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1. Introduction

Consider the problem
−∆u + V (x)u− au = f (1.1)

with u ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant andV (x)
is a function converging to0 at infinity. Whena ≥ 0, the essential spectrum of
the operatorA : E → F , which corresponds to the left-hand side of equation (1.1)
contains the origin. Consequently, such operator does not satisfy the Fredholm
property. Its image is not closed, ford > 1 the dimensions of its kernel and the
codimension of its image are not finite. Elliptic equations containing non-Fredholm
operators were studied extensively in recent years (see [16], [17], [18], [19], [20],
[22], [23], [24], also [5]) along with their potential applications to the theory of
reaction-diffusion equations (see [7], [8]). In the case whena = 0 the operatorA
satisfies the Fredholm property in some properly chosen weighted spaces (see [1],
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[2], [3], [4], [5]). However, the case ofa > 0 is very different and the approach
developed in the works above cannot be generalized.

One of the significant questions about problems with non-Fredholm operators
concerns their solvability, which are studied in the following setting. Letfn be a
sequence of functions belonging to the image of the operatorA, such thatfn → f

in L2 asn → ∞. Let us denote byun a sequence of functions fromH2, such that

Aun = fn, n ∈ N.

Since the operatorA does not satisfy the Fredholm property, the sequenceun may
not be convergent. Let us call a sequenceun such thatAun → f a solution in the
sense of sequences of equationAu = f (see [15]). If this sequence converges to
a functionu0 in the norm of the spaceE, thenu0 is a solution of this equation.
Solution in the sense of sequences is equivalent in this sense to the usual solution.
However, in the case of non-Fredholm operators this convergence may not hold or it
can occur in some weaker sense. In this case, solution in the sense of sequences may
not imply the existence of the usual solution. Sufficient conditions of equivalence
of solutions in the sense of sequences and the usual solutions are the conditions on
sequencesfn under which the corresponding sequencesun are strongly convergent.
In our present work we generalize the results of [25] from theequation involving
a single non Fredholm Schrödinger operator to its sum with the one dimensional
Laplacian with the periodic boundary conditions. Note thata problem in a layer in-
volving an operator without Fredholm property and with the periodicity on the sides
was studied recently in [21] in the context of proving the existence of stationary
solutions of a certain nonlocal reaction- diffusion type equation.

In the present work our domain is a product space in four dimensions

Ω := R
3 × I = R

3 × [0, 2π],

such that the variablesx ∈ R3 andx⊥ ∈ I = [0, 2π]. Let us consider the equation

− ∂2u

∂x2
⊥
−∆xu+ V (x)u− au = f(x, x⊥), (1.2)

wherea ≥ 0 is a constant and the right side is square integrable. The cumulative

Laplacian operator∆ :=
∂2

∂x2
⊥
+∆x, where∆x acts only on thex variable. We will

be using the functional space

H2(Ω) :=
{

u(x, x⊥) : Ω → C | u(x, x⊥) ∈ L2(Ω), ∆u(x, x⊥) ∈ L2(Ω),

u(x, 0) = u(x, 2π),
∂u

∂x⊥
(x, 0) =

∂u

∂x⊥
(x, 2π), x ∈ R

3 a.e.}

equipped with the norm

‖u‖2H2(Ω) := ‖u‖2L2(Ω) + ‖∆u‖2L2(Ω).
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The essential spectrum of our Schrödinger operator with a shallow, short-range po-
tential (see Assumption 1 below) involved in (1.2) fills the semi-axis[−a, ∞) (see
e.g. [10]) such that its inverse fromL2(R3) to H2(R3) is not bounded. The inner
product of two functions

(f(x, x⊥), g(x, x⊥))L2(Ω) :=

∫

Ω

f(x, x⊥)ḡ(x, x⊥)dxdx⊥,

with a slight abuse of notations when these functions are notsquare integrable.
Indeed, iff ∈ L1(Ω) andg is bounded, then evidently the integral considered above
makes sense, like for instance in the case of functions involved in the orthogonality
conditions of Theorem 2 below. Similarly, we will use

(f(x), g(x))L2(R3) :=

∫

R3

f(x)ḡ(x)dx,

(f(x⊥), g(x⊥))L2(I) :=

∫ 2π

0

f(x⊥)ḡ(x⊥)dx⊥.

The sphere of radiusr > 0 in R3 centered at the origin will be denoted byS3
r .

Let us make the following technical assumptions on the scalar potentialV (x)
analogously to those stated in Assumption 1.1 of [17] (see also [18], [19]).

Assumption 1.The potential functionV (x) : R3 → R satisfies the estimate

|V (x)| ≤ C

1 + |x|3.5+δ

with someδ > 0 andx = (x1, x2, x3) ∈ R3 a.e. such that

4
1

9

9

8
(4π)−

2

3‖V ‖
1

9

L∞(R3)‖V ‖
8

9

L
4
3 (R3)

< 1 and
√
cHLS‖V ‖

L
3
2 (R3)

< 4π.

Here and further downC stands for a finite positive constant andcHLS given on
p.98 of [12] is the constant in the Hardy-Littlewood-Sobolev inequality

∣

∣

∣

∫

R3

∫

R3

f1(x)f1(y)

|x− y|2 dxdy
∣

∣

∣
≤ cHLS‖f1‖2

L
3
2 (R3)

, f1 ∈ L
3

2 (R3).

According to Lemma 2.3 of [17], under Assumption 1 above on the potential
function, the operator−∆x + V (x) − a on L2(R3) is self-adjoint and unitarily
equivalent to−∆x − a via the wave operators (see [11], [14])

Ω± := s− limt→∓∞eit(−∆x+V )eit∆x ,

where the limit is understood in the strongL2 sense (see e.g. [13] p.34, [6] p.90).
Hence−∆x + V (x) − a on L2(R3) has only the essential spectrumσess(−∆x +
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V (x) − a) = [−a, ∞). By means of the spectral theorem, its functions of the
continuous spectrum satisfying

[−∆x + V (x)]ϕk(x) = k2ϕk(x), k ∈ R
3, (1.3)

in the integral formulation the Lippmann-Schwinger equation for the perturbed
plane waves (see e.g. [13] p.98)

ϕk(x) =
eikx

(2π)
3

2

− 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕk)(y)dy (1.4)

and the orthogonality relations

(ϕk(x), ϕq(x))L2(R3) = δ(k − q), k, q ∈ R
3 (1.5)

form the complete system inL2(R3). In particular, when the vectork = 0, we have
ϕ0(x). We denote the generalized Fourier transform with respect to these functions
using the tilde symbol as

f̃(k) := (f(x), ϕk(x))L2(R3), k ∈ R
3.

The integral operator involved in (1.4) is being designatedas

(Qϕ)(x) := − 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕ)(y)dy, ϕ ∈ L∞(R3).

Let us considerQ : L∞(R3) → L∞(R3). Under Assumption 1, according to
Lemma 2.1 of [17] the operator norm‖Q‖∞ < 1, in fact it is bounded above by
a quantity independent ofk which is expressed in terms of the appropriateLp(R3)
norms of the potential functionV (x). Our first main statement is as follows.

Theorem 2. Let Assumption 1 hold,f(x, x⊥) ∈ L2(Ω), |x|f(x, x⊥) ∈ L1(Ω)
andf(x, 0) = f(x, 2π) for x ∈ R3 a.e.

a) Whena = 0, equation (1.2) admits a unique solutionu(x, x⊥) ∈ H2(Ω) if
and only if the orthogonality condition

(f(x, x⊥),
1√
2π

ϕ0(x))L2(Ω) = 0 (1.6)

holds.
b) Whena = n2

0, n0 ∈ N equation (1.2) possesses a unique solutionu(x, x⊥) ∈
H2(Ω) if and only if the orthogonality relations

(f(x, x⊥), ϕ0(x)
einx⊥

√
2π

)L2(Ω) = 0, n = ±n0, (1.7)
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(f(x, x⊥), ϕk(x)
einx⊥

√
2π

)L2(Ω) = 0, k ∈ S3√
n2

0
−n2

a.e., |n| ≤ n0 − 1 (1.8)

hold.
c) Whenn2

0 < a < (n0 + 1)2, n0 ∈ Z+ = {N} ∪ {0} equation (1.2) has a
unique solutionu(x, x⊥) ∈ H2(Ω) if and only if the orthogonality condition

(f(x, x⊥), ϕk(x)
einx⊥

√
2π

)L2(Ω) = 0, k ∈ S3√
a−n2

a.e., |n| ≤ n0 (1.9)

holds.

Note that orthogonality conditions from (1.6) to (1.9) involve the functions of
the continuous spectrum of our Schrödinger operator, as distinct from the Limiting
Absorption Principle in which one needs to orthogonalize tothe standard Fourier
harmonics (see e.g. Lemma 2.3 and Proposition 2.4 of [9]).

In the second part of the article we consider the sequence of equations corre-
sponding to problem (1.2), namely

−∂2um

∂x2
⊥

−∆xum + V (x)um − aum = fm(x, x⊥), m ∈ N, (1.10)

wherea ≥ 0 is a constant. Our second main result is as follows.

Theorem 3.Let Assumption 1 hold,m ∈ N, such thatfm(x, 0) = fm(x, 2π) for
x ∈ R3 a.e.,fm ∈ L2(Ω) and |x|fm(x, x⊥) ∈ L1(Ω), such thatfm → f in L2(Ω)
and |x|fm(x, x⊥) → |x|f(x, x⊥) in L1(Ω) as m → ∞. Let in the cases a), b)
and c) of Theorem 2 the corresponding orthogonality conditions (1.6), (1.7), (1.8)
and (1.9) hold for allfm. Then problems (1.2) and (1.10) admit unique solutions
u(x, x⊥) ∈ H2(Ω) andum(x, x⊥) ∈ H2(Ω) respectively, such thatum(x, x⊥) →
u(x, x⊥) in H2(Ω) asm → ∞.

Our final technical statement will be helpful in establishing the result of the
theorem above.

Lemma 4. Let the assumptions of Theorem 3 hold. Then for everyn ∈ Z we
have

‖∇k(f̃m,n(k)− f̃n(k))‖L∞(R3) → 0, m → ∞
with f̃n(k) and f̃m,n(k) defined in formulas (2.11) and (3.21) respectively.

First of all, let us turn our attention to establishing the solvability conditions for
problem (1.2).

2. Proof of the solvability conditions in a layer in four dimensions
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Proof of Theorem 2.Note that according to our assumptions, the potential func-
tion involved in equation (1.2) is bounded and the right sideof (1.2) is square inte-
grable. Therefore, if we find a solutionu(x, x⊥) ∈ L2(Ω) of problem (1.2), it will
belong toH2(Ω) as well.

Suppose equation (1.2) admits two solutionsu1(x, x⊥), u2(x, x⊥) ∈ H2(Ω).
Then their difference functionw(x, x⊥) := u1(x, x⊥)−u2(x, x⊥) ∈ H2(Ω) as well
and solves the homogeneous problem

−∂2w

∂x2
⊥
−∆xw + V (x)w − aw = 0.

Let us use the standard Fourier series expansion

w(x, x⊥) =

∞
∑

n=−∞
wn(x)

einx⊥

√
2π

.

Clearly,‖w‖2
L2(Ω) =

∑∞
n=−∞ ‖wn‖2L2(R3), such thatwn(x) ∈ L2(R3) for n ∈ Z. We

easily arrive at

−∆xwn(x) + V (x)wn(x) = (a− n2)wn(x), n ∈ Z.

As discussed before, the Schrödinger operator onL2(R3) involved in the left side of
the equation above has only the essential spectrum and no square integrable bound
states. Hence,wn(x) = 0 a.e. inR3 for n ∈ Z. Therefore,u1(x, x⊥) = u2(x, x⊥)
a.e. inΩ.

We will be using the cumulative transform withk ∈ R3 andn ∈ Z as

f̃n(k) := (f(x, x⊥), ϕk(x)
einx⊥

√
2π

)L2(Ω) =

∫

R3

dx

∫ 2π

0

dx⊥f(x, x⊥)ϕ̄k(x)
e−inx⊥

√
2π

.

(2.11)
For the right side of (1.2) we estimate from above its norm using the Schwarz in-
equality as

‖f‖L1(Ω) ≤
√

∫

|x|≤1

dx

∫ 2π

0

dx⊥|f(x, x⊥)|2
√

∫

|x̂|≤1

dx̂

∫ 2π

0

dx̂⊥+

+

∫

|x|>1

dx

∫ 2π

0

dx⊥|x||f(x, x⊥)| ≤ C‖f‖L2(Ω) + ‖|x|f‖L1(Ω) < ∞

according to our assumptions. Thus,f ∈ L1(Ω). By applying (2.11) to both sides
of problem (1.2), we arrive at

ũn(k) =
f̃n(k)

n2 + k2 − a
, k ∈ R

3, n ∈ Z, a ≥ 0. (2.12)
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First of all, let us turn our attention to the case a) of the theorem whena = 0. Then
(2.12) yields

ũn(k) =
f̃n(k)

n2 + k2
, k ∈ R

3, n ∈ Z.

Clearly

‖u‖2L2(Ω) =

∫

R3

dk
|f̃0(k)|2
|k|4 +

∑

n∈Z, n 6=0

∫

R3

dk
|f̃n(k)|2

(n2 + k2)2
. (2.13)

Obviously, for the second term in the right side of (2.13) we have the upper bound
of ‖f‖2

L2(Ω) < ∞ as assumed. To study the first term in the right side of (2.13),we
introduce the auxiliary problem

−∆xv0(x) + V (x)v0(x) = f0(x) (2.14)

with f0(x) = (f(x, x⊥),
1√
2π

)L2(I) andf̃0(k) = (f0(x), ϕk(x))L2(R3), k ∈ R3.

Evidently,ṽ0(k) =
f̃0(k)

k2
, such that the norm

‖v0‖2L2(R3) =

∫

R3

|f̃0(k)|2
|k|4 dk,

which equals to the first term in the right side of (2.13). Let us use the standard
Fourier series expansion

f(x, x⊥) :=
∞
∑

n=−∞
fn(x)

einx⊥

√
2π

,

such that

‖f‖2L2(Ω) =

∞
∑

n=−∞
‖fn‖2L2(R3) < ∞ (2.15)

and therefore,f0(x) ∈ L2(R3). We estimate

‖|x|f0(x)‖L1(R3) =

∫

R3

|x||(f(x, x⊥),
1√
2π

)L2(I)|dx ≤ 1√
2π

‖|x|f‖L1(Ω) < ∞

due to our assumption. Hence|x|f0(x) ∈ L1(R3). Theorem 1.2 of [17] gives us the
necessary and sufficient solvability condition of equation(2.14) inL2(R3), namely
(f0(x), ϕ0(x))L2(R3) = 0, which is equivalent to (1.6).

Then we consider the case b) of the theorem, such thata = n2
0, n0 ∈ N and

(2.12) yields

ũn(k) =
f̃n(k)

n2 + k2 − n2
0

, k ∈ R
3, n ∈ Z.
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Let us express the norm

‖u‖2L2(Ω) =
∑

n=±n0

∫

R3

dk
|f̃n(k)|2
|k|4 +

+
∑

|n|>n0

∫

R3

dk
|f̃n(k)|2

(n2 + k2 − n2
0)

2
+

∑

|n|≤n0−1

∫

R3

dk
|f̃n(k)|2

(n2 + k2 − n2
0)

2
. (2.16)

We estimate the second term in the right side of (2.16) from above by‖f‖2
L2(Ω) < ∞

according to one of our assumptions. To study the first term inthe right side of
(2.16) we introduce following auxiliary problem

−∆xvn(x) + V (x)vn(x) = fn(x), n = ±n0. (2.17)

By applying the generalized Fourier transform to both sidesof (2.17), we arrive at

ṽn(k) =
f̃n(k)

k2
, such that the norm

‖vn(x)‖2L2(R3) =

∫

R3

dk
|f̃n(k)|2
|k|4 .

Note that by means of (2.15) we havefn(x) ∈ L2(R3) for n ∈ Z. Let us estimate
the norm

‖|x|fn(x)‖L1(R3) =

∫

R3

|x||(f(x, x⊥),
einx⊥

√
2π

)L2(I)|dx ≤ 1√
2π

‖|x|f‖L1(Ω) < ∞

as assumed. Hence|x|fn(x) ∈ L1(R3), n ∈ Z. By means of Theorem 1.2 of [17],
the necessary and sufficient solvability condition of problem (2.17) inL2(R3) is
given by(fn(x), ϕ0(x))L2(R3) = 0, n = ±n0, which is equivalent to (1.7).

Let us use the following auxiliary problem for the studies ofthe third term in
the right side of (2.16)

−∆xvn(x) + V (x)vn(x)− (n2
0 − n2)vn(x) = fn(x), |n| ≤ n0 − 1. (2.18)

Note thatfn(x) ∈ L2(R3) and|x|fn(x) ∈ L1(R3) as discussed above. Application
of the generalized Fourier transform to both sides of (2.18)yields

ṽn(k) =
f̃n(k)

k2 − (n2
0 − n2)

,

such that

‖vn(x)‖2L2(R3) =

∫

R3

dk
|f̃n(k)|2

(k2 + n2 − n2
0)

2
.
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Theorem 1.2 of [17] gives us the necessary and sufficient solvability condition of
equation (2.18) inL2(R3), namely

(fn(x), ϕk(x))L2(R3) = 0, k ∈ S3√
n2

0
−n2

a.e., |n| ≤ n0 − 1,

which is equivalent to orthogonality relation (1.8).
Finally, we turn our attention to the case c) of the theorem, whenn2

0 < a <

(n0 + 1)2, n0 ∈ Z+ = {N} ∪ {0}. Let us write the norm of our solution

‖u‖2L2(Ω) =
∑

|n|≤n0

∫

R3

dk
|f̃n(k)|2

(k2 + n2 − a)2
+

∑

|n|≥n0+1

∫

R3

dk
|f̃n(k)|2

(k2 + n2 − a)2
. (2.19)

The second term in the right side of (2.19) can be trivially estimated from above by
1

((n0 + 1)2 − a)2
‖f‖2L2(Ω) < ∞ as assumed.

Let us introduce the following auxiliary equation for the purpose of studying the
first term in the right side of (2.19), namely

−∆xvn(x) + V (x)vn(x)− (a− n2)vn(x) = fn(x), |n| ≤ n0, (2.20)

such that for its right sidefn(x) ∈ L2(R3) and |x|fn(x) ∈ L1(R3) (see above).
When applying the generalized Fourier transform to both sides of problem (2.20),
we obtain

ṽn(k) =
f̃n(k)

k2 + n2 − a
,

and therefore

‖vn(x)‖2L2(R3) =

∫

R3

dk
|f̃n(k)|2

(k2 + n2 − a)2
.

According to Theorem 1.2 of [17], the necessary and sufficient solvability condition
of equation (2.20) inL2(R3) is given by

(fn(x), ϕk(x))L2(R3) = 0, k ∈ S3√
a−n2

a.e., |n| ≤ n0,

which is equivalent to orthogonality condition (1.9).

3. Solvability in the sense of sequences

Proof of Theorem 3.Under the assumptions of Theorem 3 by means of Theorem
2 problem (1.10) admits a unique solutionum(x, x⊥) ∈ H2(Ω), m ∈ N. We have
fm(x, x⊥) ∈ L1(Ω), m ∈ N (see the proof of Theorem 2). Let us estimate the norm
via the Schwarz inequality

‖fm − f‖L1(Ω) ≤
√

∫

|x|≤1

dx

∫ 2π

0

dx⊥|fm − f |2
√

∫

|x|≤1

dx

∫ 2π

0

dx⊥+
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+

∫

|x|>1

dx

∫ 2π

0

dx⊥|x||fm − f | ≤ C‖fm − f‖L2(Ω)+

+‖|x|fm − |x|f‖L1(Ω) → 0, m → ∞
due to our assumptions. Hencefm → f in L1(Ω) asm → ∞ and the limiting
functionf(x, x⊥) ∈ L1(Ω) as well. There is a subsequencefmk

→ f pointwise a.e.
in Ω and therefore

f(x, 0) = limk→∞fmk
(x, 0) = limk→∞fmk

(x, 2π) = f(x, 2π)

a.e. inR3. Let us assume that the orthogonality condition

(fm, w)L2(Ω) = 0, m ∈ N

holds for somew(x, x⊥) ∈ L∞(Ω). Then we easily obtain

|(f, w)L2(Ω)| = |(f − fm, w)L2(Ω)| ≤ ‖f − fm‖L1(Ω)‖w‖L∞(Ω) → 0, m → ∞,

such that(f, w)L2(Ω) = 0 as well. Note that via Corollary 2.2 of [17] the functions
of the continuous spectrum of our Schrödinger operator arebounded and the argu-
ment above gives us that orthogonality conditions (1.6), (1.7), (1.8) and (1.9) valid
for fm, m ∈ N by assumption, will hold for the limiting functionf as well. Then
the limiting problem (1.2) has a unique solutionu(x, x⊥) ∈ H2(Ω).

From equations (1.2) and (1.10) we easily deduce the inequality for m ∈ N

‖∆(um−u)‖L2(Ω) ≤ ‖fm−f‖L2(Ω)+‖V ‖L∞(R3)‖um−u‖L2(Ω)+a‖um−u‖L2(Ω).

Hence under our assumptions it will be sufficient to prove that um → u in L2(Ω) as
m → ∞, which will imply thatum → u in H2(Ω) asm → ∞ as well.

Let us first consider the case ofa = 0 and apply the cumulative Fourier trans-
form to both sides of (1.10). We arrive at

ũm,n(k) =
f̃m,n(k)

n2 + k2
, k ∈ R

3, n ∈ Z, m ∈ N

with

f̃m,n(k) := (fm(x, x⊥), ϕk(x)
einx⊥

√
2π

)L2(Ω). (3.21)

Let us express the norm

‖um − u‖2L2(Ω) =

∫

R3

dk
|f̃m,0(k)− f̃0(k)|2

|k|4 +
∑

n 6=0

∫

R3

dk
|f̃m,n(k)− f̃n(k)|2

(n2 + k2)2
.

(3.22)
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The second term in the right side of (3.22) can be easily estimated from above by
‖fm − f‖2

L2(Ω) → 0, m → ∞ as assumed. The first term in the right side of (3.22)
can be expressed as

∫

|k|≤1

dk
|f̃m,0(k)− f̃0(k)|2

|k|4 +

∫

|k|>1

dk
|f̃m,0(k)− f̃0(k)|2

|k|4 . (3.23)

We easily derive the upper bound for the second expression in(3.23) as
∫

|k|>1

dk|f̃m,0(k)− f̃0(k)|2 ≤ ‖fm − f‖2L2(Ω) → 0, m → ∞

due to our assumption. To estimate the remaining term we express

f̃0(k) = f̃0(0) +

∫ |k|

0

∂f̃0

∂|s|(|s|, ω)d|s|.

Here and further downω will denote the angle variables on the sphere. Similarly

f̃m,0(k) = f̃m,0(0) +

∫ |k|

0

∂f̃m,0

∂|s| (|s|, ω)d|s|.

Note thatf̃m,0(0) vanishes as assumed andf̃0(0) = 0 as well, which can be ob-
tained by takingm → ∞ as discussed before. Using the formulas above, we easily
estimate

|f̃m,0(k)− f̃0(k)|
|k|2 ≤ ‖∇k(f̃m,0(k)− f̃0(k))‖L∞(R3)

1

|k| .

Then we trivially obtain the upper bound for the first expression in (3.23) as

4π‖∇k(f̃m,0(k)− f̃0(k))‖2L∞(R3) → 0, m → ∞

by means of Lemma 4, such thatum → u in L2(Ω) asm → ∞ in the case ofa = 0.
Then we turn our attention to the situation whena = n2

0, n0 ∈ N. Thus, we
have

ũm,n(k) =
f̃m,n(k)

n2 + k2 − n2
0

, k ∈ R
3, n ∈ Z, m ∈ N.

Let us write the norm

‖um − u‖2L2(Ω) =
∑

n=±n0

∫

R3

dk
|f̃m,n(k)− f̃n(k)|2

|k|4 +

+
∑

|n|>n0

∫

R3

dk
|f̃m,n(k)− f̃n(k)|2
(n2 + k2 − n2

0)
2

+
∑

|n|≤n0−1

∫

R3

dk
|f̃m,n(k)− f̃n(k)|2
(n2 + k2 − n2

0)
2

. (3.24)
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The second term in the right side of (3.24) can be trivially estimated from above by
‖fm − f‖2

L2(Ω) → 0, m → ∞. Let us write the first term in the right side of (3.24)
as

∑

n=±n0

∫

|k|≤1

dk
|f̃m,n(k)− f̃n(k)|2

|k|4 +
∑

n=±n0

∫

|k|>1

dk
|f̃m,n(k)− f̃n(k)|2

|k|4 . (3.25)

The second expression in (3.25) can be trivially estimated from above by‖fm −
f‖2

L2(Ω) → 0, m → ∞ as assumed. To study the first term in (3.25), we will use
the expansions

f̃n(k) = f̃n(0) +

∫ |k|

0

∂f̃n

∂|s|(|s|, ω)d|s|,

f̃m,n(k) = f̃m,n(0) +

∫ |k|

0

∂f̃m,n

∂|s| (|s|, ω)d|s|.

Note that in the formula abovẽfm,n(0) = 0, n = ±n0 as assumed and̃fn(0) = 0,
which can be obtained via the limiting argument asm → ∞ as discussed before.
This yields

|f̃m,n(k)− f̃n(k)|
|k|2 ≤ ‖∇k(f̃m,n(k)− f̃n(k))‖L∞(R3)

|k| ,

which enables us to estimate from above the first term in (3.25) by

4π
∑

n=±n0

‖∇k(f̃m,n(k)− f̃n(k))‖2L∞(R3) → 0, m → ∞

via Lemma 4. Clearly, we have the trivial inequality for|n| ≤ n0 − 1

(k2 − (n2
0 − n2))2 ≥ (|k| −

√

n2
0 − n2)2(n2

0 − n2),

such that we have the upper bound for the last term in the rightside of (3.24) as

∑

|n|≤n0−1

∫

R3

dk
|f̃m,n(k)− f̃n(k)|2

(n2
0 − n2)(|k| −

√

n2
0 − n2)2

.

For technical purposes, let us introduce the following set of spherical layers in the
space of three dimensions

An,σ := {k ∈ R
3 |

√

n2
0 − n2 − σ ≤ |k| ≤

√

n2
0 − n2 + σ}, |n| ≤ n0 − 1

with 0 < σ <
√

n2
0 − n2. Thus, it remains to estimate the sum

∑

|n|≤n0−1

1

n2
0 − n2

∫

R3

dk
|f̃m,n(k)− f̃n(k)|2

(|k| −
√

n2
0 − n2)2

χAn,σ
+

12



+
∑

|n|≤n0−1

1

n2
0 − n2

∫

R3

dk
|f̃m,n(k)− f̃n(k)|2

(|k| −
√

n2
0 − n2)2

χAn,σ
c . (3.26)

Here and further downχA denotes the characteristic function of a setA andAc

stands for the complement ofA in the space of three dimensions. For the second
term in (3.26) we have the upper bound of

∑

|n|≤n0−1

1

(n2
0 − n2)σ2

∫

R3

dk|f̃m,n(k)− f̃n(k)|2 ≤
1

σ2(2n0 − 1)
‖fm − f‖2L2(Ω) → 0

asm → ∞ according to our assumption. Hence it remains to estimate

1

2n0 − 1

∑

|n|≤n0−1

∫

R3

dk
|f̃m,n(k)− f̃n(k)|2

(|k| −
√

n2
0 − n2)2

χAn,σ
. (3.27)

For this purpose we express

f̃n(k) = f̃n(
√

n2
0 − n2, ω) +

∫ |k|

√
n2

0
−n2

∂f̃n

∂|s|(|s|, ω)d|s|,

f̃m,n(k) = f̃m,n(
√

n2
0 − n2, ω) +

∫ |k|

√
n2

0
−n2

∂f̃m,n

∂|s| (|s|, ω)d|s|.

Evidently, for|n| ≤ n0 − 1 we havef̃m,n(
√

n2
0 − n2, ω) = 0 due to our assumption

andf̃n(
√

n2
0 − n2, ω) vanishes as well, which can be obtained by lettingm → ∞

as discussed before. Then the expansions above will give us

|f̃m,n(k)− f̃n(k)|
||k| −

√

n2
0 − n2|

≤ ‖∇k(f̃m,n(k)− f̃n(k))‖L∞(R3).

Finally, for (3.27) we derive the upper bound of

1

2n0 − 1

∑

|n|≤n0−1

‖∇k(f̃m,n(k)− f̃n(k))‖2L∞(R3)Cn,σ → 0, m → ∞

via Lemma 4. HereCn,σ :=
4π

3
{(
√

n2
0 − n2 + σ)3 − (

√

n2
0 − n2 − σ)3}. Hence

we arrive atum → u in L2(Ω) asm → ∞ whena = n2
0, n0 ∈ N.

We conclude the proof with the studies of the situation whenn2
0 < a < (n0+1)2

with n0 ∈ Z+ = {N} ∪ {0}. Evidently

ũm,n(k) =
f̃m,n(k)

n2 + k2 − a
, k ∈ R

3, n ∈ Z, m ∈ N.
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Let us express the norm‖um − u‖2L2(Ω) as the sum

∑

|n|≤n0

∫

R3

dk
|f̃m,n(k)− f̃n(k)|2
(n2 + k2 − a)2

+
∑

|n|≥n0+1

∫

R3

dk
|f̃m,n(k)− f̃n(k)|2
(n2 + k2 − a)2

. (3.28)

Apparently, the second term in (3.28) can be estimated from above by

1

((n0 + 1)2 − a)2
‖fm − f‖2L2(Ω) → 0, m → ∞

by our assumption. We will be using the trivial inequality for |n| ≤ n0

(k2 − (a− n2))2 ≥ (a− n2)(|k| −
√
a− n2)2.

Let us introduce the set of spherical layers in the space of three dimensions

Bn,σ := {k ∈ R
3 |

√
a− n2 − σ ≤ |k| ≤

√
a− n2 + σ}, |n| ≤ n0

with 0 < σ <
√
a− n2. Then the first term in (3.28) can be bounded from above

by the sum
1

a− n2
0

∑

|n|≤n0

∫

R3

dk
|f̃m,n(k)− f̃n(k)|2
(|k| −

√
a− n2)2

χBn,σ
+

+
1

a− n2
0

∑

|n|≤n0

∫

R3

dk
|f̃m,n(k)− f̃n(k)|2
(|k| −

√
a− n2)2

χBc
n,σ

. (3.29)

For the second term in (3.29) we have the upper bound of

1

σ2(a− n2
0)
‖fm − f‖2L2(Ω) → 0, m → ∞

as assumed. To estimate the remaining term in (3.29), we willuse the representation
formulas

f̃n(k) = f̃n(
√
a− n2, ω) +

∫ |k|

√
a−n2

∂f̃n

∂|s|(|s|, ω)d|s|,

f̃m,n(k) = f̃m,n(
√
a− n2, ω) +

∫ |k|

√
a−n2

∂f̃m,n

∂|s| (|s|, ω)d|s|.

Note thatf̃m,n(
√
a− n2, ω) = 0 for |n| ≤ n0 via (1.9) andf̃n(

√
a− n2, ω) vanishes

as well which can be obtained by lettingm → ∞ as discussed before. Hence

|f̃m,n(k)− f̃n(k)|
||k| −

√
a− n2|

≤ ‖∇k(f̃m,n(k)− f̃n(k))‖L∞(R3),
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such that the first term in (3.29) can be bounded from above by

1

a− n2
0

∑

|n|≤n0

‖∇k(f̃m,n(k)− f̃n(k))‖2L∞(R3)Dn,σ → 0, m → ∞

via Lemma 4. HereDn,σ := 4
3
π{(

√
a− n2 + σ)3 − (

√
a− n2 − σ)3}. Therefore,

um → u in L2(Ω) asm → ∞ in the case ofn2
0 < a < (n0 + 1)2 with n0 ∈ Z+ =

{N} ∪ {0} as well.

We conclude the paper with establishing the result of the technical Lemma 4
used in the proof of Theorem 3 above.

Proof of Lemma 4.We havefn(x) ∈ L2(R3) and|x|fn(x) ∈ L1(R3) for n ∈ Z

as discussed before. We use the standard Fourier series expansion

fm(x, x⊥) =

∞
∑

n=−∞
fm,n(x)

einx⊥

√
2π

, m ∈ N

such that

‖fm(x, x⊥)‖2L2(Ω) =
∞
∑

n=−∞
‖fm,n(x)‖2L2(R3) < ∞

according to our assumption. Hencefm,n(x) ∈ L2(R3) for n ∈ Z andm ∈ N. Let
us estimate the norm

‖|x|fm,n(x)‖L1(R3) =

∫

R3

dx|x||(fm(x, x⊥),
einx⊥

√
2π

)L2(I)| ≤

≤ 1√
2π

‖|x|fm(x, x⊥)‖L1(Ω) < ∞

as assumed. Therefore,|x|fm,n(x) ∈ L1(R3) for n ∈ Z andm ∈ N. Moreover,

‖fm,n(x)− fn(x)‖2L2(R3) =

∫

R3

dx|
∫ 2π

0

[fm(x, x⊥)− f(x, x⊥)]
e−inx⊥

√
2π

dx⊥|2 ≤

≤ ‖fm − f‖2L2(Ω) → 0, m → ∞
due to our assumption and the Schwarz inequality. Thusfm,n(x) → fn(x) in
L2(R3) asm → ∞. Furthermore,

‖|x|fm,n(x)− |x|fn(x)‖L1(R3) =

∫

R3

dx|x||(fm(x, x⊥)− f(x, x⊥),
einx⊥

√
2π

)L2(I)| ≤

≤ 1√
2π

‖|x|fm − |x|f‖L1(Ω) → 0, m → ∞

as assumed, such that|x|fm,n(x) → |x|fn(x) in L1(R3) asm → ∞ for eachn ∈ Z.
Then the statement of the lemma follows from Lemma 3.4 of [25].
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