Generating Functions for the Polynomials in d-Dimensional Semiclassical Wave Packets

George A. Hagedorn*
Department of Mathematics and
Center for Statistical Mechanics and Mathematical Physics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0123, U.S.A.

May 24, 2015

Abstract

We present a simple formula for the generating function for the polynomials in the d-dimensional semiclassical wave packets.

1 Introduction

The generating function for 1-dimensional semiclassical wave packets is presented in formula (2.47) of [2]. In this paper, we present and prove the d-dimensional analog.

This result has also been proven from a different point of view by Helge Dietert, Johannes Keller, and Stephanie Troppmann. See Lemma 3 and Section 3 (particularly Proposition 16) of [1]. We have also received a conjecture from Tomoki Ohsawa [3] that this result could be proved abstractly by using the formula for products of Hermite polynomials and the action of the metaplectic group.

[^0]The semiclassical wave packets depend on two invertible $d \times d$ complex matrices A and B that are always assumed to satisfy

$$
A^{*} B+B^{*} A=2 I \quad \text { and } \quad A^{t} B-B^{t} A=0
$$

They also depend on a phase space point (a, η) that plays no role in the present work. After chosing a branch of the square root, we define

$$
\begin{aligned}
\varphi_{0}(A, B, \hbar, a, \eta, x)= & \pi^{-1 / 4} \hbar^{-1 / 4}(\operatorname{det} A)^{-1 / 2} \\
& \times \exp \left(-\frac{\left\langle(x-a), B A^{-1}(x-a)\right\rangle}{2 \hbar}+i \frac{\langle\eta,(x-a)\rangle}{\hbar}\right) .
\end{aligned}
$$

Here, and for the rest of this paper, we regard \mathbb{R}^{d} as being embedded in \mathbb{C}^{d}, and for any two vectors $a \in \mathbb{C}^{d}$ and $b \in \mathbb{C}^{d}$, we use the notation

$$
\langle a, b\rangle=\sum_{j=1}^{d} \overline{a_{j}} b_{j} .
$$

For $1 \leq l \leq d$, we define the $l^{\text {th }}$ raising operator

$$
\mathcal{R}_{l}=\mathcal{A}_{l}(A, B, \hbar, 0,0)^{*}=\frac{1}{\sqrt{2 \hbar}}\left(\left\langle B e_{l},(x-a)\right\rangle-i\left\langle A e_{l},(-i \hbar \nabla-\eta)\right\rangle\right)
$$

Then recursively, for any multi-index k, we define

$$
\varphi_{k+e_{l}}(A, B, \hbar, a, \eta, x)=\frac{1}{\sqrt{k_{l}+1}} \mathcal{R}_{l}\left(\varphi_{k}(A, B, \hbar, a, \eta)\right)(x)
$$

For fixed A, B, \hbar, a, η, these wave packets form an orthonormal basis indexed by k. It is easy to see that

$$
\varphi_{k}(A, B, \hbar, a, \eta, x)=2^{-|k| / 2}(k!)^{-1 / 2} P_{k}(A, \hbar,(x-a)) \varphi_{0}(A, B, \hbar, a, \eta, x)
$$

where $P_{k}(A, \hbar,(x-a))$ is a polynomial of degree $|k|$ in $(x-a)$, although from this definition, it is not immediately obvious that $P_{k}(A, \hbar,(x-a))$ is independent of B.

Since they play no interesting role in what we are doing here, we henceforth assume $a=0$ and $\eta=0$.

Our main result is the following:

Theorem 1.1 The generating function for the family of polynomials $P_{k}(A, \hbar, x)$ is

$$
G(x, z)=\exp \left(-\left\langle\bar{z}, A^{-1} \bar{A} z\right\rangle+\frac{2}{\sqrt{\hbar}}\left\langle\bar{z}, A^{-1} x\right\rangle\right)
$$

I.e.,

$$
G(x, z)=\sum_{k} P_{k}(A, \hbar, x) \frac{z^{k}}{k!}
$$

Remark We make the unconventional definition $|A|=\sqrt{A A^{*}}$. By our conditions on the matrices A and B, this forces $|A|$ to be real symmetric and strictly positive. We also have the polar decomposition $A=|A| U_{A}$, where U_{A} is unitary. With this notation, we can write

$$
\left.G(x, z)=\exp \left(-\left\langle U_{A} \bar{z}, \overline{U_{A}} z\right\rangle+\left.\frac{2}{\sqrt{\hbar}}\left\langle U_{A} \bar{z},\right| A\right|^{-1} x\right\rangle\right)
$$

This equivalent formula is the one we shall actually prove.

Acknowledgements It is a pleasure to thank Raoul Bourquin and Vasile Gradinaru for motivating this work. It is also a pleasure to thank Johannes Keller, Tomoki Ohsawa, Sam Robinson, and Leonardo Mihalcea for their enthusiasm and numerous comments.

2 Proof of the Theorem

We begin with a lemma that provides an alternative formula for \mathcal{R}_{l}. From this formula and an induction on $|k|$, one can easily prove that $P_{k}(A, \hbar, x)$ is independent of B, because

$$
\overline{\varphi_{0}(A, B, \hbar, 0,0, x)} \varphi_{0}(A, B, \hbar, 0,0, x)=\pi^{-1 / 2} \hbar^{-1 / 2}|\operatorname{det} A|^{-1} \exp \left(-\frac{\left.\left.\langle x,| A\right|^{-2} x\right\rangle}{\hbar}\right)
$$

Lemma 2.1 For any $\psi \in \mathcal{S}$,

$$
\left(R_{l} \psi\right)(x)=-\sqrt{\frac{\hbar}{2}} \frac{1}{\overline{\varphi_{0}(A, B, \hbar, 0,0, x)}}\left\langle A e_{l}, \nabla\left(\overline{\varphi_{0}(A, B, \hbar, 0,0, x)} \psi(x)\right)\right\rangle
$$

Proof: The gradient on the right hand side of the equation in the lemma can act either on the $\overline{\varphi_{0}}$ or on the ψ. So, we get two terms when we compute this:

$$
\begin{array}{r}
\sqrt{\frac{\hbar}{2}}\left(\frac { 1 } { 2 \hbar } \sum _ { j = 1 } ^ { d } \left\langleA e_{l},\left(e_{j}\left(\left\langle e_{j}, \bar{B} \bar{A}^{-1} x\right\rangle+\left\langle x, \bar{B} \bar{A}^{-1} e_{j}\right\rangle\right)\right\rangle \psi(x)\right.\right. \\
- \\
\left.-\left\langle A e_{l},(\nabla \psi)(x)\right\rangle\right)
\end{array}
$$

The second term here is precisely the second term $\frac{1}{\sqrt{2 \hbar}}\left(-i\left\langle A e_{l},(-i \hbar \nabla) \psi(x)\right\rangle\right)$, in the expression for $\left(R_{l} \psi\right)(x)$. So, we need only show the first term here equals the first term, $\frac{1}{\sqrt{2 \hbar}}\left\langle B e_{l}, x\right\rangle \psi(x)$, in the expression for $\left(R_{l} \psi\right)(x)$.

To do this, we begin by noting that the first term here equals

$$
\begin{aligned}
& \frac{1}{2 \sqrt{2 \hbar}} \sum_{j=1}^{d}\left\langle A e_{l},\left(e_{j}\left(\left\langle e_{j}, \bar{B} \bar{A}^{-1} x\right\rangle+\left\langle x, \bar{B} \bar{A}^{-1} e_{j}\right\rangle\right)\right\rangle \psi(x)\right. \\
= & \frac{1}{2 \sqrt{2 \hbar}} \sum_{j=1}^{d}\left\langle A e_{l},\left(e _ { j } \left(\left\langle e_{j}, \bar{B} \bar{A}^{-1} x\right\rangle+\overline{\left.\left.\left\langle\bar{B} \bar{A}^{-1} e_{j}, x\right\rangle\right)\right\rangle \psi(x)}\right.\right.\right. \\
= & \frac{1}{2 \sqrt{2 \hbar}} \sum_{j=1}^{d}\left\langle A e_{l},\left(e_{j}\left(\left\langle e_{j}, \bar{B} \bar{A}^{-1} x\right\rangle+\left\langle B A^{-1} e_{j}, x\right\rangle\right)\right\rangle \psi(x)\right. \\
= & \frac{1}{2 \sqrt{2 \hbar}} \sum_{j=1}^{d}\left\langle A e_{l},\left(e_{j}\left(\left\langle e_{j}, \bar{B} \bar{A}^{-1} x\right\rangle+\left\langle e_{j},\left(A^{-1}\right)^{*} B^{*} x\right\rangle\right)\right\rangle \psi(x)\right. \\
= & \frac{1}{\sqrt{2 \hbar}}\left\langle A e_{l}, \frac{\bar{B} \bar{A}^{-1}+\left(A^{-1}\right)^{*} B^{*}}{2} x\right\rangle \psi(x)
\end{aligned}
$$

Because of the relations satisfied by A and $B, B A^{-1}$ is (real symmetric) $+i$ (real symmetric). So, its conjugate, $\bar{B} \bar{A}^{-1}$ has this same form. Thus, $\bar{B} \bar{A}^{-1}$ equals its transpose, which is $\left(A^{-1}\right)^{*} B^{*}$. So, the quantity of interest here equals

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \hbar}}\left\langle A e_{l},\left(A^{-1}\right)^{*} B^{*} x\right\rangle \psi(x) \\
= & \frac{1}{\sqrt{2 \hbar}}\left\langle e_{l}, A^{*}\left(A^{-1}\right)^{*} B^{*} x\right\rangle \psi(x) \\
= & \frac{1}{\sqrt{2 \hbar}}\left\langle e_{l}, B^{*} x\right\rangle \psi(x) \\
= & \frac{1}{\sqrt{2 \hbar}}\left\langle B e_{l}, x\right\rangle \psi(x),
\end{aligned}
$$

which is what we had to show.

Proof of the Theorem: We prove the theorem by an induction on $|k|$. For $k=0$, the result is trivial since $P_{0}(A, \hbar, x)=1$.

Without ever computing an explicit formula for the polynomial p_{k} (which may be complicated), we prove inductively that

$$
P_{k}(A, \hbar, x)=p_{k}\left(|A|^{-1} x / \sqrt{\hbar}\right)
$$

and

$$
\left(\frac{\partial}{\partial z}\right)^{k} G(x, z)=p_{k}\left(|A|^{-1} x / \sqrt{\hbar}-\overline{U_{A}} z\right) G(x, z) .
$$

The result then follows by setting $z=0$.
For the induction step, it is sufficient to do the following for an arbitrary positive integer $l \leq d:$

Assuming we have already proved these for some k, we prove them for the multi-index $k+e_{l}$.
To do this, we begin by noting that

$$
\varphi_{k}(A, B, \hbar, 0,0, x)=\frac{1}{\sqrt{k!}} \mathcal{R}^{k}\left(\varphi_{0}(A, B, \hbar, 0,0)\right)(x)
$$

Also,

$$
\varphi_{k}(A, B, \hbar, 0,0, x)=2^{-|k| / 2}(k!)^{-1 / 2} P_{k}(A, \hbar, x) \varphi_{0}(A, B, \hbar, 0,0, x)
$$

So,

$$
\mathcal{R}^{k}\left(\varphi_{0}(A, B, \hbar, 0,0)\right)(x)=2^{-|k| / 2} P_{k}(A, \hbar, x) \varphi_{0}(A, B, \hbar, 0,0, x)
$$

Thus, when we apply the $l^{\text {th }}$ raising operator, the polynomial $P_{k}(A, \hbar, x)$ gets changed to $\frac{1}{\sqrt{2}} P_{k+e_{l}}(A, \hbar, x)$.

Assuming the induction hypothesis, when we differentiate $\frac{\partial^{k} G}{\partial z^{k}}$ with respect to z_{l}, the z_{l} derivative can act on the $G(x, z)$ or it can act on the $p_{k}\left(|A|^{-1} x / \sqrt{\hbar}-U_{A} z\right)$. When it acts on the $G(x, z)$, we obtain

$$
\begin{equation*}
2\left\langle U_{A} e_{l},\left(|A|^{-1} x / \sqrt{\hbar}-\overline{U_{A}} z\right)\right\rangle p_{k}(A, \hbar, x) G(x, z) \tag{2.1}
\end{equation*}
$$

Note that this result depends on the following calculation, with $G(x, z)$ written with the polar decomposition of A :

$$
\begin{aligned}
\frac{\partial G}{\partial z_{k}}(x, z) & \left.=\left(-\left\langle U_{A} e_{l}, \overline{U_{A}} z\right\rangle-\left\langle U_{A} \bar{z}, \overline{U_{A}} e_{l}\right\rangle+\left.\frac{2}{\sqrt{\hbar}}\left\langle U_{A} e_{l},\right| A\right|^{-1} x\right\rangle\right) G(x, z) \\
& =2\left\langle U_{A} e_{l},\left(|A|^{-1} x / \sqrt{\hbar}-\overline{U_{A}} z\right)\right\rangle G(x, z)
\end{aligned}
$$

When the $\frac{\partial}{\partial z_{l}}$ acts on the polynomial, we get

$$
\begin{align*}
& -\left\langle\overline{\left(\nabla p_{k}\right)\left(|A|^{-1} x / \sqrt{\hbar}-\overline{U_{A}} z\right)}, \overline{U_{A}} e_{l}\right\rangle G(x, z) \\
= & -\left\langle U_{A} e_{l},\left(\nabla p_{k}\right)\left(|A|^{-1} x / \sqrt{\hbar}-\overline{U_{A}} z\right)\right\rangle G(x, z) . \tag{2.2}
\end{align*}
$$

Recall that

$$
\left(R_{l} \psi\right)(x)=-\sqrt{\frac{\hbar}{2}} \frac{1}{\overline{\varphi_{0}(A, B, \hbar, 0,0, x)}}\left\langle A e_{l}, \nabla\left(\overline{\varphi_{0}(A, B, \hbar, 0,0, x)} \psi(x)\right)\right\rangle
$$

and that from our induction hypothesis,

$$
\overline{\varphi_{0}(A, B, \hbar, 0,0, x)} \varphi_{k}(A, B, \hbar, 0,0, x)=2^{-|k| / 2}(k!)^{-1 / 2} p_{k}(A, \hbar, x) e^{-\frac{\left.\left.\langle x,| A\right|^{-2} x\right\rangle}{\hbar}} .
$$

The gradient in \mathcal{R}_{l} can act on the exponential or the $p_{k}(A, \hbar, x)$. When it acts on the exponential, we get

$$
\begin{align*}
& \left.\left.2^{-|k| / 2}(k!)^{-1 / 2} p_{k}(A, \hbar, x) \sqrt{\frac{2}{\hbar}}\left\langle A e_{l},\right| A\right|^{-2} x\right\rangle \varphi_{0}(A, B, \hbar, 0,0, x) \\
=2^{-(|k|+1) / 2} & \sqrt{k_{l}+1}\left(\left(k+e_{l}\right)!\right)^{-1 / 2} \\
& \left.\times\left. 2\left\langle U_{A} e_{l},\right| A\right|^{-1} x / \sqrt{\hbar}\right\rangle p_{k}(A, \hbar, x) \varphi_{0}(A, B, \hbar, 0,0, x) \tag{2.3}
\end{align*}
$$

When the gradient in \mathcal{R}_{l} acts on the $p_{k}(A, \hbar, x)$, we get

$$
\begin{aligned}
& -\sqrt{\frac{\hbar}{2}} 2^{-|k| / 2}(k!)^{-1 / 2}\left\langle A e_{l}, \nabla_{x} p_{k}(A, \hbar, x)\right\rangle \varphi_{0}(A, B, \hbar, 0,0, x) \\
= & \left.-\left.2^{-(|k|+1) / 2}(k!)^{-1 / 2}\left\langle A e_{l}, \sum_{j=1}^{d}\left\langle e_{j},\left(\nabla p_{k}\right)(A, \hbar, x)\right\rangle\right| A\right|^{-1} e_{j}\right\rangle \varphi_{0}(A, B, \hbar, 0,0, x)
\end{aligned}
$$

$$
\begin{align*}
&=-2^{-(|k|+1) / 2}(k!)^{-1 / 2}\left.\left.\left\langle A e_{l},\right| A\right|^{-1}\left(\nabla p_{k}\right)(A, \hbar, x)\right\rangle \varphi_{0}(A, B, \hbar, 0,0, x) \\
&=-2^{-(|k|+1) / 2} \sqrt{k_{l}+1}\left(\left(k+e_{l}\right)!\right)^{-1 / 2} \\
& \times\left\langle U_{A} e_{l},\left(\nabla p_{k}\right)(A, \hbar, x)\right\rangle \varphi_{0}(A, B, \hbar, 0,0, x) \tag{2.4}
\end{align*}
$$

From (2.1) and (2.2) with $z=0$, we obtain

$$
\left.\left.2\left\langle U_{A} e_{l},\right| A\right|^{-1} x / \sqrt{\hbar}\right\rangle p_{k}(A, \hbar, x)-\left\langle U_{A} e_{l},\left(\nabla p_{k}\right)\left(|A|^{-1} x / \sqrt{\hbar}\right)\right\rangle .
$$

From (2.3) and (2.4) and taking into account the factor of $\sqrt{k_{l}+1}$ in $\mathcal{R}_{l}\left(\varphi_{k}\right)=\sqrt{k_{l}+1} \varphi_{k+e_{l}}$, we obtain

$$
\begin{aligned}
& P_{k+e_{l}}(A, \hbar, x) \\
= & \left.\left.2\left\langle U_{A} e_{l},\right| A\right|^{-1} x / \sqrt{\hbar}\right\rangle p_{k}(A, \hbar, x)-\left\langle U_{A} e_{l},\left(\nabla p_{k}\right)\left(|A|^{-1} x / \sqrt{\hbar}\right)\right\rangle .
\end{aligned}
$$

The quantities of interest contain the same polynomial evaluated at the appropriate arguments, and $P_{k+e_{l}}(A, \hbar, x)=p_{k+e_{l}}(A, \hbar, x)$. Since l is arbitrary, with $1 \leq l \leq d$, the result is true for all multi-indices with order $|k|+1$, and the induction can proceed.

References

[1] Dietert, H., Keller, J., and Troppmann, S.: An Invariant Class of Hermite Type Multivariate Polynomials for the Wigner Transform. (2015 preprint, arXiv:1505.06192).
[2] Hagedorn, G.A.: Raising and Lowering Operators for Semiclassical Wave Packets. Ann. Phys. 269, 77-104 (1998).
[3] Ohsawa, T.: private communication.

[^0]: *Partially Supported by National Science Foundation Grant DMS-1210982.

