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The Euler Circular-Reasoning Gap:
The Exponential Revisited
Andrew Dynneson, M.A. [[ andrewdynneson@gmail.com ]]

“One of the most remarkable, almost astounding, formulas in all of mathemat-
ics.” – Richard Feynman

The fundamental constant e has intrigued mathematicians such as Euler for cen-
turies. Several definitions for e have been posited, for example the two main defini-
tions, e = lim

x→∞

(
1 + 1

x

)x
, or e is such that the area(1/x, 1, e) = 1, and ineed, if you

take one for granted, you can show the other, such that the two definitions are equiv-
alent. And, invariably, every textbook I have examined has either assumed one and
shown the other, or else skipped the interplay alltogether. However, a definitional, and
hence axiomatic assumption should be reserved for a statement that is “fundamentally
true,” and the Euler material is anything but trivial.

Realizing that the derivatives of the exponential and logarithmic functions are in-
variably circular in their reasoning, what I set out to do was to attempt to “close the
loop,” by expanding the intuition to a level of abstraction not normally achieved at the
Calculus I level. In fact, Euler’s Formula is usually reserved for Calculus II at the earli-
est, and can be attained as an example of Taylor’s Expansion. Instead, in the following
discourse, Euler’s Formula is derived by way of exponential-growth. Passing to the
complex-realm and applying DeMoivre’s Theorem, it inevitably becomes circular.

Several important concepts in Calculus are reinforced by this lecture; as the number
of edges of the polygon approach infinity, the polygon approaches that of a circle,
which is readily grasped by the students visually. Every student, at every skill level,
that attends this lecture will take something of value away from it. Many of the students
have seen i before in Precalculus, and those that have not will gain a valuable exposure
to this ubiquitous imaginary number.

Important Trigonometry Limits
We will take two limits for granted, that will be used in forthcoming discussion. These
appear as Larson’s[1] Theorem 1.9, the first is proven there:

lim
θ→0

sin θ

θ
= 1

This approximation will also used as: When θ ≈ 0, then sin θ ≈ θ.
A good explanation for the second limit can be found [1]:

lim
θ→0

1− cos θ

θ
= 0

This approximation will also be used as: When θ ≈ 0, then 1 − cos θ ≈ 0, and
converges faster than θ, in other words cos θ ≈ 1, and it converges to 1 quickly.

1http://math.hws.edu/~mitchell/Math130F12/tufte-latex/TrigLimits.pdf
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These two approximations are easily illustrated by the following table, where one
sees the stark difference between cosine and sine as the angle approaches zero:

Exponential Growth
We also provide validation for continuous exponential growth, which is worth review-
ing briefly even though it was covered in Precalculus.

The constant e becomes approached as the number of compoundings n become
large. Here, the growth rate is 100%, and the time interval t = 1. Then, we let n
grow larger and see that the compounding equation begins to approach the ideal of
“continuous compounding” by way of computation:

Next, once we see that (1 + 1/n)n ≈ e, we can adapt this approximation to see that
the compounding equation approximates continuous compounding for n large enough.
This is the first definition that many textbooks adopt, namely that:
e = lim

n→∞
(1 + 1/n)n. I will be using this as validation for Euler’s Formula.

Let r be the desired growth or decay rate. Replacing n with n/r is okay, because if
our rate is less than 100%, then n/r becomes larger since r < 1, and our calculation
converges even faster. On the other hand, if r > 1, then it is true that n/r becomes
smaller, but I claim that we only need to take n out further in that case to get our
calculation to converge to the desired level of accuracy. Thus the claim is that:(

1 +
1

n/r

)n/r
≈ e

The next step is to divide 1/(n/r) = r/n. Also, taking the r’th power of both sides
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yields:
(
1 + r

n

)n
=

((
1 + 1

n/r

)n/r)r
≈ er

Next, take the t’th power of both sides to introduce time-increments into the equa-
tion:

(
1 + r

n

)nt ≈ ert. Finally, multiply both sides of the equation by the initial value
P , and we have successfully derived the continuous-compounding equation2:

P
(
1 +

r

n

)nt
≈ Pert

DeMoivre - Polygons in the Complex Plane
One of the many many reasons that DeMoivre’s theorem is so useful is that it gives us
a really excellent way to map polygons.

Consider the example of an heptagon. Dividing the unit-circle into seven equal arcs
reveals each to be θ = 2π/7

One of the vertices should be (1, 0). The next vertex, we label ζ , and the special
math word for it is “primitive.” Notice that ζ = cos θ + i sin θ, since the polygon is
inscribed in the unit-circle.

Notice that the coordinates of the next vertex is ζ2 = cos(2θ) + i sin(2θ) Next,
squaring the first vertex reveals: ζ2 = (cos θ + i sin θ) · (cos θ + i sin θ) = cos2 θ +
i(2 cos θ sin θ)− sin2 θ = (cos2 θ − sin2 θ) + i(2 cos θ sin θ). By applying double-
angle trig identities, we see that ζ2 = cos(2θ) + i sin(2θ), which is the coordinates
of the next vertex! ζ2 = ζ2.

Cubing the primitive vertex, and applying sum-angle identities reveals

ζ3 = ζ2 · ζ = (cos(2θ) + i sin(2θ)) · (cos θ + i sin θ)

= cos(2θ) cos θ + i cos(2θ) sin θ + i sin(2θ) cos θ − sin(2θ) sin θ

= (cos(2θ) cos θ − sin(2θ) sin θ) + i(cos(2θ) sin θ + sin(2θ) cos θ)

= cos(3θ) + i sin(3θ)

So that the m’th vertex is ζm = cosmθ + i sinmθ, and ζ7 = (1, 0) = ζ0.
One could just as easily use this process to build the regular n-gon, since θ = 2π/n,

and then ζ = cos θ + i sin θ, the primitive vertex, and the subsequent vertices: ζm =

2I will regard this argument as common-property since it appears in numerous sources
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cosmθ + i sinmθ.
*Notice that as the number of vertices of our regular n-gon becomes larger and

larger, the polygon will begin to approximate a circle, the edges becoming finer and
finer.

3

Euler’s Formula
For any angle θ, notice that θ/n goes to zero as n becomes larger and larger, so that
for n large enough, θ/n ≈ 0, and: cos

(
θ
n

)
+ i sin

(
θ
n

)
≈ 1 + i θ

n
(∗).

Next, recall that negative and rational exponents made perfect sense when they were
explored, and irrational exponents “almost” made sense from an approximation stand-
point. However, at this point we are going to jump into the deep-end of abstraction, and
attempt to discuss a complex-exponent! Even the existence of i is highly questionable,
to attempt to take a number to the power of i is even more mysterious. However, the
result is of such fundamental importance and beauty that one wonders.

DeMoivre allows us to take the n’th power of both sides of (∗) to get cos θ +
i sin θ ≈

(
1 + i θ

n

)n
. Now, whatever eiθ is, it should be approximated by the same as

er. Therefore, for n large enough, we have:

cos θ + i sin θ ≈
(
1 +

iθ

n

)n
≈ eiθ

Notice that the left-most and right-most sides have no reference to n, only that n
needs to be “large enough” to make the approximation “accurate enough.” Now, we
will do a Calculus-thing, letting n actually go to infinity will cause the approximations

3Image:http://graphics8.nytimes.com/images/2010/04/04/opinion/04strogatz7/
04strogatz7-custom1.jpg
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to become exact! And: cos θ + i sin θ = eiθ, and the complex exponential actually
maps out the unit-circle, in much the same way as DeMoivre maps out a polygon!

A Foundational Limit

It is now possible to show that lim
z→0

ez − 1

z
= 1, by approaching zero from a complex

direction:

lim
z→0

ez − 1

z
= lim

h→0

eih − 1

ih
(∗)

Next, by Euler’s Formula:

(∗) = lim
h→0

cosh+ i sinh− 1

ih
= lim

h→0

1

i

cosh− 1

h︸ ︷︷ ︸
=0

+
sinh

h︸ ︷︷ ︸
=1

= 1

Derivative of the Exponential
With the previous limit, it is now possible to diferentiate the exponential function using
exponent rules:

d

dx
ex = lim

h→0

ex+h − ex

h
= lim

h→0

ex · eh − ex

h
= lim

h→0

ex(eh − 1)

h
= ex lim

h→0

eh − 1

h
= ex

Derivative of the Natural Logarithm
Next, we differentiate the Natural Logarithm function, which is defined as the in-
verse function to the exponential: lnx = y ⇔ x = ey. We can now differentiate using
implicit-differentiation and the derivative of the exponential: 1 = d

dx
ey = ey dy

dx
, solv-

ing for y′ yields: dy
dx

=
1

ey
= 1

x
.

Definition 1 is implied
The two definitions will fall-out from what we have shown thus far. The first is:

Let E = lim
x→∞

(
1 + 1

x

)x
, we want to show that E = e.

Since the natural logarithm is continuous, taking the logarithm of both sides yields:

lnE = lim
x→∞

ln

(
1 +

1

x

)x
= lim

x→∞
x ln

(
1 +

1

x

)
= lim

x→∞

ln
(
1 + 1

x

)
1/x

(∗)

Next, since 1/x→ 0 as x→∞, and does so in a positive/decreasing way, (*) is
equal to lim

t→0+

ln(1+t)

t
. Since ln 1 = 0, can subtract it from the numerator, and since ln

is differentiable, we have:
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lnE = lim
t→0+

ln(1 + t)− ln 1

t
=

d

dx

[
lnx

]
x=1

=
1

x

∣∣∣∣∣
x=1

= 1

Since lnE = 1, this implies thatE = e, as desired. Source: Appendix of Larson[1].

Definition 2 is implied
Namely, that by utilizing the Fundamental Theorem of Calculus:

area(1/x, 1, e) =
∫ e

1

1

x
dx = lnx

∣∣∣∣∣
e

1

= ln e− ln 1 = 1

Conclusion
These expoundings have arrived finally at “the most natural” definition for e, one that

presupposes the platonic existence of not only the irrational π =
Circumference of any Perfect-Circle

Diameter of that same Circle
,

but also that “unknowable” i =
√
−1, which at once philisophically dubious ques-

tions arise, and require further consideration. One must tread carefully or else risk
hand-waiving. Indeed, one derives the third fundamental constant from the existance
of the other two, that eiπ := −1, and all follows thusly. And whilest the reasoning
remains circular at the end of all of this, it is, in fact a circle after-all, perhaps it is
unavoidable.
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