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We show that quantum non-locality, as discussed here, is sufficient to achieve unconditional 
information security without requiring advanced quantum technology, pre-shared secret keys or 
private quantum/classical channels between distant systems (users). Two-fold quantum non-local 
correlations imply two-way secret transmission in a single round with assurance of 
confidentiality, integrity and authenticity. Interestingly, the proposed scheme (quantum 
telephone or QPhone) provides resources for indefinite future secure communication and acts as 
life-time pad. 
 

nformation can be expressed in terms of physical systems (representations), processed 
through laws (rules) obeyed by these physical systems (representations) and is protected 
from unauthorized users through cryptographic techniques/algorithms. Objectives of these 

cryptographic techniques are to assure confidentiality, integrity, authenticity and availability of 
information to legitimate users.  
 These information security requirements are closely related with each other but each have 
well defined domain: Confidentiality assures that only a legitimate user can store, process, and 
transmit private information to a specific destination without disclosing to unauthorized users. 
Integrity assures that information can only be controlled by authorized users and processed in a 
specific manner and cannot be changed by unauthorized users. In other words, changes from 
malicious attacks or errors in functioning of systems should easily be detected. Authenticity 
verifies that information is valid and its originator is genuine. Finally, availability means systems 
timely response and information remains accessible to legitimate users. 

Usually, cryptographic techniques need to handle following different situations regarding 
security concerns against malicious attacks: (C-1) Two-party communication where both parties 
are trusted and security is required against eavesdroppers. (C-2) Two-party communication 
where both parties are distrustful and security is concerned against these parties only such as 
oblivious transfer, two-party secure computation, coin tossing and bit commitment. (C-3) Multi-
party communication where sender is individual but there are two (or more than two) parties at 
the receiving end. Sender is trusted but at least one out of two (or k out of n) receiver(s) is (are) 
not trusted such as secret sharing between two (or n) parties on the receiving end. (C-4) Multi-
party communication where there is not complete trust between sender and receivers. That is, 
sender can deny from the message he/she has actually sent or one of the receivers can try to forge 
the original message. Security against such denial and forgery requires digital signatures.   
 Classical information theory relies on deterministic systems for encoding information and 
tries to achieve information security through following three main cryptographic techniques: (i) 
symmetric encryption, (ii) asymmetric encryption, and (iii) hashing along with message 
authentication code and digital signatures. However, widely used classical algorithms for 
distribution of symmetric keys secretly, generation of public-private key pairs and hashing are 
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only computationally secure – eavesdroppers with efficient technology (quantum computer) can 
easily break all these classical algorithms and hence spoil the security.  
  On the other hand, newly developed quantum information theory1 encodes information 
over probabilistic microscopic systems called qubits; an atom, nuclear spins, or polarized photon.  
These encoded quantum systems, may be in superposition state represented by unit vectors in 
Hilbert space, are processed through unitary operators. This formulism of quantum information 
theory allows defining cryptographic tasks that are not possible in classical cryptography.    
 Quantum information theory gains this power in cryptography from laws/properties of 
quantum physics such as uncertainty, non-locality, interference, and no-cloning of unknown 
quantum states.  For example, uncertainty principle allows two distant users to agree upon an 
unconditionally secure key2. Here no-cloning3 and state reduction while measurement is 
performed prevents malicious attacks. Quantum non-locality, EPR type correlations4, also offers 
secure QKD5 where generalized Bell’s theorem6,7 is used to detect eavesdroppers. Using secret 
key obtained from QKD, a secret message of equal length can be transmitted securely over the 
classical channel. However, quantum cryptography based on QKD can only be used for one-way 
secret transmission and assures confidentiality but further requires key-based classical algorithms 
for ensuring integrity and authenticity.   

We propose here a general quantum scheme for information security during the 
communication between two trusted users (C-1) based on quantum non-locality that implies 
secure and authenticated two-way secret transmission in a single round (QPhone). Two-fold 
quantum non-local correlations are used for assurance of confidentiality, integrity and 
authenticity while availability is achieved through repetitive measurements from both users. The 
proposed setup achieves these information security requirements without advanced quantum 
technology, prior secret key distribution and does not require private quantum/classical channels. 
All classical information can be communicated over public channels without compromising any 
of the security requirements. Interestingly, if no eavesdropping is detected, the scheme allows 
two-way secret transmission for indefinite future secure communication and acts as life-time pad. 
 
Two-fold quantum non-local correlations 
Two-fold non-local quantum correlations can be achieved as follows: Suppose Alice share EPR 
systems βα HH ⊗

 
and γα HH ⊗′  with Bob and Charlie respectively. Both of these systems can 

be publically known. Now if Alice performs Bell state measurement (BSM)8 
)())(( γβαα HHHHIB ⊗⊗⊗⊗ ′ , systems βH

 
and γH

 
non-locally correlate with each other in 

one of the four possible EPR states corresponding to BSM result of Alice9. In second phase, if 
Bob teleportes10 an unknown quantum state ϕ

 
over swapped entangled system )( γβ HH ⊗ , 

Charlie’s half γH
 
can be decoded to exact quantum state ϕ  only if both Alice and Bob share 

their classical BSM results with Charlie. We would like to highlight here that for each value of 
Alice’s BSM result, there will be a unique Bell system γβ HH ⊗

 
and hence unique Pauli 

encoding of quantum state ϕ  corresponding to BSM result of Bob11. 

 This simple multiplicity of quantum non-locality directly leads to unconditional 
information security and will be discussed in detail here. In a related work11, we showed that 
combination of such two-fold non-local correlations with causality proves to be useful for 
important mistrustful cryptographic tasks (C-2) such as oblivious transfer, two-sided two-party 
secure computation, asynchronous ideal quantum coin tossing with zero bias, and 
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unconditionally secure bit commitment. In a related work, we have shown that multi-fold 
quantum non-local correlations are also useful for multi-party quantum secret sharing (C-3) and 
quantum signatures (C-4) which are more powerful than existing classical/quantum digital 
signature schemes.     
 
Security criteria 
The proposed scheme guarantees secure and authenticated two-way secret transmission in a 
single round under standard quantum cryptographic requirements2,5,12: eavesdroppers have 
efficient quantum technologies and are allowed to interact with quantum transmission and can 
monitor but cannot alter or suppress the classical communication.  

That is, if Alice and Bob can establish publically known EPR pairs through classical 
communication not altered by eavesdroppers, then the proposed scheme allows them to send 
secret information to each other securely even in the presence of eavesdroppers/noise. 
Fortunately, maximally entangled pairs can be generated from Werner states or any supply of 
other entangled mixed states with entanglement purification procedure13-15.  
 
One-way secret transmission  
We describe here one-way secret transmission from Bob to Alice first and later show that it can 
easily be generalized to two-way secret transmission between Alice and Bob in a single round by 
sharing one more EPR pair. Suppose Alice and Bob share a publically known quantum system 

321 HHHH s ⊗⊗=  where βα HHHi ⊗=
 
is a two-qubit EPR pair  

                                                  

( )
2

1110 bb
ba

a ββ
βα

α ⊕−+
=

                                               
(1) 

where }1,0{, ∈ba βα  , }3,2,1{, ∈ba
 
and ⊕  denotes addition with mod 2. Detailed one-way secret 

transmission is described below and shown in figure 1. 
Phase-1: Secure distribution of EPR pairs 
(1). Alice and Bob share three EPR pairs baβα  where first qubit of each pair belongs to Alice 

while second to Bob. These pairs can be publically known. 
(2). Alice (and Bob) performs BSM on qubits 2α

 
and 3α  ( 2β and 3β ). This BSM results 

in two EPR pairs 32αα
 
and 32ββ

 
in possession of Alice and Bob respectively. These 

swapped EPR pairs will be known only to Alice and Bob but unknown to eavesdroppers.  
Phase-II: Direct encoding 
(3). Now Alice performs BSM on qubits 1α

 
and 2α  and gets classical information 

}11,10,01,00{21 ∈αα . This measurement projects the qubits 3α  and 1β  into one of the four 

possible Bell states 13βα . The swapped ERP pair will be known to Alice and can only be 

known to Bob if Alice reveals her BSM result 21αα . However, even after public announcement 

of Alice’s BSM result, eavesdroppers will remain ignorant about exact identity of 13βα .  

(4). Bob teleports his secret message }1,0{∈bϕ
 
to Alice using 13βα . If BSM result of Bob is 

}11,10,01,00{∈′ββ  while teleporting the state, then Alice’s half 3α  becomes one of the 

corresponding four possible states b
m
x

l
zb ϕσσψ =  ( }1,0{, ∈ml ) totally random to Alice.   
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Phase-III: Secure decoding and authentication 
(5). Alice measures qubit 3α  in the agreed basis and gets result bψ . Simultaneously, she sends 

result bψ  and her BSM result 21αα
 
to Bob over public classical channels. Bob verifies the non-

local correlations generated through entanglement swapping and teleportation. That is, if 13βα  

and bψ  are consistent with BSM results 21αα
 
and ββ ′

 
of Alice and Bob respectively, Bob 

verifies that transmission is secure against eavesdroppers/noise and announces ββ ′. Now Alice 

can extract encoded message bϕ  from b
m
x

l
zb ϕσσψ =  securely with assurance of 

confidentiality, integrity and authenticity of secret information bϕ .   

 

Figure 1: One-way secret transmission from Bob to Alice. Dotted arrow (green) represents 
teleportation while dashed arrows (red) show classical communication over public channels. Red 
color shows public information while green represents information kept by Alice and Bob secret. 
 
Two-way secret transmission (QPhone) 
Now if Alice and Bob start the scheme with four EPR pairs, the scheme allows both Alice and 
Bob for two-way secret and authenticated transmission simultaneously in a single round. That is, 
both Alice and Bob can send secret messages to each other simultaneously.  

Suppose Alice and Bob share four EPR pairs baβα  and Alice performs BSM on qubits 

3α
 
and 4α  while Bob on 3β

 
and 4β respectively. This BSM results in two EPR pairs 

43αα
 
and 43ββ

 
in possession of Alice and Bob respectively. In second phase, Alice performs 

BSM on qubits 1α
 
and 3α  and projects qubits 1β

 
and 4α  into one of the four possible Bell 

states 14βα . Similarly Bob performs BSM on qubits 2β
 
and 3β  and projects the qubits 2α

 

and 4β  into one of the four possible Bell states 42βα . Now both Alice and Bob can teleport 

their secret messages aϕ
 
and bϕ  to each other. Finally, they can decode and authenticate 
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secret transmissions by communicating their classical results over public channels. Detailed two-
way secret transmission scheme is shown in figure 2. 

 
Figure 2: Two-way secret transmission from Alice to Bob and vice versa. Dotted arrow (green) 
represents teleportation while dashed arrows (red) show classical communication over public 
channels. Red color shows public information while green represents information kept by Alice 
and Bob secret. 
 
Discussion 
We proposed here a general quantum scheme based on two-fold quantum non-local correlations 
that assure confidentiality, integrity and authenticity of information transferred among trusted 
users. Repetitive measurements from both users and classical communication over public 
channels assure availability and result in QPhone; secure and authenticated two-way secret 
transmission in a single round. The proposed setup achieves these information security 
requirements without relying on advanced quantum technology, pre-shared secret keys or private 
quantum/classical channels between distant users.  

Only requirement for security/availability of secret information against 
eavesdroppers/noise is unsuppressed classical communication between distant users over public 
channels. The proposed procedure then remains secure against passive monitoring of classical 
information as well as active quantum attacks. It does not use batches of encoded qubits and then 
statistical tests after measurements in agreed basis and hence does not allow eavesdroppers to 
successfully use quantum attacks such as entangling a quantum ancilla with the encrypted 
message and later performing a specific measurement on it according to public communication 
of legitimate users. However, if eavesdroppers can interrupt classical communication actively 
then distant users need to have some pre-agreed secret information or trusted source for secure 
distribution of EPR pairs baβα .  

Remarkably, even pre-sharing of secret information or use of trusted source for 
entanglement distribution is not as costly in our scheme as it is in other cryptographic schemes. 
The proposed setup allows distant users to communicate securely and indefinitely if first round is 
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successful; it allows distant users to generate secret and agreed entangled pairs for future secure 
transmission from previous communication. For example, Alice and Bob do not publically 
announce the identities of EPR pairs obtained from BSM in step 2; 32αα

 
and 32ββ in one-

way and 43αα
 
and 43ββ

 
in two-way secret transmission. These EPR states remain secret 

between them and if Alice (Bob) receives secret message bϕ  ( aϕ ) from Bob (Alice) 

successfully, they can store 2-bit strings baβα
 
as shared secret information and can start next 

round in future with corresponding EPR pairs. In conclusion, proposed procedure acts as life-
time pad. 
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