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Abstract. We analyze a family of singular Schrödinger operators describing a
Neumann waveguide with a periodic array of singular traps of a δ′ type. We
show that in the limit when perpendicular size of the guide tends to zero and
the δ′ interactions are appropriately scaled, the first spectral gap is determined
exclusively by geometric properties of the traps.

1. Introduction

The problem addressed in this paper concerns the limiting behaviour of a partic-
ular class of Schrödinger operators with singular coefficients. They can be charac-
terized as Neumann Laplacians on a cylindrical region in Rn perturbed by a array
a singular “traps” consisting of a δ′ interaction [1] supported by the boundary of
fixed subsets of the cylinder. We will be interested in the situation when the cylin-
der shrinks in the perpendicular direction and the parameter of the δ′ interaction
simultaneously changes making the latter weaker. We are going to show that the
limiting behaviour of the first spectral gap is determined exclusively by geometric
properties of the traps, namely their volume and surface area.

The motivation to study such an asymptotic behaviour is twofold. On one
hand it is an interesting spectral problem falling within one of the traditional
mathematical-physics categories, asking about relations between the geometric
and spectral properties. On the other hand, it is of some practical interest, espe-
cially in the light of the recently growing interest to metamaterials and engineering
of spectral properties. True, the δ′ interactions with their peculiar scattering prop-
erties are rather a mathematical construct, however, they can be be approximated
by regular or singular potentials following a seminal idea put forward in [5] and

2010 Mathematics Subject Classification. 35P05, 35P20, 35J10, 81Q37.
Key words and phrases. periodic waveguides, Schrödinger operators, δ′ interaction, spectrum,

gaps, asymptotic analysis.
1 Department of Theoretical Physics, Nuclear Physics Institute, Řež near Prague, and Doppler
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made mathematically rigorous in [2, 7]. Hence at least in the principal sense the
result of this paper provides a way to achieve a prescribed spectral filtering.

2. Setting of the problem and main result

In what follows ε > 0 will be a small parameter. For a fixed n ∈ N \ {1} we denote
by x′ = (x1, . . . , xn−1) and x = (x′, xn) the Cartesian coordinates in Rn−1 and Rn,
correspondingly. Let ω be an open domain in Rn−1 with a Lipschitz boundary. By
Ωε we denote a straight cylinder in Rn with a cross-section εω, i.e.

Ωε =
{
x = (x′, xn) ∈ Rn : ε−1x′ ∈ ω

}
.

Furthermore, we introduce the set

Y =
{
x = (x′, xn) ∈ Rn : |xn| < 1/2, x′ ∈ ω

}
,

which will play role of the period cell of the problem before scaling. Let B be an
arbitrary domain with a Lipschitz boundary S = ∂B and such that B ⊂ Y . For any
i ∈ Z we denote

S ε
i = ε(S + ien), Bεi = ε(B + ien), Yε

i = ε(Y + ien),

where en = (0, 0, . . . , 0, 1) is the unit vector along the cylinder axis.
Next we describe the family of operatorsAε which will the main object of our

interest in this paper. We denote

Γε =
⋃
i∈Z

S ε
i

and introduce the sesquilinear form in the Hilbert space L2(Ωε) by

ηε[u, v] =

∫
Ωε\Γε

∇u · ∇v̄dx + aε
∑
i∈Z

∫
S ε

i

(u+ − u−)(v+ − v−) ds, aε > 0, (2.1)

here and in the following we denote by u+ (respectively, u−) the traces of the
function u taken from the exterior (respectively, interior) side of S ε

i . The form
domain is supposed to be

dom(ηε) = H1(Ωε \ Γε)

:=

u ∈ L2(Ωε) : u ∈ H1(Ωε \
⋃
i∈Z

Bεi ), u ∈ H1(Bεi ) for all i ∈ Z,
∑
i∈Z

‖∇u‖2L2(Bεi ) < ∞

 .
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The definition of ηε[u, v] makes sense: the second sum in (2.1) is finite because of
the standard trace inequalities, namely∑

i∈Z

∫
S ε

i

|u+ − u−|2 ds ≤ 2
∑
i∈Z

∫
S ε

i

(
|u+|

2 + |u−|2
)

ds

≤ C(ε)
∑
i∈Z

(
‖u‖2

H1(Yεi \B
ε
i )

+ ‖u‖2H1(Bεi )

)
= C(ε)‖u‖2H1(Ωε\Γε),

where the constant C(ε) is independent of u. Furthermore, it is straightforward
to check that the form ηε[u, v] is densely defined, closed and positive. Then (see,
e.g., [10, Chapter 6, Theorem 2.1]) there exists the unique self-adjoint and positive
operatorAε associated with the form ηε, i.e.

(Aεu, v)L2(Ωε) = ηε[u, v], ∀u ∈ dom(Aε), ∀v ∈ dom(ηε). (2.2)

If u ∈ dom(Aε) and u ∈ C2(Ωε \Γε) then via the integration by parts one can show
easily that (Aεu)(x) = −∆u(x) for x ∈ Ωε \ Γε and on the boundary S ε

i one has(
∂u
∂n

)
+

=

(
∂u
∂n

)
−

=:
∂u
∂n
,

∂u
∂n

= aε(u+ − u−), (2.3)

where n is the outward-pointing unit normal to S ε
i . This makes it clear that the

operatorsAε have the meaning of Hamiltonians describing a waveguide with the
Neumann outer boundary and an array of periodically spaced obstacles or traps
given by a δ′ interaction supported by S ε

i . Note that analogous Schrödinger opera-
tors in Rn with a δ′ interaction supported by surfaces have been discussed recently
in [3].

By σ(Aε) we denote the spectrum of Aε. Our goal in this paper is to describe
its behavior as ε→ 0 under the assumption that the coupling constant aε satisfies

lim
ε→0

aε

ε
= a > 0. (2.4)

Remark 2.1. A comment is due at this point to explain why we spoke in the intro-
duction about a weak δ′ interaction. Comparing (2.3) with the standard definition
of such an interaction [1, Sec. I.4] we should regard rather the inverse (aε)−1 as the
coupling parameter. On the other hand, due to peculiar properties of the interac-
tion [1, Theorem I.4.3] the δ′ coupling is weak if this quantity is large satisfying,
for instance, the asymptotic relation (2.4).

To state the result we shall use the notation | · | both for the volume of domain in
Rn and for the area of (n − 1)-dimensional surface in Rn. Furthermore, we denote

α =
a|S |
|B|

, β =
a|S |
|B|

|Y |
|Y | − |B|

;

it is clear that α < β. Now we are in position to formulate the main result of this
work.
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Theorem 2.1. Let L > 0 be an arbitrary number. Then the spectrum of the oper-
ator Aε in [0, L] has under the assumptions stated above the following structure
for ε small enough:

σ(Aε) ∩ [0, L] = [0, L] \ (αε, βε), (2.5)

where the endpoints of the interval (αε, βε) satisfy the relations

lim
ε→0

αε = α, lim
ε→0

βε = β. (2.6)

The theorem will be proven in the next section. We postpone the outline of the
proof to the remark preceding Lemma 3.1 because we need to introduce first some
more notations.

3. Proof of Theorem 2.1.

In what follows C,C1, . . . will be generic constants that do not depend on ε.
Let D be an open domain in Rn; by 〈u〉D we denote the normalized mean value of
the function u(x) in the domain D,

〈u〉D =
1
|D|

∫
D

u(x) dx.

Furthermore, if Γ ⊂ Rn is an (n − 1)-dimensional surface then the Euclidean
metrics in Rn induces on Γ the Riemannian metrics and measure. We denote by
ds the density of this measure. Again by 〈u〉Γ we denote the normalized mean
value of the function u over Γ, i.e

〈u〉Γ =
1
|Γ|

∫
Γ

u ds.

Next we introduce the following sets:
• Yε = εY , the period cell,
• Bε = εB, the trap,
• S ε = εS , the trap boundary,

• Fε = Yε \ Bε, the trap complement to the period cell,
• S ε

± = {x = (x′, xn) ∈ ∂Yε : xn = ±ε/2}, the period cell “lids”.
The Floquet-Bloch theory — see, e.g., [4, 11, 12] — establishes a relation-

ship between the spectrum of Aε and the spectra of appropriate operators on Yε.
Specifically, for ϕ ∈ [0, 2π) we introduce the functional space H1

ϕ(Yε \ S ε) con-
sisting of functions from H1(Yε \ S ε) that satisfy the following condition on the
lateral parts of ∂Yε:

u|S ε
+

= exp(iϕ)T εu|S ε
−
, (3.1)

where T ε : L2(S ε
−) → L2(S ε

+), (T ε f )(x) = f (x − εen), u|S ε
±

are the traces of u on
S ε
±.
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By ηεϕ we denote the sesquilinear form defined by formula

ηεϕ[u, v] =

∫
Yε\S ε

∇u · ∇v̄dx + aε
∫
S ε

(u+ − u−)(v+ − v−) ds (3.2)

with the domain H1
ϕ(Yε \S ε). We defineAε

ϕ as the operator acting in L2(Yε) being
associated with the form ηεϕ:

(Aε
ϕu, v)L2(Yε) = ηεϕ[u, v], ∀u ∈ dom(Aε

ϕ), ∀v ∈ dom(ηεϕ).

Since Yε \ S ε is compact, the operator Aε
ϕ has a purely discrete spectrum. We

denote by
{
λ
ϕ
k (ε)

}
k∈N

the sequence of eigenvalues ofAε
ϕ arranged in the increasing

order and repeated according to their multiplicity.
According to the Floquet-Bloch theory one has the following representation:

σ(Aε) =

∞⋃
k=1

⋃
ϕ∈[0,2π)

{
λ
ϕ
k (ε)

}
. (3.3)

Moreover, for any fixed k ∈ N the set
⋃

ϕ∈[0,2π)

{
λ
ϕ
k (ε)

}
, in other words, the kth

spectral band, is a compact interval.
We also introduce the operatorsAε

N andAε
D, which are defined in a similar way

as Aε
ϕ, however, with (3.1) replaced by Neumann and Dirichlet boundary condi-

tions of S ε
±, respectively. More precisely, we denote by ηεN (correspondingly, ηεD)

the sesquilinear forms in L2(Yε) defined by (3.2) and the domain H1(Yε \S ε) (cor-
respondingly, Ĥ1

0(Yε \ S ε) =
{
u ∈ H1(Yε \ S ε) : u = 0 on S ε

+ ∪ S ε
−

}
). The above

indicated operators are then associated with these forms, ηεN and ηεD, respectively,
i.e.

(Aε
∗u, v)L2(Yε) = ηε∗[u, v], ∀u ∈ dom(Aε

∗), ∀v ∈ dom(ηε∗),

where ∗ is N (correspondingly, D).
As with Aε

ϕ, the spectra of the operators Aε
N and Aε

D are purely discrete. We
denote by

{
λN

k (ε)
}
k∈N

(correspondingly,
{
λD

k (ε)
}
k∈N

) the sequence of eigenvalues
of Aε

N (correspondingly, of Aε
D) arranged in the ascending order and repeated

according to their multiplicity.
From the min-max principle — see, e.g., [12, Chapter XIII] — and the inclu-

sions
H1(Yε \ S ε) ⊃ H1

ϕ(Yε \ S ε) ⊃ Ĥ1
0(Yε \ S ε)

we infer that

∀k ∈ N, ∀ϕ ∈ [0, 2π) : λN
k (ε) ≤ λϕk (ε) ≤ λD

k (ε). (3.4)

Remarks 3.1. (a) With these preliminaries, we are able to provide the promised
brief description of the proof of Theorem 2.1. It is clear that the left edge of
the first spectral band of Aε coincides with zero, while the right one is situated
between the first antiperiodic eigenvalue λ

ϕ
1(ε), ϕ = π, and the first Dirichlet
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eigenvalue λD
1 (ε). We are going to prove (see Lemmata 3.2 and 3.4 below) that

they both converge to α as ε → 0. Similarly we can localize the left edge of
the second spectral band between the second Neumann eigenvalue λN

2 (ε) and the
second periodic eigenvalue λϕ2(ε), ϕ = 0, of which we will prove (see Lemmata
3.3 and 3.4 below) that they both converge to β as ε → 0. Finally, we intend to
prove that λϕ2(ε), ϕ , 0, converges to infinity as ε→ 0 which means that the right
edge of the second spectral band exceeds any fixed L provided ε is small enough.
These results taken together constitute the claim of Theorem 2.1.
(b) We stress that the band edges need not in general coincide with the corre-
sponding periodic (antiperiodic) solutions even if the system exhibits periodicity
in one direction only [6, 8]. What matters is that we can squeeze them between
two values which converge to the same limit as ε→ 0.

Lemma 3.1. Let ϕ , 0. In the limit ε→ 0 one has

λ
ϕ
2(ε)→ ∞. (3.5)

Proof. We denote
• F = ε−1Fε, the scaled trap complement to the scaled period cell,
• S ± = ε−1S ε

±, the scaled period cell “lids”.
We introduce the sesquilinear form η̃εϕ in the space L2(Y) defined by the formula

η̃εϕ[u, v] =

∫
Y\S

∇u · ∇v̄ dx + aεε
∫
S

(u+ − u−)(v+ − v−) ds,

with

dom(η̃εϕ) =
{
u ∈ H1(Y \ S ) : u|S +

= exp(iϕ)Tu|S −
}
,

where T : L2(S −) → L2(S +), (T f )(x) = f (x − en), and u|S ± are the traces of
u on S ±. Let Ãε

ϕ be the operator associated with this form and let
{
λ̃
ϕ
k (ε)

}
k∈N

be the sequence of its eigenvalues arranged in the ascending order and repeated
according to their multiplicity. It is easy to see that for all k ∈ N

λ̃
ϕ
k (ε) = ε2λ

ϕ
k (ε). (3.6)

In the same Hilbert space L2(Y) we introduce the sesquilinear form η̃ϕ by the
formula

η̃ϕ[u, v] =

∫
Y\S

∇u · ∇v̄ dx

with dom(η̃ϕ) = dom(η̃εϕ), and by Ãϕ we denote the operator generated by this
form, with

{
λ̃
ϕ
k

}
k∈N

being the sequence of eigenvalues of Ãϕ written in the in-
creasing order and repeated according to their multiplicity. It is clear from the
definition that

Ãϕ = −∆ϕ(F) ⊕ −∆(B),
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where ∆ϕ(F) (respectively, ∆(B)) is the Laplacian in L2(F) (respectively, L2(B))
with the Neumann boundary conditions on ∂F\(S −∪S +) and ϕ-periodic boundary
conditions on S −∪S + (respectively, with the Neumann boundary condition on S ).
One can check easily that for any ϕ , 0 we have

λ̃
ϕ
2 > 0. (3.7)

To conclude the argument we are going to demonstrate that

∀k ∈ N : λ̃ϕk (ε)→ λ̃
ϕ
k (3.8)

holds, then (3.5) will follow directly from (3.6)–(3.8). It remains therefore to
prove (3.8). We denote

L̃εϕ = (Ãε
ϕ + I)−1, L̃ϕ = (Ãϕ + I)−1,

where I is the identity operator. The operators L̃εϕ, L̃ϕ are compact and positive
(thus self-adjoint), and furthermore

‖L̃εϕ‖ ≤ 1. (3.9)

Next we want to prove that

∀ f ∈ L2(Y) : L̃εϕ f → L̃ϕ f in L2(Y) as ε→ 0. (3.10)

We take an arbitrary f ∈ L2(Y) and set uε = L̃εϕ f . It is clear that

η̃εϕ[uε, uε] + ‖uε‖L2(Y) ≤ C,

which, in particular, implies that the functions uε are bounded in H1(Y \ S ) uni-
formly in ε. Therefore by the Rellich-Kondrachov embedding theorem there exist
u ∈ H1(Y \ S ) and a subsequence εk, k = 1, 2, 3 . . . , satisfying εk ↘ 0 as ε → 0
such that

uε ⇀ u in H1(Y \ S ) as ε = εk → 0, (3.11)

uε → u in L2(Y) as ε = εk → 0. (3.12)

Furthermore, in view of the trace theorem

uε → u in L2(∂Y ∪ S ) as ε = εk → 0, (3.13)

and consequently, u ∈ dom(η̃ϕ). Given an arbitrary v ∈ dom(η̃εϕ), we have the
following identity:∫

Y\S

∇uε · ∇v̄ dx + aεε
∫
S

(uε+ − uε−)(v+ − v−)ds +

∫
Y

uεv̄dx =

∫
Y

f v̄ dx. (3.14)

Using (3.11)–(3.13) and keeping in mind that aεε→ 0 holds as ε→ 0 we pass to
the limit in (3.14) as ε = εk → 0 and obtain∫

Y\S

∇u · ∇v̄ dx +

∫
Y

uv̄dx =

∫
Y

f v̄ dx, ∀v ∈ dom(η̃ϕ). (3.15)
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It follows from (3.15) that u = L̃ϕ f . Since u is independent of the subsequence εk,
the whole sequence uε converges to u as ε→ 0, in other words, (3.10) holds true.

Finally, again using the Rellich-Kondrachev embedding theorem, we conclude
that for an arbitrary sequence f ε, which is bounded in L2(Y) uniformly in ε, there
exist w ∈ L2(Y) and a subsequence εk, k = 1, 2, 3 . . . , with εk ↘

k→∞
0 such that

L̃εϕ f ε → w in L2(Y) as ε = εk → 0. (3.16)

We denote by
{
µ̃
ϕ
k (ε)

}
k∈N

and
{
µ̃
ϕ
k

}
k∈N

the sequences of eigenvalues of L̃εϕ and L̃ϕ,
respectively, written in the decreasing order and repeated according to their mul-
tiplicity. According to Lemma 1 from [9] it follows from (3.9), (3.10), and (3.16)
that

∀k ∈ N : µ̃ϕk (ε)→ µ̃
ϕ
k as ε→ 0. (3.17)

However, since λ̃ϕk (ε) = 1
µ̃
ϕ
k (ε)−1 and λ̃ϕk = 1

µ̃
ϕ
k
−1, (3.17) implies the sought relation

(3.8) concluding thus the proof of the lemma. �

Now we have to inspect the behaviour of the first Dirichlet eigenvalue, which
we use to estimate the left gap edge from above, in the the limit ε→ 0.

Lemma 3.2. One has

λD
1 (ε)→ α as ε→ 0. (3.18)

Proof. Let uεD be the eigenfunction of Aε
D, which corresponds to λD

1 (ε), deter-
mined uniquely by the following requirements:

‖uεD‖L2(Yε) = 1, (3.19)

uεD is real-valued,
∫
Bε

uεD dx ≥ 0. (3.20)

From the min-max principle we get

λD
1 (ε) = ηεD[uεD, u

ε
D] = min

u∈Hε
D

ηεD[u, u], (3.21)

where Hε
D =

{
u ∈ dom(ηεD) : ‖u‖L2(Yε) = 1

}
. We construct an approximation, de-

noted as vεD, to the eigenfunction uεD using the formula

vεD(x) =

0, x ∈ Fε,

|Bε|−1/2, x ∈ Bε.
(3.22)

It is clear that vεD ∈ dom(ηεD). Taking into account that ∇vεD = 0 holds in Bε ∪ Fε

we get

ηεD[vεD, v
ε
D] = aε

∫
S ε

((vεD)+ − (vεD)−)2dx =
aε|S ε|

|Bε|
=

aε|S |
ε|B|

∼ α as ε→ 0, (3.23)

‖vεD‖L2(Yε) = 1, (3.24)
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and therefore vεD ∈ H
ε
D. Consequently, in view of (3.21) we can infer that

ηεD[uεD, u
ε
D] ≤ ηεD[vεD, v

ε
D]. (3.25)

If follows from (3.23) and (3.25) that

ηεD[uεD, u
ε
D] ≤ C, (3.26)

and using (3.26) one arrives at the following Friedrichs- and Poincaré-type in-
equalities:

‖uεD‖
2
L2(Fε) ≤ Cε2‖∇uεD‖

2
L2(Fε) ≤ Cε2ηεD[uεD, u

ε
D] ≤ C1ε

2, (3.27)

‖uεD − 〈u
ε
D〉Bε‖

2
L2(Bε) ≤ Cε2‖∇uεD‖

2
L2(Bε) ≤ Cε2ηεD[uεD, u

ε
D] ≤ C1ε

2, (3.28)

where 〈·〉 as usual denotes the mean value. Moreover, using (3.19), (3.27), and
(3.28) we get∣∣∣〈uεD〉Bε ∣∣∣2 |Bε| = 1 − ‖uεD‖

2
L2(Fε) − ‖u

ε
D − 〈u

ε
D〉Bε‖

2
L2(Bε) = 1 + O(ε2),

which implies, taking into account (3.20), that(
〈uεD〉Bε |B

ε|1/2 − 1
)
→ 0 as ε→ 0. (3.29)

Finally, using (3.28) and (3.29) we conclude that

‖uεD − |B
ε|−1/2‖2L2(Bε) ≤ 2‖uεD − 〈u

ε
D〉Bε‖

2
L2(Bε)

+ 2|Bε|
∣∣∣〈uεD〉Bε − |Bε|−1/2

∣∣∣2 → 0 as ε→ 0. (3.30)

In the next step we represent the eigenfunction uεD in the form of a sum,

uεD = vεD + wε
D, (3.31)

and estimate the remainder wε
D. Plugging (3.31) into (3.25) we obtain

ηεD[wε
D,w

ε
D] ≤ −2ηεD[vεD,w

ε
D]

= −2aε
∫
S ε

(
(vεD)+ − (vεD)−

) (
(wε

D)+ − (wε
D)−

)
ds. (3.32)

Let us recall the following standard trace inequalities:

∀u ∈ H1(F), v ∈ H1(B) : ‖u‖2L2(S ) ≤ C‖u‖2H1(F), ‖v‖
2
L2(S ) ≤ C‖v‖2H1(B).

Using them together with a change of variables, x 7→ xε, one can derive the
estimates ∫

S ε

∣∣∣(uεD)+

∣∣∣2 ds ≤ Cε−1
(
‖uεD‖

2
L2(Fε) + ε2‖∇uεD‖

2
L2(Fε)

)
, (3.33)

∫
S ε

∣∣∣(uεD)− − |Bε|−1/2
∣∣∣2 ds ≤ Cε−1

(
‖uεD − |B

ε|−1/2‖2L2(Bε) + ε2‖∇uεD‖
2
L2(Bε)

)
. (3.34)
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Then taking into account (2.4) and (3.33)–(3.34) we obtain from (3.32) the in-
equalities∣∣∣ηεD[wε

D,w
ε
D]

∣∣∣2 ≤ 4(aε)2
∫
S ε

∣∣∣(vεD)+ − (vεD)−
∣∣∣2 ds ·

∫
S

∣∣∣(wε
D)+ − (wε

D)−
∣∣∣2 ds

≤ 8
(aε)2|S ε|

|Bε|

∫
S ε

(∣∣∣(uεD)+

∣∣∣2 +
∣∣∣(uεD)− − |Bε|−1/2

∣∣∣2) ds

≤ C
(
‖uεD‖

2
L2(Fε) + ‖uεD − |B

ε|−1/2‖2L2(Bε) + ε2‖∇uεD‖
2
L2(Bε∪Fε)

)
,

thus in view of (3.26), (3.27), and (3.30) we find

ηεD[wε
D,w

ε
D]→ 0 as ε→ 0. (3.35)

It follows from (3.23), (3.31), and (3.35) that

λD
1 (ε) = ηεD[uεD, u

ε
D] ∼ ηεD[vεD, v

ε
D] ∼ α as ε→ 0, (3.36)

which is the claim we have set up to prove. �

Next we need an analogous claim for the second Neumann eigenvalue which
we use to estimate the right gap edge from below.

Lemma 3.3. One has

λN
2 (ε)→ β as ε→ 0. (3.37)

Proof. Let uεN be the eigenfunction ofAε
N , which corresponds to λN

2 (ε) and satis-
fying the following requirement:

‖uεN‖L2(Yε) = 1, (3.38)

uεN is real-valued,
∫
Bε

uεN dx ≥ 0. (3.39)

Since λN
1 (ε) = 0 and the corresponding eigenspace consists of constant functions,

we have ∫
Yε

uεN dx = 0, (3.40)

and in view of the min-max principle it holds

λN
2 (ε) = ηεN[uεN , u

ε
N] = min

u∈Hε
N

ηεN[u, u], (3.41)

where Hε
N =

u ∈ dom(ηεN) : ‖u‖L2(Yε) = 1,
∫

Yε
u dx = 0

. As in the previous

proof, we construct an approximation vεN to the eigenfunction uεN , this time defined
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by the formula

vεN(x) =


κεF := −

√
|Bε |
|Fε |·|Yε | , x ∈ Fε,

κεB :=
√

|Fε |

|Bε |·|Yε | , x ∈ Bε.
(3.42)

Obviously vεN ∈ dom(ηεN) and it is easy to see that

ηεN[vεN , v
ε
N] = aε|S ε|

(
κεF − κ

ε
B

)2
=

aε|S | · |Y |
ε|B| · |F|

∼ β as ε→ 0, (3.43)

‖vεN‖L2(Yε) = 1, (3.44)∫
Yε

vεN dx = 0. (3.45)

In view of (3.44) and (3.45), vεN belongs to Hε
N , and therefore using (3.41) and

taking into account (3.43) we get

ηεN[uεN , u
ε
N] ≤ ηεN[vεN , v

ε
N] ≤ C. (3.46)

Using (3.46) one can derive the following Poincaré-type inequalities:

‖uεN − 〈u
ε
N〉Fε‖2L2(Fε) ≤ Cε2‖∇uεN‖

2
L2(Fε) ≤ Cε2ηεN[uεN , u

ε
N] ≤ C1ε

2, (3.47)

‖uεN − 〈u
ε
N〉Bε‖

2
L2(Bε) ≤ Cε2‖∇uεN‖

2
L2(Bε) ≤ Cε2ηεN[uεN , u

ε
N] ≤ C1ε

2. (3.48)

Moreover, using (3.38), (3.40), (3.47), and (3.48) we infer that∣∣∣〈uεN〉Fε

∣∣∣2 |Fε| +
∣∣∣〈uεN〉Bε ∣∣∣2 |Bε|
= 1 − ‖uεN − 〈u

ε
N〉Fε‖2L2(Fε) + ‖uεN − 〈u

ε
N〉Bε‖

2
L2(Bε) = 1 + O(ε2),

〈uεN〉Fε |Fε| + 〈uεN〉Bε |B
ε| =

∫
Yε

uεN dx = 0,

from where, taking into account (3.39), we obtain the following asymptotics:

〈uεN〉Fε = κεF(1 + O(ε2))1/2, 〈uεN〉Bε ∼ κ
ε
B(1 + O(ε2))1/2 as ε→ 0. (3.49)

Finally, using (3.47)–(3.49) one can easily arrive at the relation

‖uεN − κ
ε
F‖

2
L2(Fε) + ‖uεN − κ

ε
B‖

2
L2(Bε) → 0 as ε→ 0. (3.50)

In the next step, we again represent the eigenfuction uεN in the form of a sum,

uεN = vεN + wε
N (3.51)

and estimate the remainder wε
N . We plug (3.51) into (3.46) and obtain

ηεN[wε
N ,w

ε
N] ≤ −2ηεN[vεN ,w

ε
N]

= −2aε
∫
S ε

(
(vεN)+ − (vεN)−

) (
(wε

N)+ − (wε
N)−

)
ds. (3.52)
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In analogy with relation (3.34) in the proof of Lemma 3.2 we employ the following
trace inequalities:∫

S ε

∣∣∣(uεN)+ − κ
ε
F

∣∣∣2 ds ≤ Cε−1
(
‖uεN − κ

ε
F‖

2
L2(Fε) + ε2‖∇uεN‖

2
L2(Fε)

)
,

∫
S ε

∣∣∣(uεN)− − κεB
∣∣∣2 ds ≤ Cε−1

(
‖uεN − κ

ε
B‖

2
L2(Bε) + ε2‖∇uεN‖

2
L2(Bε)

)
.

Using them we infer from (3.52) that∣∣∣ηεN[wε
N ,w

ε
N]

∣∣∣2 ≤ 4(aε)2
∫
S ε

∣∣∣(vεN)+ − (vεN)−
∣∣∣2 ds ·

∫
S

∣∣∣(wε
N)+ − (wε

N)−
∣∣∣2 ds

≤ 8(aε)2|S ε|(κεF − κ
ε
B)2

∫
S ε

(∣∣∣(uεN)+ − κ
ε
F

∣∣∣2 +
∣∣∣(uεN)− − κεB

∣∣∣2) ds

≤ C
(
‖uεN − κ

ε
F‖

2
L2(Fε) + ‖uεN − κ

ε
B‖

2
L2(Bε) + ε2‖∇uεN‖

2
L2(Bε∪Fε)

)
,

and thus by virtue of (3.46) and (3.50) we get

ηεN[wε
N ,w

ε
N]→ 0 as ε→ 0. (3.53)

Finally, it follows (3.43), (3.51), and (3.53) that

λN
2 (ε) = ηεN[uεN , u

ε
N] ∼ ηεN[vεN , v

ε
N] ∼ β as ε→ 0, (3.54)

which is nothing else than the claim of the lemma. �

Finally, one has to inspect the behaviour of the other eigenvalues involved in
estimates of the gap edges in the limit ε→ 0.

Lemma 3.4. One has

if ϕ = π, then λ
ϕ
1(ε)→ α as ε→ 0, (3.55)

if ϕ = 0, then λ
ϕ
2(ε)→ β as ε→ 0. (3.56)

Proof. The proof of (3.56) is similar to the argument used to demonstrate (3.37).
Specifically, we approximate the eigenfunction uεϕ ofAε

ϕ that corresponds to λϕ2(ε)
and satisfies the conditions (3.38)–(3.40), with the index N replaced by ϕ, by the
function vεN given by (3.42). It is clear that vεN ∈ dom(ηεϕ) if ϕ = 0. The check of
the asymptotic equality

λ
ϕ
2(ε) ∼ ηεϕ[vεN , v

ε
N], ϕ = 0

repeats word-by-word the proof of (3.54).
Consider next ϕ = π. By uεϕ we denote the eigenfunction of Aε

ϕ that corre-
sponds to λ

ϕ
1(ε) and satisfies the conditions (3.19)–(3.20), with the index D re-

placed by ϕ. Obviously, for ϕ = π such an eigenfuction exists.
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Using the Cauchy inequality, a standard trace inequality and the Poincaré in-
equality one can employ the following estimate: for any v ∈ H1(F) we have∣∣∣〈v〉S ± − 〈v〉F ∣∣∣2 ≤ 1

|S ±|
‖v − 〈v〉F‖2L2(S ±)

≤ C
(
‖v − 〈v〉F‖2L2(F) + ‖∇v‖2L2(F)

)
≤ C1‖∇v‖2L2(F). (3.57)

Via a change of variables, x 7→ xε, one can easily derive from (3.57) the estimate∣∣∣〈uεϕ〉S ε
±
− 〈uεϕ〉Fε

∣∣∣2 ≤ Cε2−n‖∇uεϕ‖
2
L2(Fε). (3.58)

Furthermore, from (3.58) and the fact that uεϕ satisfies condition (3.1) we can infer
that∣∣∣〈uεϕ〉Fε

∣∣∣2 =
∣∣∣1 − exp(iπ)

∣∣∣−2 ∣∣∣〈uεϕ〉Fε − 〈uεϕ〉S ε
+

+ exp(iπ)〈uεϕ〉S ε
−
− exp(iπ)〈uεϕ〉Fε

∣∣∣2
≤ 2

∣∣∣1 − exp(iπ)
∣∣∣−2

(∣∣∣〈uεϕ〉Fε − 〈uεϕ〉S ε
+

∣∣∣2 +
∣∣∣〈uεϕ〉S ε

−
− 〈uεϕ〉Fε

∣∣∣2)
≤ Cε2−n‖∇uεϕ‖

2
L2(Fε). (3.59)

It follows from (3.59) and the Poincaré inequality that

‖uεϕ‖
2
L2(Fε) = ‖uεϕ − 〈u

ε
ϕ〉Fε‖2L2(Fε) +

∣∣∣〈uεϕ〉Fε

∣∣∣2 · |Fε| ≤ Cε2‖∇uεϕ‖
2
L2(Fε). (3.60)

This means that similarly to the Dirichlet eigenfunction case the function uεϕ satis-
fies the Friedrichs inequality in Fε, despite the fact that uεϕ does not vanish on ∂Y .
The remaining part of the argument leading to (3.55) repeats literarily the proof
of (3.18): we approximate the eigenfunction uεϕ by the function vεD (3.22), noting
that since vεD vanishes in the vicinity of ∂Yε it belongs to dom(ηεϕ) for an arbitrary
ϕ, and then check the asymptotic equality

λ
ϕ
1(ε) ∼ ηεϕ[vεD, v

ε
D], ϕ = π. (3.61)

Finally, the proof of (3.61) repeats word-by-word that of (3.36) taking into ac-
count the inequality (3.60). �

Remark 3.2. With some slight modifications of the proof one is able to show that
(3.55) holds in fact for all values of the parameter ϕ , 0. For our purposes,
however, it is sufficient to consider antiperiodic (i.e. ϕ = π) eigenvalues only.

Now, with the preliminaries represented by Lemmata 3.1–3.4 it is not difficult
to prove Theorem 2.1. Indeed, it follows from (3.3) that

σ(Aε) =

∞⋃
k=1

[λ−k (ε), λ+
k (ε)], (3.62)

where the spectral bands, i.e. the compact intervals [λ−k (ε), λ+
k (ε)], are defined by

[λ−k (ε), λ+
k (ε)] =

⋃
ϕ∈[0,2π)

{
λ
ϕ
k (ε)

}
. (3.63)
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We set ϕ− = 0, ϕ+ = π. It follows from (3.4) and (3.63) that

λN
k (ε) ≤ λ−k (ε) ≤ λϕ−k (ε), (3.64)

λ
ϕ+

k (ε) ≤ λ+
k (ε) ≤ λD

k (ε). (3.65)

Obviously, the left- and right-hand-sides of (3.64) are equal to zero if k = 1. It
follows from (3.37), (3.56) that in the case k = 2 they both converge to β as ε→ 0,
and consequently

λ−1 (ε) = 0, lim
ε→0

λ−2 (ε) = β. (3.66)

Similarly, in view of (3.5), (3.18), and (3.55) we obtain

lim
ε→0

λ+
1 (ε) = α, lim

ε→0
λ+

2 (ε) = ∞. (3.67)

Then the relations (2.5)–(2.6) follow directly from (3.62) and (3.66)–(3.67) in
combination with the monotonicity of the sequences {λ±k (ε)}k∈N. In this way, The-
orem 2.1 is proved.
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Czech Science Foundation (GAČR) within the project 14-06818S.

References

[1] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechan-
ics. 2nd edition, with an appendix by P. Exner. AMS Chelsea, New York 2005.

[2] S. Albeverio, L. Nizhnik, Approximation of general zero-range potentials. Ukrainian Math. J.
52 (2000), 582–589.

[3] J. Behrndt, M. Langer, V. Lotoreichik, Schrödinger operators with δ and δ′-potentials sup-
ported on hypersurfaces. Ann. H. Poincaré 14 (2013), 385–423.
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