
Generalized interactions supported on hypersurfaces
Pavel Exner1 and Jonathan Rohleder2
1)Department of Theoretical Physics, Nuclear Physics Institute,
Czech Academy of Sciences, 25068 Řež near Prague, Czechia,
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We analyze a family of singular Schrödinger operators with local singular interac-
tions supported by a hypersurface Σ ⊂ Rn, n ≥ 2, being the boundary of a Lip-
schitz domain, bounded or unbounded, not necessarily connected. At each point
of Σ the interaction is characterized by four real parameters, the earlier studied
case of δ- and δ′-interactions being particular cases. We discuss spectral proper-
ties of these operators and derive operator inequalities between those referring to
the same hypersurface but different couplings and describe their implications for
spectral properties.

I. INTRODUCTION

Solvable models play an important role in our understanding of quantum systems because
they often allow us to describe their properties through tools which are simplified but bet-
ter accessible mathematically. This applies, in particular, to the so-called leaky quantum
graphs and similar structures, cf. Ref. 15, Chap. 10, describing the motion of quantum par-
ticles confined to ‘thin’ regions of space of a possibly nontrivial geometrical and topological
character in a way which does not neglect the tunneling effect.

Technically speaking, such models emerged as a natural generalization of point interaction
systems1. First examples appeared about a quarter of century ago2,7, but more attention
to these problems was attracted only later, and at present we experience a renewed interest
to them. At the beginning measure-type potentials, usually dubbed δ-type, were studied,
and recently also more singular ones came into focus4,19. The δ′-interaction represents
an interesting object especially in view of its scattering properties: in contrast to more
regular potentials a δ′-barrier becomes more opaque as the energy increases which opens
ways to unexpected physical effects3. What is important is that the δ′-interaction is more
than a mere mathematical construct, because it can be approximated in any fixed interval of
energies by families of regular potentials following the seminal idea of Cheon and Shigehara9.

The δ- and δ′-interactions are not the whole story, though. It follows from basic facts
about self-adjoint extensions that the most general point interaction is characterized by four
parameters, and mutatis mutandis, four functions are needed to describe such a general
singular interaction supported by a manifold of codimension one. A discussion of such
interactions is the main topic of this paper. Speaking of the motivation, we note that it is
again more than a mere mathematical extension, because these interactions include another
type of scattering behavior, different from both the δ- and δ′-situations, as one can see, for
instance, from the high-energy resonance asymptotics of the corresponding generalization
of the so-called Winter model12.

There is not much in the literature about such general singular interactions supported by
hypersurfaces beyond examples with a symmetry allowing for a dimension reduction. Our
present study overlaps with fresh results in Ref. 23 but there are considerable differences.
The said paper considers singular perturbations of more general elliptic operators with
nontrivial coefficients in the second and zeroth order but, on the other hand, it is restricted
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to compact hypersurfaces, while in the present paper we focus on the Laplacian but allow
a more general class of possibly noncompact hypersurfaces. The main results in Ref. 23
concern the description of all selfadjoint boundary conditions as well as Krein type resolvent
formulas and Schatten-von Neumann properties, in contrast to the present paper, where a
class of local interactions is fixed and spectral properties of this class are in the center of
interest. A further substantial difference is the used technique. The paper of Mantile et al.
approaches the problem through resolvents of the involved operators, while we define the
singular perturbations using the appropriate quadratic form.

Let us describe briefly the contents of this paper. In the next section we introduce
the singular Schrödinger operators and show how they can be described alternatively by
boundary conditions on the hypersurface, writing the latter in the form introduced first in
Ref. 14 in the one-dimensional case. Its advantage is that one can simply distinguish the
particular cases of δ- and δ′-interactions. In Section 3 we show that in the case of a compact
interaction the essential spectrum is the positive halfline and the discrete one is finite,
and we also find conditions under which the latter is empty or nonempty. Furthermore,
for interactions supported on a noncompact, asymptotically planar hypersurface in R3 we
obtain a lower bound for the essential spectrum. In Section 4 we derive operator inequalities
between different elements of the considered operator family, generalizing those between the
δ- and δ′-interactions found in Ref. 4 and use them to establish further spectral results.

II. GENERALIZED INTERACTIONS AND QUADRATIC FORMS

In this section we introduce the generalized interactions under consideration via quadratic
forms and investigate their action and domain.

Let Σ ⊂ Rn, n ≥ 2, be the boundary of a (bounded or unbounded, not necessarily
connected) Lipschitz domain Ω = Ωi and let Ωe = Rn \ (Ωi ∪Σ). In the following we denote
by Hs(Ωj), j = i, e, and Hs(Rn) the Sobolev spaces of order s ≥ 0, by Hs(Σ) the Sobolev
space of order s ∈ [0, 1] on Σ and by H−s(Σ) its dual. For f ∈ L2(Rn) we use to write
fj = f |Ωj , j = i, e, and f = fi ⊕ fe. We denote the trace of a function f ∈ H1(Ωj) on Σ by

f |Σ ∈ H1/2(Σ). Moreover, for each f ∈ H1(Ωj) such that ∆f , calculated as a distribution,
belongs to L2(Ωj) we define the derivative of f with respect to the outer unit normal on

Σ = ∂Ωj as the unique element ∂νjf |Σ ∈ H−1/2(Σ) which satisfies Green’s first identity∫
Ωj

∇f · ∇g dx+

∫
Ωj

∆fg dx = (∂νjf |Σ, g|Σ)Σ, (II.1)

where (·, ·)Σ denotes the sesquilinear duality of H−1/2(Σ) and H1/2(Σ). Note that if Σ
is sufficiently smooth and f is differentiable up to the boundary then ∂νjf |Σ is the usual
derivative with respect to the outer unit normal. We also remark that the outer unit
normals for Ωi and Ωe coincide up to a minus sign. In particular, for f ∈ H2(Rn) we have
∂νifi|Σ + ∂νefe|Σ = 0.

Throughout this paper we make the following assumption.

Assumption II.1. Assume that α : Σ → R and γ : Σ → C are bounded, measurable
functions. Moreover, let Σβ ⊂ Σ be a relatively open subset and let β : Σ→ R be a function
such that 1/β is measurable and bounded on Σβ and β = 0 identically on Σ0 := Σ \ Σβ .

We focus on generalized interactions supported on Σ described by the (negative) Laplacian
on Rn \ Σ subject to the interface conditions

∂νifi|Σ + ∂νefe|Σ =
α

2
(fi|Σ + fe|Σ) +

γ

2
(∂νifi|Σ − ∂νefe|Σ) ,

fi|Σ − fe|Σ = −γ
2

(fi|Σ + fe|Σ) +
β

2
(∂νifi|Σ − ∂νefe|Σ)

(II.2)

on Σ. Observe that for the time being the conditions (II.2) are formal; for instance, ∂νifi|Σ−
∂νefe|Σ belongs to H−1/2(Σ) and its multiplication by β or γ does not make sense if these
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coefficients are very irregular. In fact, we are going to define a Hamiltonian first by use of
an appropriate quadratic form and we will show afterwards that under a minor, reasonable
additional assumption the functions in its domain satisfy (II.2); cf. Theorem II.4 below. We
remark that the conditions (II.2) include generalized interactions on nonclosed hypersurfaces
being a subset of a closed hypersurface, by choosing α, β and γ as zero on a part of Σ.

In the following we write

A =

(
α γ
−γ β

)
. (II.3)

We define the symmetric matrix function ΘA on Σ by

ΘA =

 |1+ γ
2 |

2

β 1Σβ + α
4

( γ2−1)(1+ γ
2 )

β 1Σβ + α
4

( γ2−1)(1+ γ
2 )

β 1Σβ + α
4

|1− γ2 |
2

β 1Σβ + α
4

 , (II.4)

where 1
β1Σβ equals 1/β on Σβ and zero on Σ0. Moreover, we define a quadratic form hA

in L2(Rn) via

hA[f, g] =

∫
Ωi

∇fi · ∇gi dx+

∫
Ωe

∇fe · ∇ge dx−
∫

Σ

〈
ΘA

(
fi

fe

)
,

(
gi

ge

)〉
dσ,

domhA =
{
fi ⊕ fe ∈ H1(Ωi)⊕H1(Ωe) : (1 + γ

2 )fi = (1− γ
2 )fe on Σ0

}
,

(II.5)

where the brackets 〈·, ·〉 denote the inner product in C2, σ is the standard surface measure
on Σ and the functions in the boundary integral have to be understood as the appropriate
traces. Note that hA is well-defined since the entries of ΘA are bounded functions.

In the following lemma we investigate properties of hA. For all details concerning semi-
bounded quadratic forms and corresponding selfadjoint operators we refer the reader to the
standard literature, e.g., Chap. VI in Ref. 20.

Lemma II.2. The quadratic form hA in L2(Rn) is densely defined, symmetric, semibounded
below and closed.

Proof. Clearly hA is densely defined as its domain contains C∞0 (Ωi)⊕C∞0 (Ωe). Note further
that for each s ∈ Σ the matrix ΘA(s) is symmetric, which implies the symmetry of hA.
Moreover, since α, γ and 1/β|Σβ · 1Σβ are bounded functions, there exists a constant η ∈ R
(independent of s), without loss of generality we may suppose η < 0, such that

−
〈

ΘA(s)

(
fi(s)

fe(s)

)
,

(
fi(s)

fe(s)

)〉
≥ η

(
|fi(s)|2 + |fe(s)|2

)
, s ∈ Σ. (II.6)

Recall that by Ehrling’s lemma for each ε > 0 there exists Cε(Ωj) > 0 such that

‖fj |Σ‖2L2(Σ) ≤ ε‖fj‖
2
H1(Ωj)

+ Cε(Ωj)‖fj‖2L2(Ωj)
, f ∈ H1(Ωj), j = i, e;

for a proof of this inequality in the case of a Lipschitz domain with a possibly noncompact
boundary see, e.g., Lemma 2.6 in Ref. 4. Therefore it follows from (II.6) that for each ε > 0
there exists Cε = Cε(Rn) > 0 with

hA[f ] ≥ (1 + ηε)
(
‖fi‖2H1(Ωi)

+ ‖fe‖2H1(Ωe)

)
+ (ηCε − 1)‖f‖2L2(Rn) (II.7)

for all f ∈ domhA; here and in the following we use the abbreviation hA[f ] = hA[f, f ]. In
particular, for each sufficiently small ε > 0 we have 1 + ηε > 0 and (II.7) implies

hA[f ] ≥ (ηCε − 1)‖f‖2L2(Rn), f ∈ domhA.
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Thus hA is semibounded below. Moreover, we can conclude from (II.7) that

(hA − ηCε + 1)[f ] ≥ (1 + ηε)
(
‖fi‖2H1(Ωi)

+ ‖fe‖2H1(Ωe)

)
, f ∈ domhA.

From this, the boundedness assumptions on α, β and γ and the continuity of the trace map
from H1(Ωj) to L2(Σ), j = i, e, it follows that the norm induced by hA−ηCε+1 is equivalent
to the norm in H1(Ωi)⊕H1(Ωe). Since domhA is a closed subspace of H1(Ωi)⊕H1(Ωe),
it follows that hA is closed.

The previous lemma allows us to define a selfadjoint Hamiltonian in the following way.

Definition II.3. The Laplacian subject to the generalized interaction (II.2) on Σ is defined
as the selfadjoint, semibounded operator −∆A in L2(Rn) corresponding to the quadratic
form hA in (II.5), i.e., −∆A is the unique selfadjoint operator in L2(Rn) which satisfies
dom (−∆A) ⊂ domhA and

(−∆Af, g)L2(Rn) = hA[f, g]

for all f ∈ dom (−∆A), g ∈ domhA.

In the following theorem we establish the relation of −∆A with the conditions (II.2). As
mentioned above, the conditions (II.2) are only formal and need an interpretation particu-
larly if β and γ are nonsmooth. In order to give a meaning to the first condition in (II.2),
in the following theorem we assume additionally that γ satisfies

γϕ ∈ H1/2(Σ) for all ϕ ∈ H1/2(Σ), (II.8)

which allows us to define γψ for each ψ ∈ H−1/2(Σ) by (γψ, ϕ)Σ = (ψ, γϕ)Σ for all ϕ ∈
H1/2(Σ). A rigorous formulation of (II.2) is then given by the conditions

∂νifi|Σ + ∂νefe|Σ =
α

2
(fi|Σ + fe|Σ) +

γ

2
(∂νifi|Σ − ∂νefe|Σ) ,

fi|Σ0 − fe|Σ0 = −γ
2

(fi|Σ0 + fe|Σ0) ,

1

β

(
fi|Σβ − fe|Σβ

)
= − γ

2β

(
fi|Σβ + fe|Σβ

)
+

1

2

(
∂νifi|Σβ − ∂νefe|Σβ

)
,

(II.9)

where the latter equality is to be understood in the sense of distributions, namely,( 1

β
1Σβ (fi|Σ − fe|Σ) , ϕ

)
Σ

=
(
− γ

2β
1Σβ (fi|Σ + fe|Σ) +

1

2
(∂νifi|Σ − ∂νefe|Σ) , ϕ

)
Σ

for all ϕ ∈ H1/2(Σ) such that ϕ|Σ0
= 0. Note that if, e.g., β is constant on Σ then (II.2)

makes sense and is equivalent to (II.9).

Theorem II.4. Let Assumption II.1 be satisfied and assume in addition that γ satis-
fies (II.8). Then the selfadjoint operator −∆A in Definition II.3 is given by

−∆Af = −∆fi ⊕−∆fe,

dom
(
−∆A

)
=
{
f = fi ⊕ fe ∈ H1(Ωi)⊕H1(Ωe) : ∆fj ∈ L2(Ωj), j = i, e,

f satisfies (II.9)
}
.

(II.10)

Proof. Let us denote by H the operator given in (II.10). In order to show that −∆A = H
let first f ∈ domH. Then f ∈ H1(Ωi)⊕H1(Ωe) and ∆fj ∈ L2(Ωj), j = i, e, and the second
identity in (II.9) immediately implies f ∈ domhA. Furthermore, for g ∈ domhA Green’s
identity (II.1) yields

(Hf, g)L2(Rn) =

∫
Ωi

∇fi · ∇gi dx+

∫
Ωe

∇fe · ∇ge dx

− (∂νifi|Σ, gi|Σ)Σ − (∂νefe|Σ, ge|Σ)Σ .

(II.11)
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On the other hand, for g ∈ domhA the fact that (1 + γ
2 )gi|Σ − (1− γ

2 )ge|Σ vanishes on Σ0

and the third identity in (II.9) yield∫
Σ

〈
ΘA

(
fi
fe

)
,
(
gi
ge

)〉
dσ =

∫
Σ

1
β1Σβ

(
(1 + γ

2 )fi − (1− γ
2 )fe

)(
(1 + γ

2 )gi − (1− γ
2 )ge

)
dσ

+

∫
Σ

α
4 (fi + fe)(gi + ge)dσ

= 1
2

(
∂νifi|Σ − ∂νefe|Σ, (1 + γ

2 )gi|Σ − (1− γ
2 )ge|Σ

)
Σ

+ 1
2

(
α
2 (fi|Σ + fe|Σ), gi|Σ + ge|Σ

)
Σ
.

(II.12)

Furthermore, with an application of the first identity in (II.9), (II.12) turns into∫
Σ

〈
ΘA

(
fi
fe

)
,
(
gi
ge

)〉
dσ = 1

2

(
∂νifi|Σ − ∂νefe|Σ, (1 + γ

2 )gi|Σ − (1− γ
2 )ge|Σ

)
Σ

+ 1
2

(
(1− γ

2 )∂νifi|Σ + (1 + γ
2 )∂νefe|Σ, gi|Σ + ge|Σ

)
Σ

= 1
2

(
(1 + γ

2 )(∂νifi|Σ − ∂νefe|Σ)

+ (1− γ
2 )∂νifi|Σ + (1 + γ

2 )∂νefe|Σ, gi|Σ
)

Σ

+ 1
2

(
(γ2 − 1)(∂νifi|Σ − ∂νefe|Σ)

+ (1− γ
2 )∂νifi|Σ + (1 + γ

2 )∂νefe|Σ, ge|Σ
)

Σ

= (∂νifi|Σ, gi|Σ)Σ + (∂νefe|Σ, ge|Σ)Σ.

From this and (II.11) it follows

(Hf, g)L2(Rn) = hA[f, g]

for all g ∈ domhA. Thus f ∈ dom (−∆A) and −∆Af = Hf .
It remains to show that each f ∈ dom (−∆A) belongs to domH. Indeed, choosing such

f we have f ∈ H1(Ωi)⊕H1(Ωe) and for g ∈ C∞0 (Ωi)⊕ C∞0 (Ωe) ⊂ domhA

(−∆Af, g)L2(Rn) = hA[f, g] = (−∆fi, gi) + (−∆fe, ge),

where the expressions on the right mean a distributional application. This implies

−∆fi ⊕−∆fe = −∆Af ∈ L2(Rn) = L2(Ωi)⊕ L2(Ωe). (II.13)

In order to verify the boundary conditions (II.9) note that by the choice of f we have

(1 + γ/2)fi|Σ0 = (1− γ/2)fe|Σ0 , (II.14)

which is the second condition in (II.9). Moreover, (II.13) and Green’s identity yield

(−∆Af, g)L2(Rn) =

∫
Ωi

∇fi∇gi dx+

∫
Ωe

∇fe∇ge dx

− (∂νifi|Σ, gi|Σ)Σ − (∂νefe|Σ, ge|Σ)Σ

(II.15)

for all g ∈ domhA and, on the other hand, using the definition of −∆A,

(−∆Af, g)L2(Rn) =

∫
Ωi

∇fi∇gi dx+

∫
Ωe

∇fe∇ge dx−
∫

Σ

〈
ΘA

(
fi
fe

)
,
(
gi
ge

)〉
dσ (II.16)

for all g ∈ domhA. From (II.15) and (II.16) we conclude

(∂νifi|Σ, gi|Σ)Σ + (∂νefe|Σ, ge|Σ)Σ =

∫
Σ

〈
ΘA

(
fi|Σ
fe|Σ

)
,

(
gi|Σ
ge|Σ

)〉
dσ (II.17)
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for all g ∈ domhA. From this identity we are going to derive the conditions (II.9). In fact,
for each g ∈ domhA (II.17) can be rewritten as

0 =
(
∂νifi|Σ − (1 + γ

2 )
( 1+γ/2

β 1Σβfi|Σ + γ/2−1
β 1Σβfe|Σ

)
, gi|Σ

)
Σ

+
(
∂νefe|Σ − (γ2 − 1)

( 1+γ/2
β 1Σβfi|Σ + γ/2−1

β 1Σβfe|Σ
)
, ge|Σ

)
Σ

−
(
α
4 (fi|Σ + fe|Σ), gi|Σ + ge|Σ

)
Σ

=
(

1+γ/2
β 1Σβfi|Σ + γ/2−1

β 1Σβfe|Σ, (1− γ
2 )ge|Σ − (1 + γ

2 )gi|Σ
)

Σ

+ (∂νifi|Σ, gi|Σ)Σ + (∂νefe|Σ, ge|Σ)Σ −
(
α
4 (fi|Σ + fe|Σ), gi|Σ + ge|Σ

)
Σ

=
(

1+γ/2
β 1Σβfi|Σ + γ/2−1

β 1Σβfe|Σ, (1− γ
2 )ge|Σ − (1 + γ

2 )gi|Σ
)

Σ

+ 1
2

(
(1 + γ

2 )∂νifi|Σ + (1− γ
2 )∂νifi|Σ, gi|Σ

)
Σ

+ 1
2

(
(1− γ

2 )∂νefe|Σ + (1 + γ
2 )∂νefe|Σ, ge|Σ

)
Σ

−
(
α
2 (fi|Σ + fe|Σ), 1

2 (gi|Σ + ge|Σ)
)

Σ
.

(II.18)

Let now g ∈ H1(Ωi)⊕H1(Ωe) with (1 + γ
2 )gi|Σ = (1− γ

2 )ge|Σ on all of Σ. Then g ∈ domhA
and (II.18) implies

0 =
(

1+γ/2
β 1Σβfi|Σ + γ/2−1

β 1Σβfe|Σ, (1− γ
2 )ge|Σ − (1 + γ

2 )gi|Σ
)

Σ

+ 1
2

(
(1− γ

2 )∂νifi|Σ, ge|Σ
)

Σ
+ 1

2

(
(1− γ

2 )∂νifi|Σ, gi|Σ
)

Σ

+ 1
2

(
(1 + γ

2 )∂νefe|Σ, gi|Σ
)

Σ
+ 1

2

(
(1 + γ

2 )∂νefe|Σ, ge|Σ
)

Σ

−
(
α
2 (fi|Σ + fe|Σ), 1

2 (gi|Σ + ge|Σ)
)

Σ

=
(

1+γ/2
β 1Σβfi|Σ + γ/2−1

β 1Σβfe|Σ, (1− γ
2 )ge|Σ − (1 + γ

2 )gi|Σ
)

Σ

+
(
(1− γ

2 )∂νifi|Σ + (1 + γ
2 )∂νefe|Σ − α

2 (fi|Σ + fe|Σ), 1
2 (gi|Σ + ge|Σ)

)
Σ
.

(II.19)

Note that each ϕ ∈ H1/2(Σ) can be written in the form ϕ = 1
2 (gi|Σ + ge|Σ) for some

g ∈ H1(Ωi) ⊕ H1(Ωe) such that (1 + γ
2 )gi|Σ = (1 − γ

2 )ge|Σ. Indeed, for ϕ ∈ H1/2(Σ) we

have (1− γ
2 )ϕ ∈ H1/2(Σ) and (1 + γ

2 )ϕ ∈ H1/2(Σ) by (II.8); thus there exist gj ∈ H1(Ωj),
j = i, e, such that

gi|Σ = (1− γ
2 )ϕ and ge|Σ = (1 + γ

2 )ϕ

and then

(1 + γ
2 )gi|Σ = (1 + γ

2 )(1− γ
2 )ϕ = (1− γ

2 )ge|Σ

holds and 1
2 (gi|Σ + ge|Σ) = ϕ. Hence we obtain from (II.19)

0 =
(
(1− γ

2 )∂νifi|Σ + (1 + γ
2 )∂νefe|Σ − α

2 (fi|Σ + fe|Σ), ϕ
)

Σ

for all ϕ ∈ H1/2(Σ), which leads to the first identity in (II.9). In order to obtain the third
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equality in (II.9) observe that the first equality in (II.9) can be used to write (II.18) as

0 =
(

1+γ/2
β 1Σβfi|Σ + γ/2−1

β 1Σβfe|Σ, (1− γ
2 )ge|Σ − (1 + γ

2 )gi|Σ
)

Σ

+ 1
2

(
(1 + γ

2 )∂νifi|Σ − (1 + γ
2 )∂νefe|Σ + α

2 (fi|Σ + fe|Σ), gi|Σ
)

Σ

+ 1
2

(
(1− γ

2 )∂νefe|Σ − (1− γ
2 )∂νifi|Σ + α

2 (fi|Σ + fe|Σ), ge|Σ
)

Σ

−
(
α
4 (fi|Σ + fe|Σ), gi|Σ + ge|Σ

)
Σ

=
(

1+γ/2
β 1Σβfi|Σ + γ/2−1

β 1Σβfe|Σ, (1− γ
2 )ge|Σ − (1 + γ

2 )gi|Σ
)

Σ

+ 1
2

(
(1 + γ

2 )(∂νifi|Σ − ∂νefe|Σ), gi|Σ
)

Σ

+ 1
2

(
−(1− γ

2 )(∂νifi|Σ − ∂νefe|Σ), ge|Σ
)

Σ

=
(

1+γ/2
β 1Σβfi|Σ + γ/2−1

β 1Σβfe|Σ, (1− γ
2 )ge|Σ − (1 + γ

2 )gi|Σ
)

Σ

− 1
2

(
∂νifi|Σ − ∂νefe|Σ, (1− γ

2 )ge|Σ − (1 + γ
2 )gi|Σ

)
Σ

(II.20)

for all g ∈ domhA. Moreover, for each ϕ ∈ H1/2(Σ) with ϕ|Σ0 = 0 there exists g ∈ domhA
with (1− γ

2 )ge|Σ−(1+ γ
2 )gi|Σ = ϕ, which can be obtained by choosing gj ∈ H1(Ωj), j = i, e,

such that gi|Σ = −ϕ/2 and ge|Σ = ϕ/2. Hence (II.20) is equivalent to

0 =
(

1+γ/2
β 1Σβfi|Σ + γ/2−1

β 1Σβfe|Σ − 1
2 (∂νifi|Σ − ∂νefe|Σ), ϕ

)
Σ

for all ϕ ∈ H1/2(Σ) such that ϕ|Σ0
= 0, which is the third identity in (II.9). Thus f ∈

domH, that is, −∆A = H. This completes the proof of the theorem.

Let us mention two examples where the generalized interactions (II.2) reduce to situations
which were studied before.

Example II.5. The generalized interactions under consideration include, as special cases,
the δ-interaction on Σ of strength α (setting β = γ = 0 identically) and the δ′-interaction
on Σ of strength β (setting α = γ = 0 identically).

Example II.6. Let α = γ = 0 identically and let Σβ 6= Σ. Then −∆A describes a δ′-
interaction of strength β on the (possibly nonclosed) hypersurface Σβ . In space dimension
n = 2 and for special choices of the nonclosed curve Σβ spectral properties of this operator
were studied recently in Ref. 19. Similarly the interactions under consideration include
δ-interactions on non-closed hypersurfaces, which can be obtained by choosing γ = β = 0
identically and a function α : Σ → R being zero on a part of Σ and nonzero on another
part.

III. ESSENTIAL SPECTRA AND EXISTENCE OF BOUND STATES

In this section we study the essential spectrum of −∆A in the cases of a compact hyper-
surface or a noncompact, asymptotically planar hypersurface. Moreover, for compact Σ we
derive conditions for the existence or absence of discrete, negative eigenvalues.

In the following we write σ(−∆A), σess(−∆A) and ρ(−∆A) for the spectrum, essential
spectrum and resolvent set of −∆A, respectively, and denote by N(−∆A) the number of
discrete eigenvalues below the bottom of the essential spectrum, counted with multiplicities.

A. The case of a compact hypersurface

Let us first consider the case of a compact hypersurface Σ. In the following theorem we
denote by −∆free the free Laplacian in L2(Rn) (which coincides with −∆A if A is trivial).
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Theorem III.1. Let Ωi be bounded, that is, Σ is compact. Moreover, let Assumption II.1
be satisfied. Then the following assertions hold.

(i) The resolvent difference

(−∆A − λ)−1 − (−∆free − λ)−1, λ ∈ ρ(−∆A) ∩ ρ(−∆free),

is compact. In particular, σess(−∆A) = [0,∞).

(ii) The discrete spectrum σ(−∆A) ∩ (−∞, 0) is finite.

Proof. (i) We proceed similar to the proof of Theorem 4.2 in Ref. 4. Let λ ∈ ρ(−∆A) ∩
ρ(−∆free) and let f, g ∈ L2(Rn). Define

W = (−∆A − λ)−1 − (−∆free − λ)−1

and let u = (−∆A − λ)−1f and v = (−∆free − λ)−1g. Then

(Wf, g)L2(Rn) = (u, g)L2(Rn) − (f, v)L2(Rn)

= (u,−∆freev)L2(Rn) − (−∆Au, v)L2(Rn).

Since −∆Au = −∆ui⊕−∆ue, cf. the proof of Theorem II.4, it follows from Green’s identity

(Wf, g)L2(Rn) = (∂νiui|Σ, vi|Σ)Σ − (ui|Σ, ∂νivi|Σ)Σ

+ (∂νeue|Σ, ve|Σ)Σ − (ue|Σ, ∂νeve|Σ)Σ

= (∂νiui|Σ + ∂νeue|Σ, v|Σ)Σ − (ui|Σ − ue|Σ, ∂νivi|Σ)Σ;

(III.1)

in the last step we have used v ∈ H2(Rn), that is, vi|Σ = ve|Σ and ∂νivi|Σ + ∂νeve|Σ = 0.
Let us define operators T1, T4 : L2(Rn)→ H−1/2(Σ) and T2, T3 : L2(Rn)→ H1/2(Σ) by

T1f = ∂νi((−∆A − λ)−1f)i|Σ + ∂νe((−∆A − λ)−1f)e|Σ,
T2g = ((−∆free − λ)−1g)|Σ,
T3f = ((−∆A − λ)−1f)i|Σ − ((−∆A − λ)−1f)e|Σ,
T4g = ∂νi((−∆free − λ)−1g)i|Σ.

Then T1, . . . , T4 are bounded, everywhere defined operators in the respective spaces, which
follows from the continuity of the trace and the normal derivative from H1(Ωj) to H1/2(Σ)

and H−1/2(Σ), respectively, j = i, e. Moreover, (III.1) yields

W = T ∗2 T1 − T ∗4 T3. (III.2)

Note that ran (−∆free − λ)−1 = H2(Rn) implies ranT2 ⊂ H1−ε(Σ) for each ε ∈ (0, 1/2)
and ranT4 ⊂ L2(Σ); see Section 3 in Ref. 18 for the required properties of trace maps
on Lipschitz domains. Since the embeddings of H1−ε(Σ) into H1/2(Σ) and of L2(Σ) into
H−1/2(Σ) are compact it follows that T2 and T4 are compact. Together with (III.2) this
implies compactness of W , which completes the proof of assertion (i).

(ii) Consider the quadratic form a in L2(Rn) defined by

a[f ] =

∫
Ωi

|∇fi|2dx+

∫
Ωe

|∇fe|2dx−
∫

Σ

‖ΘA(s)‖
(
|fi(s)|2 + |fe(s)|2

)
dσ(s),

dom a = H1(Ωi)⊕H1(Ωe),

where ΘA is defined in (II.4) and ‖ · ‖ denotes the matrix norm induced by the Euclidean
norm on C2. Due to the fact that s 7→ ‖ΘA(s)‖ is measurable and bounded on Σ, this form is
densely defined, symmetric, semibounded from below and closed. The essential spectrum of
the corresponding selfadjoint operator A in L2(Rn) equals [0,∞), and its negative spectrum
is finite, see Theorem 6.9 in Ref. 8. Moreover, we have domhA ⊂ dom a and

a[f ] ≤ hA[f ], f ∈ domhA,

which implies N(−∆A) ≤ N(A) <∞. This proves assertion (ii) of the theorem.
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Let us investigate the existence of negative eigenvalues for −∆A if Σ is compact. First
we consider the case that β(s) 6= 0 for all s ∈ Σ. The following theorem is an extension of
Theorem 4.4 in Ref. 4, where δ′-interactions were considered.

Theorem III.2. Assume that Ωi is bounded, that is, Σ is compact. Let Assumption II.1
be satisfied and assume that Σ = Σβ, i.e., β(s) 6= 0 for all s ∈ Σ. If

∫
Σ

( |1 + γ
2 |

2

β
+
α

4

)
dσ > 0 (III.3)

then N(−∆A) > 0 holds.

Proof. Let hA be the quadratic form corresponding to −∆A. Since Σ = Σβ we have
domhA = H1(Ωi) ⊕ H1(Ωe). In particular, the function f = 1Ωi

⊕ 0 belongs to domhA.
Moreover,

hA[f ] = −
∫

Σ

( |1 + γ
2 |

2

β
+
α

4

)
dσ < 0

by (III.3). Thus minσ(−∆A) < 0. Since minσess(−∆A) = 0 by Theorem III.1 it follows
N(−∆A) > 0.

Theorem III.2 leads to the following immediate corollary.

Corollary III.3. Assume that Ωi is bounded, that is, Σ is compact. Moreover, let Assump-
tion II.1 be satisfied, let α(s) ≥ 0 and β(s) > 0 for all s ∈ Σ. If there exists a subset Σ1 of
Σ of positive measure such that α(s) > 0 or γ(s) 6= −2 for all s ∈ Σ1 then N(−∆A) > 0.

Let us now turn to the case β = 0 identically on Σ. In space dimension n = 2 the
following holds.

Theorem III.4. Let n = 2 and let Σ be compact. Let Assumption II.1 be satisfied with
β = 0 identically on Σ. Moreover, let α(s) ≥ αmin > 0 for all s ∈ Σ and let γ ∈ C be
constant. Then N(−∆A) > 0.

Proof. Consider

α̃ =
αmin

max{|1 + γ/2|2, |1− γ/2|2}
> 0.

Moreover, consider the quadratic form h
Ã

in L2(R2), defined as in (II.5) with

Ã =

(
α̃ 0
0 0

)
,

which corresponds to the Laplacian −∆
Ã

= −∆δ,α̃ in L2(R2) with a δ-potential of strength

α̃ on Σ. The negative (discrete) spectrum of −∆
Ã

is nonempty17,21. In particular, there

exists g ∈ domh
Ã

= H1(R2) with h
Ã

[g] < 0. Let us assume for a moment γ 6= ±2. With
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f = (1 + γ/2)−1gi ⊕ (1− γ/2)−1ge it follows f ∈ domhA and

hA[f ] = |1 + γ/2|−2

∫
Ωi

|∇gi|2dx+ |1− γ/2|−2

∫
Ωe

|∇ge|2dx

−
∫

Σ

α

4

∣∣(1 + γ/2)−1gi|Σ + (1− γ/2)−1ge|Σ
∣∣2dσ

= |1 + γ/2|−2

∫
Ωi

|∇gi|2dx+ |1− γ/2|−2

∫
Ωe

|∇ge|2dx

− αmin

|1 + γ/2|2|1− γ/2|2

∫
Σ

|g|Σ|2dσ

≤ 1

min{|1 + γ/2|2, |1− γ/2|2}

{∫
Ωi

|∇gi|2dx+

∫
Ωe

|∇ge|2dx

− αmin

max{|1 + γ/2|2, |1− γ/2|2}

∫
Σ

∣∣g|Σ∣∣2dσ}
=

1

min{|1 + γ/2|2, |1− γ/2|2}
h
Ã

[g] < 0,

where we have used gi|Σ = ge|Σ. Hence N(−∆A) > 0. If γ = 2 or γ = −2 we set f = 0⊕ ge

or f = gi ⊕ 0, respectively, and arrive at the same conclusion.

In dimensions n ≥ 3 the situation differs essentially. This is known for δ-interactions6,13

and the same holds true for the generalized interactions with β = 0 identically, as the
following observation shows.

Proposition III.5. Let Σ be compact and let Assumption II.1 be satisfied with β = 0
identically on Σ. Moreover, let 0 ≤ α(s) ≤ αmax for all s ∈ Σ and let γ ∈ C be constant.
Define

α̃ =
αmax

min{|1 + γ/2|2, |1− γ/2|2}
≥ 0

and let −∆δ,α̃ be the Schrödinger operator in L2(Rn) with δ-potential of strength α̃ on Σ.
If N(−∆δ,α̃) = 0 then N(−∆A) = 0.

Proof. Note first that −∆δ,α̃ = −∆
Ã

with

Ã =

(
α̃ 0
0 0

)
.

Assume that N(−∆δ,α̃) = 0. Let first γ 6= ±2. For f ∈ domhA we define g = (1 + γ/2)fi⊕
(1−γ/2)fe. Then, clearly, g ∈ H1(Rn), f = (1+γ/2)−1gi⊕ (1−γ/2)−1ge, and we calculate
similar to the proof of Theorem III.4

hA[f ] ≥ 1

max{|1 + γ/2|2, |1− γ/2|2}

{∫
Ωi

|∇gi|2dx+

∫
Ωe

|∇ge|2dx

− αmax

min{|1 + γ/2|2, |1− γ/2|2}

∫
Σ

∣∣g|Σ∣∣2dσ}
=

1

max{|1 + γ/2|2, |1− γ/2|2}
h
Ã

[g] ≥ 0.

Since f ∈ domhA was chosen arbitrary it follows N(−∆A) = 0. The cases γ = ±2 can be
treated similarly, see the proof of Theorem III.4.

The following example illustrates the possible absence of negative eigenvalues.
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Example III.6. Let n = 3 and let Σ be a sphere of radius R > 0. Furthermore, let
β = 0 identically, let 0 ≤ α(s) ≤ αmax for all s ∈ Σ and let γ ∈ C be constant. Define α̃
as in Proposition III.5. It was calculated in Ref. 2 (see also Example 4.1 in Ref. 6) that
N(−∆δ,α̃) = 0 if and only if α̃R ≤ 1. Thus it follows with the help of Proposition III.5 that

N(−∆A) = 0 if αmaxR ≤ min{|1 + γ/2|2, |1− γ/2|2},

that is, for sufficiently small αmax and sufficiently large |γ| (related to each other) no negative
eigenvalues exist and σ(−∆A) = σess(−∆A) = [0,∞).

Let us mention that if β is nontrivial on a part of Σ and vanishes identically on another
part then even in the two-dimensional case the operator −∆A may fail to exhibit bound
states; cf. Ref. 19 for a δ′-interaction on a nonclosed curve.

B. The case of a noncompact, asymptotically planar hypersurface in R3

In this paragraph we provide a result on the essential spectrum of −∆A in the case of
a noncompact hypersurface Σ in R3 which is asymptotically planar. For fixed numbers
α, β ≥ 0 and γ ∈ C we define the matrix A as in (II.3) and set

mA =

−
4α2

(4+|γ|2)2 , if β = 0,

−
(

4+detA+
√
−16αβ+(4+detA)2

)2

16β2 , if β 6= 0.
(III.4)

As a preparation we formulate the following Proposition, where we use the notation

ΘA =

 |1+ γ
2 |

2

β + α
4

( γ2−1)(1+ γ
2 )

β + α
4

( γ2−1)(1+ γ
2 )

β + α
4

|1− γ2 |
2

β + α
4


if β 6= 0 and ΘA =

(
α/4 α/4
α/4 α/4

)
if β = 0.

Proposition III.7. Let α, β be nonnegative real numbers, let γ ∈ C and let d > 0. Then
the quadratic form

ηA,d[ψ] =

∫ 0

−d
|ψ′|2dx+

∫ d

0

|ψ′|2dx−
〈

ΘA

(
ψ(0−)

ψ(0+)

)
,

(
ψ(0−)

ψ(0+)

)〉
,

dom ηA,d =
{
ψ ∈ H1(−d, 0)⊕H1(0, d) : (1 + γ

2 )ψ(0−) = (1− γ
2 )ψ(0+) if β = 0

}
,

in L2(−d, d) is semibounded from below by a constant mA,d ≤ mA. Moreover, the following
assertions hold.

(i) If nτ is a family of real numbers with nτ → 1 as τ →∞ and

Ã(τ) =

(
α
nτ

γ
−γ nτβ

)
then m

Ã(τ),d
→ mA,d as τ →∞;

(ii) limd→∞mA,d = mA.

The proof of Proposition III.7 is longish and we shift it to Appendix A.
We come to the estimation of the essential spectrum. We make the following assumption.

Here we denote by B(0, r) the ball of radius r in R2 centered at zero.
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Assumption III.8. Assume that Σ is a noncompact hypersurface described by a global
Lipschitz parametrization ϕ : R2 → R3 with ϕ(R2) = Σ and there exists τ0 > 0 such that
ϕ|R2\B(0,τ0) is C2-smooth and the Jacobian (Dϕ)(x′) has rank two for all x′ ∈ R2 \B(0, τ0).
Assume furthermore that the following conditions are satisfied.

(a) For each d > 0 there exists τ > τ0 such that the mapping

(R2 \B(0, τ))× (−d, d) 3 (x′, x3) 7→ ϕ(x′) + x3ν(x′)

is injective, where ν(x′) = (∂1ϕ(x′)× ∂2ϕ(x′))/|∂1ϕ(x′)× ∂2ϕ(x′)|, x′ ∈ R2, is a unit
normal vector field of Σ.

(b) The mean curvature M and the Gauß curvature K satisfy

M(x′)→ 0 and K(x′)→ 0 as |x′| → ∞.

Under these conditions the essential spectrum of −∆A can be estimated as follows. A
variant of this theorem for δ-interactions is contained in Ref. 16; cf. also Ref. 10 for a similar
strategy of proof.

Theorem III.9. Let Σ satisfy Assumption III.8, and let α, β, γ be functions which satisfy
Assumption II.1 and are constant outside a compact subset K of Σ. Assume, additionally,
that α(s) ≥ 0 and β(s) ≥ 0 for all s ∈ Σ. Then

σess(−∆A) ⊂ [mA,∞) (III.5)

holds, where mA is defined as in (III.4) using the constant values of α, β and γ in Σ \K.

Proof. We carry out the proof for the case that the parametrization ϕ is globally C2. The
general case, where ϕ is allowed to be less regular inside a compact set, follows afterwards
with a compact perturbation argument. We assume without loss of generality that the
parametrization ϕ is chosen such that ν is the outer unit normal of Ωi. Let d > 0 be
sufficiently large such that the d-neighborhood Ωd = Φ(R2× (−d, d)) of Σ described by the
parametrization

Φ : R2 × (−d, d)→ R3, (x′, x3) 7→ ϕ(x′) + x3ν(x′), x′ ∈ R2, x3 ∈ (−d, d),

is a Lipschitz domain. Choose τ > τ0 such that the restriction of Φ to

Dτ,d =
{

(x′, x3) ∈ R2 × (−d, d) : |x′| > τ
}

is injective and such that the coefficients α, β and γ are constants outside ϕ(B(0, τ)); note
that these properties are then true also for each τ̃ > τ . We write Ωext

τ,d = Φ(Dτ,d) and

Ωint
τ,d = Ωd \ Ωext

τ,d, and the latter is a bounded Lipschitz domain. Moreover, we set

Ωext
d = R3 \ Ωd,

which is an unbounded Lipschitz domain with a noncompact boundary. We denote by
−∆ext

d,N the selfadjoint Neumann Laplacian in L2(Ωext
d ). Furthermore, for j = int, ext we

denote by −∆τ,j
A,d,N the selfadjoint Laplacian in L2(Ωjτ,d) corresponding to the quadratic

form

hτ,jA,d,N[f ] =

∫
Ωjτ,d,i

|∇fi|2dx+

∫
Ωjτ,d,e

|∇fe|2dx−
∫

Σjτ

〈
ΘA

(
fi

fe

)
,

(
fi

fe

)〉
dσ,

domhτ,jA,d,N =
{
fi ⊕ fe ∈ H1(Ωjτ,d,i)⊕H

1(Ωjτ,d,e) :
(
1 + γ

2

)
fi =

(
1− γ

2

)
fe on Σjτ ∩ Σ0

}
,

where Ωjτ,d,k = Ωk ∩ Ωjτ,d, k = i, e, and Σjτ := Σ ∩ Ωjτ,d. Then

−∆ext
d,N ⊕−∆τ,int

A,d,N ⊕−∆τ,ext
A,d,N ≤ −∆A
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and thus

min
{

minσess(−∆τ,ext
A,d,N), 0

}
≤ minσess(−∆A), (III.6)

where we took into account that −∆τ,int
A,d,N has a compact resolvent and that −∆ext

d,N has

essential spectrum [0,∞).

Let us estimate the quadratic form hτ,ext
A,d,N. Note that by assumption either Σext

τ ∩ Σ0 =

Σext
τ or Σext

τ ∩ Σ0 = ∅. Note that the Jacobian DΦ of Φ satisfies

(DΦ)>DΦ =

 |∂1(ϕ+ x3ν)|2 〈∂1(ϕ+ x3ν), ∂2(ϕ+ x3ν)〉 0
〈∂2(ϕ+ x3ν), ∂1(ϕ+ x3ν)〉 |∂2(ϕ+ x3ν)|2 0

0 0 1


=

(
(I − x3H)>

(
∂1ϕ ∂2ϕ

)> (
∂1ϕ ∂2ϕ

)
(I − x3H) 0

0 1

)
,

where the derivatives ∂1 and ∂2 refer to the variables x′ = (x1, x2) on which ϕ and ν depend
and H = (Hij) is the Weingarten map. Consequently,

(detDΦ)2 = det[(DΦ)>DΦ]

=
(
1− x3(H11 +H22) + x2

3 detH
)2

det
((
∂1ϕ ∂2ϕ

)> (
∂1ϕ ∂2ϕ

))
=
(
1− 2x3M + x2

3K
)2|∂1ϕ× ∂2ϕ|2.

With these observations for f ∈ domhτ,ext
A,d,N we find∫

Ωext
τ,d,i

|∇fi|2dx =

∫
Dτ,d∩R3

−

〈
∇(fi ◦ Φ), (DΦ)−1(DΦ)−>∇(fi ◦ Φ)

〉
|detDΦ|dx

≥ nτ,d
∫
Dτ,d∩R3

−

|∂3(fi ◦ Φ)|2|∂1ϕ× ∂2ϕ|dx

with nτ,d = infx=(x′,x3)∈Dτ,d |1−2x3M(x′)+x2
3K(x′)|. Carrying out the analogous estimate

for Ωτ,d,e and fe we arrive at

hτ,ext
A,d,N[f ] ≥ nτ,d

∫
R2\B(0,τ)

(∫ 0

−d
|∂3(fi ◦ Φ)|2dx3 +

∫ d

0

|∂3(fi ◦ Φ)|2dx3

− 1

nτ,d

〈
ΘA

(
fi ◦ ϕ
fe ◦ ϕ

)
,

(
fi ◦ ϕ
fe ◦ ϕ

)〉)
|∂1ϕ× ∂2ϕ|dx′

= nτ,d

∫
R2\B(0,τ)

η
Ã(τ,d),d

[(f ◦ Φ)(x′, ·)]|∂1ϕ× ∂2ϕ|dx′

for each f ∈ domhτ,ext
A,d,N, where

Ã(τ, d) =

( α
nτ,d

γ

−γ nτ,dβ

)
.

Thus with Nτ,d = supx=(x′,x3)∈Dτ,d |1 − 2x3M(x′) + x2
3K(x′)| we obtain from Proposi-

tion III.7

hτ,ext
A,d,N[f ] ≥ nτ,d

Nτ,d
mÃ(τ,d),d

∫
Dτ,d

|(f ◦ Φ)|2|1− 2x3M(x′) + x2
3K(x′)||∂1ϕ× ∂2ϕ|dx

=
nτ,d
Nτ,d

mÃ(τ,d),d

∫
Ωext
τ,d

|f |2dx,
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for each f ∈ domhτ,ext
A,d,N. It follows with the help of (III.6)

minσess(−∆A) ≥ min
{

minσ(−∆τ,ext
A,d,N), 0

}
≥ nτ,d
Nτ,d

mÃ(τ,d),d. (III.7)

Sending τ →∞ yields nτ,d → 1 and N(τ, d)→ 1, and with the help of Proposition III.7 (i)
we conclude from (III.7)

minσess(−∆A) ≥ mA,d.

From this and Proposition III.7 (ii), sending d→∞ we obtain

minσess(−∆A) ≥ mA

and the assertion of the theorem follows.

Remark III.10. In many cases we have equality in (III.5). For instance, if Σ is a plane
in R3 and α ≥ 0, β ≥ 0 and γ ∈ C are constants then it can be shown by using the tensor
product structure that σess(−∆A) = σ(−∆A) = [mA,∞). Moreover, a local, compact
deformation of the plane or a change of the coefficients α, β and γ inside a compact set does
not change the essential spectrum.

Let us point out that Theorem III.9 can be combined with the operator inequalities
obtained in Section 4 below in order to find the exact minimum of the essential spectrum;
cf. Example IV.6.

We remark that for noncompact Σ the existence of bound states as well as the finiteness
of the number of bound states depend strongly on geometric properties of Σ. See, e.g.,
Section 3 in Ref. 11 for a review in the case of δ-interactions. Also an infinite number of
bound states may occure.

IV. OPERATOR INEQUALITIES AND SPECTRAL CONSEQUENCES

In this section we prove inequalities between Laplacians with generalized interactions on
a given hypersurface Σ. We are here back to the general situation, i.e., Σ is the boundary of
a Lipschitz domain in any dimension n ≥ 2 and can be compact or unbounded. Our main
focus is on instances of generalized interactions which allow an operator inequality against
a δ-interaction of an appropriate strength. This allows us, in particular, to derive spectral
properties of generalized interactions from the corresponding well-studied properties of δ–
interactions. This strategy was applied to δ′-interactions recently in Ref. 4.

Recall that for two selfadjoint operators H1 and H2 in a Hilbert space which are semi-
bounded below we write H1 ≤ H2 if and only if

(H1 − λ)−1 − (H2 − λ)−1 ≥ 0 (IV.1)

holds for all λ ≤ min{minσ(H1),minσ(H2)}. Moreover, denoting the quadratic forms
corresponding to H1 and H2 by h1 and h2, respectively, (IV.1) is equivalent to h1 ≤ h2, i.e.,
domh2 ⊂ domh1 and h1[f ] ≤ h2[f ] for all f ∈ domh2. For further details see Chapter VI in
Ref. 20. Let us emphasize some immediate spectral consequences of such an ordering, which
follow from the min-max principle; cf. Theorem XIII.2 in Ref. 24. For i = 1, 2 we denote
by λk(Hi) the values defined by the min-max principle, i.e., the eigenvalues of Hi below the
bottom of the essential spectrum, counted with multiplicities, including the minimum of
the essential spectrum if the number of eigenvalues below minσess(Hi) is finite. Moreover,
as above we denote by N(Hi) the number of eigenvalues of Hi below minσess(Hi), counted
with multiplicities.

Proposition IV.1. Let H1 and H2 be selfadjoint operators in a Hilbert space which are
semibounded below and satisfy H1 ≤ H2. Then the following assertions hold.
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(i) minσess(H1) ≤ minσess(H2).

(ii) λk(H1) ≤ λk(H2) for all k ∈ N.

(iii) If minσess(H1) = minσess(H2) then

N(H2) ≤ N(H1).

In particular, if N(H2) > 0 then N(H1) > 0.

In this section we write again−∆δ,α̃ for the selfadjoint Laplacian subject to a δ-interaction
of strength α̃ in L2(Rn), i.e., −∆δ,α̃ = −∆

Ã
with

Ã =

(
α̃ 0
0 0

)
,

where α̃ : Σ→ R is a measurable, bounded function.
We start with a class of interactions being a combination of δ and δ′.

Theorem IV.2. Let α, β : Σ → R be functions such that α and 1/β are bounded and
measurable with α(s) ≥ 0 and β(s) > 0 for all s ∈ Σ. Let −∆A be the selfadjoint operator
in Definition II.3 corresponding to

A =

(
α 0
0 β

)
. (IV.2)

Moreover, let α̃ : Σ→ R be measurable and bounded. Then the following assertions hold.

(i) If α̃(s) ≤ α(s) for all s ∈ Σ then

−∆A ≤ −∆δ,α̃.

(ii) If α̃(s) ≤ 4
β(s) for all s ∈ Σ then there exists a unitary operator U in L2(Rn) such

that

U∗(−∆A)U ≤ −∆δ,α̃.

Proof. If α̃(s) ≤ α(s) holds for all s ∈ Σ then we have

domhÃ = H1(Rn) ⊂ H1(Ωi)⊕H1(Ωe) = domhA

and for each f ∈ domhÃ

hA[f ] =

∫
Ωi

|∇fi|2dx+

∫
Ωe

|∇fe|2dx−
∫

Σ

〈(
( 1
β + α

4 )fi + (− 1
β + α

4 )fe

(− 1
β + α

4 )fi + ( 1
β + α

4 )fe

)
,

(
fi

fe

)〉
dσ

=

∫
Ωi

|∇fi|2dx+

∫
Ωe

|∇fe|2dx−
∫

Σ

α|f |2dσ

≤
∫

Ωi

|∇fi|2dx+

∫
Ωe

|∇fe|2dx−
∫

Σ

α̃|f |2dσ

= h
Ã

[f ]

holds since fi|Σ = fe|Σ. Thus hA ≤ hÃ, which implies the assertion (i).

If α̃(s) ≤ 4
β(s) for all s ∈ Σ we define an operator

U : L2(Rn)→ L2(Rn), f = fi ⊕ fe 7→ −fi ⊕ fe.



16

Clearly, U is unitary. Thus the quadratic form

h̃A[f, g] = hA[Uf,Ug], dom h̃A = U∗domhA = H1(Ωi)⊕H1(Ωe),

is densely defined, semibounded below and closed and the corresponding selfadjoint operator

in L2(Rn) equals U∗(−∆A)U . Moreover, domh
Ã
⊂ dom h̃A and for all f ∈ domh

Ã
we

have

h̃A[f ] =

∫
Ωi

|∇fi|2dx+

∫
Ωe

|∇fe|2dx

−
∫

Σ

〈(−( 1
β + α

4 )fi + (− 1
β + α

4 )fe

−(− 1
β + α

4 )fi + ( 1
β + α

4 )fe

)
,

(
−fi

fe

)〉
dσ

=

∫
Ωi

|∇fi|2dx+

∫
Ωe

|∇fe|2dx−
∫

Σ

4
β |f |

2dσ

≤ h
Ã

[f ]

since fi|Σ = fe|Σ. From this assertion (ii) follows.

For α = 0 the assertion of Theorem IV.2 (ii) is in accordance with Theorem 3.6 in Ref. 4.
Let us next consider a class of generalized interactions which is closer to δ′ and involves

a nontrivial coefficient γ.

Theorem IV.3. Let β : Σ→ R be a function with β(s) > 0 for all s ∈ Σ such that 1/β is
measurable and bounded, and let γ ∈ iR be a constant. Let −∆A be the selfadjoint operator
in Definition II.3 corresponding to

A =

(
0 γ
−γ β

)
. (IV.3)

Moreover, let α̃ : Σ→ R be measurable and bounded. Assume that

α̃(s) ≤ 4 + |γ|2

β(s)
(IV.4)

holds for all s ∈ Σ. Then there exists a unitary operator U in L2(Rn) such that

U∗(−∆A)U ≤ −∆δ,α̃.

Proof. Note first that r := |1 + γ
2 | = |1−

γ
2 | = (1 + |γ|2

4 )1/2 is nonzero and define

U : L2(Rn)→ L2(Rn), f = fi ⊕ fe 7→ −
1 + γ

2

r
fi ⊕

1− γ
2

r
fe.

Then U is a unitary operator and the quadratic form

h̃A[f, g] = hA[Uf,Ug], dom h̃A = U∗domhA = H1(Ωi)⊕H1(Ωe),

is densely defined, semibounded below and closed and corresponds to the selfadjoint oper-

ator U∗(−∆A)U . Moreover, domh
Ã
⊂ dom h̃A and for each f ∈ domh

Ã
= H1(Rn) we

have

h̃A[f ] =

∫
Ωi

|∇fi|2dx+

∫
Ωe

|∇fe|2dx

−
∫

Σ

〈(−|1+ γ
2 |(1+ γ

2 )

β fi −
|1− γ2 |(1+ γ

2 )

β fe
−|1+ γ

2 |(
γ
2−1)

β fi +
|1− γ2 |(1−

γ
2 )

β fe

)
,

(
− 1+ γ

2

r fi
1− γ2
r fe

)〉
dσ

=

∫
Ωi

|∇fi|2dx+

∫
Ωe

|∇fe|2dx−
∫

Σ

(
2
|1 + γ

2 |
2

β
+ 2
|1− γ

2 |
2

β

)
|f |2dσ

=

∫
Ωi

|∇fi|2dx+

∫
Ωe

|∇fe|2dx−
∫

Σ

4 + |γ|2

β
|f |2dσ

≤ h
Ã

[f ]
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as fi|Σ = fe|Σ. Thus h̃A ≤ hÃ and the assertion of the theorem follows.

Let us consider a further class of generalized interactions, denoted as generalized inter-
actions of δ-type in the one-dimensional case in Ref. 12.

Theorem IV.4. Let α : Σ → R be a bounded, measurable function with α(s) ≥ 0 for all
s ∈ Σ and let γ ∈ iR be a constant. Let −∆A be the selfadjoint operator in Definition II.3
corresponding to

A =

(
α γ
−γ 0

)
. (IV.5)

Moreover, let α̃ : Σ→ R be measurable and bounded and assume that

α̃(s) ≤ α(s)

|1 + γ
2 |2

holds for all s ∈ Σ. Then there exists a unitary operator U in L2(Rn) such that

U∗(−∆A)U ≤ −∆δ,α̃.

Proof. Let us set r := |1 + γ
2 | = |1−

γ
2 | > 0. Define

U : L2(Rn)→ L2(Rn), f = fi ⊕ fe 7→
1 + γ

2

r
fi ⊕

1− γ
2

r
fe.

Then U is a unitary operator. Let us define a sesquilinear form h̃A in L2(Rn) by

h̃A[f, g] = hA[Uf,Ug], dom h̃A = U∗domhA.

Then h̃A is densely defined, symmetric, semibounded below and closed and the correspond-
ing selfadjoint operator in L2(Rn) equals U∗HAU . Thus, in order to verify the assertion of

the theorem we have to show domh
Ã
⊂ dom h̃A and

h̃A[f ] ≤ h
Ã

[f ], f ∈ domh
Ã
.

For the domain inclusion let f = fi ⊕ fe ∈ domh
Ã

= H1(Rn). Then(
1 +

γ

2

)
(Uf)i|Σ =

(
1 +

γ

2

)1 + γ
2

r
fi|Σ = rfi|Σ = rfe|Σ

=
(

1− γ

2

)1− γ
2

r
fe|Σ =

(
1− γ

2

)
(Uf)e|Σ,

thus Uf ∈ domhA, that is, f ∈ dom h̃A. Moreover, for f ∈ domh
Ã

= H1(Rn) we have

h̃A[f ] = hA

[
1+ γ

2

r fi ⊕
1− γ2
r fe

]
=

∫
Ωi

|∇fi|2dx+

∫
Ωe

|∇fe|2dx−
∫

Σ

α

4

∣∣∣ 1+ γ
2

r fi +
1− γ2
r fe

∣∣∣2dσ
=

∫
Ωi

|∇fi|2dx+

∫
Ωe

|∇fe|2dx−
∫

Σ

α

r2
|f |2dσ

≤ h
Ã

[f ],

where we have used fi|Σ = fe|Σ. Hence h̃A ≤ hÃ, which completes the proof.

In the following corollary we collect spectral implications of the previous theorems; cf.
Proposition IV.1.
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Corollary IV.5. Let either the assumptions of Theorem IV.2 or of Theorem IV.3 or of
Theorem IV.4 be satisfied. Then the following assertions hold.

(i) minσess(−∆A) ≤ minσess(−∆δ,α̃).

(ii) λk(−∆A) ≤ λk(−∆δ,α̃) for all k ∈ N.

(iii) If minσess(−∆A) = minσess(−∆δ,α̃) then

N(−∆δ,α̃) ≤ N(−∆A).

In particular, if N(−∆δ,α̃) > 0 then N(−∆A) > 0.

We remark that for eigenvalues below the bottom of the essential spectrum the inequality
in item (ii) of this corollary may be strict in certain cases; cf. Ref. 22 for inequalities between
δ- and δ′-eigenvalues.

Note that the condition minσess(−∆A) = minσess(−∆δ,α̃) is safisfied automatically if for
instance Σ is compact or if Σ is a plane; cf. Remark III.10. In the following we provide
another example of generalized interactions on a noncompact, asymptotically planar hyper-
surface where this equality holds as well. The example illustrates at the same time how the
assertions of Corollary IV.5 can be applied.

Example IV.6. Let Σ be a conical surface in R3, i.e.,

Σ =
{

(x′, x3) ∈ R3 : x3 = cot(θ)|x′|
}

for some θ ∈ (0, π/2). Then Σ is asymptotically planar, i.e., it can be parametrized in
such a way that Assumption III.8 is satisfied. By Ref. 5 for a constant α̃ > 0 the essential
spectrum of −∆δ,α̃ equals

σess(−∆δ,α̃) =
[
− α2/4,∞

)
. (IV.6)

We consider three different types of generalized interactions on Σ according to Theo-
rem IV.2–Theorem IV.4.

(i) Let α ≥ 0 and β > 0 be constants such that α ≤ 4/β and let A be given in (IV.2).
Moreover, let α̃ = 4/β. Then Theorem III.9, Theorem IV.2 and (IV.6) yield

− α̃
2

4
= − 4

β2
= mA ≤ minσess(−∆A) ≤ minσess(−∆δ,α̃) = − α̃

2

4
,

where mA is given in (III.4). This implies equality; in particular, minσess(−∆A) =
minσess(−∆δ,α̃).

(ii) Let β > 0 and γ ∈ iR be constants and let A be given in (IV.3). Moreover, let
α̃ = (4 + |γ|2)/β. Then Theorem III.9, Theorem IV.3 and (IV.6) imply

− α̃
2

4
= − (4 + |γ|2)2

4β2
= mA ≤ minσess(−∆A) ≤ minσess(−∆δ,α̃) = − α̃

2

4
,

which implies again minσess(−∆A) = minσess(−∆δ,α̃).
(iii) Let α > 0 and γ ∈ iR be constants and let A be given in (IV.5). Moreover, let

α̃ = α/|1 + γ
2 |

2. Then with Theorem III.9, Theorem IV.4 and (IV.6) we get

− α̃
2

4
= − 4α2

(4 + |γ|2)2
= mA ≤ minσess(−∆A) ≤ minσess(−∆δ,α̃) = − α̃

2

4
,

and thus again minσess(−∆A) = minσess(−∆δ,α̃).
We remark that the same reasoning applies to any asymptotically planar hypersurface

for which (IV.6) is known.
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In each of the cases (i)–(iii) it follows from Corollary IV.5 in combination with Theo-
rem 3.2 in Ref. 5 that

N(−∆A) =∞

and that

λk(−∆A) ≤ λk(−∆δ,α̃) < − α̃
2

4

holds for all k ∈ N.

In the following we provide one more operator inequality. We show that a certain class of
generalized interactions admits an estimate from below against the δ′-operator of an appro-
priate strength. This class of interactions, where β = 0 and Re γ may be nontrivial, is called

the intermediate class in Ref. 12. For a function β̃ : Σ → R such that 1/β̃ is measurable
and bounded we denote by −∆δ′,β̃ the selfadjoint operator in L2(Rn) corresponding to a

δ′-interaction of strength β̃, i.e., −∆δ′,β̃ = H
Ã

with

Ã =

(
0 0

0 β̃

)
.

With this notation the following theorem holds.

Theorem IV.7. Let α : Σ → R be a bounded, measurable function with α(s) ≥ 0 for all
s ∈ Σ and let γ : Σ → C be measurable and bounded. Let −∆A be the selfadjoint operator
in Definition II.3 corresponding to

A =

(
α γ
−γ 0

)
.

Moreover, let β̃ : Σ→ R be such that 1/β̃ is measurable and bounded and assume

α(s) ≤ 4

β̃(s)

for all s ∈ Σ. Then there exists a unitary operator U in L2(Rn) such that

U∗(−∆δ′,β̃)U ≤ −∆A.

Proof. Consider the unitary operator

U : L2(Rn)→ L2(Rn), f = fi ⊕ fe 7→ fi ⊕−fe.

Let us define a sesquilinear form h̃
Ã

in L2(Rn) by

h̃
Ã

[f, g] = h
Ã

[Uf,Ug], dom h̃
Ã

= U∗domh
Ã

= H1(Ωi)⊕H1(Ωe).

Then the inclusion domhA ⊂ dom h̃
Ã

is obvious and for f ∈ domhA we have

h̃
Ã

[f ] =

∫
Ωi

|∇fi|2dx+

∫
Ωe

|∇fe|2dx−
∫

Σ

1

β̃
|fi + fe|2dσ

≤
∫

Ωi

|∇fi|2dx+

∫
Ωe

|∇fe|2dx−
∫

Σ

α

4
|fi + fe|2dσ

= hA[f ].

From this the claim follows.



20

We immediately obtain the following corollary on the spectrum.

Corollary IV.8. Let the assumptions of Theorem IV.7 be satisfied. Then the following
assertions hold.

(i) minσess(−∆δ′,β̃) ≤ minσess(−∆A).

(ii) λk(−∆δ′,β̃) ≤ λk(−∆A) for all k ∈ N.

(iii) If minσess(−∆A) = minσess(−∆δ′,β̃) then

N(−∆A) ≤ N(−∆δ′,β̃).

Appendix A: Proof of Proposition III.7

In this appendix we provide a proof for Proposition III.7.
First, it is not difficult to verify that the form ηA,d is semibounded from below; cf. the

proof of Lemma II.2. Moreover, note that ηA is also closed and densely defined and the
selfadjoint operator in L2(−d, d) corresponding to ηA,d is given by

HA,dψ = −ψ′′− ⊕−ψ′′+, ψ = ψ− ⊕ ψ+ ∈ domHA,d,

where domHA,d consists of all ψ = ψ− ⊕ ψ+ ∈ H2(−d, 0) ⊕ H2(0, d) which satisfy the
conditions

ψ′(0−)− ψ′(0+) =
α

2

(
ψ(0−) + ψ(0+)

)
+
γ

2

(
ψ′(0−) + ψ′(0+)

)
,

ψ(0−)− ψ(0+) = −γ
2

(
ψ(0−) + ψ(0+)

)
+
β

2

(
ψ′(0−) + ψ′(0+)

)
,

ψ′(−d) = 0,

ψ′(d) = 0.

(A.1)

The spectrum of HA,d is purely discrete; in particular, the infimum of the spectrum is
given by an eigenvalue, which is nonpositive, as we will see. In the case α = β = 0 clearly
ηA,d is nonnegative and ηA,d[ψ] = 0 holds for an appropriate normed, piecewise constant
function, so that all statements of the lemma follow immediately. Therefore in the following
we assume that α > 0 or β > 0. Observe that λ = −k2 with k > 0 is an eigenvalue of HA,d

if and only if

g(k) = h(k)j(k), (A.2)

where

g(k) = |γ|2k(1− e4kd), h(k) = (−2α− 4k)e−2kd − 2α+ 4k

and

j(k) = e2kd
(

1 +
β

2
k
)

+ e4kd
(

1− β

2
k
)
.

Indeed, each ψ = ψ− ⊕ ψ+ ∈ ker(HA,d − λ) satisfies

ψ−(x) = Ae−kx +Bekx and ψ+(x) = Ce−kx +Dekx
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and the conditions (A.1) turn into

−Ak +Bk + Ck −Dk =
α

2
(A+B + C +D) +

γ

2
(−Ak +Bk − Ck +Dk),

A+B − C −D = −γ
2

(A+B + C +D) +
β

2
(−Ak +Bk − Ck +Dk),

−Akekd +Bke−kd = 0,

−Cke−kd +Dkekd = 0.

Furthermore, this set of equations allows a nontrivial choice of the coefficients A,B,C,D if
and only if

det


α
2 + k

(
1− γ

2

)
α
2 − k

(
1− γ

2

)
α
2 − k

(
1 + γ

2

)
α
2 + k

(
1 + γ

2

)
−β2 k −

(
1 + γ

2

)
β
2 k −

(
1 + γ

2

)
−β2 k +

(
1− γ

2

)
β
2 k +

(
1− γ

2

)
−kekd ke−kd 0 0

0 0 −ke−kd kekd

 = 0,

and the value of the determinant equals

−1

2
e−2kdk2

(
g(k)− h(k)j(k)

)
,

which leads to (A.2).
Our aim is to estimate the largest solution k > 0 of (A.2), which corresponds to the

smallest eigenvalue of HA,d. For this we distinguish several cases. Let us start with the
case β = 0 (and α > 0). In this case we have j(k) = e2kd + e4kd and this function has no
zeros. Thus (A.2) can be rewritten as

g(k)

j(k)
= h(k). (A.3)

Note that in this case (g
j

)′
(k) = −|γ|2e−2kd(e2kd − 1 + 2kd) < 0

holds for all k > 0 and thus g/j is strictly monotonously decreasing on [0,∞). Moreover,
(g/j)(0) = 0 and (g/j)(k) → −∞ as k → +∞. On the other hand, the derivative of h is
given by

h′(k) = 4 + 4e−2kd(2kd+ αd− 1) > 4− 4e−2kd > 0

for each k > 0, hence h is strictly monotonously increasing on [0,∞). Moreover,

h(0) = −4α and lim
k→+∞

h(k) = +∞. (A.4)

As α > 0 it follows that (A.3) has precisely one positive solution. Note further that for each
k > 0 and each ε ≥ 0 we have(g

j
− h
)

(k + ε) =
1

e−2(k+ε)d + 1

(
e−4(k+ε)d

(
|γ|2(k + ε) + 2α+ 4k + 4ε

)
+ 4αe−2(k+ε)d − |γ|2(k + ε) + 2α− 4k − 4ε

)
.

On the one hand this implies(g
j
− h
)( 2α

4 + |γ|2
)

= 4αe
−4α

4+|γ|2
d
> 0
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and, on the other hand,

lim
d→+∞

(g
j
− h
)( 2α

4 + |γ|2
+ ε
)

= −|γ|2ε− 4ε < 0

for each ε > 0. Thus for each ε > 0 there exists d0 > 0 such that for each d ≥ d0 the
only positive solution of (A.3) is contained in the interval ( 2α

4+|γ|2 ,
2α

4+|γ|2 + ε). This implies

mA,d ≤ mA and limd→∞mA,d = mA in the case β = 0 and α > 0.
Let us come to the case β > 0. We show first that in this case the equation (A.2) has

either one or two positive solutions and that, if there are two, at each solution the function
g − hj has a sign change. For this we distinguish the two possibilities γ = 0 and γ 6= 0. If
γ = 0 then the equation (A.2) is satisfied if and only if k is a zero of either j or h. Since h
is strictly monotonously increasing and satisfies (A.4), h has precisely one positive zero if
α > 0 and no positive zero if α = 0. Moreover, j has precisely one positive zero k0. Indeed,
the equation j(k) = 0 can be rewritten as

e−2kd + 1 = −β
2
k
(
e−2kd − 1

)
,

where the left-hand side is strictly monotonously decreasing on [0,∞) with values in (1, 2],
whilst the right-hand side is strictly monotonously increasing on [0,∞), taking the value 0
at k = 0 and the limit +∞ as k → +∞. Thus for γ = 0 the equation (A.2) has at most
two solutions. Observe that j is positive to the left of its zero and negative to the right.
Hence, if the zeros of j and h do not coincide then jh has a sign change at each of the two.
In the case γ 6= 0 we can write (A.2) equivalently as (A.3) and the function g is strictly
monotonously decreasing with g(k) < 0 for all k > 0. Furthermore, for the unique positive
zero k1 of j we have (g/j)(k) < 0 for k ∈ (0, k1) and (g/j)(k) > 0 for k ∈ (k1,∞), hence

lim
k↗k1

(g/j)(k) = −∞ and lim
k↘k1

(g/j)(k) = +∞.

Moreover,

(g/j)(0) = 0 and lim
k→+∞

(g/j)(k) =
2

β
|γ|2,

as a simple calculation shows. Finally,

(g/j)′(k) = −4e−2kd|γ|2 −1 + e6kd + kd(2 + βk)(
2 + βk + e2kd(2− βk)

)2
− 4e−2kd|γ|2 e

2kd(−1− 2kd(βk − 2)) + e4kd(1 + kd(βk + 2))(
2 + βk + e2kd(2− βk)

)2 ,

which is negative for all k ∈ (0, k1)∪ (k1,∞). Thus g/j is strictly monotonously decreasing
on (0, k1)∪ (k1,∞). Comparing the properties of g/j and h it follows that there is precisely
one positive solution of (A.2) if α = 0 and precisely two positive solutions if α > 0 and that
g/j−h and thus g−hj changes its sign at each solution. Let now γ be again arbitrary and
let us estimate the largest solution. For each k > 0 and each ε ≥ 0 we have

e−4(k+ε)d(g − jh)(k + ε) = Ae−4(k+ε)d + Be−2(k+ε)d + C

with

A = (α+ 2(k + ε))(2 + β(k + ε)) + (k + ε)|γ|2, B = 4(α− β(k + ε)2)

and

C = −(α− 2(k + ε))(−2 + β(k + ε))− (k + ε)|γ|2.
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On the one hand for ε > 0 this yields

lim
d→+∞

e−4(k+ε)d(g − jh)(k + ε) = C

and thus for k0 = (4 + detA +
√
−16αβ + (4 + detA)2)/(4β)

lim
d→+∞

e−4(k0+ε)d(g − jh)(k0 + ε) = ε
(
2βε+

√
−16αβ + (4 + detA)2

)
> 0.

On the other hand, we obtain

e−4k0d(g − jh)(k0) =
(4 + detA)

(
4 + detA +

√
−16αβ + (4 + detA)2

)
2β

e−4k0d

+

(
4α−

(
4 + detA +

√
−16αβ + (4 + detA)2

)2
4β

)
e−2k0d,

which is negative for all sufficiently large d since

16αβ < (4 + detA +
√
−16αβ + (4 + detA)2)2

whenever we are not in the case γ = 0 and αβ = 4. Thus for each ε > 0 there exists d0 > 0
such that for each d ≥ d0 the function g − jh changes its sign in the interval (k0, k0 + ε).
Observe that the so-obtained sequence of eigenvalues of HA,d does really represent the
minima of the spectra. If not there would exist an accumulation point (since the minima
are monotonous with respect to d as one can see easily via the quadratic forms) k1 > k0 of
solutions of (A.2) as d→∞. If ε1 > 0 and ε2 > ε1 are chosen such that k0+ε1 < k1 < k0+ε2

then the above considerations yield that for each sufficiently large d the signs of g − jh at
k0 and k0 + ε1 as well as at k0 and k0 + ε2 are opposite; in particular, for each sufficiently
large d the numbers (g − jh)(k0 + ε1) and (g − jh)(k0 + ε2) have the same sign. On the
other hand, there is exactly one solution of (A.2) in (k1, k0 + ε2) ⊂ (k0 + ε1, k0 + ε2) and
the sign of g − jh changes at that solution, which is a contradiction.

It remains to consider the case γ = 0 and αβ = 4. It is easy to see that in this case the
zeros of h and j coincide for each d > 0. Thus the only positive solution of (A.2) in this case
is given by the zero of, e.g., h. In this case mA = α/2 and we have h(α/2) = −4αe−αd < 0
as well as limd→0 h(α/2 + ε) = 4ε > 0 for each ε and the same reasoning as in the previous
cases implies that the only negative eigenvalue of HA,d converges to mA as d tends to ∞.
This completes the proof of item (ii) of the lemma.

If d > 0 is fixed then clearly the positive solutions of (A.2) depend continuously on α
and β. Moreover, as nτ converges to 1 for τ →∞, it follows from the above considerations

that for each sufficiently large τ the number of positive solutions of (A.2) for Ã(τ) and A
coincide (up to a possible crossing of solutions if γ = 0 and αβ = 4). Thus the claim of (i)
follows and the proof of Proposition III.7 is complete.
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