣2 dx dy

=

∫ knn

nk

∫
R

1

y

∣∣∣∣h(t)χk

(
y

nk

)∣∣∣∣2 dt dy =

∫
R
|h(t)|2 dt

∫ knn

nk

1

y

∣∣∣∣χk

(
y

nk

)∣∣∣∣2 dy

=

∫ knn

nk

1

y

∣∣∣∣χk

(
y

nk

)∣∣∣∣2 dy =

∫ k

1

1

z
|χk(z)|2 dz = 1 (3.3)
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and∫
R2

∣∣∣∣ 1y2f(xy) eiy2/2χk

(
y

nk

)∣∣∣∣2 dx dy =

∫ knk

nk

∫
R

∣∣∣∣ 1y2f(xy)χk

(
y

nk

)∣∣∣∣2 dx dy

=

∫ knk

nk

∫
R

1

y

∣∣∣∣ 1y2f(t)χk

(
y

nk

)∣∣∣∣2 dt dy ≤ 1

n5
k

∫ knk

nk

∫
R

∣∣∣∣f(t)χk

(
y

nk

)∣∣∣∣2 dt dy

=
1

n4
k

∫
R
|f(t)|2 dt

∫ k

1

|χk(z)|2 dz <
1

16
; (3.4)

note that since the potential V has a compact support by assumption, the
ground state eigenfunction h decays exponentially as |x| → ∞, hence the
first integral in the last expression converges.

Our next aim is to show that ∥Hψk∥2L2(R2) < cε with a fixed c holds for

k = k(ε). By a straightforward calculation one gets

∂2ψk

∂x2
= y2h′′(xy) eiy

2/2χk

(
y

nk

)
+ f ′′(xy) eiy

2/2χk

(
y

nk

)
and

∂2ψk

∂y2
= x2h′′(xy) eiy

2/2χk

(
y

nk

)
+ 2ixyh′(xy) eiy

2/2χk

(
y

nk

)
+
2x

nk

h′(xy) eiy
2/2χ′

k

(
y

nk

)
− y2h(xy) eiy

2/2χk

(
y

nk

)
+ih(xy)eiy

2/2χk

(
y

nk

)
+ 2

iy

nk

h(xy) eiy
2/2χ′

k

(
y

nk

)
+

1

n2
k

h(xy) eiy
2/2χ′′

k

(
y

nk

)
+
x2

y2
f ′′(xy) eiy

2/2χk

(
y

nk

)
+2

ix

y
f ′(xy) eiy

2/2χk

(
y

nk

)
+

2x

nky2
f ′(xy) eiy

2/2χ′
k

(
y

nk

)
−f(xy) eiy2/2χk

(
y

nk

)
+

i

y2
f(xy) eiy

2/2χk

(
y

nk

)
+

1

y2n2
k

f(xy) eiy
2/2χ′′

k

(
y

nk

)
+

2i

nky
f(xy) eiy

2/2χ′
k

(
y

nk

)
−4x

y3
f ′(xy) eiy

2/2χk

(
y

nk

)
− 4i

y2
f(xy) eiy

2/2χk

(
y

nk

)
− 4

nky3
f(xy) eiy

2/2χ′
k

(
y

nk

)
+

6

y4
f(xy)eiy

2/2χk

(
y

nk

)
. (3.5)

7



We want to show that choosing nk sufficiently large one can make the terms
at the right hand side of (3.5) as small as we wish. Changing the integration
variables, we get the following estimate,∫
R2

∣∣∣∣x2 h′′(xy) eiy2/2χk

(
y

nk

)∣∣∣∣2 dx dy =

∫ knk

nk

∫
R

∣∣∣∣x2 h′′(xy)χk

(
y

nk

)∣∣∣∣2 dx dy

=

∫ knk

nk

1

y5

∣∣∣∣χk

(
y

nk

)∣∣∣∣2 dy

∫
R
t4|h′′(t)|2 dt ≤ 1

n4
k

∫ k

1

|χk(z)|2dz
∫
R
t4|h′′(t)|2 dt ,

where the last integral again converges from the reason described above.
In the same way we establish the remaining inequalities which we need to
demonstrate our claim:∫
R2

∣∣∣∣ xnk

h′(xy) eiy
2/2χ′

k

(
y

nk

)∣∣∣∣2 dx dy =

∫ knk

nk

∫
R

1

y

∣∣∣∣ t

nky
h′(t)χ′

k

(
y

nk

)∣∣∣∣2 dt dy

≤ 1

n4
k

∫ k

1

|χ′
k(z)|2dz

∫
R
t2|h′(t)|2 dt ,

∫
R2

∣∣∣∣ 1n2
k

h(xy) eiy
2/2χ′′

k

(
y

nk

)∣∣∣∣2 dx dy =
1

n4
k

∫ knk

nk

∫
R

1

y

∣∣∣∣h(t)χ′′
k

(
y

nk

)∣∣∣∣2 dt dy

≤ 1

n4
k

∫ k

1

|χ′′
k(z)|2dz

∫
R
|h(t)|2 dt ,

∫
R2

∣∣∣∣x2y2 f ′′(xy) eiy
2/2χk

(
y

nk

)∣∣∣∣2 dx dy =

∫ knk

nk

∫
R

1

y

∣∣∣∣ t2y4f ′′(t)χk

(
y

nk

)∣∣∣∣2 dt dy

≤ 1

n8
k

∫ k

1

|χk(z)|2dz
∫
R
t4|f ′′(t)|2 dt ,

∫
R2

∣∣∣∣xy f ′(xy) eiy
2/2χk

(
y

nk

)∣∣∣∣2 dx dy =

∫ kn

nk

∫
R

1

y

∣∣∣∣ ty2f ′(t)χk

(
y

nk

)∣∣∣∣2 dt dy

≤ 1

n4
k

∫ k

1

|χk(z)|2dz
∫
R
t2|f ′(t)|2 dt ,

∫
R2

∣∣∣∣ x

nky2
f ′(xy) eiy

2/2χ′
k

(
y

nk

)∣∣∣∣2 dx dy =

∫ knk

nk

∫
R

1

y

∣∣∣∣ t

nky3
f ′(t)χ′

k

(
y

nk

)∣∣∣∣2 dt dy

≤ 1

n8
k

∫ k

1

|χ′
k(z)|2dz

∫
R
t2|f ′(t)|2 dt ,
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∫
R2

∣∣∣∣ 1y2f(xy) eiy2/2χk

(
y

nk

)∣∣∣∣2 dx dy =

∫ knk

nk

∫
R

1

y

∣∣∣∣ 1y2f(t)χk

(
y

nk

)∣∣∣∣2 dt dy

≤ 1

n4
k

∫ k

1

|χk(z)|2dz
∫
R
|f(t)|2 dt ,

∫
R2

∣∣∣∣ 1

n2
ky

2
f(xy) eiy

2/2χ′′
k

(
y

nk

)∣∣∣∣2 dx dy =

∫ knk

nk

∫
R

1

y

∣∣∣∣ 1

n2
ky

2
f(t)χ′′

k

(
y

nk

)∣∣∣∣2 dt dy

≤ 1

n8
k

∫ k

1

|χ′′
k(z)|2dz

∫
R
|f(t)|2 dt ,

∫
R2

∣∣∣∣ 1

nky
f(xy) eiy

2/2χ′
k

(
y

nk

)∣∣∣∣2 dx dy =

∫ knk

nk

∫
R

1

y

∣∣∣∣ 1

nky
f(t)χ′

k

(
y

nk

)∣∣∣∣2 dt dy

≤ 1

n4
k

∫ k

1

|χ′
k(z)|2dz

∫
R
|f(t)|2 dt ,

∫
R2

∣∣∣∣ xy3f ′(xy) eiy
2/2χk

(
y

nk

)∣∣∣∣2 dx dy =

∫ knk

nk

∫
R

1

y

∣∣∣∣ ty4f ′(t)χk

(
y

nk

)∣∣∣∣2 dt dy

≤ 1

n8
k

∫ k

1

|χk(z)|2 dz
∫
R
t2|f ′(t)|2 dt ,

∫
R2

∣∣∣∣ 1y4f(xy) eiy2/2χk

(
y

nk

)∣∣∣∣2 dx dy =

∫ knk

nk

∫
R

1

y

∣∣∣∣ 1y4f(t)eiy2/2χk

(
y

nk

)∣∣∣∣2 dt dy

≤ 1

n8
k

∫ k

1

|χk(z)|2dz
∫
R
|f(t)|2 dt .

Consequently, choosing nk large enough we can achieve that the sum of all
the integrals at the left-hand sides of the above inequalities is less than ε.
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Then we have∫
R2

|Hψk|2(x, y) dx dy <
∫ knk

nk

∫
R

∣∣∣∣y2h′′(xy)χk

(
y

nk

)
+ f ′′(xy)χk

(
y

nk

)
+2ixyh′(xy)χk

(
y

nk

)
+ ih(xy)χk

(
y

nk

)
− y2h(xy)χk

(
y

nk

)
+
2iy

nk

h(xy)χ′
k

(
y

nk

)
− f(xy)χk

(
y

nk

)
− ω2 y2h(xy)χk

(
y

nk

)
−ω2 f(xy)χk

(
y

nk

)
+ y2 V (xy)h(xy)χk

(
y

nk

)
+V (xy)f(xy)χk

(
y

nk

)∣∣∣∣2 dx dy + ε

=

∫ knk

nk

∫
R

∣∣∣∣y2 (h′′(xy)− ω2h(xy) + V (xy)h(xy)− h(xy)
)
χk

(
y

nk

)
+ih(xy)χk

(
y

nk

)
+ f ′′(xy)χk

(
y

nk

)
+ 2ixyh′(xy)χk

(
y

nk

)
+
2iy

nk

h(xy)χ′
k

(
y

nk

)
− f(xy)χk

(
y

nk

)
− ω2 f(xy)χk

(
y

nk

)
+V (xy)f(xy)χk

(
y

nk

)∣∣∣∣2 dx dy + ε .

Using the fact that Lh = −h and applying the Cauchy inequality, the above
result implies∫

R2

|Hψk|2(x, y) dx dy <
∫ knk

nk

∫
R

∣∣∣∣(f ′′(xy) + 2ixyh′(xy) + ih(xy)− f(xy)

−ω2 f(xy) + V (xy)f(xy)

)
χk

(
y

nk

)
+

2iy

nk

h(xy)χ′
k

(
y

nk

)∣∣∣∣2 dx dy + ε

≤ 2

∫ k

1

1

z
|χk(z)|2 dz

∫
R

∣∣∣∣−f ′′(t) + f(t)
(
1 + ω2 − V (t)

)
− 2ith′(t)− ih(t))

∣∣∣∣2dt
+8

∫ k

1

z|χ′
k(z)|2 dz + ε

≤ 2

∫
R

∣∣∣∣−f ′′(t) + f(t)
(
1 + ω2 − V (t)

)
− 2ith′(t)− ih(t)

∣∣∣∣2 dt+ 9ε .
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It is easy to check that −(t2h(t))′′+ t2h(t)(1+ω2−V (t)) = −4th′(t)− 2h(t),
hence −f ′′(t)+f(t) (1 + ω2 − V (t))−2ith′(t)−ih(t) = 0 and the last integral
in the above estimate vanishes, which gives∫

R2

|Hψk|2(x, y) dx dy ≤ 9ε . (3.6)

To complete the proof we fix a sequence {εj}∞j=1 such that εj ↘ 0 holds as
j → ∞ and to any j we construct a function ψk(εj) with the corresponding
numbers chosen in such a way that nk(εj) > k(εj−1)nk(εj−1). The norms
of Hψk(εj) satisfy inequality which (3.6) with 9εj on the right-hand side,
and since the supports of ψk(εj), j = 1, 2, . . . , do not intersect each other
by construction, their sequence converges weakly to zero. This yields the
sought Weyl sequence for zero energy; for any nonzero real number µ we use
the same procedure replacing the above ψk with

ψk(x, y) = h(xy) eiϵµ(y)χk

(
y

nk

)
+
f(xy)

y2
eiϵµ(y)χk

(
y

nk

)
,

where ϵµ(y) :=

∫ y

√
|µ|

√
t2 + µ dt, and furthermore, the functions f, χk de-

fined in the same way as above.

4 Intervals and multiple channels

Let us look next how the above result changes if the motion in the x direction
is restricted. We have the following result:

Theorem 4.1. Let H be the operator on L2(−c, c) ⊗ L2(R) for some c > 0
given by the differential expression (1.2) with Dirichlet condition at x = ±c
and denote by L the corresponding Dirichlet operator (2.1) on L2(−c, c). If
the spectral threshold of L is negative, the spectrum of H covers the whole
real axis.

Proof. Without loss of generality we may suppose that c = 1. We shall
apply again Weyl’s criterion modifying the argument of the previous section.
By Dirichlet bracketing, one has that L̃ ≤ ⊕3

k=1Lk, where L̃ is the original

comparison operator (2.1), L̃ = − d2

dx2 + ω2 − V on L2(R), while L1 and
Lj, j = 2, 3, are given by the same differential expression on L2(−1, 1) and
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L2(−∞,−1), L2(1,∞), respectively. Thus under the assumption the spectral

threshold of L̃ is negative, and without loss of generality we may suppose that
its ground state satisfies L̃h = −h with ∥h∥ = 1 and show that 0 ∈ σess(H).
The functions (3.2) are now changed as follows,

ψk(x, y) = h(xy) eiy
2/2χk

(
y

nk

)
ϕ(x) +

f(xy)

y2
eiy

2/2χk

(
y

nk

)
ϕ(x)

with ϕ ∈ C2
0(−1, 1) such that ϕ(x) = 1 holds for |x| ≤ 1

2
, while the numbers

k = k(ε), nk ∈ N and functions χk, f are the same as before. Instead of the
estimates (3.3) and (3.4) we now have for large enough nk the inequalities∫ 1

−1

∫ knk

nk

∣∣∣∣h(xy) eiy2/2χk

(
y

nk

)
ϕ(x)

∣∣∣∣2 dx dy

≥
∫ knk

nk

∫ 1/2

−1/2

∣∣∣∣h(xy)χk

(
y

nk

)∣∣∣∣2 dt dy

=

∫ knk

nk

∫ y/2

−y/2

1

y

∣∣∣∣h(t)χk

(
y

nk

)∣∣∣∣2 dt dy

≥
∫ knk

nk

∫ nk/2

−nk/2

1

y

∣∣∣∣h(t)χk

(
y

nk

)∣∣∣∣2 dt dy

=

∫ k

1

1

z
|χk(z)|2 dz

∫ nk/2

−nk/2

|h(t)|2 dt ≥ 1

2

and ∫ 1

−1

∫ knk

nk

∣∣∣∣f(xy)y2
eiy

2/2χk

(
y

nk

)
ϕ(x)

∣∣∣∣2 dx dy

≤ ∥ϕ∥2L∞(R)

∫ 1

−1

∫ knk

nk

∣∣∣∣f(xy)y2
χk

(
y

nk

)∣∣∣∣2 dx dy
≤ ∥ϕ∥2L∞(R)

∫
R

∫ knk

nk

∣∣∣∣f(xy)y2
χk

(
y

nk

)∣∣∣∣2 dx dy

= ∥ϕ∥2L∞(R)

∫ knk

nk

∫
R

1

y

∣∣∣∣f(t)y2
χk

(
y

nk

)∣∣∣∣2 dt dy

≤ 1

n4
k

∥ϕ∥2L∞(R)

∫ k

1

|χk(z)|2 dz
∫
R
|f(t)|2 dt < ε ,

12



which means that ∥ψk∥L2(R2) ≥ 1
2
− 2

√
ε holds for nk large enough; our aim

is to show that ∥Hψk∥2L2(R2) < dε with a fixed d > 0. Let us first compute
the partial derivatives

∂2ψk

∂x2
= y2h′′(xy) eiy

2/2χk

(
y

nk

)
ϕ(x) + 2yh′(xy) eiy

2/2χk

(
y

nk

)
ϕ′(x)

+h(xy) eiy
2/2χk

(
y

nk

)
ϕ′′(x) + f ′′(xy) eiy

2/2χk

(
y

nk

)
ϕ(x)

+
2

y
f ′(xy) eiy

2/2χk

(
y

nk

)
ϕ′(x) +

1

y2
f(xy) eiy

2/2χk

(
y

nk

)
ϕ′′(x)

and

∂2ψk

∂y2
= x2h′′(xy) eiy

2/2χk

(
y

nk

)
ϕ(x) + 2ixyh′(xy) eiy

2/2χk

(
y

nk

)
ϕ(x)

+
2x

nk

h′(xy) eiy
2/2χ′

k

(
y

nk

)
ϕ(x)− y2h(xy) eiy

2/2χk

(
y

nk

)
ϕ(x)

+ih(xy) eiy
2/2χk

(
y

nk

)
ϕ(x) + 2

iy

nk

h(xy) eiy
2/2χ′

k

(
y

nk

)
ϕ(x)

+
1

n2
k

h(xy) eiy
2/2χ′′

k

(
y

nk

)
ϕ(x) +

x2

y2
f ′′(xy) eiy

2/2χk

(
y

nk

)
ϕ(x)

+2
ix

y
f ′(xy) eiy

2/2χk

(
y

nk

)
ϕ(x) +

2x

nky2
f ′(xy) eiy

2/2χ′
k

(
y

nk

)
ϕ(x)

−f(xy) eiy2/2χk

(
y

nk

)
ϕ(x) +

i

y2
f(xy) eiy

2/2χk

(
y

nk

)
ϕ(x)

+
1

y2n2
k

f(xy)eiy
2/2χ′′

k

(
y

nk

)
ϕ(x) +

2i

nky
f(xy) eiy

2/2χ′
k

(
y

nk

)
ϕ(x)

−4x

y3
f ′(xy) eiy

2/2χk

(
y

nk

)
ϕ(x)− 4i

y2
f(xy) eiy

2/2χk

(
y

nk

)
ϕ(x)

− 4

nky3
f(xy) eiy

2/2χ′
k

(
y

nk

)
ϕ(x) +

6

y4
f(xy) eiy

2/2χk

(
y

nk

)
ϕ(x).

Using the exponential decay of h and the fact that ϕ is constant on [−1/2, 1/2]
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we find that for all sufficiently large nk we have∫ 1

−1

∫ knk

nk

∣∣∣∣y h′(xy) eiy2/2χk

(
y

nk

)
ϕ′(x)

∣∣∣∣2 dx dy

≤ ∥ϕ′∥2L∞(R)

∫
|x|> 1

2

∫ knk

nk

∣∣∣∣y h′(xy)χk

(
y

nk

)∣∣∣∣2 dt dy
≤ ∥ϕ′∥2L∞(R)

∫ knk

nk

∫ ∞

nk/2

1

y

∣∣∣∣y h′(t)χk

(
y

nk

)∣∣∣∣2 dt dy

+∥ϕ′∥2L∞(R)

∫ knk

nk

∫ −nk/2

−∞

1

y

∣∣∣∣y h′(t)χk

(
y

nk

)∣∣∣∣2 dt dy

= n2
k∥ϕ′∥2L∞(R)

∫ k

1

zχ2
k(z) dz

∫ ∞

nk/2

|h′(t)|2 dt

+n2
k∥ϕ′∥2L∞(R)

∫ k

1

zχ2
k(z) dz

∫ −nk/2

−∞
|h′(t)|2 dt < ε .

in a similar way,∫ 1

−1

∫ knk

nk

∣∣∣∣h(xy) eiy2/2χk

(
y

nk

)
ϕ′′(x)

∣∣∣∣2 dx dy < ε ,∫ 1

−1

∫ knk

nk

∣∣∣∣ 1y2 f(xy) eiy2/2χk

(
y

nk

)
ϕ′′(x)

∣∣∣∣2 dx dy < ε ,∫ 1

−1

∫ knk

nk

∣∣∣∣1y f ′(xy) eiy
2/2χk

(
y

nk

)
ϕ′(x)

∣∣∣∣2 dx dy < ε .

As for the remaining term in the partial derivative expressions, we simply
repeat our calculations from previous section. In this way we are able to
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conclude that for large enough k, and respectively nk we have∫
R2

|Hψk|2 dx dy < ∥ϕ∥2L∞(R)

∫ knk

nk

∫ 1

−1

∣∣∣∣y2h′′(xy)χk

(
y

nk

)
+f ′′(xy)χk

(
y

nk

)
+ 2ixyh′(xy)χk

(
y

nk

)
+ ih(xy)χk

(
y

nk

)
−y2h(xy)χk

(
y

nk

)
+

2iy

nk

h(xy)χ′
k

(
y

nk

)
− f(xy)χk

(
y

nk

)
−ω2 y2h(xy)χk

(
y

nk

)
− ω2 f(xy)χk

(
y

nk

)
+ y2 V (xy)h(xy)χk

(
y

nk

)
+V (xy)f(xy)χk

(
y

nk

)∣∣∣∣2 dx dy + ε

= ∥ϕ∥2L∞(R)

∫ knk

nk

∫ 1

−1

∣∣∣∣y2(h′′(xy)− ω2h(xy) + V (xy)h(xy)

−h(xy)
)
χk

(
y

nk

)
+ ih(xy)χk

(
y

nk

)
+ f ′′(xy)χk

(
y

nk

)
+2ixyh′(xy)χk

(
y

nk

)
+

2iy

nk

h(xy)χ′
k

(
y

nk

)
− f(xy)χk

(
y

nk

)
−ω2 f(xy)χk

(
y

nk

)
+ V (xy)f(xy)χk

(
y

nk

)∣∣∣∣2 dx dy + ε .

Using the assumption about the ground state of L̃, the last equation implies∫ 1

−1

∫
R
|Hψk|2 dx dy < ∥ϕ∥2L∞(R)

∫ knk

nk

∫ 1

−1

∣∣∣∣(f ′′(xy) + 2ixyh′(xy) + ih(xy)

−f(xy)− ω2 f(xy) + V (xy)f(xy)

)
χk

(
y

nk

)
+

2iy

nk

h(xy)χ′
k

(
y

nk

)∣∣∣∣2 dx dy + ε.

Using the fact that f(t) = − i
2
t2h(t) we conclude in the same way as in

the previous section that the right-hand side of the last inequality can be
estimated by 9∥ϕ∥2L∞(R)ε.

The rest of the proof follows the same routine. We pick a sequence {εj}∞j=1

such that εj ↘ 0 holds as j → ∞ and to any j we construct a function
ψk(εj) with the corresponding numbers chosen in such a way that nk(εj) >
k(εj−1)nk(εj−1). The norms of Hψk(εj) satisfy inequality which (3.6) with
9∥ϕ∥2L∞(R)εj on the right-hand side, and the sequence {ψk(εj)}∞j=1 converges
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weakly to zero by construction, their sequence converges weakly to zero. This
proves that 0 ∈ σess(H); for any nonzero real number µ we proceed in the
same way replacing the above ψk with

ψk(x, y) = h(xy) eiϵµ(y)χk

(
y

nk

)
ϕ(x) +

f(xy)

y2
eiϵµ(y)χk

(
y

nk

)
ϕ(x) ,

where ϵµ(y) :=

∫ y

√
|µ|

√
t2 + µ dt, and furthermore, the functions f, χk, ϕ

defined in the same way as above.

Observing the domains of the quadratic form associated with such oper-
ators we can extend the result in the following way:

Corollary 4.2. The claim of Theorem 4.1 remains valid if the Dirichlet
boundary conditions at x = ±c are replaced by any other self-adjoint boundary
conditions.

The result also allows us to answer the question about spectral transition
for the model with multiple singular channels.

Theorem 4.3. Let H be the operator (1.3) with the potentials satisfying the
stated assumptions, namely the functions Vj are positive with bounded first
derivative and suppVj ∩ suppVk = ∅ holds for j ̸= k. Denote by Lj the
operator (2.1) on L2(R) with the potential Vj and tV := minj inf σ(Lj). Then
H is bounded from below if and only if tV ≥ 0 and in the opposite case its
spectrum covers the whole real axis.

Proof. The claim follows by bracketing. By assumption we can choose points
xj such that

x0 < v−j < v+j < x1 < v−2 < · · · < xn−1 < v−n < v+n < xn ,

where v−j := inf suppVj and v+j := sup suppVj and impose additional Neu-
mann and Dirichlet boundary conditions at them. The spectrum in the
intervals (−∞, x0) and (xn,∞) is found trivially, to the other components of
the direct sum obtained in this way we apply Corollary 2.2 and Theorem 4.1,
respectively.
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