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Abstract

We conclude our analysis of the linear response of charge transport in
lattice systems of free fermions subjected to a random potential by deriving
general mathematical properties of its conductivity at the macroscopic scale.
The present paper belongs to a succession of studies on Ohm and Joule’s
laws from a thermodynamic viewpoint starting with [BPK1, BPK2, BPK3].
We show, in particular, the existence and finiteness of the conductivity mea-
sure µΣ for macroscopic scales. Then we prove that, similar to the con-
ductivity measure associated to Drude’s model, µΣ converges in the weak∗–
topology to the trivial measure in the case of perfect insulators (strong dis-
order, complete localization), whereas in the limit of perfect conductors (ab-
sence of disorder) it converges to an atomic measure concentrated at fre-
quency ν = 0. However, the AC–conductivity µΣ|R\{0} does not vanish in
general: We show that µΣ(R\{0}) > 0, at least for large temperatures and
a certain regime of small disorder.

1 Introduction
We define in [BPK3] AC–conductivity measures for free fermions on the lattice
subjected to a random potential by using the second principle of thermodynamics,
which corresponds to the positivity of the heat production for cyclic processes on
equilibrium states. Such measures were introduced for the first time in [KLM,
KM] by using a different approach.

In [BPK3] we prove moreover Ohm and Joule’s laws from first principles
of thermodynamics and quantum mechanics for electric fields that is time– and
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space–dependent. The microscopic theory usually explaining these laws is based
on Drude’s model (1900) combined with quantum corrections. [Cf. the Lan-
dau theory of fermi liquids.] Indeed, although the motion of electrons and ions
is treated classically and the interaction between these two species is modeled
by perfectly elastic random collisions, this quite elementary model provides a
qualitatively good description of DC– and AC–conductivities in metals. Recall
that well–known computations using Drude’s model predict that the conductivity
ΣDrude(t) behaves like

ΣDrude(t) = D exp(−T−1t) , t ∈ R+
0 , (1)

where T > 0 is related to the mean time interval between two collisions of a
charged carrier with defects in the crystal, whereas D ∈ R+ is some strictly pos-
itive constant. In particular, for any electromagnetic potential A ∈ C∞0 (R ×
R3; (R3)∗) with corresponding electric field (in the Weyl gauge)

EA(t, x) := −∂tA(t, x) , t ∈ R, x ∈ R3 ,

the heat production at large times is in this case equal to∫ t

t0

ds1

∫ s1

t0

ds2ΣDrude(s1 − s2)

∫
R3

d3x〈EA(s2, x), EA(s1, x)〉

for any t ≥ t0, where t0 is the time when the electromagnetic potential is turned
on, i.e., A(t, ·) = 0 for all t ≤ t0. Then, since s 7→ EA(s, x) is smooth and
compactly supported for all x ∈ R3, we deduce from Fubini’s theorem and (1)
that ∫ t

t0

ds1

∫ s1

t0

ds2ΣDrude(s1 − s2)

∫
R3

d3x 〈EA(s2, x), EA(s1, x)〉

=
1

2

∫
R3

d3x

∫
R

dν|ÊA(ν, x)|2ϑT (ν) ,

where ν 7→ ÊA(ν, x) and

ν 7→ ϑT (ν) ∼ T

1 + T2ν2

are the Fourier transforms of the maps

s 7→ EA(s, x) and s 7→ exp
(
−T−1 |s|

)
,
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respectively, at any fixed x ∈ R3. In particular,

|ÊA(ν, x)|2ϑT (ν) dν

is the heat production due to the component of frequency ν of the electric field, in
accordance with Joule’s law in the AC–regime.

Thus, the (positive) measure ϑT(ν)dν is the in–phase conductivity measure
of Drude’s model. Its restriction to R\{0} can be interpreted as an (in–phase)
AC–conductivity measure. In the limit of the perfect insulator (T → 0) the in–
phase conductivity measure ϑT(ν)dν converges in the weak∗–topology to the triv-
ial measure (0 · dν). On the other hand, in the limit of the perfect conductor
(T → ∞), only the in–phase AC–conductivity measure of Drude’s model, as de-
fined above, converges in the weak∗–topology to the trivial measure (0 · dν) on
R\{0}. Indeed, as T → ∞, the in–phase conductivity measure ϑT(ν)dν con-
verges in the weak∗–topology to the atomic measure Dδ0 concentrated at ν = 0
with D ∈ R+ being some strictly positive constant. Here, δ0(B) := 1[0 ∈ B] for
any Borel set B ⊂ R.

One aim of this paper is to verify this phenomenology for our many–body
quantum system. To this end, we represent the conductivity measure – up to some
explicit atomic correction at zero frequency (ν = 0) – as the spectral measure
of some self adjoint operator with respect to (w.r.t.) a fixed vector. This proof
uses analyticity properties of correlation functions of KMS states. It involves the
so–called Duhamel two–point function as explained in [BPK2, Section A] and
requires the construction of a Hilbert space of (here called) “current Duhamel
fluctuations”. Using these objects we derive various mathematical properties of
the conductivity Σ of the fermion system. In particular, Σ is shown to be a time–
correlation function of some unitary evolution. This yield the existence of the
conductivity measure µΣ as a spectral measure (up to an explicit atomic correc-
tion).

Another important outcome of this approach is the finiteness of µΣ, i.e., µΣ(R)
<∞. Moreover, the conductivity measure is not anymore restricted to R\{0}. It
also includes DC–conductivities, in contrast with [BPK3].

Similar to Drude’s model, we also show that the AC–conductivity measure
µΣ|R\{0} converges in the weak∗–topology to the trivial measure in the case of
perfect conductors, i.e., the absence of disorder, as well as in the case of perfect
insulators, i.e., in the case of strong disorder. Note that the fact that the AC–
conductivity measure becomes zero does not imply, in general, that there are no
currents in presence of electric fields. It only implies that the so–called in–phase
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current, which is the component of the total current producing heat, also called
active current, is zero. Furthermore, the AC–conductivity µΣ|R\{0} is in general
non–vanishing: We show in Theorem 4.7 that µΣ(R\{0}) > 0, for large temper-
atures and a certain regime of small disorder.

More precisely, we show that, for any cyclic process driven by the external
electric filed, the heat production vanishes in both limits of perfect conductors and
perfect insulators, but the full conductivity does not vanish in the case of perfect
conductors (cf. Theorem 4.6). In this last case, exactly like in Drude’s model, the
conductivity measure µΣ converges in the weak∗–topology to the atomic measure
D̃δ0 with D̃ ∈ R+ being the explicit strictly positive constant (30) and δ0(B) :=
1[0 ∈ B] for any Borel set B ⊂ R.

To conclude, our main assertions are Theorems 3.1 (current Duhamel fluc-
tuations), 4.1 (mathematical properties of the paramagnetic conductivity), 4.6
(asymptotic behavior of the conductivity), and 4.7 (strict positivity of the heat
production). This paper is organized as follows:

• The random fermion system is defined in Section 2. The mathematical
framework of this study is the one of [BPK1, BPK2, BPK3].

• In Section 3 we define the Hilbert space of “current Duhamel fluctuations”.

• In Section 4 we derive important mathematical properties of the conductiv-
ity of the fermion system.

• Section 5 gathers technical proofs related to the asymptotic behavior of the
conductivity and the strict positivity of the heat production. Both studies
use explicit computations based on results of [BPK2, BPK3].

Notation 1.1 (Generic constants)
To simplify notation, we denote by D any generic positive and finite constant.
These constants do not need to be the same from one statement to another.

2 Setup of the Problem
Let d ∈ N, L := Zd and (Ω,AΩ, aΩ) be the probability space defined as follows:
Set Ω := [−1, 1]L and let Ωx, x ∈ L, be an arbitrary element of the Borel σ–
algebra of the interval [−1, 1] w.r.t. the usual metric topology. Then, AΩ is the
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σ–algebra generated by cylinder sets
∏

x∈L Ωx, where Ωx = [−1, 1] for all but
finitely many x ∈ L. The measure aΩ is the product measure

aΩ

(∏
x∈L

Ωx

)
:=
∏
x∈L

a0(Ωx) , (2)

where a0 is any fixed probability measure on the interval [−1, 1]. We denote by
E[ · ] the expectation value associated with aΩ.

For simplicity and without loss of generality (w.l.o.g.), we assume that the
expectation of the random variable at any single site is zero:

E [ω(0)] =

∫
Ω

ω(0)da0(ω) = 0 . (3)

We can easily remove this condition by replacing ω by ω − E[ω(0)] and adding
E[ω(0)] to the discrete Laplacian defined below.

Note that the i.i.d. property of the potential is not essential for our results.
We could take any ergodic ensemble instead. However, this assumption and (3)
extremely simplify the proof of the asymptotic behavior of the conductivity (The-
orem 4.6) and of the strict positivity of the heat production (Theorem 4.7).

For any realization ω ∈ Ω, Vω ∈ B(`2(L)) is the self–adjoint multiplication
operator with the function ω : L → [−1, 1]. Then we consider the Anderson
tight–binding model (∆d + λVω) acting on the Hilbert space `2(L), where ∆d ∈
B(`2(L)) is (up to a minus sign) the usual d–dimensional discrete Laplacian given
by

[∆d(ψ)](x) := 2dψ(x)−
∑

z∈L, |z|=1

ψ(x+ z) , x ∈ L, ψ ∈ `2(L) . (4)

To define the one–particle dynamics like in [KLM], we use the unitary group
{U(ω,λ)

t }t∈R generated by the random Hamiltonian (∆d + λVω) for ω ∈ Ω and
λ ∈ R+

0 :

U
(ω,λ)
t := exp(−it(∆d + λVω)) ∈ B(`2(L)) , t ∈ R . (5)

Denote by U the CAR C∗–algebra associated to the infinite system. Annihila-
tion and creation operators of (spinless) fermions with wave functions ψ ∈ `2(L)
are defined by

a(ψ) :=
∑
x∈L

ψ(x)ax ∈ U , a∗(ψ) :=
∑
x∈L

ψ(x)a∗x ∈ U .
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Here, {ax, a∗x}x∈L ⊂ U and the identity 1 ∈ U are generators of U and satisfy the
canonical anti–commutation relations. For all ω ∈ Ω and λ ∈ R+

0 , the condition

τ
(ω,λ)
t (a(ψ)) = a((U

(ω,λ)
t )∗(ψ)) , t ∈ R, ψ ∈ `2(L) , (6)

uniquely defines a family τ (ω,λ) := {τ (ω,λ)
t }t∈R of (Bogoliubov) automorphisms

of U , see [BR2, Theorem 5.2.5]. The one–parameter group τ (ω,λ) is strongly
continuous and defines (free) dynamics on the C∗–algebra U . For any realization
ω ∈ Ω and strength λ ∈ R+

0 of disorder, the thermal equilibrium state of the
system at inverse temperature β ∈ R+ (i.e., β > 0) is by definition the unique
(τ (ω,λ), β)–KMS state %(β,ω,λ), see [BR2, Example 5.3.2.] or [P, Theorem 5.9]. It
is a gauge–invariant quasi–free state which is uniquely characterized by its symbol

d
(β,ω,λ)
fermi :=

1

1 + eβ(∆d+λVω)
∈ B(`2(L)) (7)

for any β ∈ R+, ω ∈ Ω and λ ∈ R+
0 .

3 Hilbert Space of Current Duhamel Fluctuations
We study in [BPK3, Theorem 4.1] the rate at which resistance in the fermion
system converts electric energy into heat energy. This thermal effect results from
short range bond current fluctuations.

Short range bond currents are the elements of the linear subspace

I := lin
{

Im(a∗ (ψ1) a (ψ2)) : ψ1, ψ2 ∈ `1(L) ⊂ `2(L)
}
⊂ U . (8)

As usual, lin{M} denotes the linear hull of the subsetM of a vector space. For all
ω ∈ Ω and λ ∈ R+

0 , the one–parameter (Bogoliubov) group τ (ω,λ) = {τ (ω,λ)
t }t∈R

preserves the space I. Indeed, the unitary group {U(ω,λ)
t }t∈R (see (5) and (6))

defines a strongly continuous group on (`1(L) ⊂ `2(L), ‖ · ‖1).
For any l ∈ R+ we define the box

Λl := {(x1, . . . , xd) ∈ L : |x1|, . . . , |xd| ≤ l} . (9)

The fluctuation observable of the current I ∈ I is defined by

F(l) (I) =
1

|Λl|1/2
∑
x∈Λl

{
χx (I)− %(β,ω,λ) (χx (I)) 1

}
, I ∈ I , (10)
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where χx, x ∈ L, are (space) translations, i.e., the ∗–automorphisms of U uniquely
defined by

χx(ay) = ay+x , y ∈ Zd .

We showed in [BPK3, Eq. (40)] that the paramagnetic conductivity, which is
responsible for heat production, can be written in terms of Green–Kubo relations
involving time–correlations of bosonic fields coming from current fluctuations in
the system. In [BPK3, Section 3.3] we introduced the Hilbert space of current
fluctuations from F(l) and the sesquilinear form on U naturally defined by teh
state %(β,ω,λ). This is related to the usual construction of a GNS representation of
the (τ (ω,λ), β)–KMS state %(β,ω,λ).

As showed in [BPK2, Section A], another natural GNS representation of %(β,ω,λ)

can be constructed from the Duhamel two–point function defined by

(B1, B2)(ω)
∼ ≡ (B1, B2)(β,ω,λ)

∼ :=

∫ β

0

%(β,ω,λ)
(
B∗1τ

(ω,λ)
iα (B2)

)
dα (11)

for any B1, B2 ∈ U . This positive definite sesquilinear form has appeared in dif-
ferent contexts like in linear response theory and we recommend [BPK2, Section
A] for more details. We name this GNS representation the Duhamel GNS rep-
resentation of the (τ (ω,λ), β)–KMS state %(β,ω,λ), see [BPK2, Definition A.6]. It
turns out that a Hilbert space of current fluctuations constructed from the scalar
product of Duhamel GNS representation is easier to handle and in some sense
more natural.

Indeed, define the bond current observable

Ix := −2 Im(a∗x(2)ax(1)) ∈ I ,

for any pair x := (x(1), x(2)) ∈ L2, where {ex}x∈L is the canonical orthonor-
mal basis ex(y) ≡ δx,y of `2(L). Then we introduce a (random) positive definite
sesquilinear form on I by

(I, I ′)
(ω)
I,l ≡ (I, I ′)

(β,ω,λ)
I,l := (F(l) (I) ,F(l) (I ′))(ω)

∼ , I, I ′ ∈ I , (12)

for any l, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 .

Using [BPK2, Eqs. (24), (103)], the space–averaged paramagnetic transport
coefficient

t 7→ Ξ
(ω)
p,l (t) ≡ Ξ

(β,ω,λ)
p,l (t) ∈ B(Rd)
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satisfies, w.r.t. the canonical orthonormal basis {ek}dk=1 of Rd, the equality{
Ξ

(ω)
p,l (t)

}
k,q
≡
{

Ξ
(β,ω,λ)
p,l (t)

}
k,q

=
(
I0,ek , τ

(ω,λ)
t (I0,eq)

)(ω)

I,l
−
(
I0,ek , I0,eq

)(ω)

I,l
(13)

for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , k, q ∈ {1, . . . , d} and t ∈ R. For the basic

definition of the space–averaged paramagnetic transport coefficient Ξ
(ω)
p,l we refer

to [BPK2, Eq. (33)]. One may take in this paper Equation (13) as its definition.
The above expression was indeed crucial to study the mathematical properties of
Ξ

(ω)
p,l , see [BPK2, Theorem 3.1, Corollary 3.2].

Furthermore, the deterministic paramagnetic transport coefficient

t 7→ Ξp (t) ≡ Ξ(β,λ)
p (t) ∈ B(Rd)

is defined by
Ξp (t) := lim

l→∞
E
[
Ξ

(ω)
p,l (t)

]
(14)

for any β ∈ R+, λ ∈ R+
0 and t ∈ R, see [BPK3, Eq. (32)]. We define the limiting

positive sesquilinear form in I by

(I, I ′)I ≡ (I, I ′)
(β,λ)
I := lim

l→∞
E
[
(I, I ′)

(ω)
I,l

]
, I, I ′ ∈ I , (15)

via the following theorem:

Theorem 3.1 (Sesquilinear form from current Duhamel fluctuations)
Let β ∈ R+ and λ ∈ R+

0 . Then, one has:
(i) The positive sesquilinear form (·, ·)I is well–defined, i.e., the limit exists:

lim
l→∞

E
[
(I, I ′)

(ω)
I,l

]
∈ R , I, I ′ ∈ I .

(ii) There is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of full measure such that, for
any ω ∈ Ω̃,

(I, I ′)I = lim
l→∞

(I, I ′)
(ω)
I,l , I, I ′ ∈ I .

Proof: The proof is very similar to the one of [BPK3, Theorem 5.26], which
concerns the (well–defined) limit

〈I, I ′〉I ≡ 〈I, I ′〉(β,λ)
I := lim

l→∞
E
[
〈I, I ′〉(ω)

I,l

]
∈ R̄ , I, I ′ ∈ I . (16)
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Here, for any l, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 ,

〈I, I ′〉(ω)
I,l ≡ 〈I, I

′〉(β,ω,λ)
I,l := %(β,ω,λ)

(
F(l) (I)∗ F(l) (I ′)

)
, I, I ′ ∈ I .

Here, F(l) is the fluctuation observable defined by (10). In particular, one has the
inequality

(I, I ′)
(ω)
I,l ≤ 〈I, I

′〉(ω)
I,l , I, I ′ ∈ I , (17)

which results from [BPK2, Theorem A.4] for X = U and % = %(β,ω,λ). By [BPK2,
Lemma 5.10], this implies the existence of a constant D ∈ R+ such that, for any
l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and all ψ1, ψ2, ψ
′
1, ψ

′
2 ∈ `1(L),∣∣∣∣( Im(a∗ (ψ1) a (ψ2)), Im(a∗ (ψ′1) a (ψ′2))

)(ω)

I,l

∣∣∣∣ ≤ D ‖ψ1‖1 ‖ψ2‖1 ‖ψ
′
1‖1 ‖ψ

′
2‖1 .

(18)
Then, an analogue of [BPK3, Lemma 5.25] for (·, ·)I is proven by using the
Akcoglu–Krengel ergodic theorem, see [BPK3, Sections 5.2, 5.4]. We omit the
details since one uses very similar arguments to those proving [BPK3, Theorem
5.17] and the proof is even simpler.

Remark 3.2 (Auto–correlation upper bounds)
The positive sesquilinear form 〈·, ·〉I defines the Hilbert spaceHfl of current fluc-
tuations as explained in [BPK3, Section 3.3]. By (17), (·, ·)I and 〈·, ·〉I are related
to each other via the auto–correlation upper bounds:

(I, I ′)I ≤ 〈I, I ′〉I , I, I ′ ∈ I .

Hence, we define the kernel

Ĩ0 := {I ∈ I : (I, I)I = 0}

of the positive sesquilinear form (·, ·)I . The quotient I/Ĩ0 is a pre–Hilbert space
and its completion w.r.t. the scalar product

([I], [I ′])I/Ĩ0 := (I, I ′)I , [I], [I ′] ∈ I/Ĩ0 , (19)

is the Hilbert space (
H̃fl, (·, ·)H̃fl

)
(20)

of current Duhamel fluctuations. The dynamics defined by τ (ω,λ) = {τ (ω,λ)
t }t∈R

on U induces a unitary time evolution on H̃fl:
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Theorem 3.3 (Dynamics of current Duhamel fluctuations)
Let β ∈ R+ and λ ∈ R+

0 . Then, there is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω
of full measure such that, for any ω ∈ Ω̃, there is a unique, strongly continuous
one–parameter unitary group {Ṽ(ω,λ)

t }t∈R on the Hilbert space H̃fl obeying, for
any t ∈ R,

Ṽ
(ω,λ)
t ([I]) = [τ

(ω,λ)
t (I)] , [I] ∈ I/Ĩ0 .

Proof: The proof is essentially the same as the one of [BPK3, Theorem 5.27].
We omit the details. Note that one uses (17)–(18) combined with [BPK2, Corol-
lary A.8].

Remark 3.4 (Deterministic unitary group)
As in [BPK3, Section 5.5.3], by using the Duhamel representation [BPK2, Defini-
tion A.6] one can construct a unique, strongly continuous one–parameter deter-
ministic unitary group {V̂(λ)

t }t∈R on a direct integral Hilbert space.

By using the Hilbert space H̃fl (20) of current Duhamel fluctuations, we infer
from Equations (13) and (14)–(15) that

{Ξp (t)}k,q =
(

[I0,ek ], Ṽ
(ω,λ)
t ([I0,eq ])

)
H̃fl

−
(

[I0,ek ], [I0,eq ]
)
H̃fl

(21)

for any β ∈ R+, λ ∈ R+
0 , k, q ∈ {1, . . . , d} and all t ∈ R. Here, ω belongs to

some measurable subset of full measure defined such that the strongly continuous
one–parameter unitary group {Ṽ(ω,λ)

t }t∈R exists, see Theorem 3.3. Equation (21)
is the analogue of (13) for Ξ

(ω)
p,l . As a consequence, we can now follow the same

strategy as in [BPK2, Section 5.1.2]. This is performed in the next section.

4 Macroscopic Conductivity of Fermion Systems
As in [BPK3, Definition 3.2], for any β ∈ R+ and λ ∈ R+

0 , the macroscopic
conductivity is the map

t 7→ Σ (t) ≡ Σ(β,λ) (t) :=

{
0 , t ≤ 0 .
Ξd + Ξp (t) , t ≥ 0 .

(22)

Here, Ξp is the deterministic paramagnetic transport coefficient defined by (14),
whereas the time–independent operator Ξd ∈ B(Rd) is the diamagnetic transport
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coefficient, which equals

{Ξd}k,q = 2δk,q Re
{
E
[
〈eek ,d

(β,ω,λ)
fermi e0〉

]}
(23)

for any β ∈ R+, λ ∈ R+
0 and k, q ∈ {1, . . . , d}, see [BPK2, Eq. (37)]. 〈·, ·〉 is

the scalar product in `2(L) and recall that the positive bounded operator d
(β,ω,λ)
fermi is

defined by (7).
Since we assume the random potential to be i.i.d. the paramagnetic and dia-

magnetic transport coefficients turn out to be both a multiple of the identity, see
[BPK3, Eqs. (68)–69)]. In particular, there is a function

σp ≡ σ(β,λ)
p ∈ C(R;R−0 )

and a constant σd ≡ σ
(β,λ)
d such that

Ξp (t) = σp (t) IdRd , Ξd = σd IdRd , (24)

for any β ∈ R+, λ ∈ R+
0 and t ∈ R. Note additionally that, for all t ∈ R,

σp(t) = σp(|t|) with σp(0) = 0 and

σp(t) ∈ [−2‖[I0,e1 ]‖2
H̃fl
, 0] ,

see (21). Thus the in–phase conductivity of the fermion system equals

σ(t) ≡ σ(β,λ)(t) := σp(t) + σd , t ∈ R . (25)

Clearly, σ ∈ C(R;R) satisfies σ(t) = σ(−t) with σ(0) = σd. Since the diamag-
netic conductivity σd is an explicit constant, that is,

σd = 2 Re
{
E
[
〈ee1 ,d

(β,ω,λ)
fermi e0〉

]}
, (26)

the study of the in–phase conductivity σ corresponds to the analysis of the prop-
erties of σp. We follow the same strategy as in [BPK2, Section 5.1.2].

First, we denote by iL̃(ω)
fl the anti–self–adjoint operator acting on H̃fl generat-

ing the unitary group {Ṽ(ω,λ)
t }t∈R of Theorem 3.3. Then, one deduces from Equa-

tion (21) and the spectral theorem the existence of the paramagnetic conductivity
measure µp, like in [BPK2, Theorem 5.4]:
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Theorem 4.1 (Paramagnetic conductivity measures)
Let β ∈ R+and λ ∈ R+

0 . Then, there is a positive symmetric measure µp ≡ µ
(β,λ)
p

on R such that µp (R) <∞ uniformly w.r.t. β ∈ R+, λ ∈ R+
0 , while

σp(t) =

∫
R

(cos (tν)− 1)µp(dν) , t ∈ R . (27)

Proof: As explained above, the existence of the finite positive symmetric mea-
sure µp on R satisfying (27) is a consequence of the spectral theorem applied to
iL̃(ω)

fl together with σp(t) = σp(|t|) and σp(0) = 0. See Equations (21) and (24).
Observe also that µp is clearly a deterministic measure. Moreover,

µp (R) = ([I0,e1 ], [I0,e1 ])H̃fl

and we thus deduce from (18) that this quantity is uniformly bounded w.r.t. β ∈
R+ and λ ∈ R+

0 .

Remark 4.2 (On the strict negativity of the paramagnetic conductivity)
In contrast to the standard Liouvillian L̃ in [BPK2, Eq. (105)], it is a priori
not clear whether the kernel of L̃(ω)

fl is empty or not. Thus, we define P
(ω)
fl to

be the orthogonal projection on the kernel of L̃(ω)
fl . By (21) and (24) combined

with the stationarity of KMS states, one can prove that σp (t) = 0 for t 6= 0 iff
P

(ω)
fl [I0,e1 ] = [I0,e1 ]. In particular, if σp (t) = 0 for some t ∈ R\{0} then σp is

the zero function on R .In the same way, if there is t ∈ R where σp (t) 6= 0 then
σp (t) < 0 for all t ∈ R\{0}.

Note that Theorem 4.1 is a reminiscent of [BPK2, Theorem 3.1 (v)] where we
show the existence of a local paramagnetic conductivity measure µ(ω)

p,l ≡ µ
(β,ω,λ)
p,l .

It is a positive operator valued measure that satisfies∫
R

(1 + |ν|) ‖µ(ω)
p,l ‖op(dν) <∞ ,

uniformly w.r.t. l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , and

Ξ
(ω)
p,l (t) =

∫
R

(cos (tν)− 1)µ
(ω)
p,l (dν) , t ∈ R .

Recall that Ξ
(ω)
p,l is the space–averaged paramagnetic transport coefficient, see (13).

For all l ∈ R+, the map ω 7→ µ
(ω)
p,l is measurable w.r.t. the σ–algebra AΩ and

12



the weak∗ topology for (B(Rd)–valued) measures on R. E[µ
(ω)
p,l ], seen as a weak

integral, is a finite positive measure. Indeed, as l→∞, it converges to the positive
measure µp IdRd , with µp as in Theorem 4.1:

Theorem 4.3 (From microscopic to macroscopic conductivity measures)
Let β ∈ R+ and λ ∈ R+

0 . Then there is a measurable set Ω̃ ≡ Ω̃(β, λ) ⊂ Ω of
full measure such that, for all ω ∈ Ω̃, µ(ω)

p,l converges in the weak∗–topology to

µp IdRd , as l → ∞. In particular, E[µ
(ω)
p,l ] converges in the weak∗–topology to

µp IdRd , as l→∞.

Proof: The limit in [BPK3, Theorem 3.1 (p)] is uniform w.r.t. times t in compact
sets. This implies the weak∗–convergence of µ(ω)

p,l towards µp IdRd for ω in a
measurable set Ω̃(β, λ) ⊂ Ω of full measure.

Corollary 4.4 (First moment of the paramagnetic conductivity measure)
Let β ∈ R+and λ ∈ R+

0 . Then,∫
R

(1 + |ν|)µp(dν) <∞ ,

uniformly w.r.t. β ∈ R+ and λ ∈ R+
0 . In particular, the family {σ(β,λ)

p }β∈R+,λ∈R+
0

of maps from R to R−0 is equicontinuous.

Proof: By Theorem 4.1, it suffices to prove that∫ ∞
0

ν µp(dν) <∞ ,

uniformly w.r.t. β ∈ R+ and λ ∈ R+
0 . By using Theorem 4.3 and [BPK2, Theorem

5.5], we arrive at

lim
ν0→∞

∫ ν0

0

ν µp(dν) ≤ 2〈[I0,e1 ], [I0,e1 ]〉I .

Combined with [BPK2, Lemma 5.10], this implies the existence of a constant
D ∈ R+ not depending on β ∈ R+ and λ ∈ R+

0 such that

lim
ν0→∞

∫ ν0

0

ν µp(dν) ≤ D <∞ .

13



Since µp is a positive measure, the above limit exists and the equicontinuity of the
paramagnetic conductivity is deduced like in the proof of [BPK2, Corollary 3.2
(iv)].

Note that the diamagnetic conductivity σd is constant in time and its Fourier
transform is the atomic measure σdδ0, see (23). Since the conductivity Σ (22)
is the sum of the paramagnetic and diamagnetic conductivities, we define the in–
phase conductivity measure µΣ ≡ µΣ(β,λ) by

µΣ := µp +
(
σd − µp (R)

)
δ0 (28)

for any β ∈ R+ and λ ∈ R+
0 . By Theorem 4.1, the in–phase conductivity σ given

in (25), equals

σ(t) =

∫
R

cos(tν)µΣ(dν) =

∫
R

(cos(tν)− 1)µp(dν) + σd , t ∈ R .

The restricted measure µAC := µp|R\{0} is the (in–phase) AC–conductivity mea-
sure described in [BPK3, Theorem 4.4], which was deduced from the second
principle of thermodynamics. The additional information we obtain here is the
finiteness of µp, i.e., µp(R) < ∞. The (in–phase) DC–conductivity measure is
the atomic measure

µDC :=
(
σd − µp (R\{0})

)
δ0 .

Remark 4.5 (On the strict negativity of the paramagnetic conductivity)
Similar to [BPK2, Theorem 5.9], the conductivity measure µAC can be recon-
structed from some macroscopic quantum current viscosity. We refrain from doing
it here.

Note that the case λ = 0 can be interpreted as the perfect conductor. Indeed,
by explicit computations using the dispersion relation

E(p) := 2 [d− (cos(p1) + · · ·+ cos(pd))] , p ∈ [−π, π]d , (29)

of the (up to a minus sign) discrete Laplacian ∆d,〈
ex,d

(β,ω,0)
fermi ey

〉
=

1

(2π)d

∫
[−π,π]d

1

1 + eβE(p)
e−ip·(x−y)ddp ,

we obtain

σ
(β,0)
d =

2

(2π)d

∫
[−π,π]d

cos (p1)

1 + eβE(p)
ddp 6= 0 (30)

14



for any β ∈ R+, whereas µ(β,0)
p (R) = 0 (cf. Lemma 5.4). Hence, the heat

production vanishes in this special case. Similarly, the limit λ → ∞ corresponds
to the perfect insulator and also gives a vanishing heat production for any cyclic
processes involving the external electromagnetic field:

Theorem 4.6 (Conductivity – Asymptotics)
Let β ∈ R+ and assume that a0 is absolutely continuous w.r.t. the Lebesgue
measure when we perform the limit λ→∞.
(p) Paramagnetic conductivity: σ

(β,λ)
p (t) converges uniformly on compact sets to

zero, as λ→ 0+ or λ→∞. In particular, µp converges in the weak∗–topology to
the trivial measure in these two cases.
(d) Diamagnetic conductivity: σ(β,λ)

d converges to σ
(β,0)
d , as λ→ 0+, and to zero,

as λ→∞.

Proof: (p) The assertions follow from Proposition 5.3 and Lemma 5.4.
(d) The corresponding assertions for σd can be shown by using the same kind of
(explicit) computation as for σp and are even much simpler to prove than for the
paramagnetic case. Indeed, they follow from (26) and direct estimates: To study
the limit λ→ 0+, use (49) to get that, for any β, λ ∈ R+,∥∥∥d(β,ω,λ)

fermi − d
(β,ω,0)
fermi

∥∥∥
op
≤
∥∥eβ∆d − eβ(∆d+λVω)

∥∥
op
≤ βe2dβ |λ| .

Under the condition that a0 is absolutely continuous w.r.t. the Lebesgue measure,
by a similar but easier computation using Duhamel expansions as done in Section
5.1, one verifies that

lim
λ→∞

E
[
〈ee1 ,d

(β,ω,λ)
fermi e0〉

]
= 0 .

This shows the case λ→∞, by Equation (26)

By the second principle of thermodynamics, the fermion system cannot trans-
fer any energy to the electromagnetic field. In fact, the fermion system even ab-
sorbs, in general, some non–vanishing amount of electromagnetic energy in form
of heat. To explain this, let S(R× Rd;Rd) be the Fréchet space of Schwartz func-
tions R× Rd → Rd endowed with the usual locally convex topology. The elec-
tromagnetic potential is here an element A ∈ C∞0 (R×Rd;Rd) ⊂ S(R× Rd;Rd)
and the electric field equals

EA(t, x) := −∂tA(t, x) , t ∈ R, x ∈ Rd . (31)

Then one gets:
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Theorem 4.7 (Absorption of electromagnetic energy)
Let λ0 ∈ R+. Then there is β0 ∈ R+ such that, for any β ∈ (0, β0) and λ ∈
(λ0/2, λ0),

µAC (R\{0}) > 0 .

Equivalently, there is a meager set Z ⊂ C∞0 (R×Rd;Rd) ⊂ S(R× Rd;Rd) such
that, for all A ∈ C∞0 (R× Rd;Rd)\Z ,∫

R
ds1

∫
R

ds2 Σ(s1 − s2)

∫
Rd

ddx 〈EA(s2, x), EA(s1, x)〉 > 0 .

Proof: Use Lemmata 5.5 and 5.6.

It means that the paramagnetic conductivity σp is generally non–zero and thus
causes a strictly positive heat production for non–vanishing electric fields. This is
the case of usual conductors.

5 Technical Proofs
We gather here some technical assertions used to prove Theorems 4.6–4.7. We
divide the section in two parts. The first subsection is a study of asymptotic prop-
erties of the paramagnetic conductivity, whereas the second one is a proof that
the fermion system generally absorbs a non–vanishing amount of electromagnetic
work in form of heat.

Before starting our proofs, we recall some definitions used in [BPK2, BPK3]:
First, C(ω)

t+iα is the complex–time two–point correlation function, see [BPK3, Sec-
tion 5.1] for more details. For all β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , t ∈ R and α ∈ [0, β],
it equals

C
(ω)
t+iα(x) = 〈ex(2) , e−it(∆d+λVω)F β

α (∆d + λVω) ex(1)〉 , x := (x(1), x(2)) ∈ L2 ,
(32)

where the real function F β
α is defined, for any β ∈ R+ and α ∈ R, by

F β
α (κ) :=

eακ

1 + eβκ
, κ ∈ R . (33)

Then we set for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R, α ∈ [0, β], x :=

(x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2,

C
(ω)
t+iα(x,y) =

∑
π,π′∈S2

επεπ′C
(ω)
t+iα(yπ

′(1), xπ(1))C
(ω)
−t+i(β−α)(x

π(2), yπ
′(2)) , (34)
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compare with [BPK2, Eq. (93)]. Here, π, π′ ∈ S2 are by definition permutations
of {1, 2} with signatures επ, επ′ ∈ {−1, 1}. In [BPK3, Eq. (141)] we define the
function

Γ1,1(t) := lim
l→∞

1

|Λl|
∑
x,y∈Λl

E
[∫ β

0

C
(ω)
t+iα(x, x− e1, y, y − e1)dα

]
(35)

and, by [BPK3, Eq. (147)], observe that

σp(t) = Γ1,1(t)− Γ1,1(0) (36)

for any β ∈ R+, λ ∈ R+
0 and t ∈ R. Now we are ready to prove Theorems 4.6

and 4.7.

5.1 Asymptotics of Paramagnetic Conductivity
Here we study the asymptotic properties of the paramagnetic conductivity σp, as
λ → 0+ and λ → ∞. In other words, we prove Theorem 4.6 (p). We break this
proof in several lemmata and one proposition.

By (36) and [BPK3, Lemma 5.16], for any ε, β ∈ R+, λ ∈ R+
0 and υ ∈

(0, β/2),

σp (t) = 4d
(

Γ̃υ,ε,1,1(t)− Γ̃υ,ε,1,1(0)
)

+O(υ) +Oυ(ε) , (37)

uniformly for times t in compact sets. The term of order Oυ(ε) vanishes when
ε→ 0+ for any fixed υ ∈ (0, β/2). By [BPK3, Eqs. (139) and (142)],

Γ̃υ,ε,1,1(t) = lim
l→∞

1

|Λl|
∑
x,y∈Λl

E
[∫ β−υ

υ

B
(ω)
t+iα,υ,ε(x, x− e1, y, y − e1)dα

]
<∞

(38)
for all ε, β ∈ R+, λ ∈ R+

0 , t ∈ R and υ ∈ (0, β/2), with

B
(ω)
t+iα,υ,ε(x,y) :=

∑
π,π′∈S2

επεπ′B
(ω)
t+iα,υ,ε(y

π′(1), xπ(1))

×B(ω)
−t+i(β−α),υ,ε(x

π(2), yπ
′(2))

and
B

(ω)
t+iα,υ,ε (x) =

∫
|ν|<Mβ,υ,ε

F̂ β
α (ν) 〈ex(2) , e−i(t−ν)(∆d+λVω)ex(1)〉dν (39)
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for any x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2. Here, Mβ,υ,ε is a
constant only depending on β, υ, ε and F̂ β

α is the Fourier transform of the function
F β
α (33). See [BPK3, Eq. (87)].

Thus, by (37), it suffices to obtain the asymptotics λ→ 0+ and λ→∞ of the
function Γ̃υ,ε,1,1. To this end we use the finite sum approximation

ξ
(ω,λ)
ν,t,N := e−i(t−ν)λVω +

N−1∑
n=1

(−i)n
∫ t

ν

dν1

∫ ν1

ν

dν2 · · ·
∫ νn−1

ν

dνn e−i(t−ν1)λVω∆d

× e−i(ν1−ν2)λVω∆de−i(ν2−ν3)λVω · · · e−i(νn−1−νn)λVω∆de−i(νn−ν)λVω

of the unitary operator e−i(t−ν)(∆d+λVω) for any ω ∈ Ω, λ ∈ R+
0 , N ∈ N and

ν, t ∈ R. Indeed, using Duhamel’s formula one gets that

lim
N→∞

∥∥∥ξ(ω,λ)
ν,t,N − e−i(t−ν)(∆d+λVω)

∥∥∥
op

= 0 (40)

uniformly for ω ∈ Ω, λ ∈ R+
0 , ν ∈ [−Mβ,υ,ε,Mβ,υ,ε] and times t in compact sets.

Hence, we replace e−i(t−ν)(∆d+λVω) in (39) by its approximation ξ(ω,λ)
ν,t,N and define

B̃
(ω,λ)
t+iα,υ,ε,N (x) :=

∫
|ν|<Mβ,υ,ε

F̂ β
α (ν) 〈ex(2) , ξ

(ω,λ)
ν,t,Nex(1)〉dν (41)

as well as

B̃
(ω,λ)
t+iα,υ,ε,N(x,y) :=

∑
π,π′∈S2

επεπ′B̃
(ω)
t+iα,υ,ε,N(yπ

′(1), xπ(1))

× B̃(ω)
−t+i(β−α),υ,ε,N(xπ(2), yπ

′(2))

for any ε, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈

L2. Indeed, one has:

Lemma 5.1 (Finite sum approximation)
Let ε, β ∈ R+, t ∈ R and υ ∈ (0, β/2). Then,

lim
N→∞

1

|Λl|
∑
x,y∈Λl

∫ β−υ

υ

∣∣∣B(ω)
t+iα,υ,ε(x, x− e1, y, y − e1)

−B̃(ω,λ)
t+iα,υ,ε,N(x, x− e1, y, y − e1)

∣∣∣ dα = 0

uniformly for l ∈ R+, ω ∈ Ω and λ ∈ R+
0 .
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Proof: The map (α, ν) 7→ F̂ β
α (ν) is absolutely integrable in

(α, ν) ∈ [υ, β − υ]× [−Mβ,υ,ε,Mβ,υ,ε]

for any ε, β ∈ R+ and υ ∈ (0, β/2). Therefore, the assertion is directly proven by
using (40) to compute the difference between (39) and (41). We omit the details.
See similar arguments to the proof of [BPK3, Lemma 5.11].

As a consequence, we only need to bound, for any ε, β ∈ R+, υ ∈ (0, β/2),
and l, N ∈ N, the function

q
(β,ω,λ)
υ,ε,N,l (t) :=

1

|Λl|
∑
x,y∈Λl

E
[∫ β−υ

υ

B̃
(ω,λ)
t+iα,υ,ε,N(x, x− e1, y, y − e1)dα

]
,

as λ→ 0+ and λ→∞, uniformly for all l ∈ R+.

Lemma 5.2 (Asymptotics of the finite sum approximation)
Let ε, β ∈ R+, λ ∈ R+

0 , t ∈ R, υ ∈ (0, β/2), and N ∈ N. Then,

lim
λ→0

E
[
q

(β,ω,λ)
υ,ε,N,l (t)

]
= E

[
q

(β,ω,0)
υ,ε,N,l(t)

]
uniformly for l ∈ R+. If the probability measure a0 is in addition absolutely
continuous w.r.t. the Lebesgue measure then

lim
λ→∞

E
[
q

(β,ω,λ)
υ,ε,N,l (t)

]
= 0

uniformly for l ∈ R+.

Proof: The function q
(β,ω,λ)
υ,ε,N,l (t) is a finite sum of terms of the form

(−i)n1+n2

|Λl|
∑
x,y∈Λl

∑
π,π′∈S2

επεπ′

∫ β−υ

υ

dα

∫
|ν|<Mβ,υ,ε

dν

∫
|u|<Mβ,υ,ε

du

∫ t

ν

dν1 · · ·
∫ νn1−1

ν

dνn1

∫ −t
u

du1 · · ·
∫ un2−1

u

dun2 F̂
β
α (ν) F̂ β

β−α (u)

×〈exπ(1)
, e−i(t−ν1)λVω∆de−i(ν1−ν2)λVω∆d · · ·

· · · e−i(νn1−1−νn1)λVω∆de−i(νn1−ν)λVωeyπ′(1)
〉

×〈eyπ′(2)
, e−i(−t−u1)λVω∆de−i(u1−u2)λVω∆d · · ·

· · · ei(un2−1−un2)λVω∆de−i(un2−u)λVωexπ(2)
〉
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for n1, n2 ∈ N0 ∩ [0, N ]. Here, (x1, x2) := (x, x − e1), (y1, y2) := (y, y − e1).
[By abuse of notation, the case n1 = 0 or n2 = 0 means that there is no integral
but a term e−i(t−ν)λVω inside the corresponding scalar product.] From this and the
translation invariance of the probability measure aΩ, we get that E[q

(β,ω,λ)
υ,ε,N,l (t)] is a

finite sum of terms of the form

(−i)n1+n2

∑
x∈L

∑
π,π′∈S2

επεπ′

∫ β−υ

υ

dα

∫
|ν|<Mβ,υ,ε

dν

∫
|u|<Mβ,υ,ε

du (42)

∫ t

ν

dν1 · · ·
∫ νn1−1

ν

dνn1

∫ −t
u

du1 · · ·
∫ un2−1

u

dun2F̂
β
α (ν) F̂ β

β−α (u)∑
z∈Λl

1[x+ z ∈ Λl]

|Λl|
E
[
〈exπ(1)

, e−i(t−ν1)λVω∆de−i(ν1−ν2)λVω∆d · · ·

· · · e−i(νn1−1−νn1)λVω∆de−i(νn1−ν)λVωeyπ′(1)
〉

×〈eyπ′(2)
, e−i(−t−u1)λVω∆de−i(u1−u2)λVω∆d · · ·

· · · e−i(un2−1−un2)λVω∆de−i(un2−u)λVωexπ(2)
〉
]
,

where (x1, x2) := (x, x− e1), (y1, y2) := (0,−e1). Note that∫ β−υ

υ

dα

∫
|ν|<Mβ,υ,ε

dν

∫
|u|<Mβ,υ,ε

du
∣∣∣F̂ β

α (ν) F̂ β
β−α (u)

∣∣∣ <∞
and the volume of integration in (42) of the νa– and ub–integrals, a = 1, . . . , n1,
b = 1, . . . , n2, gives a factor

|t− ν|n1|t+ u|n2

n1!n2!
.

By developing the Laplacians ∆d, note that, whenever t 6= ν, t 6= −u,∑
z∈Λl

1[x+ z ∈ Λl]

|Λl|
E
[
〈exπ(1)

, e−i(t−ν1)λVω∆de−i(ν1−ν2)λVω∆d

· · · e−i(νn1−1−νn1)λVω∆de−i(νn1−ν)λVωeyπ′(1)
〉

×〈eyπ′(2)
, e−i(−t−u1)λVω∆de−i(u1−u2)λVω∆d

· · · e−i(un2−1−un2)λVω∆de−i(un2−u)λVωexπ(2)
〉
]
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is a sum of (2d + 1)n1+n2 terms of the form, up to constants bounded in absolute
value by (2d)n1+n2 ,∑

z∈Λl

1[x+ z ∈ Λl]

|Λl|
1[x ∈ Λ2N+1]E

[
e±it1λVω(x1) · · · e±itnλVω(xn)

]
(43)

where n ∈ N, n ≤ n1 + n2 ≤ 2N , t1, . . . , tn ∈ R+ and x1 ∈ {x, x − e1},
x2 . . . , xn−1 ∈ L, xn ∈ {0,−e1} with xj 6= xp for j 6= p. By Lebesgue’s
dominated convergence theorem, it suffices to analyze (43) either in the limit λ→
∞ or λ→ 0+. By (2),

E
[
e±it1λVω(x1) · · · e±itnλVω(xn)

]
= E

[
e±it1λVω(x1)

]
· · ·E

[
e±itnλVω(xn)

]
(44)

for any n ∈ N, t1, . . . , tn ∈ R+ and x1, . . . , xn ∈ L with xj 6= xp for j 6= p. Since

lim
λ→0

E
[
e±itλVω(x)

]
= 1

for all x ∈ L and t ∈ R+, we deduce from (44) that

lim
λ→0

E
[
e±it1λVω(x1) · · · e±itnλVω(xn)

]
= 1

and one gets the first assertion of the lemma by Lebesgue’s dominated conver-
gence theorem.

If, additionally, the probability measure a0 is a absolutely continuous w.r.t. the
Lebesgue measure, then from the Riemann–Lebesgue lemma we have the limit

lim
λ→∞

E
[
e±itλVω(x)

]
= 0

for all x ∈ L and t ∈ R+. From (44), we then obtain that

lim
λ→∞

E
[
e±it1λVω(x1) · · · e±itnλVω(xn)

]
= 0 .

Using this and Lebesgue’s dominated convergence theorem, one thus gets the sec-
ond assertion.

We are now in position to compute the asymptotics, as λ → 0+ and λ → ∞,
of the paramagnetic conductivity σp, which equals (37).
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Proposition 5.3 (Asymptotics of the paramagnetic conductivity)
Let β ∈ R+, λ ∈ R+

0 and t ∈ R. Then,

lim
λ→0

σ(β,λ)
p (t) = σ(β,0)

p (t) .

If the probability measure a0 is in addition absolutely continuous w.r.t. the Lebesgue
measure then

lim
λ→∞

σ(β,λ)
p (t) = 0 .

Proof: Let β ∈ R+, λ ∈ R+
0 and t ∈ R. By Lemmata 5.1–5.2,

lim
λ→0

1

|Λl|
∑
x,y∈Λl

E
[∫ β−υ

υ

B
(β,ω,λ)
t+iα,υ,ε(x, x− e1, y, y − e1)dα

]

=
1

|Λl|
∑
x,y∈Λl

E
[∫ β−υ

υ

B
(β,ω,0)
t+iα,υ,ε(x, x− e1, y, y − e1)dα

]
uniformly for all l ∈ R+, whereas

lim
λ→∞

1

|Λl|
∑
x,y∈Λl

E
[∫ β−υ

υ

B
(β,ω,λ)
t+iα,υ,ε(x, x− e1, y, y − e1)dα

]
= 0

uniformly for all l ∈ R+, provided the probability measure a0 is absolutely con-
tinuous w.r.t. the Lebesgue measure. Thus, by using these limits together with
(37)–(38) we arrive at the assertions.

Finally, to get Theorem 4.6, we need to compute explicitly the paramagnetic
conductivity σ

(β,λ)
p at λ = 0. This is done in the next lemma:

Lemma 5.4 (Paramagnetic conductivity at constant potential)
For any β ∈ R+ and t ∈ R, σ(β,0)

p (t) = 0.

Proof: Let β ∈ R+. By (14) and [BPK2, Lemma 5.2], note that

σ(β,0)
p (t) = lim

l→∞

1

|Λl|
∑
x,y∈Λl

∫ β

0

(Dt+iα(x, y)−Diα(x, y)) dα , (45)

where, for any x, y ∈ L,

Dt+iα(x, y) := C
(β,ω,0)
t+iα (x, x− e1, y, y − e1) .
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Observe also that C(β,ω,0)
t+iα , which is defined by (34), does not depend on ω ∈ Ω.

Explicit computations show that Dt+iα(x, y) equals

Dt+iα(x, y) =
2

(2π)2d

∫
[−π,π]d

ddp

∫
[−π,π]d

ddp′
eβE(p′)e(α−it)(E(p)−E(p′))

(1 + eβE(p)) (1 + eβE(p′))

× (1− cos (p1 − p′1)) ei(p+p
′)·(x−y)

for any t ∈ R, α ∈ [0, β] and x, y ∈ L, with E (p) = E (−p) being the dispersion
relation (29) of ∆d. By performing the transformation p → p − p′ and then
p′ → p′ + p/2 together with E (p) = E (−p) we deduce that∫ β

0

Dt+iα(x, y)dα =

∫
[−π,π]d

dt (p) eip·(x−y)ddp (46)

for all t ∈ R and x, y ∈ L, with dt being the function defined on [−π, π]d by

dt (p) :=
2

(2π)2d

∫
[−π,π]d

ddp′
eβE(p′+p/2)e−it(E(p′−p/2)−E(p′+p/2))

(1 + eβE(p′−p/2)) (1 + eβE(p′+p/2))

×
(
eβ(E(p′−p/2)−E(p′+p/2)) − 1

)
(E(p′ − p/2)− E(p′ + p/2))

(1− cos (2p′1)) .

Consequently, using (46) one gets, for any l ∈ R+ and t ∈ R, the equality

1

|Λl|
∑
x,y∈Λl

∫ β

0

Dt+iα(x, y)dα =

∫
[−π,π]d

γl (p) dt (p) ddp , (47)

where the function γl is defined on [−π, π]d by

γl (p) :=

∣∣∣∣∣ 1

|Λl|1/2
∑
x∈Λl

eip·x

∣∣∣∣∣
2

=
1

|Λl|
∑
x,y∈Λl

eip·(x−y) .

Observe that, for any l ∈ R+ and all ε ∈ R+,∫
[−π,π]d

γl (p) ddp = (2π)2d and lim
l→∞

∫
[−π,π]d\B(0,ε)

γl (p) ddp = 0 ,

where B (0, ε) ⊂ Rd is the ball of radius ε centered at 0. From this we infer that

lim
l→∞

∣∣∣∣∫
[−π,π]d

γl (p) dt (p) ddp−
∫
B(0,ε)

γl (p) dt (p) ddp

∣∣∣∣ = 0 (48)
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for all ε ∈ R+ and any t ∈ R. Meanwhile, remark that

dt (p)− d0 (p) = O (|tp|) .

Then, using the continuity of the function d0 (·) together with (45), (47) and (48),
it follows that σ(β,0)

p (t) = 0 for all t ∈ R.

Therefore, Theorem 4.6 (p) follows from Proposition 5.3 and Lemma 5.4.

5.2 On the Strict Positivity of the Heat Production
In this subsection we aim to prove Theorem 4.7: First, we study the asymptotics of
the paramagnetic conductivity σp at β, λ, t = 0. Then, we show that the behavior
of σp near this point implies strict positivity of the heat production, at least for
short pulses of the electric field and small β, λ > 0. This result corresponds
to Lemma 5.5. The latter can be extended at small β, λ > 0 by an analyticity
argument to all electric fields outside a meager set, see Lemma 5.6.

Lemma 5.5 (Non–vanishing AC–conductivity measure – I)
Let A ∈ C∞0 (R× Rd;Rd)\{0} be such that, for some k ∈ {1, . . . , d},∫

Rd

(∫
R
s{EA(s, x)}kds

)2

ddx > 0

and define, for all T ∈ R+, the time–rescaled potential

A(T )(t, x) := A(T−1t, x) , t ∈ R, x ∈ Rd .

For any λ0 ∈ R+, there are β0, T0 ∈ R+ such that, for β ∈ (0, β0), λ ∈ (λ0/2, λ0)
and T ∈ (T0/2, T0),∫

R
ds1

∫
R

ds2 σp(s1 − s2)

∫
Rd

ddx 〈EA(T )(s2, x), EA(T )(s1, x)〉 > 0 .

Proof: Let λ0 ∈ R+. Using Duhamel’s formula note first that

e(α−it)(∆d+λVω) = e(α−it)∆d +

∫ 1

0

e(α−it)(1−γ)∆d (α− it)λVωe(α−it)γ(∆d+λVω)dγ

(49)

24



for any α ∈ [0, β] and t ∈ R. Since all operators in this last equation are bounded,
it follows that, if λ ∈ [0, λ0] and β ∈ R+ is sufficiently small, the Neumann series
for
(
1 + eβ(∆d+λVω)

)−1 absolutely converges:(
1 + eβ(∆d+λVω)

)−1
(50)

=
∞∑
n=0

{
−βλ

(
1 + eβ∆d

)−1
∫ 1

0

eβ(1−γ)∆dVωeβγ(∆d+λVω)dγ

}n (
1 + eβ∆d

)−1
.

By (49)–(50), one gets the existence of a constant D ∈ R+ such that, for λ ∈
[0, λ0] and any sufficiently small β ∈ (0, 1), α ∈ [0, β] and ω ∈ Ω,∥∥F β

α (∆d + λVω)− F β
α (∆d)

∥∥
op
≤ Dβλ (51)

with F β
α defined by (33).

We define the approximated complex–time two–point correlation function C̃(ω)
t+iα,

for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R and α ∈ [0, β], by

C̃
(ω)
t+iα(x) := 〈ex(2) , e−it(∆d+λVω)F β

α (∆d) ex(1)〉 , x := (x(1), x(2)) ∈ L2 , (52)

compare with (32), the original form of C(ω)
t+iα. For any x := (x(1), x(2)) ∈ L2 and

y := (y(1), y(2)) ∈ L2, let us define

C̃
(ω)
t+iα(x,y) :=

∑
π,π′∈S2

επεπ′C̃
(ω)
t+iα(yπ

′(1), xπ(1))C̃
(ω)
−t+i(β−α)(x

π(2), yπ
′(2)) .

From (34)–(35) and (51) we thus deduce that

Γ1,1(t) = lim
l→∞

1

|Λl|
∑
x,y∈Λl

E
[∫ β

0

C̃
(ω)
t+iα(x, x− e1, y, y − e1)dα

]
+O(β2λ) (53)

uniformly for t ∈ R.
Next, we define an approximation of C̃(ω)

t+iα by

Ĉ
(ω)
t+iα(x) :=

〈
ex(2) , e−it∆dF β

α (∆d) ex(1)

〉
(54)

−λ
2

〈
ex(2) ,

(
itVω +

t2

2
(Vω∆d + ∆dVω + λV 2

ω )

)
ex(1)

〉
for all β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , t ∈ R, α ∈ [0, β] and x := (x(1), x(2)) ∈ L2.
Indeed, by (49) and a power expansion of F β

α (∆d) at α, β = 0, there is a constant
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D ∈ R+ such that, for any λ ∈ [0, λ0], sufficiently small β ∈ (0, 1), α ∈ [0, β],
ω ∈ Ω and t ∈ R,∥∥∥∥(e−it(∆d+λVω) − e−it∆d

)
F β
α (∆d) +

1

2

∫ 1

0

e−it(1−γ)∆ditλVωe−itγ(∆d+λVω)dγ

∥∥∥∥
op

≤ Dβλ |t| . (55)

Meanwhile, note that∫ 1

0

e−it(1−γ)∆ditVωe−itγ(∆d+λVω)dγ (56)

= itVω +
t2

2

(
Vω∆d + ∆dVω + λV 2

ω

)
+O(|t|3)

uniformly for λ ∈ [0, λ0] and ω ∈ Ω. Thus, by combining (52)–(56), for λ ∈
[0, λ0], we arrive at the equality

Γ1,1(t) = lim
l→∞

1

|Λl|
∑
x,y∈Λl

E
[∫ β

0

Ĉ
(ω)
t+iα(x, x− e1, y, y − e1)dα

]
+O(β2λ) +O(βλ |t|3) (57)

for sufficiently small β and |t|, where

Ĉ
(ω)
t+iα(x,y) :=

∑
π,π′∈S2

επεπ′Ĉ
(ω)
t+iα(yπ

′(1), xπ(1))Ĉ
(ω)
−t+i(β−α)(x

π(2), yπ
′(2))

for all x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2.
We now use that Vω is an i.i.d. potential satisfying E[Vω(x)] = 0 for all x ∈ L

to compute that, for any x := (x(1), x(2)) and y := (y(1), y(2)) ∈ L2, x(1) 6= x(2),
y(1) 6= y(2),

E
[∫ β

0

Ĉ
(ω)
t+iα(x,y)dα

]
−
∫ β

0

C
(0)
t+iα(x,y)dα (58)

= −λ
2t2

4
E
[
V 2
ω

] ∑
π,π′∈S2

επεπ′

{(∫ β

0

〈exπ(1) , e−it∆dF β
α (∆d) eyπ′(1)〉dα

)
δxπ(2),yπ

′(2)

+

(∫ β

0

〈eyπ′(2) , eit∆dF β
β−α (∆d) exπ(2)〉dα

)
δyπ′(1),xπ(1)

}
+
βλ2t4

16
D (x,y) ,
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where, for any x = (x(1), x(2)),y = (y(1), y(2)) ∈ L2, x(1) 6= x(2), y(1) 6= y(2),

D (x,y) :=
∑

π,π′∈S2

επεπ′
{
λ2
(
E
[
V 2
ω

])2
δyπ′(1),xπ(1)δxπ(2),yπ

′(2)

+E
[
〈exπ(1) , (Vω∆d + ∆dVω) eyπ′(1)〉〈eyπ′(2) , (Vω∆d + ∆dVω) exπ(2)〉

]}
.

Note that, for each λ ∈ R+
0 and t ∈ R, D ≡ D(λ) can be seen as the kernel

(w.r.t. the canonical basis {ex⊗ex′}x,x′∈L) of a bounded operator on `2(L)⊗`2(L)
with operator norm uniformly bounded w.r.t. λ on compact sets. Therefore, it is
straightforward to deduce that

lim
l→∞

1

|Λl|
∑
x,y∈Λl

D(x, x− e1, y, y − e1) = O(1) (59)

uniformly for λ in compact sets. For more details on the last equation, see for
instance the proofs of [BPK2, Lemma 5.3] and [BPK3, Lemma 5.10].

Because of Lemma 5.4 and (35)–(36), note that

lim
l→∞

1

|Λl|
∑
x,y∈Λl

∫ β

0

C
(0)
t+iα(x, x− e1, y, y − e1)dα

= lim
l→∞

1

|Λl|
∑
x,y∈Λl

∫ β

0

C
(0)
iα (x, x− e1, y, y − e1)dα

does not depend on t ∈ R. Using this, for λ ∈ [0, λ0], we infer from (36) and (57)–
(59) the existence of a constant D ∈ R+ such that the paramagnetic conductivity
σp is of the form

σp(t) = −Dλ2βt2 +O(β2λ) +O(βλ |t|3) (60)

for λ ∈ [0, λ0] and sufficiently small β, |t|.
Now we choose sufficiently small β0, T0 > 0 and estimate the energy incre-

ment caused by the time–rescaled potential A(T ) ∈ C∞0 (R × Rd;Rd)\{0} for
T ∈ (T0/2, T0), λ ∈ (λ0/2, λ0), β ∈ (0, β0). We assume w.l.o.g. that EA is zero
in all but the first component which equals a function Et ∈ C∞0 (Rd;R) for any
t ∈ R. Then, by (60) and Fubini’s theorem, we have∫

R
ds1

∫
R

ds2σp(s1 − s2)

∫
Rd

ddx 〈EA(T )(s2, x), EA(T )(s1, x)〉

= −Dλ2βT 2

∫
Rd

ddx

∫
R

ds1

∫
R

ds2(s1 − s2)2Es2(x)Es1(x)

+O(β2λ) +O(βλT 3) . (61)
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Because A ∈ C∞0 (R× Rd;Rd)\{0}, we infer from (31) that∫
R
Es(x)ds = 0

and, for all x ∈ Rd,

−
∫
R

ds1

∫
R

ds2(s1 − s2)2Es2(x)Es1(x) = 2

(∫
R
sEs(x)ds

)2

. (62)

As a consequence, if ∫
Rd

(∫
R
sEs(x)ds

)2

ddx > 0 ,

then (61)–(62) yield the lemma, provided λ0T
2
0 � β0, T

3
0 .

Note that Lemma 5.5 implies that, for any λ ∈ R+ and sufficiently small
β ∈ R+, the AC–conductivity measure is non–zero, i.e.,

µAC (R\{0}) = µp (R\{0}) > 0 . (63)

This property implies the following result:

Lemma 5.6 (Non–vanishing AC–conductivity measure – II)
If (63) holds then the set

Z :=

{
ϕ ∈ S (R;R) :

∫
R

ds1

∫
R

ds2 σp(s2 − s1)ϕ(s1)ϕ(s2) = 0

}
is meager in the Fréchet space S (R;R) of Schwartz functions equipped with the
usual locally convex topology.

Proof: By (63), there is at least one point ν0 ∈ R\{0} such that µΣ (V) 6= 0 for
all open neighborhoods V of ν0. To see this, observe that

R\{0} =
⋃
n∈N

[
1

n
, n

]
∪
[
−n,− 1

n

]
,

and thus there is n ∈ N such that

µAC

([
1

n
, n

]
∪
[
−n,− 1

n

])
> 0 .

28



Then, by compactness, there is ν0 ∈
[

1
n
, n
]
∪
[
−n,− 1

n

]
such that

µAC

(
V ∩

([
1

n
, n

]
∪
[
−n,− 1

n

]))
6= 0

for all open neighborhoods V of ν0.
Take now any non–zero function ϕ ∈ C∞0 (R;R) ⊂ S (R;R). Its Fourier

transform ϕ̂ obeys ∣∣∣∣dnϕ̂dνn (ν)

∣∣∣∣ ≤ D1D
n
2 , n ∈ N , ν ∈ R ,

for some constants D1, D2 ∈ R+. In particular, there is a unique continuation of
ϕ̂ : R→ C to an entire function, again denoted by ϕ̂ : C→ C. Hence, the set of
zeros of ϕ̂ has no accumulation points.

If ϕ̂ (ν0) 6= 0 then, by continuity of ϕ̂,∫
R

∫
R
σp(s1 − s2)ϕ(s2)ϕ(s1)ds2ds1 =

∫
R\{0}

|ϕ̂(ν)|2 µAC (dν) > 0 . (64)

If ϕ̂ (ν0) = 0 then, for all α ∈ (0, 1), we define the rescaled function ϕ̂α (ν) by
ϕ̂ (αν), which is the Fourier transform of α−1ϕ (α−1x). For sufficiently small
ε ∈ R+ and all α ∈ (1− ε, 1),∫

R\{0}
|ϕ̂α (ν)|2 µAC (dν) > 0 ,

because the set of zeros of ϕ̂ has no accumulation points. On the other hand,
α−1ϕ (α−1x) converges in S (R;R) to ϕ (x), as α → 1. Thus, the complement
of Z is dense in S (R;R), by density of the set C∞0 (R;R) in S (R;R). Since
µAC := µp|R\{0} with µp(R) <∞ (Theorem 4.1), note that the map

ϕ̂ 7→
∫
R\{0}

|ϕ̂(ν)|2 µAC (dν)

is continuous on S (R;R). Because the Fourier transform is a homeomorphism of
S (R;R), by the first equation in (64), the map

ϕ 7→
∫
R

∫
R
σp(s1 − s2)ϕ(s2)ϕ(s1)ds2ds1
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is also continuous on S (R;R) and the complement of Z is hence an open set.
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