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Abstrat In this paper we study interation of two misible liquids in porous media. The

model onsists of a system of equations oupling hydrodynami equations with Korteweg

stress terms and reation-di�usion equation for the onentration. We assume that the uid

is inompressible and its motion is desribed by the Dary law. The global existene and

uniqueness of solutions is established for some optimal onditions on the reation soure term

and external fores funtions. Numerial simulations are performed to show the behavior of

two misible liquids subjeted to Korteweg stress.
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1 Introdution

There exists transient interfaial phenomena between two misible liquids similar to interfa-

ial tension [1℄. However they are rather weak and they deay in time beause of the mixing

of the two liquids due to moleular di�usion [1, 2℄. Investigation of suh phenomena is mo-

tivated by enhaned oil reovery, hydrology, frontal polymerization, groundwater pollution

and �ltration [3, 7, 8, 9, 10℄.

In 1901 Korteweg introdued additional stress terms in the Navier-Stokes equations in

order to desribe the inuene of the omposition gradients on uid motion [11℄. In 1949,

Zeldovih studied the existene of a transitional interfaial tension and desribed it with the

following expression [12℄:

� = k

[C℄

2

Æ

;

where [C℄ is the variation of mass fration through the transition zone, and Æ is the width
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this zone. This relationship was generalized by Rousar and Nauman to the systems far from

equilibrium, for linear onentration gradients [13℄. In 1958, Cahn and Hilliard introdued

the free energy density for a non-homogeneous uid [14℄:

e = e

0

+ kjr�j

2

;

where e

0

is the energy density of a homogeneous uid and � denotes the density of the uid.

A misible liquid model with fully inompressible Navier-Stokes equations is studied in

[15℄. Modelling and experiments of misible liquids in relation with mirogravity experiments

were arried out in [3℄-[6℄. The existene and uniqueness of solutions for misible liquids

model in porous media is studied in [16℄.

In this paper, we ontinue of misible liquids in porous media. We onsider a three-

dimensional formulation and introdue the soure terms in the equation of motion and in

the equation for the onentration. The paper is organized as follows. The next setion

is devoted to the model presentation, while Setion 3 deals with the existene of solutions.

We establish the uniqueness of solutions in Setion 4 followed in Setion 5 by numerial

simulations.

2 Model presentation

The model desribing the interation of two misible liquids is written as follows:

�C

�t

+ u:rC = d�C � Cg; (2.1)

�u

�t

+

�

K

u = �rp+r:T (C) + f; (2.2)

div(u) = 0: (2.3)

We onsider the boundary onditions:

�C

�n

= 0; u:n = 0; on �; (2.4)

and the initial onditions:

C(x; 0) = C

0

(x); u(x; 0) = u

0

(x); x 2 
: (2.5)

Here u is the veloity, p is the pressure, C is the onentration, d is the oeÆient of mass

di�usion, � is the visosity, K is the permeability of the medium, � is a Lipshitz ontinuous

boundary of the open bounded domain 
, n is the unit outward normal vetor to �, f is

the funtion desribing the external fores suh as gravity and buoyany while the term, g

stands for the reation soure term. The stress tensor terms are given by the relations:

T

11

= k

�

�C

�x

2

�

2

; T

12

= T

21

= �k

�C

�x

1

�C

�x

2

; T

13

= T

31

= �k

�C

�x

1

�C

�x

3

;
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T

23

= T

32

= �k

�C

�x

2

�C

�x

3

; T

22

= k

�

�C

�x

1

�

2

; T

33

= k

�

�C

�x

3

�

2

;

where k is nonnegative onstant. We set

r:T (C) =

0

B

B

B

B

B

B

B

B

B

�

�T

11

�x

1

+

�T

12

�x

2

+

�T

13

�x

3

�T

21

�x

1

+

�T

22

�x

2

+

�T

23

�x

3

�T

31

�x

1

+

�T

32

�x

2

+

�T

33

�x

3

1

C

C

C

C

C

C

C

C

C

A

: (2.6)

In order to state the problem in the variational form we need to introdue funtion spaes:

S

u

= fu 2 H(div; 
); div(u) = 0; u:n = 0 on �g; S

C

= fC 2 H

2

(
);

�C

�n

= 0 on �g:

The variational form of the problem is to �nd C, u suh that for all B, v the following

equalities hold:

(

�C

�t

; B) + d(rC;rB) + (u:rC;B) + (gC;B) = 0; (2.7)

(

�u

�t

; v) + �

p

(u; v)� (div T (C); v)� (f; v) = 0: (2.8)

Here �

p

= �=K. The funtions f(x; t) and g(x) are assumed to be a suÆiently regular in 


suh that the �rst is bounded in L

1

(0; t;L

2

(
)), the seond is bounded in L

1

(
) and both

of them are positive.

3 Global existene of solutions

We begin the proof of existene of solutions with the following lemmas.

Lemma 3.1 The onentration C is bounded in the L

1

(0; t;L

2

) spae.

Proof Choosing C as test funtion in (2.7) and taking into aount that g is a positive

funtion, we get the inequality:

1

2

�

�t

(C;C) + d(rC;rC) + (u:rC;C) � 0:

Sine u 2 S

u

, the last term vanishes. The seond term is positive, so integrating by time we

obtain:
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kC(t = s)k

2

L

2

� kC

0

k

2

L

2

:

From this inequality, it follows that C is bounded in L

1

(0; t;L

2

).

�

Lemma 3.2 The onentration C is bounded in L

1

(0; t;H

1

) and the veloity u is bounded

in L

1

(0; t;L

2

).

Proof Choosing �k�C as test funtion in equation (2.7), we have:

(

�C

�t

;�k�C) + (u:rC;�k�C) = d(�C;�k�C) + (gC; k�C):

Next, sine the reation soure term g is bounded, we get from the previous estimate:

k

2

�

�t

(rC;rC) + dk(�C;�C)� k(u:rC;�C) � kg

0

(rC;rC):

Then

1

2

�

�t

(rC;rC) + d(�C;�C) � (u:rC;�C) + g

0

(rC;rC): (3.1)

Also, by hoosing in (2.8), u as test funtion we obtain:

1

2

�

�t

(u; u) + �

p

(u; u)� (r:T (C); u) = (f; u): (3.2)

In order to have an expliit expression of r:T (C), we alulate its �rst omponent:

�T

11

�x

1

+

�T

12

�x

2

+

�T

13

�x

3

= 2k

�C

�x

2

�

2

C

�x

1

�x

2

�k

�

2

C

�x

1

�x

2

�C

�x

2

�k

�C

�x

1

�

2

C

�x

2

2

�k

�

2

C

�x

1

�x

3

�C

�x

2

�k

�C

�x

1

�

2

C

�x

2

3

:

(3.3)

Hene

�T

11

�x

1

+

�T

12

�x

2

+

�T

13

�x

3

= k

�C

�x

1

�

2

C

�x

1

�x

2

+ k

�C

�x

1

�

2

C

�x

1

�x

3

+ k

�C

�x

1

�

2

C

�x

2

1

� k

�C

�x

1

�C:

Then

�T

11

�x

1

+

�T

12

�x

2

+

�T

13

�x

3

=

k

2

�

�x

1

(rC)

2

� k

�C

�x

1

�C:

Following the same steps for the seond omponent, we onlude:

r:T =

k

2

r(rC)

2

� k�CrC:

Replaing this last equality in (3.2) and sine u 2 S

u

, we have:
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1

2

�

�t

(u; u) + �

p

(u; u)� k(�CrC; u) = (f; u): (3.4)

Adding (3.4) to the inequality (3.1), and with the fat u 2 S

u

and C 2 S



, we have:

1

2

�

�t

((u; u) + k(rC;rC)) + �

p

(u; u) + dk(�C;�C) � (f; u) + g

0

(rC;rC):

1

2

�

�t

((u; u) + k(rC;rC)) + �

p

(u; u) + dk(�C;�C) �

1

2

(f; f) +

1

2

(u; u) + g

0

(rC;rC):

Sine the third and the fourth terms in the left hand side inequality are positives, we have:

�

�t

((u; u) + k(rC;rC)) � (f; f) + (u; u) + 2g

0

(rC;rC):

Therefore

�

�t

((u; u) + (rC;rC)) �

(f; f)

min(1; k)

+

max(1; 2g

0

)

min(1; k)

((u; u) + (rC;rC)) :

By integrating over time, and sine f is bound in L

1

(0; t;L

2

), we have:

ku(t = s)k

L

2

+ krC(t = s)k

L

2

� ku

0

k

L

2

+ krC

0

k

L

2

+

f

0

min(1; k)

+

max(1; 2g

0

)

min(1; k)

Z

t

0

(ku(s)k

L

2

+ krC(s)k

L

2

) ds:

From the Gronwal Lemma, it follows:

ku(t = s)k

L

2

+ krC(t = s)k

L

2

� (ku

0

k

L

2

+ krC

0

k

L

2

+

f

0

min(1; k)

)� exp(

max(1; 2g

0

)t

min(1; k)

):

We onlude that C is bounded in L

1

(0; t;H

1

) and u is bounded in L

1

(0; t;L

2

) for t 2 [0;T ℄.

�

Lemma 3.3 The time derivative of the onentration

�C

�t

is bounded in L

2

(0; t;L

2

).

Proof From the equation (2.7), sine g is a positive funtion and by the triangle inequality,

we have:

k

�C

�t

k

L

2

� dk�Ck

L

2

+ ku:rCk

L

2

:
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Using H�older inequality, we obtain:

k

�C

�t

k

L

2

� dk�Ck

L

2

+ kuk

L

4

krCk

L

4

;

and from the Gagliardo-Nirenberg inequality, it follows that 9N > 0 suh that:

k

�C

�t

k

L

2

� dk�Ck

L

2

+Nkuk

1=2

L

2

kruk

1=2

L

2

krCk

1=2

L

2

krCk

1=2

H

1

:

We onlude that

�C

�t

is bounded in L

2

(0; t;L

2

).

�

Lemma 3.4 The time derivative of the veloity

�u

�t

is bounded in L

2

(0; t;L

2

).

Proof To prove this lemma, it is suÆient to remark thatr:T (C) is a sum of the expressions

of the form �D

i

(D

j

CD

l

C), where D

i

=

�

�x

i

; i = 1; 2; 3 and � depending on i; j and l (see

for example (3.3)). We have the following:

kD

i

(D

j

CD

l

C)k

S

0

C

� kD

j

CD

l

Ck

L

2

(
)

� kD

j

Ck

L

4

(
)

kD

l

Ck

L

4

(
)

�MkD

j

Ck

1=2

L

2

(
)

kD

l

Ck

1=2

L

2

(
)

kD

j

Ck

1=2

H

1

(
)

kD

l

Ck

1=2

H

1

(
)

:

We notie that f is a bounded funtion. Using the the same reasoning as for the previous

lemmas, we prove that

�u

�t

is bounded in L

2

(0; t;L

2

).

�

We an now formulate the main result of this setion.

Theorem 3.5 The problem (2.1)-(2.5) admits a global solution.

Proof It is easy to see that the problem admits a �nite-dimensional solutions C

m

and u

m

de�ned on the interval of time [0;T

m

[. From the previous Lemmas applied to C

m

and u

m

we

dedue the global existene of those solutions.

Furthermore, the previous Lemmas provide the existene of subsequenes, still denoted

by C

m

and u

m

, suh that

C

m

! C in L

2

(0; T ;S

C

) weakly;

C

m

! C in L

1

(0; T ;H

1

) weak-star;

C

0

m

! C

0

in L

2

(0; T ;S

0

C

) weakly;
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and

u

m

! u in L

2

(0; T ;S

u

) weakly;

u

m

! u in L

1

(0; T ;H

div

) weak-star;

u

0

m

! u

0

in L

2

(0; T ;S

0

u

) weakly;

By some lassial ompatness theorems (see for example [17, 18℄), we also obtain the

strong onvergene of (C

m

; u

m

) and by passing to the limit we obtain the existene of solu-

tions.

�

4 Uniqueness of solution

In order to prove uniqueness of solution, we will assume that the problem (2.1)-(2.5) has two

di�erent solutions (C

1

; u

1

) and (C

2

; u

2

). From (2.1), we have:

�

�t

(C

1

� C

2

)� d�(C

1

� C

2

) + u

1

rC

1

� u

2

rC

2

+ g(C

1

� C

2

) = 0; (4.1)

and from (2.2), we also get:

�

�t

(u

1

� u

2

) + �

p

(u

1

� u

2

) +r(p

1

� p

2

) =

k

2

r

�

(rC

1

)

2

� (rC

2

)

2

�

�k(�C

1

rC

1

��C

2

rC

2

): (4.2)

Multiplying (4.1) by �k�(C

1

� C

2

) and integrating, we obtain:

(

�

�t

(C

1

� C

2

);�k�(C

1

� C

2

)) + dk(�(C

1

� C

2

);�(C

1

� C

2

))

+(u

1

rC

1

;�k�(C

1

�C

2

))+(u

2

rC

2

; k�(C

1

�C

2

))+(g(C

1

�C

2

);�k�(C

1

�C

2

)) = 0:

Similarly, multiplying (4.2) by u

1

� u

2

and integrating, we have:

(

�

�t

(u

1

� u

2

); u

1

� u

2

) + �

p

(u

1

� u

2

; u

1

� u

2

) =

k

2

(r

�

(rC

1

)

2

� (rC

2

)

2

�

; u

1

� u

2

)

�k(�C

1

rC

1

��C

2

rC

2

; u

1

� u

2

):

Adding the two last equalities, using Green formula and the fat that u

i

2 S

u

, we onlude

that
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1

2

�

�t

(ku

1

� u

2

k

2

L

2

+ kkrC

1

�rC

2

k

2

L

2

) + �

p

ku

1

� u

2

k

2

L

2

+ kdk�(C

1

� C

2

)k

2

L

2

=

k(u

1

r(C

1

� C

2

);�(C

1

� C

2

)) + k((u

1

� u

2

)rC

2

;�(C

1

� C

2

))�

k(�C

1

r(C

1

� C

2

); u

1

� u

2

) + k(��C

1

rC

2

+�C

2

rC

2

; u

1

� u

2

)+

k(g(C

1

� C

2

);�(C

1

� C

2

)):

Therefore

1

2

�

�t

(ku

1

� u

2

k

2

L

2

+ kkrC

1

�rC

2

k

2

L

2

) + �

p

ku

1

� u

2

k

2

L

2

+ kdk�(C

1

� C

2

)k

2

L

2

=

k(u

1

r(C

1

� C

2

);�(C

1

� C

2

))� k(�C

1

r(C

1

� C

2

); u

1

� u

2

)+

k(g(C

1

� C

2

);�(C

1

� C

2

)): (4.3)

We will now estimate the right-hand side of this equality. We put C = C

1

� C

2

and u =

u

1

� u

2

. From the H�older inequality it follows that:

j(�C

1

rC; u)j � k�C

1

k

L

2

krC:uk

L

2

� k�C

1

k

L

2

krCk

L

4

kuk

(L

4

)

2

:

Also, from the Gagliardo-Nirenberg inequality we get:

j(�C

1

rC; u)j � N

1

k�C

1

k

L

2

krCk

1=2

L

2

k�Ck

1=2

L

2

kuk

1=2

L

2

kruk

1=2

L

2

:

Next, applying the Young inequality, we obtain:

j(�C

1

rC; u)j �

N

1

4

k�Ck

2

L

2

+

3N

1

4

k�C

1

k

4=3

L

2

krCk

2=3

L

2

kuk

2=3

L

2

kruk

2=3

L

2

:

Using that same tehnis, we obtain the following inequality:

j(u

1

rC;�C)j � k�Ck

L

2

krC:u

1

k

L

2

� k�Ck

L

2

krCk

L

4

ku

1

k

(L

4

)

2

:

Therefore

j(u

1

rC;�C)j � N

2

k�Ck

3=2

L

2

krCk

1=2

L

2

ku

1

k

1=2

L

2

kru

1

k

1=2

L

2

:

Finally

j(u

1

rC;�C)j �

3N

2

4

k�Ck

2

L

2

+

N

2

4

krCk

2

L

2

ku

1

k

2

L

2

kru

1

k

2

L

2

:

From (4.3) and assuming that N

1

+ 3N

2

� 4d, we have:

1

2

�

�t

(kuk

2

L

2

+ kkrCk

2

L

2

) �

3N

1

k

2

k�C

1

k

4=3

L

2

krCk

2=3

L

2

kuk

2=3

L

2

kruk

2=3

L

2
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+

N

2

k

2

krCk

2

L

2

ku

1

k

2

L

2

kru

1

k

2

L

2

+ kg

0

krCk

2

L

2

� (kuk

2

L

2

+ kkrCk

2

L

2

)�

�

N

2

2

krCk

2

L

2

ku

1

k

2

L

2

kru

1

k

2

L

2

+

3N

1

k

2

k�C

1

k

4=3

L

2

krCk

2=3

L

2

kuk

�4=3

L

2

kruk

2=3

L

2

+ kg

0

�

:

Denote

�(t) = krCk

2

L

2

ku

1

k

2

L

2

kru

1

k

2

L

2

+ k�C

1

k

4=3

L

2

krCk

2=3

L

2

kuk

�4=3

L

2

kruk

2=3

L

2

+ 1

and

M = max(

N

2

2

;

3N

1

k

2

; kg

0

):

Then we have the following estimate

d

dt

(exp(M

Z

t

0

�(s)ds)(kuk

2

L

2

+ kkrCk

2

L

2

)) � 0:

for all t � 0. From this we dedue that

exp(M

Z

t

0

�(s)ds)(kuk

2

L

2

+ kkrCk

2

L

2

) � ku(0)k

2

L

2

+ kkrC(0)k

2

L

2

:

Sine u(0) = C(0) = 0, we onlude the uniqueness of solution. We an now statee the

theorem on the uniqueness of solution.

Theorem 4.1 The problem (2.1)-(2.5) admits a unique solution.

5 Numerial simulations

For numerial simulations, we will onsider the 2D problem without reation term and

external fores. We will introdue the stream funtion de�ned by the equalities

u

1

=

� 

�x

2

; u

2

= �

� 

�x

1

;

and the vortiity ! = rot(u) The problem beomes:

�!

�t

+ �

p

! =

�

�x

1

(

�T

21

�x

1

+

�T

22

�x

2

)�

�

�x

2

(

�T

11

�x

1

+

�T

12

�x

2

); (5.1)

�C

�t

+ (

� 

�x

2

;�

� 

�x

1

):rC = d�C; (5.2)

! = �� (5.3)
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Numerial method. We begin with equation (5.2). It is solved by the alternative dire-

tion impliit �nite di�erene method with Thomas algorithm:

C

n+

1

2

i;j

� C

n

i;j

h

t

=2

= d

0

�

C

n+

1

2

i�1;j

� 2C

n+

1

2

i;j

+ C

n+

1

2

i+1;j

h

2

x

+

C

n

i;j�1

� 2C

n

i;j

+ C

n

i;j+1

h

2

y

1

A

�

 

n

i;j+1

�  

n

i;j�1

2h

y

C

n+

1

2

i+1;j

� C

n+

1

2

i�1;j

2h

x

+

 

n

i+1;j

�  

n

i�1;j

2h

x

C

n

i;j+1

� C

n

i;j�1

2h

y

;

C

n+1

i;j

� C

n+

1

2

i;j

h

t

=2

= d

0

�

C

n+

1

2

i�1;j

� 2C

n+

1

2

i;j

+ C

n+

1

2

i+1;j

h

2

x

+

C

n+1

i;j�1

� 2C

n+1

i;j

+ C

n+1

i;j+1

h

2

y

1

A

�

 

n

i;j+1

�  

n

i;j�1

2h

y

C

n+

1

2

i+1;j

� C

n+

1

2

i�1;j

2h

x

+

 

n

i+1;j

�  

n

i�1;j

2h

x

C

n+1

i;j+1

� C

n+1

i;j�1

2h

y

:

In equation (5.1) we replae T

ij

by their expressions through the onentrations:

�!

�t

+ �

p

! = k

�

�C

�x

1

�

�

3

C

�x

3

2

+

�

3

C

�x

2

1

�x

2

�

�

�C

�x

2

�

�

3

C

�x

3

1

+

�

3

C

�x

1

�x

2

2

��

(5.4)

We use the �nite di�erene sheme

!

n+1

i;j

=

1

1 + h

t

�

p

!

n

i;j

+ k

h

t

1 + h

t

�

p

 

C

n+1

i+1;j

� C

n+1

i�1;j

2h

x

 

C

n+1

i;j+2

� 2C

n+1

i;j+1

+ 2C

n+1

i;j�1

� C

n+1

i;j�2

2h

3

y

+

(C

n+1

i+1;j+1

� C

n+1

i+1;j�1

)� 2(C

n+1

i;j+1

� C

n+1

i;j�1

) + (C

n+1

i�1;j+1

� C

n+1

i�1;j�1

)

2h

2

x

h

y

!

�

C

n+1

i;j+1

� C

n+1

i;j�1

2h

y

 

C

n+1

i+2;j

� 2C

n+1

i+1;j

+ 2C

n+1

i�1;j

� C

n+1

i�2;j

2h

3

x

+

(C

n+1

i+1;j+1

� C

n+1

i�1;j+1

)� 2(C

n+1

i+1;j

� C

n+1

i�1;j

) + (C

n+1

i+1;j�1

� C

n+1

i�1;j�1

)

2h

2

y

h

x

!!

:

Equation (5.3) is solved by the fast Fourier transform method.

Numerial results. An example of numerial simulations is shown in Figures 1 and 2.

Figure 1 shows the evolution of the misible drop in time. The transient interfaial tension

a�ets the geometry of the drop and its shape beomes more spherial. At the same time,

the maximum of the onentration dereases due to di�usion (Figure 2, left). The stream

lines is shown in Fig. 2 (right). Though transient interfaial phenomena are suÆiently

weak, they provoke the motion of uid whih is initially quiesent.
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Figure 1: Evolution of the onentration during 100 seonds for d = 3� 10

�3

, k = 10

�7

and

�

p

= 100 .

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

−6

Time

M
a
x
(
ψ

)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 2: The maximum of stream funtion as funtion of time for for d = 3�10
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, k = 10
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and �

p

= 10 (left). The stream lines for the same parameters and after 100 s (right)
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