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UMR CNRS 7352, Université de Picardie “Jules Verne”

33 Rue Saint-Leu, F-80039 Amiens (France)

E-mail address: matteo.cozzi@unimi.it

Abstract. We prove interior H2s−ε regularity for weak solutions of linear elliptic integro-
differential equations close to the fractional s-Laplacian. The result is obtained via inter-
mediate estimates in Nikol’skii spaces, which are in turn carried out by means of an
appropriate modification of the classical translation method by Nirenberg.

1. Introduction

One of the cornerstones in the field of the regularity theory for weak solutions of second
order linear elliptic differential equations is the existence of weak second derivatives. Indeed,
let Ω be an open set of Rn and u ∈ H1(Ω) a weak solution of

(1.1) − div (A(·)∇u) = f in Ω,

where the n × n matrix A = [aij ] is uniformly elliptic, with entries aij ∈ C0,1
loc (Ω), and the

right-hand term f ∈ L2(Ω). Then, one gets that u ∈ H2
loc(Ω) and, for any domain Ω′ ⊂⊂ Ω,

‖u‖H2(Ω′) 6 C
(
‖u‖L2(Ω) + ‖f‖L2(Ω)

)
,

for some constant C > 0 independent of u and f .
Such result is typically ascribed to Louis Nirenberg, who in [N55] obtained higher order

Sobolev regularity for general linear elliptic equations. To do so, he introduced the by now
classical translation method. In the setting of equation (1.1) the idea is basically to consider
the difference quotients

Dh
i u(x) :=

u(x+ hei)− u(x)

h
,

for i = 1, . . . , n and h 6= 0 suitably small in modulus, and use the equation itself to recover
a uniform bound in h for the gradient of Dh

i u in L2(Ω′). A compactness argument then
shows that u ∈ H2

loc(Ω). Nice presentations of this technique are for instance contained
in [E98] and [GM12].

After this, several generalizations were achieved. For example, the translation method
has been successfully adapted to study nonlinear equations, too. Indeed, in [S77] and [D82]
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the authors deduce higher order regularity in both Sobolev and Besov classes for singular
or degenerate operators of p-Laplacian type.

The object of this note is the attempt of a generalization of the above discussed higher
differentiability to a non-local analogue of equation (1.1), modelled upon the fractional
Laplacian.

Given any open set Ω ⊂ Rn, we consider a solution u of the linear equation

(1.2) EK(u, ϕ) = 〈f, ϕ〉L2(Ω) for any ϕ ∈ C∞0 (Ω),

where f ∈ L2(Ω) and EK is defined by

EK(u, ϕ) :=

∫
Rn

∫
Rn

(u(x)− u(y)) (ϕ(x)− ϕ(y))K(x, y) dxdy.

Here K is a measurable function which is comparable in the small to the kernel of the
fractional Laplacian. Indeed, if we take

K(x, y) = |x− y|−n−2s,

with s ∈ (0, 1), then (1.2) is the weak formulation of the equation

(−∆)su = f in Ω,

for the fractional Laplace operator of order 2s

(−∆)su(x) = 2 P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy = 2 lim

δ→0+

∫
Rn\Bδ(x)

u(x)− u(y)

|x− y|n+2s
dy.

On the other hand, more general kernels are admissible as well, possibly not translation
invariant. However, if the kernel is not translation invariant, we need to impose on K
some sort of joint local C0,s regularity. We stress that this last hypothesis seems very
natural to us. Indeed, while translation invariant kernels correspond in the local framework
to the constant coefficient case, asking K to be locally Hölder continuous is a legitimate
counterpart to the Lipschitz regularity assumed on the matrix A in (1.1).

Integro-differential equations have been the object of a great variety of studies in recent
years. Fundamental results in what concerns pointwise regularity were achieved by Caffarelli
and Silvestre in [CS09, CS11]. The two authors developed there a theory for viscosity
solutions, in order to deal with general fully non-linear equations. The framework considered
here is instead that of weak (or energy) solutions. These two notions of solutions are of
course very close, as it is discussed in [RS14] and [SV14], but, since we have a datum f
in L2, the weak formulation (1.2) seems to us more appropriate.

The literature on the regularity theory for weak solutions is indeed very rich and it
is not possible to provide here an exhaustive account of the many contributions. Just
to name a few, Kassmann addressed the validity of a Harnack inequality and established
interior Hölder regularity for non-local harmonic functions through the language of Dirichlet
forms (see [K07, K09, K11]). In [RS14] the authors obtained Hölder regularity up to the
boundary for a Dirichlet problem driven by the fractional Laplacian. Concerning regularity
results in Sobolev spaces, H2s estimates are proved in [DK12] for entire translation invariant
equations. Also, the very recent [KMS15] provides higher differentiability/integrability in
a nonlinear setting quite similar to ours.

Here we show that a solution u of (1.2) has better weak (fractional) differentiability
properties in the interior of Ω. By adapting the translation method to this non-local setting,
we prove that

(1.3) u ∈ N2s,2
loc (Ω).

Notice that the symbol N r,p(Ω), for r > 0 and 1 6 p < +∞, denotes here the so-
called Nikol’skii space.
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Since both Nikol’skii and fractional Sobolev spaces are part of the wider class of Besov
spaces, standard embedding results within this scale allow us to deduce from (1.3) that

(1.4) u ∈ H2s−ε
loc (Ω),

for any ε > 0.
We do not know whether or not (1.4) is the optimal interior regularity for solutions

of (1.2) in the Sobolev class. While one would arguably expect u to belong to H2s
loc(Ω),

there is no hope in general to extend such regularity up to the boundary, as discussed in
Section 8. Finally, we point out that the exponent 2s − ε still provides Sobolev regularity
for the gradient of u, when s > 1/2.

In the upcoming section we specify the framework in which the model is set. We give
formal definitions of the notion of solution and of the class of kernels under consideration.
Moreover, we introduce the various functional spaces that are necessary for these purposes.
After such preliminary work, we are then in position to give the precise statements of our
results.

2. Definitions and formal statements

Let n ∈ N and s ∈ (0, 1). The kernel K : Rn×Rn → [0,+∞] is assumed to be measurable
and symmetric1, that is

(2.1) K(x, y) = K(y, x) for a.a. x, y ∈ Rn.

We also require K to satisfy

λ 6 |x− y|n+2sK(x, y) 6 Λ for a.a. x, y ∈ Rn, |x− y| < 1,(2.2a)

0 6 |x− y|n+βK(x, y) 6M for a.a. x, y ∈ Rn, |x− y| > 1,(2.2b)

for some constants Λ > λ > 0, β,M > 0, and

(2.3) |x− y|n+2s |K(x+ z, y + z)−K(x, y)| 6 Γ|z|s,

for a.a. x, y, z ∈ Rn, with |x− y|, |z| < 1, and for some Γ > 0.
Condition (2.2a) tells that the kernel K is controlled from above and below by that of

the fractional Laplacian when x and y are close. Conversely, when |x − y| is large, the
behaviour of K could be more general, as expressed by (2.2b). Under these hypotheses
a great variety of kernels could be encompassed, as for instance truncated ones or having
non-standard decay at infinity. Naturally, these requirements are fulfilled (with β = 2s)
when K is globally comparable to the kernel of the fractional Laplacian, that is when (2.2a)
holds a.e. on the whole Rn × Rn.

On the other hand, (2.3) asserts that the map

(x, y) 7−→ |x− y|n+2sK(x, y),

is locally uniformly C0,s regular, jointly in the two variables x and y. Clearly, (2.3) is
satisfied by translation invariant kernels, i.e. those in the form

(2.4) K(x, y) = k(x− y),

1We stress that the symmetry hypothesis does not really play much of a role here. Indeed, if one considers
instead a non-symmetric kernel K, this can be written as the sum of its symmetric and anti-symmetric parts

Ksym(x, y) :=
K(x, y) + K(x, y)

2
and Kasym(x, y) :=

K(x, y)−K(y, x)

2
.

But then, it is easily shown that Kasym cancels out in (2.5), thus leading to an equation driven by the
symmetric kernel Ksym. Hence, we may and do assume K symmetric from the outset.

In this regard, we refer the interested reader to [FKV15], where a class of integro-differential equations
with non-symmetric kernels are studied.
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for some measurable k : Rn → [0,+∞]. But more general choices are possible, as for
instance kernels of the type

K(x, y) =
a(x, y)

|x− y|n+2s
,

with a ∈ C0,s(Rn × Rn). We also stress that (2.3) may be actually weakened by requiring
it to hold only inside the set Ω where the equation will be valid.

In order to formulate the equation and state our main results, we introduce the following
functional framework.

Let s > 0, 1 6 p < +∞ and U be any open set of Rn. We indicate with Lp(U) the
standard Lebesgue space and with W s,p(U) the (fractional) Sobolev space as defined, for
instance, in the monograph [DPV12]. Of course, Hs(U) := W s,2(U).

Restricting ourselves to s ∈ (0, 1), we denote with X(U) the space of measurable func-
tions u : Rn → R such that

u|U ∈ L2(U) and (x, y) 7−→ (u(x)− u(y))
√
K(x, y) ∈ L2(CU ),

where
CU := (Rn × Rn) \ ((Rn \ U)× (Rn \ U)) ⊂ Rn × Rn.

Notice that, by virtue of (2.2), if u ∈ X(U) and V is a bounded open set contained in U ,
then u|V ∈ Hs(V ). In addition, X0(U) is the subspace of X(U) composed by the functions
which vanish a.e. outside U . We refer the reader to [SV13, Section 5] for informations on
very similar spaces of functions.

As it is customary, given any space F (U) of functions defined on a set U , we say that

u ∈ Floc(U) if and only if u|V ∈ F (V ) for any domain V ⊂⊂ U.
Let now Ω be a fixed open set of Rn. For u ∈ X(Ω) and ϕ ∈ X0(Ω), it is well-defined the

bilinear form

(2.5) EK(u, ϕ) :=

∫
Rn

∫
Rn

(u(x)− u(y)) (ϕ(x)− ϕ(y))K(x, y) dxdy.

Given f ∈ L2(Ω), we say that u ∈ X(Ω) is a solution of

(2.6) EK(u, ·) = f in Ω,

if

(2.7) EK(u, ϕ) = 〈f, ϕ〉L2(Ω) for any ϕ ∈ X0(Ω).

We remark that, for instance when K is symmetric and translation invariant, i.e. as in (2.4)
with k even, then (2.7) is the weak formulation of the equation

Lku = f in Ω,

where the operator Lk is defined - for u sufficiently smooth and bounded - by

Lku(x) := 2 P.V.

∫
Rn

(u(x)− u(y)) k(x− y) dy.

As a last step towards the first theorem, we introduce a weighted Lebesgue space which
we will require the solutions to lie in. Given a measurable function w : Rn → [0,+∞), we
say that u ∈ L1

w(Rn) if and only if

u : Rn → R is measurable and ‖u‖L1
w(Rn) :=

∫
Rn
|u(x)|w(x) dx < +∞.

In what follows we consider weights of the form

(2.8) wx0,β(x) =
1

1 + |x− x0|n+β
,

for x0 ∈ Rn and β > 0 as in (2.2b). We denote the corresponding spaces just with L1
x0,β

(Rn)

and we adopt the same notation for their norms. Also, we simply write L1
β(Rn) when x0 is
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the origin. Notice that, in fact, the space L1
x0,β

(Rn) does not depend on x0 and different
choices for the base point x0 lead to equivalent norms. Lastly, we observe that, in conse-
quence of the fact that wx0,β ∈ L1(Rn)∩L∞(Rn), the space L1

β(Rn) contains both L∞(Rn)

and L1(Rn).

With all this in hand, we are now ready to state the first and principal result of this note.

Theorem 2.1. Let s ∈ (0, 1), β > 0 and Ω ⊂ Rn be an open set. Assume that K satisfies
assumptions (2.1), (2.2) and (2.3). Let u ∈ X(Ω)∩L1

β(Rn) be a solution of (2.6), with f ∈
L2(Ω). Then, u ∈ H2s−ε

loc (Ω) for any small ε > 0 and, for any domain Ω′ ⊂⊂ Ω,

(2.9) ‖u‖H2s−ε(Ω′) 6 C
(
‖u‖L2(Ω) + ‖u‖L1

β(Rn) + ‖f‖L2(Ω)

)
,

for some constant C > 0 depending on n, s, β, λ, Λ, M , Γ, Ω, Ω′ and ε.

The technique we adopt to prove Theorem 2.1 is basically the translation method of
Nirenberg, suitably adjusted to cope with the difficulties arising in this fractional, non-local
framework. However, this strategy does not immediately lead to an estimate in Sobolev
spaces. In fact, it provides that the solution belongs to a slightly different functional space,
which is well-studied in the literature and is often referred to as Nikol’skii space. We briefly
introduce such class here below.

Let U be a domain of Rn. Given k ∈ N and z ∈ Rn, let

(2.10) Ukz := {x ∈ U : x+ iz ∈ U for any i = 1, . . . , k} .

Observe that, by definition,

(2.11) Ukz ⊆ Ujz ⊆ U if j, k ∈ N and j 6 k.

For any z ∈ Rn we also define τzu(x) := u(x+ z) and

∆zu(x) := τzu(x)− u(x),

for any x ∈ Uz. Sometimes we will need to deal with increments along the diagonal for the
kernel K, as previously done in (2.3). With a slight abuse of notation, we write

τzK(x, y) := K(x+ z, y + z) and ∆zK(x, y) := τzK(x, y)−K(x, y).

We also consider increments of higher orders. For any k ∈ N we set

∆k
zu(x) := ∆z∆

k−1
z u(x) =

k∑
i=0

(−1)k−i
(
k

i

)
τizu(x),

for any x ∈ Ukz, with the convention that ∆0
zu = u. Of course, ∆1

zu = ∆zu. Moreover,

notice that by (2.11) all ∆j
zu, as j = 0, 1, . . . , k, are well-defined in Ukz.

Given s ∈ (0, 2) and 1 6 p < +∞, the Nikol’skii space N s,p(U) is defined as the space of
functions u ∈ Lp(U) such that

(2.12) [u]Ns,p(U) := sup
z∈Rn\{0}

|z|−s‖∆2
zu‖Lp(U2z) < +∞.

The norm

‖u‖Ns,p(U) := ‖u‖Lp(U) + [u]Ns,p(U),

makes N s,p(U) a Banach space. We point out that the restriction to s < 2 is assumed here
only to avoid unnecessary complications in the definition of the semi-norm (2.12). By the
way, the above range for s is large enough for our scopes and, thus, there is no real need
to deal with more general conditions. Nevertheless, such limitation will not be considered
anymore in Section 3, where a deeper look at the space N s,p(U) will be given.

Now that the definition of Nikol’skii spaces has been recalled, we may finally head to our
second main result.
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Theorem 2.2. Let s ∈ (0, 1), β > 0 and Ω ⊂ Rn be an open set. Assume that K satisfies
assumptions (2.1), (2.2) and (2.3). Let u ∈ Xs(Ω)∩L1

β(Rn) be a solution of (2.6), with f ∈
L2(Ω). Then, u ∈ N2s,2

loc (Ω) and, for any domain Ω′ ⊂⊂ Ω,

(2.13) ‖u‖N2s,2(Ω′) 6 C
(
‖u‖L2(Ω) + ‖u‖L1

β(Rn) + ‖f‖L2(Ω)

)
,

for some constant C > 0 depending on n, s, β, λ, Λ, M , Γ, Ω and Ω′.

In light of this estimate, Theorem 2.1 follows more or less immediately. To see this,
it is helpful to understand Sobolev and Nikol’skii spaces in the context of Besov spaces.
For s ∈ (0, 2), 1 6 p < +∞ and 1 6 λ 6 +∞, the Besov space Bs,p

λ (U) is the space of
functions u ∈ Lp(U) such that [u]Bs,p

λ
(U) < +∞, where

[u]Bs,p
λ

(U) :=


(∫

Rn

(
|z|−s‖∆2

zu‖Lp(U2z)

)λ dz

|z|n

)1/λ

if 1 6 λ < +∞,

sup
z∈Rn\{0}

|z|−s‖∆2
zu‖Lp(U2z) if λ = +∞.

Observe that, by definition, Bs,p
∞ (U) = N s,p(U), while the equivalence Bs,p

p (U) = W s,p(U)
is also true, though less trivial. Then, since there exist continuous embeddings

(2.14) Bs,p
ν (U) ⊂ Br,p

λ (U),

as 1 6 λ 6 ν 6 +∞ and 1 < r < s < +∞, it follows

N s,p(U) ⊂W r,p(U).

Consequently, up to some minor details that will be discussed later in Section 7, Theorem 2.1
is a consequence of Theorem 2.2.

Of course, Theorem 2.2 and inclusion (2.14) yield estimates in many other Besov spaces

for the solution u of (2.6). Basically, u lies in any B2s−ε,2
λ,loc (Ω), with ε > 0 and 1 6 λ 6 +∞.

We point out here that throughout the paper the same letter c is used to denote a positive
constant which may change from line to line and depends on the various parameters involved.

The rest of the paper is organized as follows.
In Section 3 we review some basic material on Sobolev and Nikol’skii spaces. To keep

a leaner notation, we do not approach Besov spaces in their full generality and restrict in
fact to the two classes to which we are interested. Despite every assertion of this section
is classical and surely well-known to the experts, we choose to include here the few results
that will be used afterwards, in order to make the work as self-contained as possible.

The subsequent two sections are devoted to some auxiliary results. Section 4 is concerned
with a couple of technical lemmata that deal with a discrete integration by parts formula
and an estimate for the defect of two translated balls. In Section 5, on the other hand, we
prove a non-local version of the classical Caccioppoli inequality.

The main results are proved in Sections 6 and 7.
Finally, Section 8 contains some comments on the possible optimal global regularity for

the Dirichlet problem associated to (2.6).

3. Preliminaries on Sobolev and Nikol’skii spaces

We collect here some general facts about fractional Sobolev spaces and Nikol’skii spaces.
As said before, we avoid dealing with the wider class of Besov spaces in order not to
burden the notation too much. For more complete and exhaustive presentations we refer
the interested reader to the books by Triebel, [T83, T92, T06] and [T95].

We remark that the proofs displayed only make use of integration techniques, mostly
inspired by [S90]. While some results can not be justified with such elementary arguments,
we still provide specific references to the above mentioned books.
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Let U ⊂ Rn be a bounded domain with C∞ boundary2. Let 1 6 p < +∞ and s > 0,
with s /∈ N. Write s = k+ σ, with k ∈ N∪ {0} and σ ∈ (0, 1). We recall that the fractional
Sobolev space W s,p(U) is defined as the set of functions

W s,p(U) :=
{
u ∈W k,p(U) : [Dαu]Wσ,p(U) < +∞ for any |α| = k

}
,

where, for v ∈ Lp(U),

[v]Wσ,p(U) :=

(∫
U

∫
U

|v(x)− v(y)|p

|x− y|n+σp
dxdy

)1/p

.

Clearly, α indicates a multi-index, i.e. α = (α1, . . . , αn) with αi ∈ N ∪ {0}, and |α| =
α1 + · · ·+ αn is its modulus. Moreover, W k,p(Ω), for k ∈ N, denotes the standard Sobolev
space and, when k = 0, we understand W 0,p(U) = Lp(U). The space W s,p(U) equipped
with the norm

‖u‖W s,p(U) := ‖u‖Wk,p(U) +
∑
|α|=k

[Dαu]Wσ,p(U),

is a Banach space.
Notice that, for v ∈ Lp(U),

[v]Wσ,p(U) =

(∫
U

∫
U

|v(x)− v(y)|p

|x− y|n+σp
dxdy

)1/p

=

(∫
Rn

(∫
Uz

|v(x+ z)− v(x)|p

|z|n+σp
dx

)
dz

)1/p

=

(∫
Rn

(
|z|−σ‖∆zv‖Lp(Uz)

)p dz

|z|n

)1/p

.

In view of this fact, we have the following characterization for W s,p(U).

Proposition 3.1. Let 1 6 p < +∞ and s > 0. Let k, l ∈ Z be such that 0 6 k < s
and l > s− k. Then,

(3.1) ‖u‖Lp(U) +
∑
|α|=k

(∫
Rn

(
|z|k−s‖∆l

zD
αu‖Lp(Ulz)

)p dz

|z|n

)1/p

,

is a Banach space norm for W s,p(U), equivalent to ‖ · ‖W s,p(U).

A reference for these equivalences is given by Theorem 4.4.2.1 at page 323 of [T95]. Note
that the result is valid even if s is an integer.

Remark 3.2. In what follows, we will be mostly interested in norms with k = 0 and
therefore l > s. In such cases, we stress that (3.1) may be replaced with the restricted norm

(3.2) ‖u‖Lp(U) +

(∫
Bδ

(
|z|−s‖∆l

zu‖Lp(Ulz)

)p dz

|z|n

)1/p

,

for any δ > 0, with no modifications to the space W s,p(U). Indeed, we have

‖∆l
zu‖Lp(Ulz) 6 2l‖u‖Lp(U),

2Most of the assertions contained in this section should be also true under less restrictive hypotheses
on the boundary of the set. Of course, the definitions of the spaces require no assumptions at all on the
boundary and other results are extended in the literature to Lipschitz sets. Unfortunately, we have not been
able to find completely satisfactory references for Proposition 3.1, and its counterpart for Nikol’skii spaces,
under such weaker assumptions. Anyway, the limitation to C∞ domains will not have any influence on our
applications.
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so that (∫
Rn\Bδ

(
|z|−s‖∆l

zu‖Lp(Ulz)

)p dz

|z|n

)1/p

6 2l
(
Hn−1(∂B1)

sp

)1/p

δ−s‖u‖Lp(U).

Consequently, the norms defined by (3.1) and (3.2) are equivalent.

The second class of fractional spaces which we are interested in are the Nikol’skii spaces.
For s = k + σ > 0, with k ∈ N ∪ {0}, σ ∈ (0, 1], and 1 6 p < +∞, define

N s,p(U) :=
{
u ∈W k,p(U) : [Dαu]Nσ,p(U) < +∞ for any |α| = k

}
,

where, for v ∈ Lp(U),

[v]Nσ,p(U) := sup
z∈Rn\{0}

|z|−σ‖∆2
zv‖Lp(U2z).

It can be showed that N s,p(U) is a Banach space with respect to the norm

‖u‖Ns,p(U) := ‖u‖Wk,p(U) + [u]Ns,p(U).

Notice that this definition of Nikol’skii space may seem to differ from that given in
Section 2. In fact, this is not the case, as N s,p(U) can be equivalently endowed with any
norm of the form

(3.3) ‖u‖Lp(U) +
∑
|α|=k

sup
z∈Rn\{0}

|z|k−s‖∆l
zD

αu‖Lp(Ulz),

where k, l ∈ Z are such that 0 6 k < s and l > s− k (see again Theorem 4.4.2.1 of [T95]).

Remark 3.3. As for the Sobolev spaces, we will consider norms with k = 0 for the most
of the time. We stress that in such cases (3.3) may be replaced with

‖u‖Lp(U) + sup
0<|z|<δ

|z|−s‖∆l
zu‖Lp(Ulz),

for any integer l > s and any δ > 0.

In the conclusive part of this section we study the mutual inclusion properties of W s,p(U)
and N s,p(U). In order to do this, it will be useful to consider another family of equivalent
norms. To this aim, for l ∈ N we introduce the so-called l-th modulus of smoothness of u

ωlp(u; η) := sup
0<|z|<η

‖∆l
zu‖Lp(Ulz),

defined for any η > 0. Then, we have

Proposition 3.4. Let s > 0 and 1 6 p < +∞. Let l > s be an integer and 0 < δ 6 +∞.
Then,

‖u‖Lp(U) +

(∫ δ

0

(
η−sωlp(u; η)

)p dη
η

)1/p

,

is a Banach space norm for W s,p(U), equivalent to ‖ · ‖W s,p(U).
The same statement holds true for the norms

‖u‖Lp(U) + sup
0<η<δ

η−sωlp(u; η),

and the space N s,p(U).

Proof. We only deal with the Sobolev space case, the Nikol’skii one being completely anal-
ogous and easier. Furthermore, we assume δ = 1. Then, an argument similar to that
presented in Remark 3.2 shows that the result can be extended to any δ.

For u ∈ Lp(U) let

[u][W s,p(U) :=

(∫
B1

(
|z|−s‖∆l

zu‖Lp(Ulz)

)p dz

|z|n

)1/p

,
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and

[u]]W s,p(U) :=

(∫ 1

0

(
η−sωlp(u; η)

)p dη
η

)1/p

.

We claim that there exists a constant c > 1 such that

(3.4) c−1[u][W s,p(U) 6 [u]]W s,p(U) 6 c
(
‖u‖Lp(U) + [u][W s,p(U)

)
,

for all u ∈ Lp(U). In view of Proposition 3.1 and Remark 3.2, this concludes the proof.
To check the left hand inequality of (3.4) we first observe that

‖∆l
zu‖Lp(Ulz) 6 sup

0<|y|<|z|
‖∆l

yu‖Lp(Uly) = ωlp(u; |z|),

for any z ∈ Rn. Then, using polar coordinates,

[u][W s,p(U) =

(∫
B1

(
|z|−s‖∆l

zu‖Lp(Ulz)

)p dz

|z|n

)1/p

6

(
Hn−1(∂B1)

∫ 1

0

(
η−sωlp(u; η)

)p dη
η

)1/p

= Hn−1(∂B1)1/p [u]]W s,p(U).

Now we focus on the second inequality. In order to show its validity we need the following
auxiliary result. For x ∈ U , η > 0 and u ∈ Lp(U), let

V l(x, η) := {z ∈ Bη : x+ τz ∈ U, for any 0 6 τ 6 l} ,

M l
ηu(x) := η−n

∫
V l(x,η)

|∆l
zu(x)| dz,

and define

[u]∗W s,p(U) :=

(∫ 1

0

(
η−s‖M l

ηu‖Lp(U)

)p dη
η

)1/p

,(3.5)

‖u‖∗W s,p(U) := ‖u‖Lp(U) + [u]∗W s,p(U).

Then, by virtue of [T06, Theorem 1.118] we infer that

(3.6) [u]]W s,p(U) 6 c‖u‖
∗
W s,p(U),

for any u ∈ Lp(U).
Applying the generalized Minkowski’s inequality to the right-hand side of (3.5) and ob-

serving that

{(x, z) ∈ U × Rn : z ∈ V l(x, η)} ⊆ {(x, z) ∈ U ×Bη : x ∈ Ulz} ,

we get

(3.7)

[u]∗W s,p(U) =

(∫ 1

0
η−(s+n)p

(∫
U

(∫
V l(x,η)

|∆l
zu(x)| dz

)p
dx

)
dη

η

)1/p

6

(∫ 1

0
η−(s+n)p

(∫
Bη

‖∆l
zu‖Lp(Ulz) dz

)p
dη

η

)1/p

.

Now, Jensen’s inequality implies that(∫
Bη

‖∆l
zu‖Lp(Ulz) dz

)p
6 c ηn(p−1)

∫
Bη

‖∆l
zu‖

p
Lp(Ulz) dz,



10 MATTEO COZZI

and hence (3.7) becomes

[u]∗W s,p(U) 6 c

(∫ 1

0
η−n−1−sp

(∫
Bη

‖∆l
zu‖

p
Lp(Ulz) dz

)
dη

)1/p

.

We finally switch to polar coordinates to compute

[u]∗W s,p(U) 6 c

(∫ 1

0

∫ η

0
η−n−1−sp

(∫
∂Bρ

‖∆l
zu‖

p
Lp(Ulz) dH

n−1(z)

)
dρ dη

)1/p

= c

(∫ 1

0

(∫
∂Bρ

‖∆l
zu‖

p
Lp(Ulz) dH

n−1(z)

)(∫ 1

ρ
η−n−1−sp dη

)
dρ

)1/p

6 c

(∫ 1

0

(∫
∂Bρ

‖∆l
zu‖

p
Lp(Ulz) dH

n−1(z)

)
ρ−n−sp dρ

)1/p

= c[u][W s,p(U).

By combining this formula with (3.6), we obtain the right inequality of (3.4). Thus, the
proof of the proposition is complete. �

We are now in position to prove the main results of this section, concerning the relation
between Sobolev and Nikol’skii spaces. First, we have

Proposition 3.5. Let s > 0 and 1 6 p < +∞. Then,

W s,p(U) ⊆ N s,p(U),

and there exists a constant C > 0, depending on n, s and p, such that

‖u‖Ns,p(U) 6 C‖u‖W s,p(U),

for any u ∈ Lp(U).

Proof. In view of Proposition 3.4 it is enough to prove that, if l ∈ Z is such that l > s, then

(3.8) sup
η>0

η−sωlp(u; η) 6 c

(∫ +∞

0

(
η−sωlp(u; η)

)p dη
η

)1/p

,

for some c > 0. But this is in turn an immediate consequence of the monotonicity of ωlp(u; ·).
Indeed, ωlp(u; η) > ωlp(u; t), for any η > t, and so(∫ +∞

0

(
η−sωlp(u; η)

)p dη
η

)1/p

>

(∫ +∞

t

(
η−sωlp(u; t)

)p dη
η

)1/p

= (sp)−1/pt−sωlp(u; t).

Inequality (3.8) is then obtained by taking the supremum as t > 0 on the right hand
side. �

The following provides a partial converse to the above inclusion.

Proposition 3.6. Let s > r > 0 and 1 6 p < +∞. Then,

N s,p(U) ⊆W r,p(U),

and there exists a constant C > 0, depending on n, r, s and p, such that

‖u‖W r,p(U) 6 C‖u‖Ns,p(U),

for any u ∈ Lp(U).
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Proof. The result follows by noticing that, for l ∈ Z with l > s,(∫ 1

0

(
η−rωlp(u; η)

)p dη
η

)1/p

=

(∫ 1

0
η(s−r)p

(
η−sωlp(u; η)

)p dη
η

)1/p

6 [(s− r)p]−1/p sup
0<η<1

η−sωlp(u; η),

for any u ∈ Lp(U), and recalling Proposition 3.4. �

4. Some auxiliary results

Before we can proceed to Sections 5 and 6, which contain the core argumentations leading
to Theorem 2.2, we need to prove a couple of subsidiary result.

First, we prove the following discrete version of the standard integration by parts formula.

Lemma 4.1. Let BR be some ball of radius R > 0 in Rn. Assume that K satisfies assump-
tions (2.1) and (2.2). Let u, v ∈ Hs(B8R), with v supported in B2R. Then,

(4.1)

∫
B8R

∫
B8R

(u(x)− u(y))
(
∆2
−zv(x)−∆2

−zv(y)
)
K(x, y) dxdy

=

∫
B6R

∫
B6R

(
∆2
zu(x)−∆2

zu(y)
)

(v(x)− v(y))K(x, y) dxdy

+
2∑
i=1

(−1)i
(

2

i

)∫
B6R

∫
B6R

(τizu(x)− τizu(y)) (v(x)− v(y)) ∆izK(x, y) dxdy

− 2
2∑
i=0

(−1)i
(

2

i

)∫
B8R

∫
B8R

(u(x)− u(y)) τ−izχRn\B6R
(x)τ−izv(y)

×K(x, y) dxdy,

for any z ∈ Rn such that |z| < R.

Proof. We first expand the integral on the left hand side of (4.1), obtaining

(4.2)

∫
B8R

∫
B8R

(u(x)− u(y))
(
∆2
−zv(x)−∆2

−zv(y)
)
K(x, y) dxdy

=
2∑
i=0

(−1)i
(

2

i

)∫
B8R

∫
B8R

(u(x)− u(y)) (v(x− iz)− v(y − iz))K(x, y) dxdy.

Then, we write each term on the right hand side of (4.2) as3

(4.3)

∫
B8R

∫
B8R

(u(x)− u(y)) (v(x− iz)− v(y − iz))K(x, y) dxdy

=

∫
B6R+iz

∫
B6R+iz

(u(x)− u(y)) (v(x− iz)− v(y − iz))K(x, y) dxdy

− 2

∫
B8R

∫
B8R

(u(x)− u(y))χRn\(B6R+iz)(x)v(y − iz)K(x, y) dxdy.

3The symbol D + z, where D is a set and z a vector of Rn, identifies, as conventional, the set

{y ∈ Rn : y = x + z with x ∈ D} .

In the following formulae it is applied with D an Euclidean ball Br. Also, it should not be confused with
the notation (Br)z, which will be used later on in Section 6 and has to be understood in the sense of
definition (2.10).
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We apply the change of variables x̃ := x− iz, ỹ := y − iz in the first integral, to get

(4.4)

∫
B6R+iz

∫
B6R+iz

(u(x)− u(y)) (v(x− iz)− v(y − iz))K(x, y) dxdy

=

∫
B6R

∫
B6R

(u(x̃+ iz)− u(ỹ + iz)) (v(x̃)− v(ỹ))K(x̃+ iz, ỹ + iz) dx̃dỹ.

Writing then for i = 1, 2

K(x̃+ iz, ỹ + iz) = K(x̃, ỹ) + ∆izK(x̃, ỹ),

and relabeling the variables x̃, ỹ as x, y, formula (4.4) becomes

(4.5)

∫
B6R+iz

∫
B6R+iz

(u(x)− u(y)) (v(x− iz)− v(y − iz))K(x, y) dxdy

=

∫
B6R

∫
B6R

(u(x+ iz)− u(y + iz)) (v(x)− v(y))K(x, y) dxdy

+

∫
B6R

∫
B6R

(u(x+ iz)− u(y + iz)) (v(x)− v(y)) ∆izK(x, y) dxdy.

By using (4.3), (4.5) in (4.2) and noticing that τ−izχRn\B6R
= χRn\(B6R+iz), we finally

obtain (4.1). �

Then, we have the following result, in which we deduce an upper bound for the measure of
the symmetric difference of two translated balls in terms of the modulus of the displacement
vector. Despite the estimate is almost immediate, we include a proof of it for completeness.

We also refer to [S10] for a refined version of this result, holding for general bounded sets.

Lemma 4.2. Let BR be some ball of radius R > 0 in Rn. Then, for any z ∈ Rn,

|BR∆(BR + z)| 6 CRn−1|z|,
where C > 0 is a dimensional constant.

Proof. First, we observe that we may restrict ourselves to |z| 6 R/2, being the opposite
case trivial. With the change of variables y := x/R, we scale

|BR∆(BR + z)| = 2

∫
BR\(BR+z)

dx = 2Rn
∫
B1\(B1+ẑ)

dy,

where ẑ = z/R. Then, we easily check that

B1−|ẑ| ⊂ B1 + ẑ,

to obtain

|BR∆(BR + z)| 6 2Rn
∫
B1\B1−|ẑ|

dy =
2Hn−1(∂B1)

n
Rn [1− (1− |ẑ|)n] .

The result then follows, since 1− (1− t)n 6 nt, for any t > 0. �

5. A Caccioppoli-type inequality

In this section we present an estimate for the Hs norm of a solution u of (2.6) reminiscent
of the classical one by Caccioppoli. Results of this kind are by now well established also for
non-local equations, for instance in [KMS15, DKP15, BP14].

Proposition 5.1. Let s ∈ (0, 1), β > 0 and Ω ⊂ Rn be an open set. Fix a point x0 ∈ Ω and
let r > 0 be such that Br(x0) ⊂⊂ Ω. Assume that K satisfies assumptions (2.1) and (2.2).
Let u ∈ X(Ω) ∩ L1

β(Rn) be a solution of (2.6), with f ∈ L2(Ω). Then,

(5.1) [u]Hs(Br(x0)) 6 C
(
‖u‖L2(Ω) + ‖u‖L1

x0,β
(Rn) + ‖f‖L2(Ω)

)
,

for some constant C > 0 depending on n, s, β, λ, Λ, M , r and dist (Br(x0), ∂Ω).
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We stress that hypothesis (2.3) is not assumed here. Consequently, Proposition 5.1 holds
for a general measurable K which only satisfies (2.2).

Proof of Proposition 5.1. Our argument follows the lines of those contained in the above
mentioned papers. Anyway, we provide all the details for the reader’s convenience.

First, observe that we may assume r < 1/2 for the beginning. The case of a general
radius r > 0 will then follow by a covering argument. Take R > 0 in such a way that r <
R < 1/2 and BR(x0) ⊂ Ω. To simplify the notation, we write Bρ instead of Bρ(x0), for
any ρ > 0.

Let η ∈ C∞0 (Rn) be a cut-off function such that

(5.2)


supp η ⊂ B(R+r)/2

0 6 η 6 1 in Rn

η = 1 in Br

|∇η| 6 4/(R− r) in Rn.

Testing (2.7) with ϕ := η2u ∈ X0(Ω) we get

(5.3)

∫
BR

f(x)η2(x)u(x) dx

=

∫
BR

∫
BR

(u(x)− u(y))
(
η2(x)u(x)− η2(y)u(y)

)
K(x, y) dxdy

− 2

∫
Rn\BR

∫
BR

(u(x)− u(y)) η2(y)u(y)K(x, y) dxdy

=: I − 2J.

We estimate I. Notice that

(u(x)− u(y))
(
η2(x)u(x)− η2(y)u(y)

)
= η2(x)u2(x)− η2(x)u(x)u(y)− η2(y)u(x)u(y) + η2(y)u2(y)

= |η(x)u(x)− η(y)u(y)|2 − |η(x)− η(y)|2u(x)u(y)

> |η(x)u(x)− η(y)u(y)|2 − |η(x)− η(y)|2|u(x)||u(y)|,

and, therefore, using (2.2a),

(5.4)

I > λ
∫
BR

∫
BR

|η(x)u(x)− η(y)u(y)|2

|x− y|n+2s
dxdy

− Λ

∫
BR

∫
BR

|η(x)− η(y)|2|u(x)||u(y)|
|x− y|n+2s

dxdy.

Applying (5.2) and Young’s inequality, we deduce∫
BR

∫
BR

|η(x)− η(y)|2|u(x)||u(y)|
|x− y|n+2s

dxdy 6
16

(R− r)2

∫
BR

∫
BR

|u(x)||u(y)|
|x− y|n+2s−2

dxdy

6
16

(R− r)2

∫
BR

∫
BR

|u(x)|2

|x− y|n+2s−2
dxdy

6 c‖u‖2L2(BR),

which, together with (5.4), leads to

(5.5) I > λ[ηu]2Hs(BR) − c‖u‖
2
L2(BR).

We now deal with J . Let x ∈ Rn \BR and y ∈ B(R+r)/2. Then,

|y − x0| 6
R+ r

2
6
R+ r

2R
|x− x0|,
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and so

|x− y| > |x− x0| − |y − x0| >
R− r

2R
|x− x0| >

R− r
4

(1 + |x− x0|) ,

since R < 1. In view of this and (2.2) we have

(5.6) K(x, y) 6 Λ
χ[0,1)(|x− y|)
|x− y|n+2s

+M
χ[1,+∞)(|x− y|)
|x− y|n+β

6
c

1 + |x− x0|n+β
.

Moreover, using (5.2) we write

|u(x)− u(y)||u(y)|η2(y) 6 |u(x)||u(y)|+ |u(y)|2,

and hence by (5.6) and Young’s inequality we get

(5.7)

|J | 6 c
∫
Rn\BR

(∫
B(R+r)/2

|u(x)− u(y)||u(y)|η2(y)

1 + |x− x0|n+β
dy

)
dx

6 c

∫
B(R+r)/2

|u(y)|2 dy +

(∫
Rn\BR

|u(x)|
1 + |x− x0|n+β

dx

)2


6 c

(
‖u‖2L2(BR) + ‖u‖2L1

x0,β
(Rn)

)
.

Finally, we easily compute

(5.8)

∣∣∣∣∫
BR

f(x)u(x)η2(x) dx

∣∣∣∣ 6 1

2

(
‖u‖2L2(BR) + ‖f‖2L2(Ω)

)
.

Putting (5.3), (5.5), (5.7) and (5.8) together, we obtain

[u]Hs(Br) 6 [ηu]Hs(BR) 6 c
(
‖u‖L2(Ω) + ‖u‖L1

x0,β
(Rn) + ‖f‖L2(Ω)

)
,

where the first inequality follows from (5.2). Thus, (5.1) is proved. �

6. Proof of Theorem 2.2

We are finally in position to proceed with the demonstration of our principal contribution.

Proof of Theorem 2.2. Let x0 ∈ Ω and R ∈ (0, 1/56) be such that B56R(x0) ⊂⊂ Ω. In the
following any ball Br will always be assumed to be centered at x0. Let η ∈ C∞0 (Rn) be a
cut-off function satisfying

(6.1)


supp η ⊂ B2R

0 6 η 6 1 in Rn

η = 1 in BR

|∇η| 6 2/R in Rn.

Fix z ∈ Rn, with |z| < R, and plug ϕ := ∆2
−z
(
η2∆2

zu
)
∈ X0(Ω) in formulation (2.7).

Writing U = ∆2
zu, we have

(6.2)

∫
B3R

f(x)∆2
−z
(
η2U

)
(x) dx

=

∫
B8R

∫
B8R

(u(x)− u(y))
(
∆2
−z
(
η2U

)
(x)−∆2

−z
(
η2U

)
(y)
)
K(x, y) dxdy

− 2

∫
Rn\B8R

∫
B8R

(u(x)− u(y)) ∆2
−z
(
η2U

)
(y)K(x, y) dydx

=: I − 2J.
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We apply Lemma 4.1 to I with v = η2U , obtaining

(6.3)

I =

∫
B6R

∫
B6R

(U(x)− U(y))
(
η2(x)U(x)− η2(y)U(y)

)
K(x, y) dxdy

+
2∑
i=1

(−1)i
(

2

i

)∫
B6R

∫
B6R

(τizu(x)− τizu(y))
((
η2U

)
(x)−

(
η2U

)
(y)
)

×∆izK(x, y) dxdy

− 2

2∑
i=0

(−1)i
(

2

i

)∫
B8R

∫
B8R

(u(x)− u(y))
(
τ−izχRn\B6R

(x)τ−iz
(
η2U

)
(y)
)

×K(x, y) dxdy

=: I1 + I2 − 2I3.

Arguing as we did to obtain (5.4) in Proposition 5.1, we recover

(6.4) I1 > λ[η∆2
zu]2Hs(B6R) − c‖∆

2
zu‖2L2(B6R).

The term I2 can be dealt with as follows. Applying (2.3) together with Young’s inequality,
we have

|I2| 6 2Γ|z|s
2∑
i=1

∫
B6R

∫
B6R

|τizu(x)− τizu(y)|
∣∣(η2U

)
(x)−

(
η2U

)
(y)
∣∣

|x− y|n+2s
dxdy

6 c|z|s
(
δ[u]2Hs(B8R) + δ−1[η2∆2

zu]2Hs(B6R)

)
,

with δ > 0. Taking δ = ε−2|z|s, for some small ε > 0, we get

(6.5) |I2| 6 c
(
ε−2|z|2s[u]2Hs(B8R) + ε2[η2∆2

zu]2Hs(B6R)

)
.

We now estimate I3. By adding and subtracting the terms τ−2zχRn\B6R
(x)τ−z(η

2U)(y)

and τ−zχRn\B6R
(x)(η2U)(y), we see that

I3 =

1∑
i=0

∫
B8R

∫
B8R

(u(x)− u(y)) τ−(i+1)zχRn\B6R
(x)∆−z(η

2U)(y − iz)K(x, y) dxdy

−
1∑
i=0

∫
B8R

∫
B8R

(u(x)− u(y)) ∆−zχRn\B6R
(x− iz)τ−iz(η2U)(y)K(x, y) dxdy

=: I
(1)
3 − I(2)

3 .

On the one hand, using (2.2a) and again the weighted Young’s inequality,∣∣∣I(1)
3

∣∣∣ 6 Λ
1∑
i=0

∫
B3R+iz

|∆−z
(
η2U

)
(y − iz)|

(∫
B8R\(B6R+(i+1)z)

|u(x)|+ |u(y)|
|x− y|n+2s

dx

)
dy

6 c
(
δ‖u‖2L2(B8R) + δ−1‖∆−z

(
η2∆2

zu
)
‖2L2(B3R)

)
.

On the other hand ∣∣∆−zχRn\B6R
(x− iz)

∣∣ = χ(B6R+(i+1)z)∆(B6R+iz)(x),

and hence∣∣∣I(2)
3

∣∣∣ 6 Λ
1∑
i=0

∫
B2R+iz

∣∣η2(y)U(y)
∣∣(∫

(B6R+(i+1)z)∆(B6R+iz)

|u(x)|+ |u(y)|
|x− y|n+2s

dx

)
dy

6 c
(
γ |(B6R + z) ∆B6R| ‖u‖2L2(B8R) + γ−1‖∆2

zu‖2L2(B3R)

)
,
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for any γ > 0. In view of Lemma 4.2 we have

|(B6R + z) ∆B6R| 6 c|z|.

Therefore, ∣∣∣I(2)
3

∣∣∣ 6 c(γ|z|‖u‖2L2(B8R) + γ−1‖∆2
zu‖2L2(B3R)

)
.

The choices δ = ε−2|z|2s and γ = |z|2σ−1, for some

(6.6) σ > max {s, 1/2} ,

then yield

|I3| 6 c
[
ε−2|z|2s‖u‖2L2(B8R) + ε2|z|−2s‖∆−z

(
η2∆2

zu
)
‖2L2(B3R) + |z|1−2σ‖∆2

zu‖2L2(B3R)

]
.

By combining (6.4) and (6.5) with the above inequality, recalling (6.3) and (6.6) we get

(6.7)
I > λ[η∆2

zu]2Hs(B6R) − c
[
ε−2|z|2s‖u‖2Hs(B8R) + |z|1−2σ‖∆2

zu‖2L2(B6R)

+ ε2
(

[η2∆2
zu]2Hs(B6R) + |z|−2s‖∆−z

(
η2∆2

zu
)
‖2L2(B3R)

) ]
.

Now, we turn our attention to J . Arguing as in (5.7), we use once again (2.2), (6.1) and
Young’s inequality to obtain

|J | 6 c
[
δ

(
‖u‖2L2(B3R) + ‖u‖2L1

x0,β
(Rn)

)
+ δ−1‖∆2

−z
(
η2∆2

zu
)
‖2L2(B3R)

]
,

for any δ > 0. Setting again δ = ε−2|z|2s, this becomes

(6.8) |J | 6 c
[
ε−2|z|2s

(
‖u‖2L2(B3R) + ‖u‖2L1

x0,β
(Rn)

)
+ ε2|z|−2s‖∆2

−z
(
η2∆zu

)
‖2L2(B3R)

]
.

Finally, we use Young’s inequality as before to deduce∣∣∣∣∫
B3R

f(x)∆2
−z
(
η2U

)
(x) dx

∣∣∣∣ 6 c [ε−2|z|2s‖f‖2L2(Ω) + ε2|z|−2s‖∆2
−z
(
η2∆2

zu
)
‖2L2(B3R)

]
.

By combining this last estimation, (6.7), (6.8) with (6.2) and noticing that

‖∆2
−z
(
η2∆zu

)
‖L2(B3R) 6 2‖∆−z

(
η2∆zu

)
‖L2(B4R),

we find

(6.9)

[η∆2
zu]Hs(B6R) 6 c

[
ε
(
[η2∆2

zu]Hs(B6R) + |z|−s‖∆−z
(
η2∆2

zu
)
‖L2(B4R)

)
+ |z|1/2−σ‖∆2

zu‖L2(B6R)

+ ε−1|z|s
(
‖u‖Hs(B8R) + ‖u‖L1

x0,β
(Rn) + ‖f‖L2(Ω)

) ]
.

In view of Proposition 3.5, we have4

(6.10)

‖∆−z
(
η2∆2

zu
)
‖L2(B4R) 6 ‖∆−z

(
η2∆2

zu
)
‖L2((B5R)−z)

6 |z|s[η2∆2
zu]Ns,2(B5R)

6 c|z|s‖η2∆2
zu‖Hs(B5R).

Moreover,∣∣(η2∆2
zu
)

(x)−
(
η2∆2

zu
)

(y)
∣∣2

6 2
(
|η(x)|2

∣∣(η∆2
zu
)

(x)−
(
η∆2

zu
)

(y)
∣∣2 +

∣∣(η∆2
zu
)

(y)
∣∣2 |η(x)− η(y)|2

)
,

4Here and in the remainder of the proof we freely swap between some of the equivalent norms of Nikol’skii
spaces. In this regard, we recommend the reader to refer to Section 3 and, in particular, Remark 3.3.
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and hence, recalling (6.1),

(6.11)
[η2∆2

zu]2Hs(B6R) 6 c

[
[η∆2

zu]2Hs(B6R) +

∫
B6R

|∆2
zu(y)|2

[∫
B6R

|x− y|−n−2s+2 dx

]
dy

]
6 c

[
[η∆2

zu]2Hs(B6R) + ‖∆2
zu‖2L2(B6R)

]
.

Consequently, if we choose ε suitably small, by (6.10), (6.11) and Proposition 5.1, esti-
mate (6.9) becomes

(6.12)

[η∆2
zu]Hs(B6R) 6 c

[
|z|1/2−σ‖∆2

zu‖L2(B6R)

+ |z|s
(
‖u‖L2(Ω) + ‖u‖L1

x0,β
(Rn) + ‖f‖L2(Ω)

)]
,

where we also employed (6.6). Applying again Proposition 3.5,

‖∆w

(
∆2
zu
)
‖L2((BR)w) 6 |w|s[∆2

zu]Ns,2(BR) 6 c|w|s‖∆2
zu‖Hs(BR),

for any w ∈ Rn. Taking w = z, from (2.11), (6.1), (6.6) and (6.12) we then get

(6.13)

‖∆3
zu‖L2((BR)3z) 6 ‖∆3

zu‖L2((BR)z) 6 c|z|s‖∆2
zu‖Hs(BR)

6 c|z|s
(
‖∆2

zu‖L2(BR) + [η∆2
zu]Hs(B6R)

)
6 c

[
|z|1/2−σ+s‖∆2

zu‖L2(B6R)

+ |z|2s
(
‖u‖L2(Ω) + ‖u‖L1

x0,β
(Rn) + ‖f‖L2(Ω)

)]
.

Now we consider separately the two cases s ∈ (0, 1/2] and s ∈ (1/2, 1).
In the first situation, we set σ = 1/2. Notice that the choice is compatible with (6.6).

By Proposition 3.5,

(6.14) ‖∆2
zu‖L2(B6R) 6 ‖∆2

zu‖L2((B7R)z) 6 |z|s[u]Ns,2(B7R) 6 c|z|s‖u‖Hs(B7R).

Therefore, from (6.13)

(6.15) ‖∆3
zu‖L2((BR)3z) 6 c|z|2s

(
[u]Hs(B56R) + ‖u‖L2(Ω) + ‖u‖L1

x0,β
(Rn) + ‖f‖L2(Ω)

)
,

and thus u ∈ N2s,2(BR).
Now we address the more delicate case s ∈ (1/2, 1). Here we choose σ = s and first

deduce from (6.13) and (6.14) that

‖∆3
zu‖L2((BR)3z) 6 c|z|1/2+s

(
[u]Hs(B7R) + ‖u‖L2(Ω) + ‖u‖L1

x0,β
(Rn) + ‖f‖L2(Ω)

)
.

Note that such a σ is admissible for (6.6), since s > 1/2. Repeating the same argument

with B8R in place of BR, we see that u ∈ N1/2+s,2(B8R) with

[u]N1/2+s,2(B8R) 6 c
(

[u]Hs(B56R) + ‖u‖L2(Ω) + ‖u‖L1
x0,β

(Rn) + ‖f‖L2(Ω)

)
.

Consequently,

‖∆2
zu‖L2(B6R) 6 ‖∆2

zu‖L2((B8R)2z) 6 |z|1/2+s[u]N1/2+s(B8R)

6 c|z|1/2+s
(

[u]Hs(B56R) + ‖u‖L2(Ω) + ‖u‖L1
x0,β

(Rn) + ‖f‖L2(Ω)

)
.

Using this last estimate in combination with (6.13) and selecting σ = 1 there, again in
agreement with (6.6), we conclude that u ∈ N2s,2(BR) and (6.15) is true also for s ∈ (1/2, 1).

Finally, we use Proposition 5.1 to control the Gagliardo semi-norm on the right hand side
of (6.15) and recover

(6.16) [u]N2s,2(BR) 6 c
(
‖u‖L2(Ω) + ‖u‖L1

x0,β
(Rn) + ‖f‖L2(Ω)

)
.
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Then, (2.13) follows for a general open Ω′ ⊂⊂ Ω by a standard covering argument.5 �

We conclude this section with some brief comments on the technique just displayed.
To achieve the result we tested the equation with a function modelled on the double

increment ∆2
zu, which may seem a little unnatural and artificial. In fact, for s ∈ (0, 1/2]

the first order increment would have been sufficient. On the other hand, when s > 1/2 this

strategy is no more conclusive, basically since it leads to u ∈ N1/2+s,2
loc (Ω) only. In order to

take advantage of this intermediate regularity and then gain the extra s− 1/2 derivatives,
we need the order of the increment to be at least 2.

7. Proof of Theorem 2.1

As previously discussed in Section 2, Theorem 2.1 essentially follows from Theorem 2.2,
in light of the embedding of Proposition 3.6. The only detail left is that the results of
Section 3 - specifically, Proposition 3.6 - are only proved for sets having smooth boundary.

But this is not a big drawback. As a matter of fact, we know that estimate (2.9) holds
for any domain Ω′ ⊂⊂ Ω, with ∂Ω′ ∈ C∞. Then, it can be further extended to any Ω′, by
noticing that it is always possible to find Ω′′ with C∞ boundary, such that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω.

8. Towards the optimal regularity up to the boundary

In this conclusive section we briefly comment on the global Sobolev regularity for the
Dirichlet problem driven by (2.6).

For x ∈ Rn, we define us(x) := (xn)s+. The function us solves

(8.1)

{
(−∆)sus = 0 in Rn+ := Rn−1 × (0,+∞)

us = 0 in Rn \ Rn+.

To see this, we write us(x) = µs(xn), with µs(t) := ts+ as t ∈ R, and we compute for x ∈ Rn+

(−∆)sus(x) = 2 P.V.

∫
Rn

us(x)− us(y)

|x− y|n+2s
dy

= 2 P.V.

∫
R

µs(xn)− µs(yn)

|xn − yn|n+2s

[∫
Rn−1

(
1 +

|x′ − y′|2

|xn − yn|2

)−n+2s
2

dy′

]
dyn.

Note that we use x′ and y′ to indicate the first n− 1 components of x and y, respectively.
Changing variables by setting z′ := |yn − xn|−1(y′ − x′) in the inner integral, we get

(−∆)sus(x) = $n,s(−∆)sµs(xn),

where

$n,s :=

∫
Rn−1

(
1 + |z′|2

)−n+2s
2 dz′,

is a finite constant. Then, the equation in (8.1) follows from the fact that µs is s-harmonic
in the half-line (0,+∞), as showed for instance in [CRS10, RS14] or [BV15].

Of course, the function us is of class C0,s
loc(Rn), but not C0,α

loc (Rn), with α > s. On the other
hand, the following proposition sheds some light on which could be the optimal Sobolev
regularity of us, at least when s > 1/2.

Proposition 8.1. Let s ∈ [1/2, 1). Then, us /∈ H2s
loc(Rn+).

5Note that the right hand side of (6.16) depends on the norm ‖ · ‖L1
x0,β

(Rn) which in turn varies with x0.

Consequently, while performing the covering argument one should take care that those norms depend on
the centers of the covering balls. However, as noted in Section 2 such norms are all equivalent. The relative
compactness of Ω′ then allows the use of a finite number of balls, thus preventing the blow-up of the
constant c.
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Proof. We focus on the case s > 1/2, as when s = 1/2 the computation is immediate.
Denoting with B′r(z

′) the (n − 1)-dimensional open ball of radius r and center z′ -
with B′r := B′r(0) as usual - and with Q the cylinder B′1 × (0, 1), we shall prove that

(8.2) us /∈ H2s(Q).

First, setting

E :=

∫ 1

0

∫ 1

0

|µ′s(t)− µ′s(r)|2

|t− r|1+2(2s−1)
dtdr,

we claim that

(8.3) E is not finite.

Assuming for the moment (8.3) to hold, we check that then (8.2) follows. While for n = 1
this is immediate, the case n > 2 requires some comments. Indeed,

‖us‖2H2s(Q) >
∫
Q

∫
Q

|∇us(x)−∇us(y)|2

|x− y|n+2(2s−1)
dxdy =

∫
Q

∫
Q

|µ′s(xn)− µ′s(yn)|2

|x− y|n+2(2s−1)
dxdy

=

∫ 1

0

∫ 1

0
|µ′s(xn)− µ′s(yn)|2

(∫
B′1

∫
B′1

dx′dy′

(|xn − yn|2 + |x′ − y′|2)
n
2

+2s−1

)
dxndyn.

For δ ∈ (0, 1/2) we consider the set

S(δ) :=
{

(x′, y′) ∈ B′1 ×B′1 : |x′ − y′| < δ
}
⊂ Rn−1 × Rn−1,

and we estimate its measure by computing

|S(δ)| =
∫
B′1

(∫
B′1∩B′δ(x′)

dy′

)
dx′ >

∫
B′1−δ

(∫
B′δ(x

′)
dy′

)
dx′

= |B′1|2(1− δ)n−1δn−1 > 21−n|B′1|2δn−1.

Noticing that on S(|xn − yn|/4) it holds

|xn − yn|2 + |x′ − y′|2 6 17

16
|xn − yn|2,

and that |xn − yn|/4 6 1/2, we finally obtain

‖us‖2H2s(Q) >

(
16

17

)n+2s
2
∫ 1

0

∫ 1

0

|µ′s(xn)− µ′s(yn)|2

|xn − yn|n+2(2s−1)

∣∣∣∣S ( |xn − yn|4

)∣∣∣∣ dxndyn
>

(
16

17

)n+2s
2

81−n|B′1|2E.

Thus, (8.2) is valid.
To complete the proof of the proposition, we are only left to show that (8.3) is true. To

do this, we first note that, for t > 0,

µ′s(t) = sts−1,

µ′′s(t) = s(s− 1)ts−2 < 0.

Accordingly, µ′s is decreasing and for 0 < r < t < 1 we have

|µ′s(t)− µ′s(r)| = µ′s(r)− µ′s(t) = −
∫ t

r
µ′′s(τ) dτ

= s(1− s)
∫ t

r
τ s−2 dτ > s(1− s)ts−2(t− r),

so that

E > s2(1− s)2

∫ 1

0
t2(s−2)

(∫ t

0
(t− r)3−4sdr

)
dt =

s2(1− s)
4

∫ 1

0
t−2sdt.
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Claim (8.3) then follows, since the integral on the right hand side of the above inequality
does not converge. �

We remark that, for s ∈ (0, 1/2), an almost identical argumentation leads to the conclu-

sion that us /∈ Hs+1/2
loc (Rn+).
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