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Abstract

We study a nonlinear initial value Cauchy problem depending upon a complex perturbation parameter ε
whose coefficients depend holomorphically on (ε, t) near the origin in C2 and are bounded holomorphic
on some horizontal strip in C w.r.t the space variable. In our previous contribution [14], we assumed the
forcing term of the Cauchy problem to be analytic near 0. Presently, we consider a family of forcing terms
that are holomorphic on a common sector in time t and on sectors w.r.t the parameter ε whose union
form a covering of some neighborhood of 0 in C∗, which are asked to share a common formal power series
asymptotic expansion of some Gevrey order as ε tends to 0. We construct a family of actual holomorphic
solutions to our Cauchy problem defined on the sector in time and on the sectors in ε mentioned above.
These solutions are achieved by means of a version of the so-called accelero-summation method in the
time variable and by Fourier inverse transform in space. It appears that these functions share a common
formal asymptotic expansion in the perturbation parameter. Furthermore, this formal series expansion
can be written as a sum of two formal series with a corresponding decomposition for the actual solutions
which possess two different asymptotic Gevrey orders, one steming from the shape of the equation and
the other originating from the forcing terms. The special case of multisummability in ε is also analyzed
thoroughly. The proof leans on a version of the so-called Ramis-Sibuya theorem which entails two distinct
Gevrey orders. Finally, we give an application to the study of parametric multi-level Gevrey solutions
for some nonlinear initial value Cauchy problems with holomorphic coefficients and forcing term in (ε, t)
near 0 and bounded holomorphic on a strip in the complex space variable.

Key words: asymptotic expansion, Borel-Laplace transform, Fourier transform, Cauchy problem, for-

mal power series, nonlinear integro-differential equation, nonlinear partial differential equation, singular

perturbation. 2000 MSC: 35C10, 35C20.

∗The author is partially supported by the project MTM2012-31439 of Ministerio de Ciencia e Innovacion,
Spain
†The author is partially supported by the french ANR-10-JCJC 0105 project and the PHC Polonium 2013

project No. 28217SG.



2

1 Introduction

We consider a family of parameter depending nonlinear initial value Cauchy problems of the
form

(1) Q(∂z)(∂tu
dp(t, z, ε)) = c1,2(ε)(Q1(∂z)u

dp(t, z, ε))(Q2(∂z)u
dp(t, z, ε))

+ ε(δD−1)(k2+1)−δD+1t(δD−1)(k2+1)∂δDt RD(∂z)u
dp(t, z, ε) +

D−1∑
l=1

ε∆ltdl∂δlt Rl(∂z)u
dp(t, z, ε)

+ c0(t, z, ε)R0(∂z)u
dp(t, z, ε) + cF (ε)fdp(t, z, ε)

for given vanishing initial data udp(0, z, ε) ≡ 0, where D ≥ 2 and δD, k2,∆l, dl, δl, 1 ≤ l ≤
D − 1 are nonnegative integers and Q(X),Q1(X),Q2(X),Rl(X), 0 ≤ l ≤ D are polynomials
belonging to C[X]. The coefficient c0(t, z, ε) is a bounded holomorphic function on a product
D(0, r) ×Hβ ×D(0, ε0), where D(0, r) (resp. D(0, ε0)) denotes a disc centered at 0 with small
radius r > 0 (resp. ε0 > 0) and Hβ = {z ∈ C/|Im(z)| < β} is some strip of width β > 0. The
coefficients c1,2(ε) and cF (ε) define bounded holomorphic functions onD(0, ε0) vanishing at ε = 0.
The forcing terms fdp(t, z, ε), 0 ≤ p ≤ ς− 1, form a family of bounded holomorphic functions on
products T ×Hβ×Ep, where T is a small sector centered at 0 contained inD(0, r) and {Ep}0≤p≤ς−1

is a set of bounded sectors with aperture slightly larger than π/k2 covering some neighborhood
of 0 in C∗. We make assumptions in order that all the functions ε 7→ fdp(t, z, ε), seen as functions
from Ep into the Banach space F of bounded holomorphic functions on T ×Hβ endowed with the

supremum norm, share a common asymptotic expansion f̂(t, z, ε) =
∑

m≥0 fm(t, z)εm/m! ∈ F[[ε]]
of Gevrey order 1/k1 on Ep, for some integer 1 ≤ k1 < k2, see Lemma 11.

Our main purpose is the construction of actual holomorphic solutions udp(t, z, ε) to the
problem (1) on the domains T ×Hβ ×Ep and to analyse their asymptotic expansions as ε tends
to 0.

This work is a continuation of the study initiated in [14] where the authors have studied
initial value problems with quadratic nonlinearity of the form

(2) Q(∂z)(∂tu(t, z, ε)) = (Q1(∂z)u(t, z, ε))(Q2(∂z)u(t, z, ε))

+ ε(δD−1)(k+1)−δD+1t(δD−1)(k+1)∂δDt RD(∂z)u(t, z, ε) +
D−1∑
l=1

ε∆ltdl∂δlt Rl(∂z)u(t, z, ε)

+ c0(t, z, ε)R0(∂z)u(t, z, ε) + f(t, z, ε)

for given vanishing initial data u(0, z, ε) ≡ 0, where D,∆l, dl, δl are positive integers and
Q(X), Q1(X), Q2(X), Rl(X), 0 ≤ l ≤ D, are polynomials with complex coefficients. Under
the assumption that the coefficients c0(t, z, ε) and the forcing term f(t, z, ε) are bounded holo-
morphic functions on D(0, r) × Hβ × D(0, ε0), one can build, using some Borel-Laplace pro-
cedure and Fourier inverse transform, a family of holomorphic bounded functions up(t, z, ε),
0 ≤ p ≤ ς − 1, solutions of (2), defined on the products T ×Hβ × Ep, where Ep has an aperture
slightly larger than π/k. Moreover, the functions ε 7→ up(t, z, ε) share a common formal power
series û(t, z, ε) =

∑
m≥0 hm(t, z)εm/m! as asymptotic expansion of Gevrey order 1/k on Ep. In

other words, up(t, z, ε) is the k−sum of û(t, z, ε) on Ep, see Definition 9.
In this paper, we observe that the asymptotic expansion of the solutions udp(t, z, ε) of (1)

w.r.t ε on Ep, defined as û(t, z, ε) =
∑

m≥0 hm(t, z)εm/m! ∈ F[[ε]], inherits a finer structure
which involves the two Gevrey orders 1/k1 and 1/k2. Namely, the order 1/k2 originates from
the equation (1) itself and its highest order term ε(δD−1)(k2+1)−δD+1t(δD−1)(k2+1)∂δDt RD(∂z) as it
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was the case in the work [14] mentioned above and the scale 1/k1 arises, as a new feature, from
the asymptotic expansion f̂ of the forcing terms fdp(t, z, ε). We can also describe conditions for
which udp(t, z, ε) is the (k2, k1)−sum of û(t, z, ε) on Ep for some 0 ≤ p ≤ ς − 1, see Definition 10.
More specifically, we can present our two main statements and its application as follows.

Main results Let k2 > k1 ≥ 1 be integers. We choose a family {Ep}0≤p≤ς−1 of bounded sectors
with aperture slightly larger than π/k2 which defines a good covering in C∗ (see Definition 7)
and a set of adequate directions dp ∈ R, 0 ≤ p ≤ ς − 1 for which the constraints (152) and (153)
hold. We also take an open bounded sector T centered at 0 such that for every 0 ≤ p ≤ ς − 1,
the product εt belongs to a sector with direction dp and aperture slightly larger than π/k2, for
all ε ∈ Ep, all t ∈ T . We make the assumption that the coefficient c0(t, z, ε) can be written as a
convergent series of the special form

c0(t, z, ε) = c0(ε)
∑
n≥0

c0,n(z, ε)(εt)n

on a domain D(0, r)×Hβ′ ×D(0, ε0), where Hβ′ is a strip of width β′, such that T ⊂ D(0, r),
∪0≤p≤ς−1Ep ⊂ D(0, ε0) and 0 < β′ < β are given positive real numbers. The coefficients c0,n(z, ε),
n ≥ 0, are supposed to be inverse Fourier transform of functions m 7→ C0,n(m, ε) that belong
to the Banach space E(β,µ) (see Definition 2) for some µ > max(deg(Q1) + 1,deg(Q2) + 1)
and depend holomorphically on ε in D(0, ε0) and c0(ε) is a holomorphic function on D(0, ε0)
vanishing at 0. Since we have in view our principal application (Theorem 3), we choose the
forcing term fdp(t, z, ε) as a mk2−Fourier-Laplace transform

fdp(t, z, ε) =
k2

(2π)1/2

∫ +∞

−∞

∫
Lγp

ψ
dp
k2

(u,m, ε)e−( u
εt

)k2eizm
du

u
dm,

where the inner integration is made along some halfline Lγp ⊂ Sdp and Sdp is an unbounded

sector with bisecting direction dp, with small aperture and where ψ
dp
k2

(u,m, ε) is a holomorphic
function w.r.t u on Sdp, defined as an integral transform called acceleration operator with indices
mk2 and mk1,

ψ
dp
k2

(u,m, ε) =

∫
L
γ1p

ψ
dp
k1

(h,m, ε)G(u, h)
dh

h

where G(u, h) is a kernel function with exponential decay of order κ = ( 1
k1
− 1

k2
)−1, see (114).

The integration path Lγ1p is a halfline in an unbounded sector Udp with bisecting direction dp

and ψ
dp
k1

(h,m, ε) is a function with exponential growth of order k1 w.r.t h on Udp ∪D(0, ρ) and
exponential decay w.r.t m on R, satisfying the bounds (156). The function fdp(t, z, ε) represents
a bounded holomorphic function on T ×Hβ′ × Ep. Actually, it turns out that fdp(t, z, ε) can be

simply written as a mk1−Fourier-Laplace transform of ψ
dp
k1

(h,m, ε),

fdp(t, z, ε) =
k1

(2π)1/2

∫ +∞

−∞

∫
Lγp

ψ
dp
k1

(u,m, ε)e−( u
εt

)k1eizm
du

u
dm,

see Lemma 13.
Our first result stated in Theorem 1 reads as follows. We make the assumption that the

integers δD, k2,∆l, dl, δl, 1 ≤ l ≤ D − 1 satisfy the inequalities (147), (148) and (160). The
polynomials Q(X), Q1(X), Q2(X) and Rl(X), 0 ≤ l ≤ D are submitted to the constraints (149)
on their degrees. We require the existence of constants rQ,Rl > 0 such that∣∣∣∣Q(im)

Rl(im)

∣∣∣∣ ≥ rQ,Rl
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for all m ∈ R, all 1 ≤ l ≤ D (see (150)) and moreover that the quotient Q(im)/RD(im) belongs
to some suitable unbounded sector SQ,RD for all m ∈ R (see (151)). Then, if the sup norms of
the coefficients c1,2(ε)/ε, c0(ε)/ε and cF (ε)/ε on D(0, ε0) are chosen small enough and provided
that the radii rQ,Rl, 1 ≤ l ≤ D, are taken large enough, we can construct a family of holomorphic
bounded functions udp(t, z, ε), 0 ≤ p ≤ ς − 1, defined on the products T ×Hβ′ × Ep, which solves
the problem (1) with initial data udp(0, z, ε) ≡ 0. Similarly to the forcing term, udp(t, z, ε) can
be written as a mk2−Fourier-Laplace transform

udp(t, z, ε) =
k2

(2π)1/2

∫ +∞

−∞

∫
Lγp

ω
dp
k2

(u,m, ε)e−( u
εt

)k2eizm
du

u
dm

where ω
dp
k2

(u,m, ε) denotes a function with at most exponential growth of order k2 in u on Sdp

and exponential decay in m ∈ R, satisfying (166). The function ω
dp
k2

(u,m, ε) is shown to be the

analytic continuation of a function Acc
dp
k2,k1

(ω
dp
k1

)(u,m, ε) defined only on a bounded sector Sbdp
with aperture slightly larger than π/κ w.r.t u, for all m ∈ R, with the help of an acceleration
operator with indices mk2 and mk1,

Acc
dp
k2,k1

(ω
dp
k1

)(u,m, ε) =

∫
L
γ1p

ω
dp
k1

(h,m, ε)G(u, h)
dh

h
.

We show that, in general, ω
dp
k1

(h,m, ε) suffers an exponential growth of order larger than k1

(and actually less than κ) w.r.t h on Udp ∪ D(0, ρ), and obeys the estimates (168). At this

point udp(t, z, ε) cannot be merely expressed as a mk1−Fourier-Laplace transform of ω
dp
k1

and is
obtained by a version of the so-called accelero-summation procedure, as described in [1], Chapter
5.

Our second main result, described in Theorem 2, asserts that the functions udp, seen as
maps from Ep into F, for 0 ≤ p ≤ ς − 1, turn out to share on Ep a common formal power series
û(ε) =

∑
m≥0 hmε

m/m! ∈ F[[ε]] as asymptotic expansion of Gevrey order 1/k1. The formal series
û(ε) formally solves the equation (1) where the analytic forcing term fdp(t, z, ε) is replaced by its
asymptotic expansion f̂(t, z, ε) ∈ F[[ε]] of Gevrey order 1/k1 (see Lemma 11). Furthermore, the
functions udp and the formal series û own a fine structure which actually involves two different
Gevrey orders of asymptotics. Namely, udp and û can be written as sums

û(ε) = a(ε) + û1(ε) + û2(ε) , udp(t, z, ε) = a(ε) + u
dp
1 (ε) + u

dp
2 (ε)

where a(ε) is a convergent series near ε = 0 with coefficients in F and û1(ε) (resp. û2(ε))
belongs to F[[ε]] and is the asymptotic expansion of Gevrey order 1/k1 (resp. 1/k2) of the

F−valued function u
dp
1 (ε) (resp. u

dp
2 (ε)) on Ep. Besides, under a more restrictive assumption

on the covering {Ep}0≤p≤ς−1 and the unbounded sectors {Udp}0≤p≤ς−1 (see Assumption 5 in
Theorem 2), one gets that udp0 (t, z, ε) is even the (k2, k1)−sum of û(ε) on some sector Ep0, with

0 ≤ p0 ≤ ς − 1, meaning that u
dp0
1 (ε) can be analytically continued on a larger sector Sπ/k1,

containing Ep0, with aperture slightly larger than π/k1 where it becomes the k1−sum of û1(ε) and

by construction u
dp0
2 (ε) is already the k2−sum of û2(ε) on Ep0, see Definition 10.

As an important application (Theorem 3), we deal with the special case when the forcing
terms fdp(t, z, ε) themselves solve a linear partial differential equation with a similar shape as
(2), see (220), whose coefficients are holomorphic functions on D(0, r)×Hβ ×D(0, ε0). When
this holds, it turns out that udp(t, z, ε) and its asymptotic expansion û(t, z, ε) solves a nonlinear
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singularly perturbed PDE with analytic coefficients and forcing term on D(0, r)×Hβ ×D(0, ε0),
see (224).

We stress the fact that our application (Theorem 3) relies on the factorization of some
nonlinear differential operator which is an approach that belongs to an active domain of research
in symbolic computation these last years, see for instance [6], [7], [12], [28], [29], [33].

We mention that a similar result has been recently obtained by H. Tahara and H. Yamazawa,
see [31], for the multisummability of formal series û(t, x) =

∑
n≥0 un(x)tn ∈ O(CN )[[t]] with

entire coefficients on CN , N ≥ 1, solutions of general non-homogeneous time depending linear
PDEs of the form

∂mt u+
∑

j+|α|≤L

aj,α(t)∂jt ∂
α
xu = f(t, x)

for given initial data (∂jt u)(0, x) = ϕj(x), 0 ≤ j ≤ m− 1 (where 1 ≤ m ≤ L), provided that the
coefficients aj,α(t) together with t 7→ f(t, x) are analytic near 0 and that ϕj(x) with the forcing
term x 7→ f(t, x) belong to a suitable class of entire functions of finite exponential order on CN .
The different levels of multisummability are related to the slopes of a Newton polygon attached
to the main equation and analytic acceleration procedures as described above are heavily used
in their proof.

It is worthwhile noticing that the multisummable structure of formal solutions to linear and
nonlinear meromorphic ODEs has been discovered two decades ago, see for instance [2], [5], [8],
[18], [21], [27], but in the framework of PDEs very few results are known. In the linear case
in two complex variables with constant coefficients, we mention the important contributions
of W. Balser, [4] and S. Michalik, [22], [23]. Their strategy consists in the construction of a
multisummable formal solution written as a sum of formal series, each of them associated to
a root of the symbol attached to the PDE using the so-called Puiseux expansion for the roots
of polynomial with holomorphic coefficients. In the linear and nonlinear context of PDEs that
come from a perturbation of ordinary differential equations, we refer to the works of S. Ouchi,
[25], [26], which are based on a Newton polygon approach and accelero-summation technics as
in [31]. Our result concerns more peculiarly multisummability and multiple scale analysis in the
complex parameter ε. Also from this point of view, only few advances have been performed.
Among them, we must mention two recent works by K. Suzuki and Y. Takei, [30] and Y. Takei,
[32], for WKB solutions of the Schrödinger equation

ε2ψ′′(z) = (z − ε2z2)ψ(z)

which possesses 0 as fixed turning point and zε = ε−2 as movable turning point tending to
infinity as ε tends to 0.

In the sequel, we describe our main intermediate results and the sketch of the arguments
needed in their proofs. In a first part, we depart from an auxiliary parameter depending initial
value differential and convolution equation which is regularly perturbed in its parameter ε, see
(70). This equation is formally constructed by making the change of variable T = εt in the
equation (1) and by taking the Fourier transform w.r.t the variable z (as done in our previous
contribution [14]). We construct a formal power series Û(T,m, ε) =

∑
n≥1 Un(m, ε)Tn solution

of (70) whose coefficients m 7→ Un(m, ε) depend holomorphically on ε near 0 and belong to
a Banach space E(β,µ) of continuous functions with exponential decay on R introduced by O.
Costin and S. Tanveer in [10].

As a first step, we follow the strategy recently developed by H. Tahara and H. Yamazawa in
[31], namely we multiply each hand side of (70) by the power T k1+1 which transforms it into an



6

equation (75) which involves only differential operators in T of irregular type at T = 0 of the
form T β∂T with β ≥ k1 +1 due to the assumption (72) on the shape of the equation (70). Then,
we apply a formal Borel transform of order k1, that we call mk1−Borel transform in Definition
4, to the formal series Û with respect to T , denoted by

ωk1(τ,m, ε) =
∑
n≥1

Un(m, ε)
τn

Γ(n/k1)
.

Then, we show that ωk1(τ,m, ε) formally solves a convolution equation in both variables τ and
m, see (83). Under some size constraints on the sup norm of the coefficients c1,2(ε)/ε, c0(ε)/ε and
cF (ε)/ε near 0, we show that ωk1(τ,m, ε) is actually convergent for τ on some fixed neighborhood
of 0 and can be extended to a holomorphic function ωdk1(τ,m, ε) on unbounded sectors Ud centered
at 0 with bisecting direction d and tiny aperture, provided that the mk1−Borel transform of
the formal forcing term F (T,m, ε), denoted by ψk1(τ,m, ε) is convergent near τ = 0 and can
be extended on Ud w.r.t τ as a holomorphic function ψdk1(τ,m, ε) with exponential growth of

order less than k1. Besides, the function ωdk1(τ,m, ε) satisfies estimates of the form: there exist
constants ν > 0 and $d > 0 with

|ωdk1(τ,m, ε)| ≤ $d(1 + |m|)−µe−β|m| |τ |
1 + |τ |2k1

eν|τ |
κ

for all τ ∈ Ud, all m ∈ R, all ε ∈ D(0, ε0), see Proposition 11. The proof leans on a fixed
point argument in a Banach space of holomorphic functions F d(ν,β,µ,k1,κ) studied in Section 2.1.

Since the exponential growth order κ of ωdk1 is larger than k1, we cannot take a mk1−Laplace
transform of it in direction d. We need to use a version of what is called an accelero-summation
procedure as described in [1], Chapter 5, which is explained in Section 4.3.

In a second step, we go back to our seminal convolution equation (70) and we multiply each
handside by the power T k2+1 which transforms it into the equation (121). Then, we apply a
mk2−Borel transform to the formal series Û w.r.t T , denoted by ω̂k2(τ,m, ε). We show that
ω̂k2(τ,m, ε) formally solves a convolution equation in both variables τ and m, see (123), where
the formal mk2−Borel transform of the forcing term is set as ψ̂k2(τ,m, ε). Now, we observe that
a version of the analytic acceleration transform with indices k2 and k1 constructed in Proposition
13 applied to ψdk1(τ,m, ε), standing for ψdk2(τ,m, ε), is the κ−sum of ψ̂k2(τ,m, ε) w.r.t τ on some

bounded sector Sbd,κ with aperture slightly larger than π/κ, viewed as a function with values

in E(β,µ). Furthermore, ψdk2(τ,m, ε) can be extended as an analytic function on an unbounded
sector Sd,κ with aperture slightly larger than π/κ where it possesses an exponential growth
of order less than k2, see Lemma 4. In the sequel, we focus on the solution ωdk2(τ,m, ε) of the

convolution problem (129) which is similar to (123) but with the formal forcing term ψ̂k2(τ,m, ε)
replaced by ψdk2(τ,m, ε). Under some size restriction on the sup norm of the coefficients c1,2(ε)/ε,

c0(ε)/ε and cF (ε)/ε near 0, we show that ωdk2(τ,m, ε) defines a bounded holomorphic function

for τ on the bounded sector Sbd,κ and can be extended to a holomorphic function on unbounded
sectors Sd with direction d and tiny aperture, provided that Sd stays away from the roots of some
polynomial Pm(τ) constructed with the help of Q(X) and RD(X) in (1), see (131). Moreover,
the function ωdk2(τ,m, ε) satisfies estimates of the form: there exist constants ν ′ > 0 and υd > 0
with

|ωdk2(τ,m, ε)| ≤ υd(1 + |m|)−µe−β|m| |τ |
1 + |τ |2k2

eν
′|τ |k2

for all τ ∈ Sd, all m ∈ R, all ε ∈ D(0, ε0), see Proposition 14. Again, the proof rests on a fixed
point argument in a Banach space of holomorphic functions F d(ν′,β,µ,k2) outlined in Section 2.2.
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In Proposition 15, we show that ωdk2(τ,m, ε) actually coincides with the analytic acceleration

transform with indices mk2 and mk1 applied to ωdk1(τ,m, ε), denoted by Accdk2,k1(ωdk1)(τ,m, ε),

as long as τ lies in the bounded sector Sbd,κ. As a result, some mk2−Laplace transform of the

analytic continuation of Accdk2,k1(ωdk1)(τ,m, ε), set as Ud(T,m, ε), can be considered for all T
belonging to a sector Sd,θk2 ,h with bisecting direction d, aperture θk2 slightly larger than π/k2

and radius h > 0. Following the terminology of [1], Section 6.1, Ud(T,m, ε) can be called the
(mk2 ,mk1)−sum of the formal series Û(T,m, ε) in direction d. Additionally, Ud(T,m, ε) solves
our primary convolution equation (70), where the formal forcing term F̂ (T,m, ε) is interchanged
with F d(T,m, ε) which denotes the (mk2 ,mk1)−sum of F̂ in direction d.

In Theorem 1, we construct a family of actual bounded holomorphic solutions udp(t, z, ε),
0 ≤ p ≤ ς − 1, of our original problem (1) on domains of the form T × Hβ′ × Ep described in
the main results above. Namely, the functions udp(t, z, ε) (resp. fdp(t, z, ε)) are set as Fourier
inverse transforms of Udp ,

udp(t, z, ε) = F−1(m 7→ Udp(εt,m, ε))(z) , fdp(t, z, ε) = F−1(m 7→ F dp(εt,m, ε))(z)

where the definition of F−1 is pointed out in Proposition 9. One proves the crucial property that
the difference of any two neighboring functions udp+1(t, z, ε)− udp(t, z, ε) tends to zero as ε→ 0
on Ep+1 ∩ Ep faster than a function with exponential decay of order k, uniformly w.r.t t ∈ T ,
z ∈ Hβ′ , with k = k2 when the intersection Udp+1 ∩Udp is not empty and with k = k1, when this
intersection is empty. The same estimates hold for the difference fdp+1(t, z, ε)− fdp(t, z, ε).

The whole section 6 is devoted to the study of the asymptotic behaviour of udp(t, z, ε) as
ε tends to zero. Using the decay estimates on the differences of the functions udp and fdp ,
we show the existence of a common asymptotic expansion û(ε) =

∑
m≥0 hmε

m/m! ∈ F[[ε]]

(resp. f̂(ε) =
∑

m≥0 fmε
m/m! ∈ F[[ε]]) of Gevrey order 1/k1 for all functions udp(t, z, ε) (resp.

fdp(t, z, ε)) as ε tends to 0 on Ep. We obtain also a double scale asymptotics for udp as explained
in the main results above. The key tool in proving the result is a version of the Ramis-Sibuya
theorem which entails two Gevrey asymptotics orders, described in Section 6.1. It is worthwhile
noting that a similar version was recently brought into play by Y. Takei and K. Suzuki in [30],
[32], in order to study parametric multisummability for the complex Schrödinger equation.

In the last section, we study the particular situation when the formal forcing term F (T,m, ε)
solves a linear differential and convolution initial value problem, see (204). We multiply each
handside of this equation by the power T k1+1 which transforms it into the equation (208). Then,
we show that the mk1−Borel transform ψk1(τ,m, ε) formally solves a convolution equation in
both variables τ and m, see (209). Under a size control of the sup norm of the coefficients c0(ε)/ε
and cF(ε)/ε near 0, we show that ψk1(τ,m, ε) is actually convergent near 0 w.r.t τ and can be

holomorphically extended as a function ψ
dp
k1

(τ,m, ε) on any unbounded sectors Udp with direction
dp and small aperture, provided that Udp stays away from the roots of some polynomial Pm(τ)

constructed with the help of Q(X) and RD(X) in (204). Additionally, the function ψ
dp
k1

(τ,m, ε)
satisfies estimates of the form: there exists a constant υ > 0 with

|ψdp
k1

(τ,m, ε)| ≤ υ(1 + |m|)−µe−β|m| |τ |
1 + |τ |2k1

eν|τ |
k1

for all τ ∈ Udp , all m ∈ R, all ε ∈ D(0, ε0), see Proposition 18. The proof is once more based
upon a fixed point argument in a Banach space of holomorphic functions F d(ν,β,µ,k1,k1) defined in

Section 2.1. These latter properties on ψ
dp
k1

(τ,m, ε) legitimize all the assumptions made above

on the forcing term F (T,m, ε). Now, we can take the mk1−Laplace transform Ldpmk1 (ψ
dp
k1

)(T ) of
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ψ
dp
k1

(τ,m, ε) w.r.t τ in direction dp, which yields an analytic solution of the initial linear equation
(204) on some bounded sector Sdp,θk1 ,h with aperture θk1 slightly larger than π/k1. It comes to

light in Lemma 13, that Ldpmk1 (ψ
dp
k1

)(T ) coincides with the analytic (mk2 ,mk1)−sum F dp(T,m, ε)

of F̂ in direction dp on the smaller sector Sdp,θk2 ,h with aperture slightly larger than π/k2. We

deduce consequently that the analytic forcing term fdp(t, z, ε) solves the linear PDE (220) with
analytic coefficients on D(0, r)×Hβ′ ×D(0, ε0), for all t ∈ T , z ∈ Hβ′ , ε ∈ Ep. In our last main
result (Theorem 3), we see that this latter issue implies that udp(t, z, ε) itself solves a nonlinear
PDE (224) with analytic coefficients and forcing term on D(0, r)×Hβ′ ×D(0, ε0), for all t ∈ T ,
z ∈ Hβ′ , ε ∈ Ep.

The paper is organized as follows.
In Section 2, we define some weighted Banach spaces of continuous functions on (D(0, ρ)∪U)×R
with exponential growths of different orders on unbounded sectors U w.r.t the first variable and
exponential decay on R w.r.t the second one. We study the continuity properties of several kind
of linear and nonlinear operators acting on these spaces that will be useful in Sections 4.2, 4.4
and 7.2.
In Section 3, we recall the definition and the main analytic and algebraic properties of the
mk−summability.
In Section 4.1, we introduce an auxiliary differential and convolution problem (70) for which we
construct a formal solution.
In Section 4.2, we show that the mk1−Borel transform of this formal solution satisfies a convo-
lution problem (83) that we can uniquely solve within the Banach spaces described in Section
2.
In Section 4.3, we describe the properties of a variant of the formal and analytic acceleration
operators associated to the mk−Borel and mk−Laplace transforms.
In Section 4.4, we see that the mk2−Borel transform of the formal solution of (70) satisfies a
convolution problem (123). We show that its formal forcing term is κ−summable and that its
κ−sum is an acceleration of the mk1−Borel transform of the above formal forcing term. Then,
we construct an actual solution to the corresponding problem with the analytic continuation of
this κ−sum as nonhomogeneous term, within the Banach spaces defined in Section 2. We recog-
nize that this actual solution is the analytic continuation of the acceleration of the mk1−Borel
transform of the formal solution of (70). Finally, we take its mk2−Laplace transform in order
to get an actual solution of (146).
In Section 5, with the help of Section 4, we build a family of actual holomorphic solutions to
our initial Cauchy problem (1). We show that the difference of any two neighboring solutions is
exponentially flat for some integer order in ε (Theorem 1).
In Section 6, we show that the actual solutions constructed in Section 5 share a common formal
series as Gevrey asymptotic expansion as ε tends to 0 on sectors (Theorem 2). The result is
built on a version of the Ramis-Sibuya theorem with two Gevrey orders stated in Section 6.1.
In Section 7, we inspect the special case when the forcing term itself solves a linear PDE. Then,
we notice that the solutions of (1) constructed in Section 5 actually solve a nonlinear PDE with
holomorphic coefficients and forcing term near the origin (Theorem 3).

2 Banach spaces of functions with exponential growth and decay

The Banach spaces introduced in the next subsection 2.1 (resp. subsection 2.2) will be crucial in
the construction of analytic solutions of a convolution problem investigated in the forthcoming
subsection 4.2 (resp. subsection 4.4).
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2.1 Banach spaces of functions with exponential growth κ and decay of ex-
ponential order 1

We denote D(0, r) the open disc centered at 0 with radius r > 0 in C and D̄(0, r) its closure.
Let Ud be an open unbounded sector in direction d ∈ R centered at 0 in C. By convention, the
sectors we consider do not contain the origin in C.

Definition 1 Let ν, β, µ > 0 and ρ > 0 be positive real numbers. Let k ≥ 1, κ ≥ 1 be integers
and d ∈ R. We denote F d(ν,β,µ,k,κ) the vector space of continuous functions (τ,m) 7→ h(τ,m) on

(D̄(0, ρ) ∪ Ud)× R, which are holomorphic with respect to τ on D(0, ρ) ∪ Ud and such that

||h(τ,m)||(ν,β,µ,k,κ) = sup
τ∈D̄(0,ρ)∪Ud,m∈R

(1 + |m|)µ 1 + |τ |2k

|τ |
exp(β|m| − ν|τ |κ)|h(τ,m)|

is finite. One can check that the normed space (F d(ν,β,µ,k,κ), ||.||(ν,β,µ,k,κ)) is a Banach space.

Remark: These norms are appropriate modifications of those introduced in the work [14],
Section 2.

Throughout the whole subsection, we assume µ, β, ν, ρ > 0, k, κ ≥ 1 and d ∈ R are fixed. In
the next lemma, we check the continuity property under multiplication operation with bounded
functions.

Lemma 1 Let (τ,m) 7→ a(τ,m) be a bounded continuous function on (D̄(0, ρ) ∪ Ud) × R by a
constant C1 > 0. We assume that a(τ,m) is holomorphic with respect to τ on D(0, ρ) ∪ Ud.
Then, we have

(3) ||a(τ,m)h(τ,m)||(ν,β,µ,k,κ) ≤ C1||h(τ,m)||(ν,β,µ,k,κ)

for all h(τ,m) ∈ F d(ν,β,µ,k,κ).

In the next proposition, we study the continuity property of some convolution operators
acting on the latter Banach spaces.

Proposition 1 Let χ2 > −1 be a real number. Let ν2 ≥ −1 be an integer. We assume that
1 + χ2 + ν2 ≥ 0.

If κ ≥ k( ν2
χ2+1 + 1), then there exists a constant C2 > 0 (depending on ν, ν2, χ2) such that

(4) ||
∫ τk

0
(τk − s)χ2sν2f(s1/k,m)ds||(ν,β,µ,k,κ) ≤ C2||f(τ,m)||(ν,β,µ,k,κ)

for all f(τ,m) ∈ F d(ν,β,µ,k,κ).

Proof Let f(τ,m) ∈ F d(ν,β,µ,k,κ). By definition, we have

(5) ||
∫ τk

0
(τk − s)χ2sν2f(s1/k,m)ds||(ν,β,µ,k,κ)

= sup
τ∈D̄(0,ρ)∪Ud,m∈R

(1 + |m|)µ 1 + |τ |2k

|τ |
exp(β|m| − ν|τ |κ)

× |
∫ τk

0
{(1 + |m|)µeβ|m| exp(−ν|s|κ/k)1 + |s|2

|s|1/k
f(s1/k,m)}

× B(τ, s,m)ds|
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where

B(τ, s,m) =
1

(1 + |m|)µ
e−β|m|

exp(ν|s|κ/k)
1 + |s|2

|s|1/k(τk − s)χ2sν2 .

Therefore,

(6) ||
∫ τk

0
(τk − s)χ2sν2f(s1/k,m)ds||(ν,β,µ,k,κ) ≤ C2||f(τ,m)||(ν,β,µ,k,κ)

where

(7) C2 = sup
τ∈D̄(0,ρ)∪Ud

1 + |τ |2k

|τ |
exp(−ν|τ |κ)

∫ |τ |k
0

exp(νhκ/k)

1 + h2
h

1
k (|τ |k − h)χ2hν2dh = sup

x≥0
B(x)

where

B(x) =
1 + x2

x1/k
exp(−νxκ/k)

∫ x

0

exp(νhκ/k)

1 + h2
h

1
k

+ν2(x− h)χ2dh.

We write B(x) = B1(x) +B2(x), where

B1(x) =
1 + x2

x1/k
exp(−νxκ/k)

∫ x/2

0

exp(νhκ/k)

1 + h2
h

1
k

+ν2(x− h)χ2dh,

B2(x) =
1 + x2

x1/k
exp(−νxκ/k)

∫ x

x/2

exp(νhκ/k)

1 + h2
h

1
k

+ν2(x− h)χ2dh.

Now, we study the function B1(x). We first assume that −1 < χ2 < 0. In that case, we have
that (x− h)χ2 ≤ (x/2)χ2 for all 0 ≤ h ≤ x/2 with x > 0. Since ν2 ≥ −1, we deduce that

(8) B1(x) ≤ 1 + x2

x1/k
(
x

2
)χ2e−νx

κ/k

∫ x/2

0

eνh
κ/k

1 + h2
h

1
k

+ν2dh

≤ (1 + x2)
1

21/k( 1
k + ν2 + 1)

(
x

2
)1+χ2+ν2 exp(−ν(1− 1

2κ/k
)xκ/k)

for all x > 0. Since κ ≥ k and 1 + χ2 + ν2 ≥ 0, we deduce that there exists a constant K1 > 0
with

(9) sup
x≥0

B1(x) ≤ K1.

We assume now that χ2 ≥ 0. In this situation, we know that (x−h)χ2 ≤ xχ2 for all 0 ≤ h ≤ x/2,
with x ≥ 0. Hence, since ν2 ≥ −1,

(10) B1(x) ≤ (1 + x2)
1

21/k( 1
k + ν2 + 1)

xχ2(x/2)ν2+1 exp(−ν(1− 1

2κ/k
)xκ/k)

for all x ≥ 0. Again, we deduce that there exists a constant K1.1 > 0 with

(11) sup
x≥0

B1(x) ≤ K1.1.

In the next step, we focus on the function B2(x). First, we observe that 1 + h2 ≥ 1 + (x/2)2 for
all x/2 ≤ h ≤ x. Therefore, there exists a constant K2 > 0 such that

(12) B2(x) ≤ 1 + x2

1 + (x2 )2

1

x1/k
exp(−νxκ/k)

∫ x

x/2
exp(νhκ/k)h

1
k

+ν2(x− h)χ2dh

≤ K2
1

x1/k
exp(−νxκ/k)

∫ x

0
exp(νhκ/k)h

1
k

+ν2(x− h)χ2dh
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for all x > 0. It remains to study the function

B2.1(x) =

∫ x

0
exp(νhκ/k)h

1
k

+ν2(x− h)χ2dh

for x ≥ 0. By the uniform expansion eνh
κ/k

=
∑

n≥0(νhκ/k)n/n! on every compact interval [0, x],
x ≥ 0, we can write

(13) B2.1(x) =
∑
n≥0

νn

n!

∫ x

0
h
nκ
k

+ 1
k

+ν2(x− h)χ2dh.

Using the Beta integral formula (see [3], Appendix B3) and since χ2 > −1, 1
k + ν2 > −1, we can

write

(14) B2.1(x) =
∑
n≥0

νn

n!

Γ(χ2 + 1)Γ(nκk + 1
k + ν2 + 1)

Γ(nκk + 1
k + ν2 + χ2 + 2)

x
nκ
k

+ 1
k

+ν2+χ2+1

for all x ≥ 0. Bearing in mind that

(15) Γ(x)/Γ(x+ a) ∼ 1/xa

as x → +∞, for any a > 0 (see for instance, [3], Appendix B3), from (14), we get a constant
K2.1 > 0 such that

(16) B2.1(x) ≤ K2.1x
1
k

+ν2+χ2+1
∑
n≥0

1

(n+ 1)χ2+1n!
(νxκ/k)n

for all x ≥ 0. Using again (15), we know that 1/(n + 1)χ2+1 ∼ Γ(n + 1)/Γ(n + χ2 + 2) as
n→ +∞. Hence, from (16), there exists a constant K2.2 > 0 such that

(17) B2.1(x) ≤ K2.2x
1
k

+ν2+χ2+1
∑
n≥0

1

Γ(n+ χ2 + 2)
(νxκ/k)n

for all x ≥ 0.
Remembering the asymptotic properties of the generalized Mittag-Leffler function (known

as Wiman function in the literature) Eα,β(z) =
∑

n≥0 z
n/Γ(β + αn), for any α, β > 0 (see [3],

Appendix B4 or [11], expansion (22) p. 210), we get from (17) a constant K2.3 > 0 such that

(18) B2.1(x) ≤ K2.3x
1
k

+ν2+χ2+1x−
κ
k

(χ2+1)eνx
κ/k

for all x ≥ 1. Under the assumption that ν2 + χ2 + 1 ≤ κ
k (χ2 + 1) and gathering (12), (18), we

get a constant K2.4 > 0 such that

(19) sup
x≥0

B2(x) ≤ K2.4.

Finally, taking into account the estimates (6), (7), (9), (11), (19), the inequality (4) follows. 2

Proposition 2 Let k, κ ≥ 1 be integers such that κ ≥ k. Let Q1(X), Q2(X), R(X) ∈ C[X] such
that

(20) deg(R) ≥ deg(Q1) , deg(R) ≥ deg(Q2) , R(im) 6= 0
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for all m ∈ R. Assume that µ > max(deg(Q1) + 1, deg(Q2) + 1). Let m 7→ b(m) be a continuous
function on R such that

|b(m)| ≤ 1

|R(im)|
for all m ∈ R. Then, there exists a constant C3 > 0 (depending on Q1, Q2, R, µ, k, κ, ν) such
that

(21) ||b(m)

∫ τk

0
(τk − s)

1
k (

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))f((s− x)1/k,m−m1)

×Q2(im1)g(x1/k,m1)
1

(s− x)x
dxdm1)ds||(ν,β,µ,k,κ)

≤ C3||f(τ,m)||(ν,β,µ,k,κ)||g(τ,m)||(ν,β,µ,k,κ)

for all f(τ,m), g(τ,m) ∈ F d(ν,β,µ,k,κ).

Proof Let f(τ,m), g(τ,m) ∈ F d(ν,β,µ,k,κ). For any τ ∈ D̄(0, ρ) ∪ Ud, the segment [0, τk] is such

that for any s ∈ [0, τk], any x ∈ [0, s], the expressions f((s− x)1/k,m−m1) and g(x1/k,m1) are
well defined, provided that m,m1 ∈ R. By definition, we can write

||b(m)

∫ τk

0
(τk − s)

1
k (

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))f((s− x)1/k,m−m1)

×Q2(im1)g(x1/k,m1)
1

(s− x)x
dxdm1)ds||(ν,β,µ,k,κ)

= sup
τ∈D̄(0,ρ)∪Ud,m∈R

(1 + |m|)µ 1 + |τ |2k

|τ |
exp(β|m| − ν|τ |κ)

× |
∫ τk

0
(τk − s)1/k(

∫ s

0

∫ +∞

−∞
{(1 + |m−m1|)µeβ|m−m1| 1 + |s− x|2

|s− x|1/k
exp(−ν|s− x|κ/k)

× f((s− x)1/k,m−m1)} × {(1 + |m1|)µeβ|m1| 1 + |x|2

|x|1/k
exp(−ν|x|κ/k)g(x1/k,m1)}

× C(s, x,m,m1)dxdm1)ds|

where

C(s, x,m,m1) =
exp(−β|m1|) exp(−β|m−m1|)

(1 + |m−m1|)µ(1 + |m1|)µ
b(m)Q1(i(m−m1))Q2(im1)

× |s− x|1/k|x|1/k

(1 + |s− x|2)(1 + |x|2)
× exp(ν|s− x|κ/k) exp(ν|x|κ/k) 1

(s− x)x
.

Now, we know that there exist Q1,Q2,R > 0 with

(22) |Q1(i(m−m1))| ≤ Q1(1 + |m−m1|)deg(Q1) , |Q2(im1)| ≤ Q2(1 + |m1|)deg(Q2),

|R(im)| ≥ R(1 + |m|)deg(R)
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for all m,m1 ∈ R. Therefore,

(23) ||b(m)

∫ τk

0
(τk − s)

1
k (

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))f((s− x)1/k,m−m1)

×Q2(im1)g(x1/k,m1)
1

(s− x)x
dxdm1)ds||(ν,β,µ,k,κ)

≤ C3||f(τ,m)||(ν,β,µ,k,κ)||g(τ,m)||(ν,β,µ,k,κ)

where

(24) C3 = sup
τ∈D̄(0,ρ)∪Ud,m∈R

(1 + |m|)µ 1 + |τ |2k

|τ |
exp(β|m| − ν|τ |κ)

1

R(1 + |m|)deg(R)

×
∫ |τ |k

0
(|τ |k − h)1/k(

∫ h

0

∫ +∞

−∞

exp(−β|m1|) exp(−β|m−m1|)
(1 + |m−m1|)µ(1 + |m1|)µ

×Q1Q2(1 + |m−m1|)deg(Q1)(1 + |m1|)deg(Q2) (h− x)1/kx1/k

(1 + (h− x)2)(1 + x2)

× exp(ν(h− x)κ/k) exp(νxκ/k)
1

(h− x)x
dxdm1)dh.

Now, since κ ≥ k, we have that

(25) hκ/k ≥ (h− x)κ/k + xκ/k

for all h ≥ 0, all x ∈ [0, h]. Indeed, let x = hu where u ∈ [0, 1]. Then, the inequality (25) is
equivalent to show that

(26) 1 ≥ (1− u)κ/k + uκ/k

for all u ∈ [0, 1]. Let ϕ(u) = (1− u)κ/k + uκ/k on [0, 1]. We have ϕ′(u) = κ
k (u

κ
k
−1− (1− u)

κ
k
−1).

Since, κ ≥ k, we know that the function ψ(z) = z
κ
k
−1 is increasing on [0, 1], and therefore we

get that ϕ′(u) < 0 if 0 ≤ u < 1/2, ϕ′(u) = 0, if u = 1/2 and ϕ′(u) > 0 if 1/2 < u ≤ 1. Since
ϕ(0) = ϕ(1) = 1, we get that ϕ(u) ≤ 1 for all u ∈ [0, 1]. Therefore, (26) holds and (25) is proved.

Using the triangular inequality |m| ≤ |m1| + |m − m1|, for all m,m1 ∈ R, we get that
C3 ≤ C3.1C3.2 where

(27) C3.1 =
Q1Q2

R
sup
m∈R

(1 + |m|)µ−deg(R)

∫ +∞

−∞

1

(1 + |m−m1|)µ−deg(Q1)(1 + |m1|)µ−deg(Q2)
dm1

which is finite whenever µ > max(deg(Q1) + 1,deg(Q2) + 1) under the assumption (20) using
the same estimates as in Lemma 4 of [20] (see also Lemma 2.2 from [10]), and where

(28) C3.2 = sup
τ∈D̄(0,ρ)∪Ud

1 + |τ |2k

|τ |
exp(−ν|τ |κ)

×
∫ |τ |k

0
(|τ |k − h)1/k exp(νhκ/k)

∫ h

0

(h− x)1/kx1/k

(1 + (h− x)2)(1 + x2)

1

(h− x)x
dxdh.
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From (28) we get that C3.2 ≤ C3.3, where

(29) C3.3 = sup
x≥0

1 + x2

x1/k
exp(−νxκ/k)

∫ x

0
(x− h′)1/k exp(νh′κ/k)

× (

∫ h′

0

1

(1 + (h′ − x′)2)(1 + x′2)

1

(h′ − x′)1− 1
kx′1−

1
k

dx′)dh′.

By the change of variable x′ = h′u, for u ∈ [0, 1], we can write

(30)

∫ h′

0

1

(1 + (h′ − x′)2)(1 + x′2)

1

(h′ − x′)1− 1
kx′1−

1
k

dx′

=
1

h′1−
2
k

∫ 1

0

1

(1 + h′2(1− u)2)(1 + h′2u2)(1− u)1− 1
ku1− 1

k

du = Jk(h
′).

Using a partial fraction decomposition, we can split Jk(h
′) = J1,k(h

′) + J2,k(h
′), where

(31) J1,k(h
′) =

1

h′1−
2
k (h′2 + 4)

∫ 1

0

3− 2u

(1 + h′2(1− u)2)(1− u)1− 1
ku1− 1

k

du

J2,k(h
′) =

1

h′1−
2
k (h′2 + 4)

∫ 1

0

2u+ 1

(1 + h′2u2)(1− u)1− 1
ku1− 1

k

du.

From now on, we assume that k ≥ 2. By construction of J1,k(h
′) and J2,k(h

′), we see that there
exists a constant jk > 0 such that

(32) Jk(h
′) ≤ jk

h′1−
2
k (h′2 + 4)

for all h′ > 0. From (29) and (32), we deduce that C3.3 ≤ supx≥0 C̃3.3(x), where

(33) C̃3.3(x) = (1 + x2) exp(−νxκ/k)
∫ x

0

jk exp(νh′κ/k)

h′1−
2
k (h′2 + 4)

dh′.

From L’Hospital rule, we know that

lim
x→+∞

C̃3.3(x) = lim
x→+∞

jk

x1− 2
k

(1+x2)2

x2+4

ν κkx
κ
k
−1(1 + x2)− 2x

which is finite if κ ≥ k and when k ≥ 2. Therefore, we get a constant C̃3.3 > 0 such that

(34) sup
x≥0

C̃3.3(x) ≤ C̃3.3.

Taking into account the estimates for (24), (27), (28), (29), (33) and (34), we obtain the result
(21).

It remains to consider the case k = 1. In that case, we know from Corollary 4.9 of [9] that there
exists a constant j1 > 0 such that

(35) J1(h′) ≤ j1
h′2 + 1
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for all h′ ≥ 0. From (29) and (35), we deduce that C3.3 ≤ supx≥0 C̃3.3.1(x), where

(36) C̃3.3.1(x) = (1 + x2) exp(−νxκ)

∫ x

0

j1 exp(νh′κ)

h′2 + 1
dh′.

From L’Hospital rule, we know that

lim
x→+∞

C̃3.3.1(x) = lim
x→+∞

(1 + x2)j1
νκxκ−1(1 + x2)− 2x

which is finite whenever κ ≥ 1. Therefore, we get a constant C̃3.3.1 > 0 such that

(37) sup
x≥0

C̃3.3.1(x) ≤ C̃3.3.1.

Taking into account the estimates for (24), (27), (28), (29), (36) and (37), we obtain the result
(21) for k = 1. 2

Definition 2 Let β, µ ∈ R. We denote E(β,µ) the vector space of continuous functions h : R→
C such that

||h(m)||(β,µ) = sup
m∈R

(1 + |m|)µ exp(β|m|)|h(m)|

is finite. The space E(β,µ) equipped with the norm ||.||(β,µ) is a Banach space.

Proposition 3 Let k, κ ≥ 1 be integers such that κ ≥ k. Let Q(X), R(X) ∈ C[X] be polynomials
such that

(38) deg(R) ≥ deg(Q) , R(im) 6= 0

for all m ∈ R. Assume that µ > deg(Q) + 1. Let m 7→ b(m) be a continuous function such that

|b(m)| ≤ 1

|R(im)|

for all m ∈ R. Then, there exists a constant C4 > 0 (depending on Q,R, µ, k, κ, ν) such that

(39) ||b(m)

∫ τk

0
(τk − s)

1
k

∫ +∞

−∞
f(m−m1)Q(im1)g(s1/k,m1)dm1

ds

s
||(ν,β,µ,k,κ)

≤ C4||f(m)||(β,µ)||g(τ,m)||(ν,β,µ,k,κ)

for all f(m) ∈ E(β,µ), all g(τ,m) ∈ F d(ν,β,µ,k,κ).

Proof The proof follows the same lines of arguments as those of Propositions 1 and 2. Let
f(m) ∈ E(β,µ), g(τ,m) ∈ F d(ν,β,µ,k,κ). We can write

(40) N2 := ||b(m)

∫ τk

0
(τk − s)

1
k

∫ +∞

−∞
f(m−m1)Q(im1)g(s1/k,m1)dm1

ds

s
||(ν,β,µ,k,κ)

= sup
τ∈D̄(0,ρ)∪Ud,m∈R

(1 + |m|)µ 1 + |τ |2k

|τ |
exp(β|m| − ν|τ |κ)

× |b(m)

∫ τk

0

∫ +∞

−∞
{(1 + |m−m1|)µ exp(β|m−m1|)f(m−m1)}

× {(1 + |m1|)µ exp(β|m1|) exp(−ν|s|κ/k)1 + |s|2

|s|1/k
g(s1/k,m1)} × D(τ, s,m,m1)dm1ds|
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where

D(τ, s,m,m1) =
Q(im1)e−β|m1|e−β|m−m1|

(1 + |m−m1|)µ(1 + |m1|)µ
× exp(ν|s|κ/k)

1 + |s|2
|s|1/k(τk − s)1/k 1

s
.

Again, we know that there exist constants Q,R > 0 such that

|Q(im1)| ≤ Q(1 + |m1|)deg(Q) , |R(im)| ≥ R(1 + |m|)deg(R)

for all m,m1 ∈ R. By means of the triangular inequality |m| ≤ |m1|+ |m−m1|, we get that

(41) N2 ≤ C4.1C4.2||f(m)||(β,µ)||g(τ,m)||(ν,β,µ,k,κ)

where

C4.1 = sup
τ∈D̄(0,ρ)∪Ud

1 + |τ |2k

|τ |
exp(−ν|τ |κ)

∫ |τ |k
0

exp(νhκ/k)

1 + h2
h

1
k
−1(|τ |k − h)1/kdh

and

C4.2 =
Q

R
sup
m∈R

(1 + |m|)µ−deg(R)

∫ +∞

−∞

1

(1 + |m−m1|)µ(1 + |m1|)µ−deg(Q)
dm1.

Under the hypothesis κ ≥ k and from the estimates (7), (11) and (19) in the special case
χ2 = 1/k and ν2 = −1, we know that C4.1 is finite.

From the estimates for (27), we know that C4.2 is finite under the assumption (38) provided
that µ > deg(Q) + 1. Finally, gathering these latter bound estimates together with (41) yields
the result (39). 2

In the next proposition, we recall from [14], Proposition 5, that (E(β,µ), ||.||(β,µ)) is a Banach
algebra for some noncommutative product ? introduced below.

Proposition 4 Let Q1(X), Q2(X), R(X) ∈ C[X] be polynomials such that

(42) deg(R) ≥ deg(Q1) , deg(R) ≥ deg(Q2) , R(im) 6= 0,

for all m ∈ R. Assume that µ > max(deg(Q1) + 1,deg(Q2) + 1). Then, there exists a constant
C5 > 0 (depending on Q1, Q2, R, µ) such that

(43) || 1

R(im)

∫ +∞

−∞
Q1(i(m−m1))f(m−m1)Q2(im1)g(m1)dm1||(β,µ)

≤ C5||f(m)||(β,µ)||g(m)||(β,µ)

for all f(m), g(m) ∈ E(β,µ). Therefore, (E(β,µ), ||.||(β,µ)) becomes a Banach algebra for the prod-
uct ? defined by

f ? g(m) =
1

R(im)

∫ +∞

−∞
Q1(i(m−m1))f(m−m1)Q2(im1)g(m1)dm1.

As a particular case, when f, g ∈ E(β,µ) with β > 0 and µ > 1, the classical convolution product

f ∗ g(m) =

∫ +∞

−∞
f(m−m1)g(m1)dm1

belongs to E(β,µ).
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2.2 Banach spaces of functions with exponential growth k and decay of ex-
ponential order 1

In this subsection, we mainly recall some functional properties of the Banach spaces already
introduced in the work [14], Section 2. The Banach spaces we consider here coincide with those
introduced in [14] except the fact that they are not depending on a complex parameter ε and
that the functions living in these spaces are not holomorphic on a disc centered at 0 but only
on a bounded sector centered at 0. For this reason, all the propositions are given without proof
except Proposition 5 which is an improved version of Propositions 1 and 2 of [14].

We denote Sbd an open bounded sector centered at 0 in direction d ∈ R and S̄bd its closure.
Let Sd be an open unbounded sector in direction d. By convention, we recall that the sectors
we consider throughout the paper do not contain the origin in C.

Definition 3 Let ν, β, µ > 0 be positive real numbers. Let k ≥ 1 be an integer and let d ∈ R.
We denote F d(ν,β,µ,k) the vector space of continuous functions (τ,m) 7→ h(τ,m) on (S̄bd∪Sd)×R,

which are holomorphic with respect to τ on Sbd ∪ Sd and such that

||h(τ,m)||(ν,β,µ,k) = sup
τ∈S̄bd∪Sd,m∈R

(1 + |m|)µ 1 + |τ |2k

|τ |
exp(β|m| − ν|τ |k)|h(τ,m)|

is finite. One can check that the normed space (F d(ν,β,µ,k), ||.||(ν,β,µ,k)) is a Banach space.

Throughout the whole subsection, we assume that µ, β, ν > 0 and k ≥ 1, d ∈ R are fixed.
In the next lemma, we check the continuity property by multiplication operation with bounded
functions.

Lemma 2 Let (τ,m) 7→ a(τ,m) be a bounded continuous function on (S̄bd ∪ Sd) × R, which is
holomorphic with respect to τ on Sbd ∪ Sd. Then, we have

(44) ||a(τ,m)h(τ,m)||(ν,β,µ,k) ≤

(
sup

τ∈S̄bd∪Sd,m∈R
|a(τ,m)|

)
||h(τ,m)||(ν,β,µ,k)

for all h(τ,m) ∈ F d(ν,β,µ,k).

In the next proposition, we study the continuity property of some convolution operators
acting on the latter Banach spaces.

Proposition 5 Let γ1 ≥ 0 and χ2 > −1 be real numbers. Let ν2 ≥ −1 be an integer. We
consider a holomorphic function aγ1,k(τ) on Sbd ∪ Sd, continuous on S̄bd ∪ Sd, such that

|aγ1,k(τ)| ≤ 1

(1 + |τ |k)γ1

for all τ ∈ Sbd ∪ Sd.

If 1 + χ2 + ν2 ≥ 0 and γ1 ≥ ν2, then there exists a constant C6 > 0 (depending on ν, ν2, χ2, γ1)
such that

(45) ||aγ1,k(τ)

∫ τk

0
(τk − s)χ2sν2f(s1/k,m)ds||(ν,β,µ,k) ≤ C6||f(τ,m)||(ν,β,µ,k)

for all f(τ,m) ∈ F d(ν,β,µ,k).
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Proof The proof follows similar arguments to those in Proposition 1. Indeed, let f(τ,m) ∈
F d(ν,β,µ,k). By definition, we have

(46) ||aγ1,k(τ)

∫ τk

0
(τk − s)χ2sν2f(s1/k,m)ds||(ν,β,µ,k)

= sup
τ∈S̄bd∪Sd,m∈R

(1 + |m|)µ 1 + |τ |2k

|τ |
exp(β|m| − ν|τ |k)

× |aγ1,k(τ)

∫ τk

0
{(1 + |m|)µeβ|m| exp(−ν|s|)1 + |s|2

|s|1/k
f(s1/k,m)}

× F(τ, s,m)ds|

where

F(τ, s,m) =
1

(1 + |m|)µ
e−β|m|

exp(ν|s|)
1 + |s|2

|s|1/k(τk − s)χ2sν2 .

Therefore,

(47) ||aγ1,k(τ)

∫ τk

0
(τk − s)χ2sν2f(s1/k,m)ds||(ν,β,µ,k) ≤ C6||f(τ,m)||(ν,β,µ,k)

where

C6 = sup
τ∈S̄bd∪Sd

1 + |τ |2k

|τ |
exp(−ν|τ |k)

× 1

(1 + |τ |k)γ1

∫ |τ |k
0

exp(νh)

1 + h2
h

1
k (|τ |k − h)χ2hν2dh = sup

x≥0
F (x)

where

F (x) =
1 + x2

x1/k
exp(−νx)

1

(1 + x)γ1

∫ x

0

exp(νh)

1 + h2
h

1
k

+ν2(x− h)χ2dh.

We write F (x) = F1(x) + F2(x), where

F1(x) =
1 + x2

x1/k
exp(−νx)

1

(1 + x)γ1

∫ x/2

0

exp(νh)

1 + h2
h

1
k

+ν2(x− h)χ2dh,

F2(x) =
1 + x2

x1/k
exp(−νx)

1

(1 + x)γ1

∫ x

x/2

exp(νh)

1 + h2
h

1
k

+ν2(x− h)χ2dh.

Now, we study the function F1(x). We first assume that −1 < χ2 < 0. In that case, we have
that (x− h)χ2 ≤ (x/2)χ2 for all 0 ≤ h ≤ x/2 with x > 0. We deduce that

(48) F1(x) ≤ 1 + x2

x1/k
(
x

2
)χ2e−νx

1

(1 + x)γ1

∫ x/2

0

eνh

1 + h2
h

1
k

+ν2dh

≤ (1 + x2)
1

21/k( 1
k + ν2 + 1)

(
x

2
)1+χ2+ν2 1

(1 + x)γ1
exp(−νx

2
)

for all x > 0. Bearing in mind that 1 + χ2 + ν2 ≥ 0 and since 1 + x ≥ 1 for all x ≥ 0, we deduce
that there exists a constant K1 > 0 with

(49) sup
x≥0

F1(x) ≤ K1.
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We assume now that χ2 ≥ 0. In this situation, we know that (x−h)χ2 ≤ xχ2 for all 0 ≤ h ≤ x/2,
with x ≥ 0. Hence,

(50) F1(x) ≤ (1 + x2)
1

21/k( 1
k + ν2 + 1)

xχ2(x/2)ν2+1 1

(1 + x)γ1
exp(−νx

2
)

for all x ≥ 0. Again, we deduce that there exists a constant K1.1 > 0 with

(51) sup
x≥0

F1(x) ≤ K1.1.

In the next step, we focus on the function F2(x). First, we observe that 1 + h2 ≥ 1 + (x/2)2 for
all x/2 ≤ h ≤ x. Therefore, there exists a constant K2 > 0 such that

(52) F2(x) ≤ 1 + x2

1 + (x2 )2

1

x1/k
exp(−νx)

1

(1 + x)γ1

∫ x

x/2
exp(νh)h

1
k

+ν2(x− h)χ2dh

≤ K2
1

x1/k

1

(1 + x)γ1
exp(−νx)

∫ x

0
exp(νh)h

1
k

+ν2(x− h)χ2dh

for all x > 0. Now, from the estimates (18), we know that there exists a constant K2.3 > 0 such
that

(53) F2.1(x) =

∫ x

0
exp(νh)h

1
k

+ν2(x− h)χ2dh ≤ K2.3x
1
k

+ν2eνx

for all x ≥ 1. From (52) we get the existence of a constant F̃2 > 0 with

(54) sup
x∈[0,1]

F2(x) ≤ F̃2.

On the other hand, we also have that 1 + x ≥ x for all x ≥ 1. Since γ1 ≥ ν2 and due to (52)
with (53), we get a constant F̌2 > 0 with

(55) sup
x≥1

F2(x) ≤ F̌2.

Gathering the estimates (47), (49), (51), (54) and (55), we finally obtain (45). 2

The next two propositions are already stated as Propositions 3 and 4 in [14].

Proposition 6 Let k ≥ 1 be an integer. Let Q1(X), Q2(X), R(X) ∈ C[X] such that

(56) deg(R) ≥ deg(Q1) , deg(R) ≥ deg(Q2) , R(im) 6= 0

for all m ∈ R. Assume that µ > max(deg(Q1) + 1, deg(Q2) + 1). Let m 7→ b(m) be a continuous
function on R such that

|b(m)| ≤ 1

|R(im)|
for all m ∈ R. Then, there exists a constant C7 > 0 (depending on Q1, Q2, R, µ, k, ν) such that

(57) ||b(m)

∫ τk

0
(τk − s)

1
k (

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))f((s− x)1/k,m−m1)

×Q2(im1)g(x1/k,m1)
1

(s− x)x
dxdm1)ds||(ν,β,µ,k)

≤ C7||f(τ,m)||(ν,β,µ,k)||g(τ,m)||(ν,β,µ,k)

for all f(τ,m), g(τ,m) ∈ F d(ν,β,µ,k).
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Proposition 7 Let k ≥ 1 be an integer. Let Q(X), R(X) ∈ C[X] be polynomials such that

(58) deg(R) ≥ deg(Q) , R(im) 6= 0

for all m ∈ R. Assume that µ > deg(Q) + 1. Let m 7→ b(m) be a continuous function such that

|b(m)| ≤ 1

|R(im)|

for all m ∈ R. Then, there exists a constant C8 > 0 (depending on Q,R, µ, k, ν) such that

(59) ||b(m)

∫ τk

0
(τk − s)

1
k

∫ +∞

−∞
f(m−m1)Q(im1)g(s1/k,m1)dm1

ds

s
||(ν,β,µ,k)

≤ C8||f(m)||(β,µ)||g(τ,m)||(ν,β,µ,k)

for all f(m) ∈ E(β,µ), all g(τ,m) ∈ F d(ν,β,µ,k).

3 Laplace transform, asymptotic expansions and Fourier trans-
form

We recall a definition of k−Borel summability of formal series with coefficients in a Banach space
which is a slightly modified version of the one given in [1], Section 3.2, that was introduced in
[14]. All the properties stated in this section are already contained in our previous work [14].

Definition 4 Let k ≥ 1 be an integer. Let mk(n) be the sequence defined by

mk(n) = Γ(
n

k
) =

∫ +∞

0
t
n
k
−1e−tdt

for all n ≥ 1. A formal series

X̂(T ) =
∞∑
n=1

anT
n ∈ TE[[T ]]

with coefficients in a Banach space (E, ||.||E) is said to be mk−summable with respect to T in
the direction d ∈ [0, 2π) if

i) there exists ρ ∈ R+ such that the following formal series, called a formal mk−Borel
transform of X̂

Bmk(X̂)(τ) =
∞∑
n=1

an
Γ(nk )

τn ∈ τE[[τ ]],

is absolutely convergent for |τ | < ρ.

ii) there exists δ > 0 such that the series Bmk(X̂)(τ) can be analytically continued with
respect to τ in a sector Sd,δ = {τ ∈ C∗ : |d − arg(τ)| < δ}. Moreover, there exist C > 0 and
K > 0 such that

||Bmk(X̂)(τ)||E ≤ CeK|τ |
k

for all τ ∈ Sd,δ.
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If this is so, the vector valued mk−Laplace transform of Bmk(X̂)(τ) in the direction d is defined
by

Ldmk(Bmk(X̂))(T ) = k

∫
Lγ

Bmk(X̂)(u)e−(u/T )k du

u
,

along a half-line Lγ = R+e
iγ ⊂ Sd,δ ∪ {0}, where γ depends on T and is chosen in such a way

that cos(k(γ − arg(T ))) ≥ δ1 > 0, for some fixed δ1. The function Ldmk(Bmk(X̂))(T ) is well
defined, holomorphic and bounded in any sector

Sd,θ,R1/k = {T ∈ C∗ : |T | < R1/k , |d− arg(T )| < θ/2},

where π
k < θ < π

k + 2δ and 0 < R < δ1/K. This function is called the mk−sum of the formal

series X̂(T ) in the direction d.

In the next proposition, we give some identities for the mk−Borel transform that will be
useful in the sequel.

Proposition 8 Let f̂(t) =
∑

n≥1 fnt
n, ĝ(t) =

∑
n≥1 gnt

n be formal series whose coefficients
fn, gn belong to some Banach space (E, ||.||E). We assume that (E, ||.||E) is a Banach algebra for
some product ?. Let k,m ≥ 1 be integers. The following formal identities hold.

(60) Bmk(tk+1∂tf̂(t))(τ) = kτkBmk(f̂(t))(τ)

(61) Bmk(tmf̂(t))(τ) =
τk

Γ(mk )

∫ τk

0
(τk − s)

m
k
−1Bmk(f̂(t))(s1/k)

ds

s

and

(62) Bmk(f̂(t) ? ĝ(t))(τ) = τk
∫ τk

0
Bmk(f̂(t))((τk − s)1/k) ? Bmk(ĝ(t))(s1/k)

1

(τk − s)s
ds.

In the following proposition, we recall some properties of the inverse Fourier transform

Proposition 9 Let f ∈ E(β,µ) with β > 0, µ > 1. The inverse Fourier transform of f is defined
by

F−1(f)(x) =
1

(2π)1/2

∫ +∞

−∞
f(m) exp(ixm)dm

for all x ∈ R. The function F−1(f) extends to an analytic function on the strip

(63) Hβ = {z ∈ C/|Im(z)| < β}.

Let φ(m) = imf(m) ∈ E(β,µ−1). Then, we have

(64) ∂zF−1(f)(z) = F−1(φ)(z)

for all z ∈ Hβ.
Let g ∈ E(β,µ) and let ψ(m) = 1

(2π)1/2
f ∗g(m), the convolution product of f and g, for all m ∈ R.

From Proposition 4, we know that ψ ∈ E(β,µ). Moreover, we have

(65) F−1(f)(z)F−1(g)(z) = F−1(ψ)(z)

for all z ∈ Hβ.
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4 Formal and analytic solutions of convolution initial value prob-
lems with complex parameters

4.1 Formal solutions of the main convolution initial value problem

Let k1, k2 ≥ 1, D ≥ 2 be integers such that k2 > k1. Let δl ≥ 1 be integers such that

(66) 1 = δ1 , δl < δl+1,

for all 1 ≤ l ≤ D − 1. For all 1 ≤ l ≤ D − 1, let dl,∆l ≥ 0 be nonnegative integers such that

(67) dl > δl , ∆l − dl + δl − 1 ≥ 0.

Let Q(X), Q1(X), Q2(X), Rl(X) ∈ C[X], 0 ≤ l ≤ D, be polynomials such that

(68) deg(Q) ≥ deg(RD) ≥ deg(Rl) , deg(RD) ≥ deg(Q1) , deg(RD) ≥ deg(Q2),

Q(im) 6= 0 , Rl(im) 6= 0 , RD(im) 6= 0

for all m ∈ R, all 0 ≤ l ≤ D − 1. We consider sequences of functions m 7→ C0,n(m, ε), for all
n ≥ 0 and m 7→ Fn(m, ε), for all n ≥ 1, that belong to the Banach space E(β,µ) for some β > 0
and µ > max(deg(Q1) + 1,deg(Q2) + 1) and which depend holomorphically on ε ∈ D(0, ε0) for
some ε0 > 0. We assume that there exist constants K0, T0 > 0 such that

(69) ||C0,n(m, ε)||(β,µ) ≤ K0(
1

T0
)n

for all n ≥ 1, for all ε ∈ D(0, ε0). We define C0(T,m, ε) =
∑

n≥1C0,n(m, ε)Tn which is a
convergent series on D(0, T0/2) with values in E(β,µ) and F (T,m, ε) =

∑
n≥1 Fn(m, ε)Tn which

is a formal series with coefficients in E(β,µ). Let c1,2(ε), c0(ε), c0,0(ε) and cF (ε) be bounded
holomorphic functions on D(0, ε0) which vanish at the origin ε = 0. We consider the following
initial value problem

(70) Q(im)(∂TU(T,m, ε))− T (δD−1)(k2+1)∂δDT RD(im)U(T,m, ε)

= ε−1 c1,2(ε)

(2π)1/2

∫ +∞

−∞
Q1(i(m−m1))U(T,m−m1, ε)Q2(im1)U(T,m1, ε)dm1

+
D−1∑
l=1

Rl(im)ε∆l−dl+δl−1T dl∂δlT U(T,m, ε)

+ ε−1 c0(ε)

(2π)1/2

∫ +∞

−∞
C0(T,m−m1, ε)R0(im1)U(T,m1, ε)dm1

+ ε−1 c0,0(ε)

(2π)1/2

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)U(T,m1, ε)dm1 + ε−1cF (ε)F (T,m, ε)

for given initial data U(0,m, ε) ≡ 0.

Proposition 10 There exists a unique formal series

Û(T,m, ε) =
∑
n≥1

Un(m, ε)Tn

solution of (70) with initial data U(0,m, ε) ≡ 0, where the coefficients m 7→ Un(m, ε) belong to
E(β,µ) for β > 0 and µ > max(deg(Q1)+1, deg(Q2)+1) given above and depend holomorphically
on ε in D(0, ε0).
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Proof From Proposition 4 and the conditions stated above, we get that the coefficients Un(m, ε)
of Û(T,m, ε) are well defined, belong to E(β,µ) for all ε ∈ D(0, ε0), all n ≥ 1 and satisfy the
following recursion relation

(71) (n+ 1)Un+1(m, ε)

=
RD(im)

Q(im)
ΠδD−1
j=0 (n+ δD − (δD − 1)(k2 + 1)− j)Un+δD−(δD−1)(k2+1)(m, ε)

+
ε−1

Q(im)

∑
n1+n2=n,n1≥1,n2≥1

c1,2(ε)

(2π)1/2

∫ +∞

−∞
Q1(i(m−m1))Un1(m−m1, ε)Q2(im1)Un2(m1, ε)dm1

+

D−1∑
l=1

Rl(im)

Q(im)

(
ε∆l−dl+δl−1Πδl−1

j=0 (n+ δl − dl − j)
)
Un+δl−dl(m, ε)

+
ε−1

Q(im)

∑
n1+n2=n,n1≥1,n2≥1

c0(ε)

(2π)1/2

∫ +∞

−∞
C0,n1(m−m1, ε)R0(im1)Un2(m1, ε)dm1

+
ε−1c0,0(ε)

(2π)1/2Q(im)

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)Un(m1, ε)dm1 +

ε−1cF (ε)

Q(im)
Fn(m, ε)

for all n ≥ max(max1≤l≤D−1 dl, (δD − 1)(k2 + 1)). 2

4.2 Analytic solutions for an auxiliary convolution problem resulting from a
mk1−Borel transform applied to the main convolution initial value prob-
lem

We make the additional assumption that

(72) dl > (δl − 1)(k1 + 1)

for all 1 ≤ l ≤ D − 1. Using the formula (8.7) from [31], p. 3630, we can expand the operators
T δl(k1+1)∂δlT in the form

(73) T δl(k1+1)∂δlT = (T k1+1∂T )δl +
∑

1≤p≤δl−1

Aδl,pT
k1(δl−p)(T k1+1∂T )p

where Aδl,p, p = 1, . . . , δl − 1 are real numbers, for all 1 ≤ l ≤ D. We define integers d1
l,k1

> 0 in
order to satisfy

(74) dl + k1 + 1 = δl(k1 + 1) + d1
l,k1

for all 1 ≤ l ≤ D − 1. We also rewrite (δD − 1)(k2 + 1) = (δD − 1)(k1 + 1) + (δD − 1)(k2 − k1).
Multiplying the equation (70) by T k1+1 and using (73), we can rewrite the equation (70) in
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the form

(75) Q(im)(T k1+1∂TU(T,m, ε))

= RD(im)T (δD−1)(k2−k1)(T k1+1∂T )δDU(T,m, ε)

+RD(im)
∑

1≤p≤δD−1

AδD,pT
(δD−1)(k2−k1)T k1(δD−p)(T k1+1∂T )pU(T,m, ε)

+ ε−1T k1+1 c1,2(ε)

(2π)1/2

∫ +∞

−∞
Q1(i(m−m1))U(T,m−m1, ε)Q2(im1)U(T,m1, ε)dm1

+
D−1∑
l=1

Rl(im)
(
ε∆l−dl+δl−1T

d1l,k1 (T k1+1∂T )δlU(T,m, ε)

+
∑

1≤p≤δl−1

Aδl,p ε
∆l−dl+δl−1T

k1(δl−p)+d1l,k1 (T k1+1∂T )pU(T,m, ε)
)

+ ε−1T k1+1 c0(ε)

(2π)1/2

∫ +∞

−∞
C0(T,m−m1, ε)R0(im1)U(T,m1, ε)dm1

+ ε−1T k1+1 c0,0(ε)

(2π)1/2

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)U(T,m1, ε)dm1 + ε−1cF (ε)T k1+1F (T,m, ε).

We denote ωk1(τ,m, ε) the formalmk1−Borel transform of Û(T,m, ε) with respect to T , ϕk1(τ,m, ε)
the formal mk1−Borel transform of C0(T,m, ε) with respect to T and ψk1(τ,m, ε) the formal
mk1−Borel transform of F (T,m, ε) with respect to T . More precisely,

ωk1(τ,m, ε) =
∑
n≥1

Un(m, ε)
τn

Γ( nk1 )
, ϕk1(τ,m, ε) =

∑
n≥1

C0,n(m, ε)
τn

Γ( nk1 )

ψk1(τ,m, ε) =
∑
n≥1

Fn(m, ε)
τn

Γ( nk1 )
.

Using (69) we get that for any κ ≥ k1, the function ϕk1(τ,m, ε) belongs to F d(ν,β,µ,k1,κ) for all

ε ∈ D(0, ε0), any unbounded sector Ud centered at 0 with bisecting direction d ∈ R, for some
ν > 0. Indeed, we have that

(76) ||ϕk1(τ,m, ε)||(ν,β,µ,k1,κ)

≤
∑
n≥1

||C0,n(m, ε)||(β,µ)( sup
τ∈D̄(0,ρ)∪Ud

1 + |τ |2k1
|τ |

exp(−ν|τ |κ)
|τ |n

Γ( nk1 )
).

By using the classical estimates

(77) sup
x≥0

xm1 exp(−m2x) = (
m1

m2
)m1e−m1

for any real numbers m1 ≥ 0, m2 > 0 and Stirling formula Γ(n/k1) ∼ (2π)1/2(n/k1)
n
k1
− 1

2 e−n/k1

as n tends to +∞, we get two constants A1, A2 > 0 depending on ν, k1, κ such that

(78) sup
τ∈D̄(0,ρ)∪Ud

1 + |τ |2k1
|τ |

exp(−ν|τ |κ)
|τ |n

Γ( nk1 )
= sup

x≥0
(1 + x2k1/κ)x

n−1
κ

e−νx

Γ( nk1 )

≤
(

(
n− 1

νκ
)
n−1
κ e−

n−1
κ + (

n− 1

νκ
+

2k1

νκ
)
n−1
κ

+
2k1
κ e−(n−1

κ
+

2k1
κ

)

)
/Γ(n/k1)

≤ A1(A2)n
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for all n ≥ 1. Therefore, if the inequality A2 < T0 holds, we get the estimates

(79) ||ϕk1(τ,m, ε)||(ν,β,µ,k1,κ) ≤ A1

∑
n≥1

||C0,n(m, ε)||(β,µ)(A2)n ≤ A1A2K0

T0

1

1− A2
T0

.

On the other hand, we make the assumption that ψk1(τ,m, ε) ∈ F d(ν,β,µ,k1,k1), for all ε ∈
D(0, ε0), for some unbounded sector Ud with bisecting direction d ∈ R, where ν is chosen above.
We will make the convention to denote ψdk1 the analytic continuation of the convergent power

series ψk1 on the domain Ud ∪D(0, ρ). In particular, we get that ψdk1(τ,m, ε) ∈ F d(ν,β,µ,k1,κ) for
any κ ≥ k1. We also assume that there exists a constant ζψk1 > 0 such that

(80) ||ψdk1(τ,m, ε)||(ν,β,µ,k1,k1) ≤ ζψk1

for all ε ∈ D(0, ε0). In particular, we notice that

(81) ||ψdk1(τ,m, ε)||(ν,β,µ,k1,κ) ≤ ζψk1

for any κ ≥ k1. We require that there exists a constant rQ,Rl > 0 such that

(82) |Q(im)

Rl(im)
| ≥ rQ,Rl

for all m ∈ R, all 1 ≤ l ≤ D.
Using the computation rules for the formal mk1−Borel transform in Proposition 8, we deduce
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the following equation satisfied by ωk1(τ,m, ε),

(83) Q(im)(k1τ
k1ωk1(τ,m, ε))

= RD(im)
τk1

Γ( (δD−1)(k2−k1)
k1

)

∫ τk1

0
(τk1 − s)

(δD−1)(k2−k1)
k1

−1
kδD1 sδDωk1(s1/k1 ,m, ε)

ds

s

+RD(im)
∑

1≤p≤δD−1

AδD,p
τk1

Γ( (δD−1)(k2−k1)+k1(δD−p)
k1

)

×
∫ τk1

0
(τk1 − s)

(δD−1)(k2−k1)+k1(δD−p)
k1

−1
kp1s

pωk1(s1/k1 ,m, ε)
ds

s

+ ε−1 τk1

Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1

×
(
c1,2(ε)

(2π)1/2
s

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))ωk1((s− x)1/k1 ,m−m1, ε)

×Q2(im1)ωk1(x1/k1 ,m1, ε)
1

(s− x)x
dxdm1

)
ds

s

+
D−1∑
l=1

Rl(im)

ε∆l−dl+δl−1 τk1

Γ(
d1l,k1
k1

)

∫ τk1

0
(τk1 − s)

d1l,k1
k1
−1

(k1
δlsδlωk1(s1/k1 ,m, ε))

ds

s

+
∑

1≤p≤δl−1

Aδl,pε
∆l−dl+δl−1 τk1

Γ(
d1l,k1
k1

+ δl − p)

∫ τk1

0
(τk1 − s)

d1l,k1
k1

+δl−p−1
(kp1s

pωk1(s1/k1 ,m, ε))
ds

s

)

+ ε−1 τk1

Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1

×
(

c0(ε)

(2π)1/2
s

∫ s

0

∫ +∞

−∞
ϕk1((s− x)1/k1 ,m−m1, ε)R0(im1)ωk1(x1/k1 ,m1, ε)

1

(s− x)x
dxdm1

)
ds

s

+ ε−1 τk1

Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1

c0,0(ε)

(2π)1/2
(

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)ωk1(s1/k1 ,m1, ε)dm1)

ds

s

+ ε−1cF (ε)
τk1

Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1ψdk1(s1/k1 ,m, ε)

ds

s
.

In the next proposition, we give sufficient conditions under which the equation (83) has a solution
ωdk1(τ,m, ε) in the Banach space F d(ν,β,µ,k1,κ) where β, µ are defined above and for well chosen
κ > k1.

Proposition 11 Under the assumption that

(84)
1

κ
=

1

k1
− 1

k2
,

k2

k2 − k1
≥ dl + (1− δl)
dl + (1− δl)(k1 + 1)

for all 1 ≤ l ≤ D − 1, there exist radii rQ,Rl > 0, 1 ≤ l ≤ D, a constant $ > 0 and constants
ζ1,2, ζ0,0, ζ0, ζ1, ζ1,0, ζF , ζ2 > 0 (depending on Q1, Q2, k1, µ, ν, ε0, Rl,∆l, δl, dl for 1 ≤ l ≤ D − 1)
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such that if

(85) sup
ε∈D(0,ε0)

|c1,2(ε)

ε
| ≤ ζ1,2 , sup

ε∈D(0,ε0)
|c0(ε)

ε
| ≤ ζ1,0 , ||ϕk1(τ,m, ε)||(ν,β,µ,k1,κ) ≤ ζ1,

sup
ε∈D(0,ε0)

|c0,0(ε)

ε
| ≤ ζ0,0 , ||C0,0(m, ε)||(β,µ) ≤ ζ0,

sup
ε∈D(0,ε0)

|cF (ε)

ε
| ≤ ζF , ||ψdk1(τ,m, ε)||(ν,β,µ,k1,κ) ≤ ζ2

for all ε ∈ D(0, ε0), the equation (83) has a unique solution ωdk1(τ,m, ε) in the space F d(ν,β,µ,k1,κ)

where β, µ > 0 are defined in Proposition 10 which verifies ||ωdk1(τ,m, ε)||(ν,β,µ,k1,κ) ≤ $, for all
ε ∈ D(0, ε0).

Proof We start the proof with a lemma which provides appropriate conditions in order to apply
a fixed point theorem.

Lemma 3 One can choose the constants rQ,Rl > 0, for 1 ≤ l ≤ D, a small enough constant
$ and constants ζ1,2, ζ0, ζ0,0, ζ1, ζ1,0, ζF , ζ2 > 0 (depending on Q1, Q2, k1, µ, ν, ε0, Rl,∆l, δl, dl for
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1 ≤ l ≤ D − 1) such that if (85) holds for all ε ∈ D(0, ε0), the map Hk1ε defined by

(86) Hk1ε (w(τ,m))

=
RD(im)

Q(im)

1

k1Γ( (δD−1)(k2−k1)
k1

)

∫ τk1

0
(τk1 − s)

(δD−1)(k2−k1)
k1

−1
kδD1 sδDw(s1/k1 ,m)

ds

s

+
RD(im)

Q(im)

∑
1≤p≤δD−1

AδD,p
1

k1Γ( (δD−1)(k2−k1)+k1(δD−p)
k1

)

×
∫ τk1

0
(τk1 − s)

(δD−1)(k2−k1)+k1(δD−p)
k1

−1
kp1s

pw(s1/k1 ,m)
ds

s

+ ε−1 1

Q(im)k1Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1

×
(
c1,2(ε)

(2π)1/2
s

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))w((s− x)1/k1 ,m−m1)

×Q2(im1)w(x1/k1 ,m1)
1

(s− x)x
dxdm1

)
ds

s

+
D−1∑
l=1

Rl(im)

Q(im)

ε∆l−dl+δl−1 1

k1Γ(
d1l,k1
k1

)

∫ τk1

0
(τk1 − s)

d1l,k1
k1
−1

(k1
δlsδlw(s1/k1 ,m))

ds

s

+
∑

1≤p≤δl−1

Aδl,pε
∆l−dl+δl−1 1

k1Γ(
d1l,k1
k1

+ δl − p)

∫ τk1

0
(τk1 − s)

d1l,k1
k1

+δl−p−1
(kp1s

pw(s1/k1 ,m))
ds

s

)

+ ε−1 c0(ε)

Q(im)k1Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1

×
(

1

(2π)1/2
s

∫ s

0

∫ +∞

−∞
ϕk1((s− x)1/k1 ,m−m1, ε)R0(im1)w(x1/k1 ,m1)

1

(s− x)x
dxdm1

)
ds

s

+ε−1 c0,0(ε)

Q(im)k1Γ(1 + 1
k1

)

∫ τk1

0
(τk1−s)1/k1 1

(2π)1/2
(

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)w(s1/k1 ,m1)dm1)

ds

s

+ ε−1 cF (ε)

Q(im)k1Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1ψdk1(s1/k1 ,m, ε)

ds

s

satisfies the next properties.
i) The following inclusion holds

(87) Hk1ε (B̄(0, $)) ⊂ B̄(0, $)

where B̄(0, $) is the closed ball of radius $ > 0 centered at 0 in F d(ν,β,µ,k1,κ), for all ε ∈ D(0, ε0).

ii) We have

(88) ||Hk1ε (w1)−Hk1ε (w2)||(ν,β,µ,k1,κ) ≤
1

2
||w1 − w2||(ν,β,µ,k1,κ)

for all w1, w2 ∈ B̄(0, $), for all ε ∈ D(0, ε0).

Proof We first check the property (87). Let ε ∈ D(0, ε0) and w(τ,m) be in F d(ν,β,µ,k1,κ). We

take ζ1,2, ζ0, ζ0,0, ζ1, ζ1,0, ζ2, ζF , $ > 0 such that (85) holds and ||w(τ,m)||(ν,β,µ,k1,κ) ≤ $ for all
ε ∈ D(0, ε0).
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Since κ ≥ k1 and (68) hold, using Proposition 2, we get that

(89) ||ε−1 c1,2(ε)

Q(im)k1Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1

×
(

1

(2π)1/2
s

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))w((s− x)1/k1 ,m−m1)

×Q2(im1)w(x1/k1 ,m1)
1

(s− x)x
dxdm1

)
ds

s
||(ν,β,µ,k1,κ)

≤ C3ζ1,2

(2π)1/2k1Γ(1 + 1
k1

)
||w(τ,m)||2(ν,β,µ,k1,κ) ≤

C3ζ1,2$
2

(2π)1/2k1Γ(1 + 1
k1

)
.

Due to the lower bound assumption (82) and taking into account the definition of κ in (84),
we get from Lemma 1 and Proposition 1

(90) ||RD(im)

Q(im)

1

k1Γ( (δD−1)(k2−k1)
k1

)

∫ τk1

0
(τk1 − s)

(δD−1)(k2−k1)
k1

−1
kδD1 sδDw(s1/k1 ,m)

ds

s
||(ν,β,µ,k1,κ)

≤ C2k
δD
1

rQ,RDk1Γ( (δD−1)(k2−k1)
k1

)
||w(τ,m)||(ν,β,µ,k1,κ)

≤ C2k
δD
1

rQ,RDk1Γ( (δD−1)(k2−k1)
k1

)
$

and that

(91) ||RD(im)

Q(im)
AδD,p

1

k1Γ( (δD−1)(k2−k1)+k1(δD−p)
k1

)

×
∫ τk1

0
(τk1 − s)

(δD−1)(k2−k1)+k1(δD−p)
k1

−1
kp1s

pw(s1/k1 ,m)
ds

s
||(ν,β,µ,k1,κ)

≤
|AδD,p|C2k

p
1

rQ,RDk1Γ( (δD−1)(k2−k1)+k1(δD−p)
k1

)
||w(τ,m)||(ν,β,µ,k1,κ)

≤
|AδD,p|C2k

p
1

rQ,RDk1Γ( (δD−1)(k2−k1)+k1(δD−p)
k1

)
$

for all 1 ≤ p ≤ δD − 1.
From assumption (68) and due to the second constraint in (84), we get from Lemma 1 and

Proposition 1

(92) ||Rl(im)

Q(im)
ε∆l−dl+δl−1 1

k1Γ(
d1l,k1
k1

)

∫ τk1

0
(τk1 − s)

d1l,k1
k1
−1

(kδl1 s
δlw(s1/k1 ,m))

ds

s
||(ν,β,µ,k1,κ)

≤ |ε|∆l−dl+δl−1 1

rQ,Rl

C2k
δl
1

k1Γ(
d1l,k1
k1

)
||w(τ,m)||(ν,β,µ,k1,κ) ≤ |ε|∆l−dl+δl−1 1

rQ,Rl

C2k
δl
1

k1Γ(
d1l,k1
k1

)
$
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for all 1 ≤ l ≤ D − 1 and

(93) ||Rl(im)

Q(im)
Aδl,pε

∆l−dl+δl−1 1

k1Γ(
d1l,k1
k1

+ δl − p)

×
∫ τk1

0
(τk1 − s)

d1l,k1
k1

+δl−p−1
(kp1s

pw(s1/k1 ,m))
ds

s
||(ν,β,µ,k1,κ)

≤ |ε|∆l−dl+δl−1 1

rQ,Rl
|Aδl,p|

C2k
p
1

k1Γ(
d1l,k1
k1

+ δl − p)
||w(τ,m)||(ν,β,µ,k1,κ)

≤ |ε|∆l−dl+δl−1 1

rQ,Rl
|Aδl,p|

C2k
p
1

k1Γ(
d1l,k1
k1

+ δl − p)
$

for all 1 ≤ p ≤ δl − 1. Since κ ≥ k1 and (68) we get from Proposition 2 that

(94) ||ε−1 c0(ε)

Q(im)k1Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1

(
1

(2π)1/2
s

∫ s

0

∫ +∞

−∞
ϕk1((s− x)1/k1 ,m−m1, ε)

× R0(im1)w(x1/k1 ,m1)
1

(s− x)x
dxdm1

)
ds

s
||(ν,β,µ,k1,κ)

≤ C3ζ1,0

(2π)1/2k1Γ(1 + 1
k1

)
||ϕk1(τ,m, ε)||(ν,β,µ,k1,κ)||w(τ,m)||(ν,β,µ,k1,κ) ≤

C3ζ1,0

(2π)1/2k1Γ(1 + 1
k1

)
ζ1$.

Since κ ≥ k1 and (68) we deduce from Proposition 3 that

(95) ||ε−1 c0,0(ε)

Q(im)k1Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1 1

(2π)1/2
(

∫ +∞

−∞
C0,0(m−m1, ε)

×R0(im1)w(s1/k1 ,m1)dm1)
ds

s
||(ν,β,µ,k1,κ) ≤

C4ζ0,0

(2π)1/2k1Γ(1 + 1
k1

)
||C0,0(m, ε)||(β,µ)

× ||w(τ,m)||(ν,β,µ,k1,κ) ≤
C4ζ0,0

(2π)1/2k1Γ(1 + 1
k1

)
ζ0$

and finally bearing in mind Proposition 1 we get that

(96) ||ε−1 cF (ε)

Q(im)k1Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1ψdk1(s1/k1 ,m, ε)

ds

s
||(ν,β,µ,k1,κ)

≤ sup
m∈R

1

|Q(im)|
C2ζF

k1Γ(1 + 1
k1

)
||ψdk1(τ,m, ε)||(ν,β,µ,k1,κ) ≤ sup

m∈R

1

|Q(im)|
C2ζF

k1Γ(1 + 1
k1

)
ζ2.
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Now, we choose rQ,Rl > 0, for 1 ≤ l ≤ D, ζ1,2, ζ0,0, ζ0, ζF , ζ1,0, ζ1, ζ2 > 0 and $ > 0 such that

(97)
C3ζ1,2$

2

(2π)1/2k1Γ(1 + 1
k1

)
+

C2k
δD
1

rQ,RDk1Γ( (δD−1)(k2−k1)
k1

)
$

+
∑

1≤p≤δD−1

|AδD,p|C2k
p
1

rQ,RDk1Γ( (δD−1)(k2−k1)+k1(δD−p)
k1

)
$ +

D−1∑
l=1

ε∆l−dl+δl−1
0

1

rQ,Rl

C2k
δl
1

k1Γ(
d1l,k1
k1

)
$

+
∑

1≤p≤δl−1

ε∆l−dl+δl−1
0

1

rQ,Rl
|Aδl,p|

C2k
p
1

k1Γ(
d1l,k1
k1

+ δl − p)
$ +

C3ζ1,0

(2π)1/2k1Γ(1 + 1
k1

)
ζ1$

+
C4ζ0,0

(2π)1/2k1Γ(1 + 1
k1

)
ζ0$ + sup

m∈R

1

|Q(im)|
C2ζF

k1Γ(1 + 1
k1

)
ζ2 ≤ $.

Gathering all the norm estimates (89), (90), (91), (92), (93), (94), (95), (96) together with the
constraint (97), one gets (87).

Now, we check the second property (88). Let w1(τ,m), w2(τ,m) be in F d(ν,β,µ,k1,κ). We take
$ > 0 such that

||wl(τ,m)||(ν,β,µ,k1,κ) ≤ $,

for l = 1, 2, for all ε ∈ D(0, ε0). One can write

(98) Q1(i(m−m1))w1((s− x)1/k1 ,m−m1)Q2(im1)w1(x1/k1 ,m1)

−Q1(i(m−m1))w2((s− x)1/k1 ,m−m1)Q2(im1)w2(x1/k1 ,m1)

= Q1(i(m−m1))
(
w1((s− x)1/k1 ,m−m1)− w2((s− x)1/k1 ,m−m1)

)
Q2(im1)w1(x1/k1 ,m1)

+Q1(i(m−m1))w2((s− x)1/k1 ,m−m1)Q2(im1)
(
w1(x1/k1 ,m1)− w2(x1/k1 ,m1)

)
and taking into account that κ ≥ k1, (68), (98) and using Proposition 2, we get that

(99) ||ε−1 c1,2(ε)

Q(im)k1Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1

×
(

1

(2π)1/2
s

∫ s

0

∫ +∞

−∞
(Q1(i(m−m1))w1((s− x)1/k1 ,m−m1)

×Q2(im1)w1(x1/k1 ,m1)−Q1(i(m−m1))w2((s− x)1/k1 ,m−m1)

×Q2(im1)w2(x1/k1 ,m1))
1

(s− x)x
dxdm1

)
ds

s
||(ν,β,µ,k1,κ)

≤ C3ζ1,2

(2π)1/2k1Γ(1 + 1
k1

)
(||w1(τ,m)− w2(τ,m)||(ν,β,µ,k1,κ)(||w1(τ,m)||(ν,β,µ,k1,κ)

+ ||w2(τ,m)||(ν,β,µ,k1,κ)) ≤
C3ζ1,22$

(2π)1/2k1Γ(1 + 1
k1

)
||w1(τ,m)− w2(τ,m)||(ν,β,µ,k1,κ).

On the other hand, from the estimates (90), (91), (92), (93), (94), (95) and under the constraints
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(68), (84) and the lower bound assumption (82), we deduce that

(100) ||RD(im)

Q(im)

1

k1Γ( (δD−1)(k2−k1)
k1

)

∫ τk1

0
(τk1 − s)

(δD−1)(k2−k1)
k1

−1
kδD1 sδD

× (w1(s1/k1 ,m)− w2(s1/k1 ,m))
ds

s
||(ν,β,µ,k1,κ)

≤ C2k
δD
1

rQ,RDk1Γ( (δD−1)(k2−k1)
k1

)
||w1(τ,m)− w2(τ,m)||(ν,β,µ,k1,κ)

and that

(101) ||RD(im)

Q(im)
AδD,p

1

k1Γ( (δD−1)(k2−k1)+k1(δD−p)
k1

)

×
∫ τk1

0
(τk1 − s)

(δD−1)(k2−k1)+k1(δD−p)
k1

−1
kp1s

p(w1(s1/k1 ,m)− w2(s1/k1 ,m))
ds

s
||(ν,β,µ,k1,κ)

≤
|AδD,p|C2k

p
1

rQ,RDk1Γ( (δD−1)(k2−k1)+k1(δD−p)
k1

)
||w1(τ,m)− w2(τ,m)||(ν,β,µ,k1,κ)

for all 1 ≤ p ≤ δD − 1 and also

(102) ||Rl(im)

Q(im)
ε∆l−dl+δl−1 1

k1Γ(
d1l,k1
k1

)

∫ τk1

0
(τk1 − s)

d1l,k1
k1
−1

× (kδl1 s
δl(w1(s1/k1 ,m)− w2(s1/k1 ,m)))

ds

s
||(ν,β,µ,k1,κ)

≤ |ε|∆l−dl+δl−1 1

rQ,Rl

C2k
δl
1

k1Γ(
d1l,k1
k1

)
||w1(τ,m)− w2(τ,m)||(ν,β,µ,k1,κ)

for all 1 ≤ l ≤ D − 1 together with

(103) ||Rl(im)

Q(im)
Aδl,pε

∆l−dl+δl−1 1

k1Γ(
d1l,k1
k1

+ δl − p)

×
∫ τk1

0
(τk1 − s)

d1l,k1
k1

+δl−p−1
(kp1s

p(w1(s1/k1 ,m)− w2(s1/k1 ,m)))
ds

s
||(ν,β,µ,k1,κ)

≤ |ε|∆l−dl+δl−1 1

rQ,Rl
|Aδl,p|

C2k
p
1

k1Γ(
d1l,k1
k1

+ δl − p)
||w1(τ,m)− w2(τ,m)||(ν,β,µ,k1,κ)

for all 1 ≤ p ≤ δl − 1. Finally, we also obtain

(104)

||ε−1 c0(ε)

Q(im)k1Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1

(
1

(2π)1/2
s

∫ s

0

∫ +∞

−∞
ϕk1((s− x)1/k1 ,m−m1, ε)

× R0(im1)(w1(x1/k1 ,m1)− w2(x1/k1 ,m1))
1

(s− x)x
dxdm1

)
ds

s
||(ν,β,µ,k1,κ)

≤ C3ζ1,0

(2π)1/2k1Γ(1 + 1
k1

)
ζ1||w1(τ,m)− w2(τ,m)||(ν,β,µ,k1,κ)
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and

(105) ||ε−1 c0,0(ε)

Q(im)k1Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1 1

(2π)1/2
(

∫ +∞

−∞
C0,0(m−m1, ε)

×R0(im1)(w1(s1/k1 ,m1)− w2(s1/k1 ,m1))dm1)
ds

s
||(ν,β,µ,k1,κ) ≤

C4ζ0,0

(2π)1/2k1Γ(1 + 1
k1

)
ζ0

× ||w1(τ,m)− w2(τ,m)||(ν,β,µ,k1,κ).

Now, we take $, rQ,Rl > 0, for 1 ≤ l ≤ D and ζ1,2, ζ0,0, ζ0, ζ1,0, ζ1 > 0 such that

(106)
C3ζ1,22$

(2π)1/2k1Γ(1 + 1
k1

)
+

C2k
δD
1

rQ,RDk1Γ( (δD−1)(k2−k1)
k1

)
+

∑
1≤p≤δD−1

|AδD,p|C2k
p
1

rQ,RDk1Γ( (δD−1)(k2−k1)+k1(δD−p)
k1

)
+

∑
1≤l≤D−1

ε∆l−dl+δl−1
0

1

rQ,Rl

C2k
δl
1

k1Γ(
d1l,k1
k1

)

+
∑

1≤p≤δl−1

ε∆l−dl+δl−1
0

1

rQ,Rl
|Aδl,p|

C2k
p
1

k1Γ(
d1l,k1
k1

+ δl − p)
+

C3ζ1,0

(2π)1/2k1Γ(1 + 1
k1

)
ζ1

+
C4ζ0,0

(2π)1/2k1Γ(1 + 1
k1

)
ζ0 ≤ 1/2.

Bearing in mind the estimates (99), (100), (101), (102), (103), (104), (105) with the constraint
(106), one gets (88). Finally, we choose rQ,Rl > 0, for 1 ≤ l ≤ D, ζ1,2, ζ0,0, ζ0, ζF , ζ1,0, ζ1, ζ2 > 0
and $ > 0 such that both (97), (106) are fulfilled. This yields our lemma. 2

We consider the ball B̄(0, $) ⊂ F d(ν,β,µ,k1,κ) constructed in Lemma 3 which is a complete metric

space for the norm ||.||(ν,β,µ,k1,κ). From the lemma above, we get that Hk1ε is a contractive map
from B̄(0, $) into itself. Due to the classical contractive mapping theorem, we deduce that the
map Hk1ε has a unique fixed point denoted by ωdk1(τ,m, ε) (i.e Hk1ε (ωdk1(τ,m, ε)) = ωdk1(τ,m, ε))

in B̄(0, $), for all ε ∈ D(0, ε0). Moreover, the function ωdk1(τ,m, ε) depends holomorphically on

ε in D(0, ε0). By construction, ωdk1(τ,m, ε) defines a solution of the equation (83). This yields
Proposition 11. 2

4.3 Formal and analytic acceleration operators

In this section, we give a definition of the formal and analytic acceleration operator which is
a slightly modified version of the one given in [1], Chapter 5, adapted to our definitions of
mk−Laplace and mk−Borel transforms. First we give a definition for the formal transform.

Definition 5 Let k̃ > k > 0 be real numbers. Let f̂(τ) =
∑

n≥1 fnτ
n ∈ τC[[τ ]] be a formal

series. We define the formal acceleration operator with indices mk̃, mk by

Âmk̃,mk f̂(ξ) =
∑
n≥1

fn
Γ(nk )

Γ(n
k̃

)
ξn ∈ ξC[[ξ]].

Notice that if one defines the formal mk−Laplace transform L̂mk(f̂) and the formal mk̃−Borel

transform B̂mk̃(f̂) of f̂(τ) by

L̂mk(f̂)(T ) =
∑
n≥1

fnΓ(
n

k
)Tn , B̂mk̃(f̂)(Z) =

∑
n≥1

fn
Γ(n

k̃
)
Zn,
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then the formal acceleration operator Âmk̃,mk can also be defined as

Âmk̃,mk f̂(ξ) = (B̂mk̃ ◦ L̂mk)(f̂)(ξ).

In the next definition, we define the analytic transforms.

Proposition 12 Let k̃ > k > 0 be real numbers. Let S(d, π
k̃

+ δ, ρ) be a bounded sector of radius

ρ with aperture π
k̃

+ δ, for some δ > 0 and with direction d. Let F : S(d, π
k̃

+ δ, ρ) → C be a

bounded analytic function such that there exist a formal series F̂ (z) =
∑

n≥1 Fnz
n ∈ C[[z]] and

two constants C,K > 0 with

(107) |F (z)−
N−1∑
n=1

Fnz
n| ≤ CKNΓ(1 +N/k)|z|N

for all z ∈ S(d, π
k̃

+ δ, ρ), all N ≥ 2. The analytic mk̃−Borel transform of F in direction d is
defined as

(108) (Bdmk̃F )(Z) =
−k̃
2iπ

∫
γk̃

F (u) exp((
Z

u
)k̃)

Z k̃

uk̃+1
du

where γk̃ is the closed Hankel path starting from the origin along the segment [0, (ρ/2)ei(d+ π
2k̃

+ δ′
2

)],

following the arc of circle [(ρ/2)ei(d+ π
2k̃

+ δ′
2

), (ρ/2)ei(d−
π
2k̃
− δ
′
2

)] and going back to the origin along

the segment [(ρ/2)ei(d−
π
2k̃
− δ
′
2

), 0] where 0 < δ′ < δ that can be chosen as close to δ as needed.
Then, the function (Bdmk̃F )(Z) is analytic on the unbounded sector S(d, δ′′) with direction d

and aperture δ′′ where 0 < δ′′ < δ′ which can be chosen as close to δ′ as needed. Moreover, if
(B̂mk̃ F̂ )(Z) =

∑
n≥1 FnZ

n/Γ(n/k̃) denotes the formal mk̃−Borel transform of F̂ , then for any
given ρ′ > 0, there exists two constants C,K > 0 with

(109) |(Bdmk̃F )(Z)−
N−1∑
n=1

Fn
Γ(n

k̃
)
Zn| ≤ CKNΓ(1 +N/κ)|Z|N

for all Z ∈ S(d, δ′′) ∩D(0, ρ′), all N ≥ 2, where κ is defined as 1/κ = 1/k − 1/k̃. Finally, the
mk̃−Borel operator Bdmk̃ is the right inverse operator of the mk̃−Laplace transform, namely we
have that

(110) Ldmk̃(v 7→ (Bdmk̃F )(v))(T ) = F (T ),

for all T ∈ S(d, π
k̃

+ δ′, ρ/2).

Proof The proof follows the same lines of arguments as Theorem 2, Section 2.3 in [1]. Namely,
one can check that if F (z) = zn, for an integer n ≥ 0, then

(111) Bdmk̃F (Z) = Zn/Γ(n/k̃)

for all Z ∈ S(d, δ′′) by using the change of variable u = z/w1/k̃ in the integral (108) and a path
deformation, bearing in mind the Hankel formula

1

Γ(n
k̃

)
=

1

2iπ

∫
γ
w−

n
k̃ ewdw
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where γ is the path of integration from infinity along the ray arg(w) = −π to the unit disc, then
around the circle and back to infinity along the ray arg(w) = π. From the asymptotic expansion
(107) and using the same integrals estimates as in Theorem 2, Section 2.3 in [1], together with
the Stirling formula, for any given ρ′ > 0, we get two constants Č, Ǩ > 0 such that

|Bdmk̃F (Z)−
N−1∑
n=1

Fn
Γ(n

k̃
)
Zn| = |Bdmk̃(RN−1F )(Z)| ≤ ČǨN Γ(1 +N/k)

Γ(1 +N/k̃)
|Z|N

where RN−1F (u) = F (u)−
∑N−1

n=1 Fnu
n, for all N ≥ 2, for all Z ∈ S(d, δ′′)∩D(0, ρ′). Therefore

(109) follows.
In the last part of the proof, we show the identity (110). We follow the same lines of

arguments as Theorem 3 in Section 2.4 from [1]. Using Fubini’s theorem, we can write

(112) Ldmk̃(v 7→ (Bdmk̃F )(v))(T ) = k̃

∫
Ld

(
− k̃

2iπ

∫
γk̃

F (u)e( v
u

)k̃ vk̃

uk̃+1
du

)
e−( v

T
)k̃ dv

v

= − k̃

2iπ

∫
γk̃

F (u)

uk̃+1

(∫
Ld

exp(vk̃(
1

uk̃
− 1

T k̃
))k̃vk̃−1dv

)
du.

Therefore, by direct integration, we deduce that

(113) Ldmk̃(v 7→ (Bdmk̃F )(v))(T ) =
k̃

2iπ

∫
γk̃

F (u)

u

T k̃

T k̃ − uk̃
du.

Now, the function u 7→ F (u)
u

T k̃

T k̃−uk̃
has in the interior of γk̃ exactly one singularity at u = T

(since T is assumed to belong to S(d, π
k̃

+ δ′, ρ/2)), this being a pole of order one, with residue

−F (T )/k̃. The residue theorem completes the proof of (110). 2

Proposition 13 Let S(d, α) be an unbounded sector with direction d ∈ R and aperture α. Let
k̃ > k > 0 be given real numbers and let κ > 0 be the real number defined by 1/κ = 1/k − 1/k̃.
Let f : S(d, α) ∪ D(0, r) → C be an analytic function with f(0) = 0 and such that there exist
C,M > 0 with

|f(h)| ≤ CeM |h|κ

for all h ∈ S(d, α) ∪D(0, r).
For all 0 < δ′ < π/κ (which can be chosen close to π/κ), we define the kernel function

G(ξ, h) = − k̃k
2iπ

ξk̃
∫
Vd,k̃,δ′

exp(−(
h

u
)k + (

ξ

u
)k̃)

du

uk̃+1

where Vd,k̃,δ′ is the path starting from 0 along the halfline R+e
i(d+ π

2k̃
+ δ′

2
) and back to the origin

along the halfline R+e
i(d− π

2k̃
− δ
′
2

). The function G(ξ, h) is well defined and satisfies the following
estimates : there exist c1, c2 > 0 such that

(114) |G(ξ, h)| ≤ c1 exp(−c2(
|h|
|ξ|

)κ)

for all h ∈ Ld = R+e
id and all ξ ∈ S(d, δ′′) for 0 < δ′′ < δ′ (that can be chosen close to δ′).
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Then, for any 0 < ρ < (c2/M)1/κ, the function

Admk̃,mkf(ξ) =

∫
Ld

f(h)G(ξ, h)
dh

h
= g(ξ)

defines an analytic function on the bounded sector Sd,κ,δ,ρ with aperture π
κ +δ, for any 0 < δ < α,

in direction d and radius ρ and which satisfies that there exist C,K > 0 with

(115) |g(ξ)−
N−1∑
n=1

fn
Γ(n/k)

Γ(n/k̃)
ξn| ≤ CKNΓ(1 +N/κ)|ξ|N

for all ξ ∈ Sd,κ,δ,ρ, all N ≥ 2, where ĝ(ξ) =
∑

n≥1 fn
Γ(n/k)

Γ(n/k̃)
ξn is the formal acceleration

Âmk̃,mk f̂(ξ) where f̂(h) =
∑

n≥1 fnh
n is the (convergent) Taylor expansion at h = 0 of f on

D(0, r).
In other words, g(ξ) is the κ−sum of ĝ(ξ) on Sd,κ,δ,ρ in the sense of the definition [1] from

Section 3.2.

Proof We first show the estimates (114). We follow the idea of proof of Lemma 1, Section 5.1
in [1]. We make the change of variable u = hũ in the integral G(ξ, h) and we deform the path
of integration in order to get the expression

G(ξ, h) = − k̃k
2iπ

(
ξ

h
)k̃
∫
γk̃

e−(1/ũ)ke(ξ/h)k̃( 1
ũ

)k̃ 1

ũk̃+1
dũ

where γk̃ is the closed Hankel path defined in Proposition 12 with the direction d = 0. Hence, we
recognize that G(ξ, h) can be written as an analytic Borel transform G(ξ, h) = k(B0

mk̃
ek)(ξ/h)

where ek(u) = e−(1/u)k . From Exercise 1 in Section 2.2 from [1], we know that ek(u) has 0̂ as
formal power series expansion of Gevrey order k on any sector S0,π

k̃
+δ with direction 0 for any

0 < δ < π/κ. From Proposition 12, we deduce that (B0
mk̃
ek)(Z) has 0̂ as formal series expansion

of Gevrey order κ on any unbounded sector S0,δ′′ where 0 < δ′′ < δ′ < δ < π/κ (where δ′′ can
be chosen close to π/κ). Finally, using Exercise 3 in Section 2.2 from [1], we get two constants
c1, c2 > 0 such that

|(B0
mk̃
ek)(Z)| ≤ c1e

−c2|Z|−κ

for all Z ∈ S0,δ′′ . The estimates (114) follow.
In order to show the asymptotic expansion with bound estimates (115), we first check that

if f(h) = hn, for an integer n ≥ 0, then

(116) Admk̃,mkf(ξ) =
Γ(n/k)

Γ(n/k̃)
ξn

on Sd,κ,δ,ρ. Indeed using Fubini’s theorem, we can write

Admk̃,mkf(ξ) = − k̃

2iπ

∫
Vd,k̃,δ′

(
k

∫
Ld

hne−(h
u

)k dh

h

)
e( ξ
u

)k̃ ξk̃

uk̃+1
du.

From the definition of the Gamma function we know that

k

∫
Ld

hne−(h
u

)k dh

h
= Ldmk(hn)(u) = Γ(

n

k
)un,
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and bearing in mind (111), after a path deformation, we recognize that

Admk̃,mkf(ξ) = Γ(
n

k
)Bdmk̃(un)(ξ) =

Γ(n/k)

Γ(n/k̃)
ξn.

Since the Taylor expansion of f at h = 0 is convergent, there exist two constants Cf ,Kf > 0
such that

(117) |f(h)−
N−1∑
n=1

fnh
n| ≤ CfKN

f |h|N

for all h ∈ D(0, r), all N ≥ 2. Taking the expansion (117) and the exponential growth estimates
(114), using the same integrals estimates as in Exercise 3 in Section 2.1 of [1], we get two
constants C,K > 0 such that

|Admk̃,mkf(ξ)−
N−1∑
n=1

fn
Γ(nk )

Γ(n
k̃

)
ξn| = |Admk̃,mk(RN−1f)(ξ)| ≤ CKNΓ(1 +N/κ)|ξ|N

where RN−1f(h) = f(h)−
∑N−1

n=1 fnh
n, for all N ≥ 2, all ξ ∈ Sd,κ,δ,ρ. 2

4.4 Analytic solutions for an auxiliary convolution problem resulting from a
mk2−Borel transform applied to the main convolution initial value prob-
lem

We keep the notations of Sections 4.1 and 4.2. For the integers dl, δl, for 1 ≤ l ≤ D − 1 that
satisfy the constraints (66), (67) and (72), we make the additional assumption that there exist
integers d2

l,k2
> 0 such that

(118) dl + k2 + 1 = δl(k2 + 1) + d2
l,k2

for all 1 ≤ l ≤ D − 1. In order to ensure the positivity of the integers d2
l,k2

, we impose the

following assumption on the integers d1
l,k1

,

(119) d1
l,k1 > (δl − 1)(k2 − k1),

for all 1 ≤ l ≤ D − 1. Indeed, by Definition of d1
l,k1

in (74), the constraint (118) rewrites

d2
l,k2

= d1
l,k1

+ k2 − k1 − δl(k2 − k1). Using the formula (8.7) from [31], p. 3630, we can expand

the operators T δl(k2+1)∂δlT in the form

(120) T δl(k2+1)∂δlT = (T k2+1∂T )δl +
∑

1≤p≤δl−1

Aδl,pT
k2(δl−p)(T k2+1∂T )p

where Aδl,p, p = 1, . . . , δl − 1 are real numbers, for all 1 ≤ l ≤ D.
Multiplying the equation (70) by T k2+1 and using (120), we can rewrite the equation (70)
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in the form

(121) Q(im)(T k2+1∂TU(T,m, ε))−RD(im)(T k2+1∂T )δDU(T,m, ε)

= RD(im)
∑

1≤p≤δD−1

AδD,pT
k2(δD−p)(T k2+1∂T )pU(T,m, ε)

+ ε−1T k2+1 c1,2(ε)

(2π)1/2

∫ +∞

−∞
Q1(i(m−m1))U(T,m−m1, ε)Q2(im1)U(T,m1, ε)dm1

+
D−1∑
l=1

Rl(im)
(
ε∆l−dl+δl−1T

d2l,k2 (T k2+1∂T )δlU(T,m, ε)

+
∑

1≤p≤δl−1

Aδl,p ε
∆l−dl+δl−1T

k2(δl−p)+d2l,k2 (T k2+1∂T )pU(T,m, ε)
)

+ ε−1T k2+1 c0(ε)

(2π)1/2

∫ +∞

−∞
C0(T,m−m1, ε)R0(im1)U(T,m1, ε)dm1

+ ε−1T k2+1 c0,0(ε)

(2π)1/2

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)U(T,m1, ε)dm1 + ε−1cF (ε)T k2+1F (T,m, ε).

We denote ω̂k2(τ,m, ε) the formalmk2−Borel transform of Û(T,m, ε) with respect to T , ϕk2(τ,m, ε)
the formal mk2−Borel transform of C0(T,m, ε) with respect to T and ψ̂k2(τ,m, ε) the formal
mk2−Borel transform of F (T,m, ε) with respect to T ,

(122) ω̂k2(τ,m, ε) =
∑
n≥1

Un(m, ε)
τn

Γ( nk2 )
, ϕk2(τ,m, ε) =

∑
n≥1

C0,n(m, ε)
τn

Γ( nk2 )

ψ̂k2(τ,m, ε) =
∑
n≥1

Fn(m, ε)
τn

Γ( nk2 )
.

Using the computation rules for the formal mk2−Borel transform in Proposition 8, we deduce
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the following equation satisfied by ω̂k2(τ,m, ε),

(123) Q(im)(k2τ
k2ω̂k2(τ,m, ε))− (k2τ

k2)δDRD(im)ω̂k2(τ,m, ε)

= RD(im)
∑

1≤p≤δD−1

AδD,p
τk2

Γ(δD − p)

∫ τk2

0
(τk2 − s)δD−p−1(kp2s

pω̂k2(s1/k2 ,m, ε))
ds

s

+ ε−1 τk2

Γ(1 + 1
k2

)

∫ τk2

0
(τk2 − s)1/k2

×
(
c1,2(ε)

(2π)1/2
s

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))ω̂k2((s− x)1/k2 ,m−m1, ε)

×Q2(im1)ω̂k2(x1/k2 ,m1, ε)
1

(s− x)x
dxdm1

)
ds

s

+

D−1∑
l=1

Rl(im)

ε∆l−dl+δl−1 τk2

Γ(
d2l,k2
k2

)

∫ τk2

0
(τk2 − s)

d2l,k2
k2
−1

(k2
δlsδlω̂k2(s1/k2 ,m, ε))

ds

s

+
∑

1≤p≤δl−1

Aδl,pε
∆l−dl+δl−1 τk2

Γ(
d2l,k2
k2

+ δl − p)

∫ τk2

0
(τk2 − s)

d2l,k2
k2

+δl−p−1
(k2

pspω̂k2(s1/k2 ,m, ε))
ds

s

)

+ ε−1 τk2

Γ(1 + 1
k2

)

∫ τk2

0
(τk2 − s)1/k2

×
(

c0(ε)

(2π)1/2
s

∫ s

0

∫ +∞

−∞
ϕk2((s− x)1/k2 ,m−m1, ε)R0(im1)ω̂k2(x1/k2 ,m1, ε)

1

(s− x)x
dxdm1

)
ds

s

+ ε−1 τk2

Γ(1 + 1
k2

)

∫ τk2

0
(τk2 − s)1/k2

c0,0(ε)

(2π)1/2
(

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)ω̂k2(s1/k2 ,m1, ε)dm1)

ds

s

+ ε−1cF (ε)
τk2

Γ(1 + 1
k2

)

∫ τk2

0
(τk2 − s)1/k2ψ̂k2(s1/k2 ,m, ε)

ds

s
.

We recall from [14] that ϕk2(τ,m, ε) ∈ F d(ν,β,µ,k2) for all ε ∈ D(0, ε0), any unbounded sector Sd

and any bounded sector Sbd centered at 0 with bisecting direction d ∈ R, for some ν > 0.
From Section 4.2, we recall that ψdk1(τ,m, ε) ∈ F d(ν,β,µ,k1,k1), for all ε ∈ D(0, ε0), for some

unbounded sector Ud with bisecting direction d ∈ R, where ν is chosen in that section.

Lemma 4 The function

ψdk2(τ,m, ε) := Admk2 ,mk1 (h 7→ ψdk1(h,m, ε))(τ) =

∫
Ld

ψdk1(h,m, ε)G(τ, h)
dh

h

is analytic on an unbounded sector Sd,κ,δ with aperture π
κ + δ in direction d, for any 0 < δ <

ap(Ud) where ap(Ud) denotes the aperture of the sector Ud, and has estimates of the form : there
exist constants Cψk2 > 0 and ν ′ > 0 such that

(124) |ψdk2(τ,m, ε)| ≤ Cψk2 (1 + |m|)−µe−β|m| |τ |
1 + |τ |2k2

exp(ν ′|τ |k2)

for all τ ∈ Sd,κ,δ, all m ∈ R, all ε ∈ D(0, ε0). In particular, we get that Admk2 ,mk1 (h 7→
ψdk1(h,m, ε))(τ) ∈ F d(ν′,β,µ,k2) for any unbounded sector Sd and bounded sector Sbd with aperture
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π
κ + δ, with δ as above, and we carry a constant ζψk2 > 0 with

(125) ||ψdk2(τ,m, ε)||(ν′,β,µ,k2) ≤ ζψk2
for all ε ∈ D(0, ε0).

Proof Bearing in mind the inclusion (81) we already know from Proposition 13 that the function
τ 7→ ψdk2(τ,m, ε) defines a holomorphic and bounded function (with bound independent of

ε ∈ D(0, ε0)) on a sector Sd,κ,δ,(c2/ν)1/κ/2 with direction d, aperture π
κ +δ and radius (c2/ν)1/κ/2,

for some δ > 0 and the constant c2 introduced in (114), for all m ∈ R, all ε ∈ D(0, ε0).
From the assumption that the function ψdk1(τ,m, ε) belongs to the space F d(ν,β,µ,k1,k1), see

(80), we know that the mk1−Laplace transform

Ldmk1 (h 7→ ψdk1(h,m, ε))(u) = k1

∫
Ld

ψdk1(h,m, ε) exp(−(
h

u
)k1)

dh

h

defines a holomorphic and bounded function (by a constant that does not depend on ε ∈ D(0, ε0))
on a sector Sd,θ,σ′ in direction d, with radius σ′ and aperture θ which satisfies π

k2
+ π

κ < θ <
π
k2

+ π
κ + ap(Ud), where ap(Ud) is the aperture of Ud, for some σ′ > 0.

Hence, by using a path deformation and the Fubini theorem, we can rewrite the function
ψdk2(τ,m, ε) in the form

(126) ψdk2(τ,m, ε) = − k2

2iπ

∫
Vd,k2,δ′,σ′/2

Ldmk1 (h 7→ ψdk1(h,m, ε))(u)e( τ
u

)k2 τk2

uk2+1
du

= Bdmk2 (Ldmk1 (h 7→ ψdk1(h,m, ε))(u))(τ)

where Vd,k2,δ′,σ′/2 is the closed Hankel path starting from the origin along the segment

[0, (σ′/2)e
i(d+ π

2k2
+ δ′

2
)
]

following the arc of circle [(σ′/2)e
i(d+ π

2k2
+ δ′

2
)
, (σ′/2)e

i(d− π
2k2
− δ
′
2

)
] and going back to the origin

along the segment [(σ′/2)e
i(d− π

2k2
− δ
′
2

)
, 0], where 0 < δ′ < π

κ + ap(Ud) that can be chosen close to
π
κ + ap(Ud).

Therefore, from Proposition 12, we know that τ 7→ ψdk2(τ,m, ε) defines a holomorphic func-
tion on the unbounded sector S(d, δ′′) where 0 < δ′′ < δ′, which can be chosen close to δ′, for all
m ∈ R, all ε ∈ D(0, ε0). Now, we turn to the estimates (124). From the representation (126),
we get the following estimates : there exist constants E1, E2, E3 > 0 such that

(127) |ψdk2(τ,m, ε)| ≤ E1e
−β|m|

(1 + |m|)µ

(
eE2|τ |k2 |τ |k2 +

∫ σ′
2

0
e−E3(

|τ |
s

)k2 |τ |k2
sk2+1

ds

)

≤ E1e
−β|m|

(1 + |m|)µ

(
eE2|τ |k2 |τ |k2 +

1

E3k2
e−E3( 2

σ′ )
k2 |τ |k2

)
for all τ ∈ S(d, δ′′), all m ∈ R, all ε ∈ D(0, ε0). Besides, from the asymptotic expansion (109),
we get in particular the existence of a constant E0 > 0 such that

(128) |ψdk2(τ,m, ε)| ≤ E0e
−β|m|

(1 + |m|)µ
|τ |



41

for all τ ∈ S(d, δ′′)∩D(0, ρ′) and some ρ′ > 0. Finally, combining the estimates (127) and (128)
yields (124). 2

We consider now the following problem

(129) Q(im)(k2τ
k2ωk2(τ,m, ε))− (k2τ

k2)δDRD(im)ωk2(τ,m, ε)

= RD(im)
∑

1≤p≤δD−1

AδD,p
τk2

Γ(δD − p)

∫ τk2

0
(τk2 − s)δD−p−1(kp2s

pωk2(s1/k2 ,m, ε))
ds

s

+ ε−1 τk2

Γ(1 + 1
k2

)

∫ τk2

0
(τk2 − s)1/k2

×
(
c1,2(ε)

(2π)1/2
s

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))ωk2((s− x)1/k2 ,m−m1, ε)

×Q2(im1)ωk2(x1/k2 ,m1, ε)
1

(s− x)x
dxdm1

)
ds

s

+

D−1∑
l=1

Rl(im)

ε∆l−dl+δl−1 τk2

Γ(
d2l,k2
k2

)

∫ τk2

0
(τk2 − s)

d2l,k2
k2
−1

(k2
δlsδlωk2(s1/k2 ,m, ε))

ds

s

+
∑

1≤p≤δl−1

Aδl,pε
∆l−dl+δl−1 τk2

Γ(
d2l,k2
k2

+ δl − p)

∫ τk2

0
(τk2 − s)

d2l,k2
k2

+δl−p−1
(k2

pspωk2(s1/k2 ,m, ε))
ds

s

)

+ ε−1 τk2

Γ(1 + 1
k2

)

∫ τk2

0
(τk2 − s)1/k2

×
(

c0(ε)

(2π)1/2
s

∫ s

0

∫ +∞

−∞
ϕk2((s− x)1/k2 ,m−m1, ε)R0(im1)ωk2(x1/k2 ,m1, ε)

1

(s− x)x
dxdm1

)
ds

s

+ ε−1 τk2

Γ(1 + 1
k2

)

∫ τk2

0
(τk2 − s)1/k2

c0,0(ε)

(2π)1/2
(

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)ωk2(s1/k2 ,m1, ε)dm1)

ds

s

+ ε−1cF (ε)
τk2

Γ(1 + 1
k2

)

∫ τk2

0
(τk2 − s)1/k2ψdk2(s1/k2 ,m, ε)

ds

s

for vanishing initial data ωk2(0,m, ε) ≡ 0, where ψdk2(τ,m, ε) has been constructed in Lemma 4.
We make the additional assumption that there exists an unbounded sector

SQ,RD = {z ∈ C/|z| ≥ rQ,RD , |arg(z)− dQ,RD | ≤ ηQ,RD}

with direction dQ,RD ∈ R, aperture ηQ,RD > 0 for some radius rQ,RD > 0 such that

(130)
Q(im)

RD(im)
∈ SQ,RD

for all m ∈ R. We factorize the polynomial Pm(τ) = Q(im)k2−RD(im)kδD2 τ (δD−1)k2 in the form

(131) Pm(τ) = −RD(im)kδD2 Π
(δD−1)k2−1
l=0 (τ − ql(m))
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where

(132) ql(m) = (
|Q(im)|

|RD(im)|kδD−1
2

)
1

(δD−1)k2

× exp(
√
−1(arg(

Q(im)

RD(im)kδD−1
2

)
1

(δD − 1)k2
+

2πl

(δD − 1)k2
))

for all 0 ≤ l ≤ (δD − 1)k2 − 1, all m ∈ R.
We choose an unbounded sector Sd centered at 0, a small closed disc D̄(0, ρ) and we prescribe

the sector SQ,RD in such a way that the following conditions hold.

1) There exists a constant M1 > 0 such that

(133) |τ − ql(m)| ≥M1(1 + |τ |)

for all 0 ≤ l ≤ (δD − 1)k2 − 1, all m ∈ R, all τ ∈ Sd ∪ D̄(0, ρ). Indeed, from (130) and
the explicit expression (132) of ql(m), we first observe that |ql(m)| > 2ρ for every m ∈ R, all
0 ≤ l ≤ (δD − 1)k2 − 1 for an appropriate choice of rQ,RD and of ρ > 0. We also see that for all
m ∈ R, all 0 ≤ l ≤ (δD − 1)k2 − 1, the roots ql(m) remain in a union U of unbounded sectors
centered at 0 that do not cover a full neighborhood of the origin in C∗ provided that ηQ,RD is
small enough. Therefore, one can choose an adequate sector Sd such that Sd ∩ U = ∅ with the
property that for all 0 ≤ l ≤ (δD − 1)k2 − 1 the quotients ql(m)/τ lay outside some small disc
centered at 1 in C for all τ ∈ Sd, all m ∈ R. This yields (133) for some small constant M1 > 0.

2) There exists a constant M2 > 0 such that

(134) |τ − ql0(m)| ≥M2|ql0(m)|

for some l0 ∈ {0, . . . , (δD − 1)k2 − 1}, all m ∈ R, all τ ∈ Sd ∪ D̄(0, ρ). Indeed, for the sector Sd
and the disc D̄(0, ρ) chosen as above in 1), we notice that for any fixed 0 ≤ l0 ≤ (δD − 1)k2 − 1,
the quotient τ/ql0(m) stays outside a small disc centered at 1 in C for all τ ∈ Sd ∪ D̄(0, ρ), all
m ∈ R. Hence (134) must hold for some small constant M2 > 0.

By construction of the roots (132) in the factorization (131) and using the lower bound
estimates (133), (134), we get a constant CP > 0 such that

(135) |Pm(τ)| ≥M (δD−1)k2−1
1 M2|RD(im)|kδD2 (

|Q(im)|
|RD(im)|kδD−1

2

)
1

(δD−1)k2 (1 + |τ |)(δD−1)k2−1

≥M (δD−1)k2−1
1 M2

kδD2

(kδD−1
2 )

1
(δD−1)k2

(rQ,RD)
1

(δD−1)k2 |RD(im)|

× (min
x≥0

(1 + x)(δD−1)k2−1

(1 + xk2)
(δD−1)− 1

k2

)(1 + |τ |k2)
(δD−1)− 1

k2

= CP (rQ,RD)
1

(δD−1)k2 |RD(im)|(1 + |τ |k2)
(δD−1)− 1

k2

for all τ ∈ Sd ∪ D̄(0, ρ), all m ∈ R.
In the next proposition, we give sufficient conditions under which the equation (129) has a

solution ωdk2(τ,m, ε) in the Banach space F d(ν′,β,µ,k2) where ν ′, β, µ are defined above.
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Proposition 14 Under the assumption that

(136) δD ≥ δl +
1

k2

for all 1 ≤ l ≤ D − 1, there exist a radius rQ,RD > 0, a constant υ > 0 and constants
ς1,2, ς0,0, ς0, ς1, ς1,0, ςF , ς2 > 0 (depending on Q1, Q2, k2, CP , µ, ν, ε0, Rl,∆l, δl, dl for 1 ≤ l ≤ D−1)
such that if

(137) sup
ε∈D(0,ε0)

|c1,2(ε)

ε
| ≤ ς1,2 , sup

ε∈D(0,ε0)
|c0(ε)

ε
| ≤ ς1,0 , ||ϕk2(τ,m, ε)||(ν′,β,µ,k2) ≤ ς1,

sup
ε∈D(0,ε0)

|c0,0(ε)

ε
| ≤ ς0,0 , ||C0,0(m, ε)||(β,µ) ≤ ς0,

sup
ε∈D(0,ε0)

|cF (ε)

ε
| ≤ ςF , ||ψdk2(τ,m, ε)||(ν′,β,µ,k2) ≤ ς2

for all ε ∈ D(0, ε0), the equation (129) has a unique solution ωdk2(τ,m, ε) in the space F d(ν′,β,µ,k2)

with the property that ||ωdk2(τ,m, ε)||(ν′,β,µ,k2) ≤ υ, for all ε ∈ D(0, ε0), where β, µ > 0 are
defined above, for any unbounded sector Sd that satisfies the constraints (133), (134) and for
any bounded sector Sbd with aperture strictly larger than π

κ such that

(138) Sbd ⊂ D(0, ρ) , Sbd ⊂ Sd,κ,δ

where D(0, ρ) fulfills the constraints (133), (134) and where the sector Sd,κ,δ with aperture π
κ + δ

is defined in Lemma 4, where 0 < δ < ap(Ud).

Proof We start the proof with a lemma which provides appropriate conditions in order to apply
a fixed point theorem.

Lemma 5 One can choose the constant rQ,RD > 0, a constant υ small enough and constants
ς1,2, ς0,0, ς0, ς1, ς1,0, ςF , ς2 > 0 (depending on Q1, Q2, k2, CP , µ, ν, ε0, Rl,∆l, δl, dl for 1 ≤ l ≤ D−1)
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such that if (137) holds for all ε ∈ D(0, ε0), the map Hk2ε defined by

(139) Hk2ε (w(τ,m))

=
RD(im)

Pm(τ)

∑
1≤p≤δD−1

AδD,p
1

Γ(δD − p)

∫ τk2

0
(τk2 − s)δD−p−1(kp2s

pw(s1/k2 ,m))
ds

s

+ ε−1 1

Pm(τ)Γ(1 + 1
k2

)

∫ τk2

0
(τk2 − s)1/k2

×
(
c1,2(ε)

(2π)1/2
s

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))w((s− x)1/k2 ,m−m1)

×Q2(im1)w(x1/k2 ,m1)
1

(s− x)x
dxdm1

)
ds

s

+

D−1∑
l=1

Rl(im)

Pm(τ)

ε∆l−dl+δl−1 1

Γ(
d2l,k2
k2

)

∫ τk2

0
(τk2 − s)

d2l,k2
k2
−1

(k2
δlsδlw(s1/k2 ,m))

ds

s

+
∑

1≤p≤δl−1

Aδl,pε
∆l−dl+δl−1 1

Γ(
d2l,k2
k2

+ δl − p)

∫ τk2

0
(τk2 − s)

d2l,k2
k2

+δl−p−1
(k2

pspw(s1/k2 ,m))
ds

s

)

+ ε−1 1

Pm(τ)Γ(1 + 1
k2

)

∫ τk2

0
(τk2 − s)1/k2

×
(

c0(ε)

(2π)1/2
s

∫ s

0

∫ +∞

−∞
ϕk2((s− x)1/k2 ,m−m1, ε)R0(im1)w(x1/k2 ,m1)

1

(s− x)x
dxdm1

)
ds

s

+ε−1 1

Pm(τ)Γ(1 + 1
k2

)

∫ τk2

0
(τk2−s)1/k2

c0,0(ε)

(2π)1/2
(

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)w(s1/k2 ,m1)dm1)

ds

s

+ ε−1cF (ε)
1

Pm(τ)Γ(1 + 1
k2

)

∫ τk2

0
(τk2 − s)1/k2ψdk2(s1/k2 ,m, ε)

ds

s

satisfies the next properties.
i) The following inclusion holds

(140) Hk2ε (B̄(0, υ)) ⊂ B̄(0, υ)

where B̄(0, υ) is the closed ball of radius υ > 0 centered at 0 in F d(ν′,β,µ,k2), for all ε ∈ D(0, ε0).

ii) We have

(141) ||Hk2ε (w1)−Hk2ε (w2)||(ν′,β,µ,k2) ≤
1

2
||w1 − w2||(ν′,β,µ,k2)

for all w1, w2 ∈ B̄(0, υ), for all ε ∈ D(0, ε0).

The proof of Lemma 5 follows the same lines of arguments as Lemma 2 in Proposition 9 of [14]
and rests on Lemma 2, Propositions 5, 6 and 7 given above in Section 2.2. Therefore, we omit
the details.

We consider the ball B̄(0, υ) ⊂ F d(ν′,β,µ,k2) constructed in Lemma 5 which is a complete metric

space for the norm ||.||(ν′,β,µ,k2). From the lemma above, we get that Hk2ε is a contractive map
from B̄(0, υ) into itself. Due to the classical contractive mapping theorem, we deduce that the
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map Hk2ε has a unique fixed point denoted by ωdk2(τ,m, ε) (i.e Hk2ε (ωdk2(τ,m, ε)) = ωdk2(τ,m, ε))

in B̄(0, υ), for all ε ∈ D(0, ε0). Moreover, the function ωdk2(τ,m, ε) depends holomorphically on

ε in D(0, ε0). By construction, ωdk2(τ,m, ε) defines a solution of the equation (129). This yields
the proposition. 2

In the next proposition, we present the link, by means of the analytic acceleration operator
defined in Proposition 13, between the holomorphic solution of the problem (83) constructed in
Proposition 11 and the solution of the problem (129) found in Proposition 14.

Proposition 15 Let us consider the function ωdk1(τ,m, ε) constructed in Proposition 11 and
which solves the equation (83). The function

τ 7→ Accdk2,k1(ωdk1)(τ,m, ε) := Admk2 ,mk1 (h 7→ ωdk1(h,m, ε))(τ) =

∫
Ld

ωdk1(h,m, ε)G(τ, h)
dh

h

defines an analytic function on a sector Sd,κ,δ,(c2/ν)1/κ/2 with direction d, aperture π
κ + δ and

radius (c2/ν)1/κ/2, for any 0 < δ < ap(Ud) and for a constant c2 introduced in (114), with the
property that Accdk2,k1(ωdk1)(0,m, ε) ≡ 0, for all m ∈ R, all ε ∈ D(0, ε0).

Moreover, for all fixed ε ∈ D(0, ε0), the following identity

(142) Accdk2,k1(ωdk1)(τ,m, ε) = ωdk2(τ,m, ε)

holds for all τ ∈ Sd,κ,δ,(c2/ν)1/κ/2, all m ∈ R, provided that ν > 0 is chosen in such a way that

Sd,κ,δ,(c2/ν)1/κ/2 ⊂ Sbd holds where Sbd is the bounded sector introduced in Proposition 14.

As a consequence of Proposition 14, the function τ 7→ Accdk2,k1(ωdk1)(τ,m, ε) has an analytic

continuation on the union Sbd ∪ Sd, where the sector Sd has been described in Proposition 14,
denoted again by Accdk2,k1(ωdk1)(τ,m, ε) which satisfies estimates of the form : there exists a
constant Cωk2 > 0 with

(143) |Accdk2,k1(ωdk1)(τ,m, ε)| ≤ Cωk2 (1 + |m|)−µe−β|m| |τ |
1 + |τ |2k2

exp(ν ′|τ |k2)

for all τ ∈ Sbd ∪ Sd, all m ∈ R, all ε ∈ D(0, ε0).

Proof From Proposition 11, we point out that ωdk1(τ,m, ε) belongs to the space F d(ν,β,µ,k1,κ)

and that ||ωdk1 ||(ν,β,µ,k1,κ) ≤ $ for all ε ∈ D(0, ε0). Due to Proposition 13, we deduce that the

function τ 7→ Accdk2,k1(ωdk1)(τ,m, ε) defines a holomorphic and bounded function with values in
the Banach space E(β,µ) (with bound independent of ε) on a sector Sd,κ,δ,(c2/ν)1/κ/2 with direction

d, aperture π
κ+δ and radius (c2/ν)1/κ/2, for any 0 < δ < ap(Ud) and for a constant c2 introduced

in (114), for all ε ∈ D(0, ε0).
Now, as a result of Proposition 13, we also know that the function τ 7→ Accdk2,k1(ωdk1)(τ,m, ε)

is the κ−sum of the formal series

Âmk2 ,mk1 (h 7→ ωk1(h,m, ε))(τ) = ω̂k2(τ,m, ε)

viewed as formal series in τ with coefficients in the Banach space E(β,µ), on Sd,κ,δ,(c2/ν)1/κ/2, for

all ε ∈ D(0, ε0). In particular, one sees that Accdk2,k1(ωdk1)(0,m, ε) ≡ 0, for all ε ∈ D(0, ε0).

Likewise, we notice from Lemma 4, that the function τ 7→ ψdk2(τ,m, ε) is the κ−sum on

Sd,κ,δ,(c2/ν)1/κ/2 of the formal series ψ̂k2(τ,m, ε) defined in (122), viewed as formal series in τ with
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coefficients in the Banach space E(β,µ), for all ε ∈ D(0, ε0). We recall that ω̂k2(τ,m, ε) formally
solves the equation (123) for vanishing initial data ω̂k2(0,m, ε) ≡ 0. Using standard stability
properties of the κ−sums of formal series with respect to algebraic operations and integration
(see [1], Section 3.3 Theorem 2 p. 28), we deduce that the function Accdk2,k1(ωdk1)(τ,m, ε) satisfies
the equation (129) for all τ ∈ Sd,κ,δ,(c2/ν)1/κ/2, all m ∈ R, all ε ∈ D(0, ε0), for vanishing initial

data Accdk2,k1(ωdk1)(0,m, ε) ≡ 0.
In order to justify the identity (142), we need to define some additional Banach space. We

keep the aforementioned notations.

Definition 6 Let h′ = (c2/ν)1/κ/2. We denote H(ν′,β,µ,k2,h′) the vector space of continuous
functions (τ,m) 7→ h(τ,m) on S̄d,κ,δ,h′ × R, holomorphic with respect to τ on Sd,κ,δ,h′ such that

(144) ||h(τ,m)||(ν′,β,µ,k2,h′) = sup
τ∈S̄d,κ,δ,h′ ,m∈R

(1 + |m|)µ 1 + |τ |2k2
|τ |

exp(β|m| − ν ′|τ |k2)|h(τ,m)|

is finite. One can check that H(ν′,β,µ,k2,h′) endowed with the norm ||.||(ν′,β,µ,k2,h′) is a Banach
space.

Remark: Notice that if a function h(τ,m) belongs to the space F d(ν′,β,µ,k2) for the sectors Sd

and Sbd described in Proposition 14, then it belongs to the space H(ν′,β,µ,k2,h′) (provided that

ν > 0 is chosen such that Sd,κ,δ,h′ ⊂ Sbd) and moreover

||h(τ,m)||(ν′,β,µ,k2,h′) ≤ ||h(τ,m)||(ν′,β,µ,k2)

holds.

From the remark above, one deduces that the functions ϕk2(τ,m, ε) and ψdk2(τ,m, ε) belong to
the space H(ν′,β,µ,k2,h′).

In the following, one can reproduce the same lines of arguments as in the proof of Proposition
14 just by replacing the Banach space F d(ν′,β,µ,k2) by H(ν′,β,µ,k2,h′), one gets the next

Lemma 6 Under the assumption that (136) holds, for the radius rQ,RD > 0, the constants υ
and ς1,2, ς0,0, ς0, ς1, ς1,0, ςF , ς2 given in Proposition 14 for which the constraints (137) hold, the
equation (129) has a unique solution ωk2,h′(τ,m, ε) in the space H(ν′,β,µ,k2,h′) with the property
that ||ωk2,h′(τ,m, ε)||(ν′,β,µ,k2,h′) ≤ υ, for all ε ∈ D(0, ε0).

Taking into account Proposition 14, since ωdk2(τ,m, ε) belongs to F d(ν′,β,µ,k2), it also belongs to

the space H(ν′,β,µ,k2,h′). Moreover, since τ 7→ Accdk2,k1(ωdk1)(τ,m, ε) defines a holomorphic and
bounded function with values in the Banach space E(β,µ) (with bound independent of ε) on

Sd,κ,δ,h′ that vanishes at τ = 0, we also get that Accdk2,k1(ωdk1)(τ,m, ε) belongs to H(ν′,β,µ,k2,h′).

As a summary, we have seen that both ωdk2(τ,m, ε) and Accdk2,k1(ωdk1)(τ,m, ε) solve the same
equation (129) for vanishing initial data and belong to H(ν′,β,µ,k2,h′). Moreover, one can check
that the constant υ > 0 in Lemma 6 and Proposition 14 can be chosen sufficiently large such
that ||Accdk2,k1(ωdk1)(τ,m, ε)||(ν′,β,µ,k2,h′) ≤ υ holds, if the constants ς1,2, ς0,0, ς1,0, ςF > 0 are
chosen small enough and rQ,RD > 0 is taken large enough. By construction, we already know
that ||ωdk2(τ,m, ε)||(ν′,β,µ,k2,h′) ≤ υ. Therefore, from Lemma 6, we get that they must be equal.
Proposition 15 follows. 2
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Now, we define the mk2−Laplace transforms

(145) F d(T,m, ε) := k2

∫
Ld

ψdk2(u,m, ε)e−( u
T

)k2 du

u
,

Ud(T,m, ε) := k2

∫
Ld

ωdk2(u,m, ε)e−( u
T

)k2 du

u

which, according to the estimates (124) and (143), are E(β,µ)−valued bounded holomorphic
functions on the sector Sd,θ,h′ with bisecting direction d, aperture π

k2
< θ < π

k2
+ ap(Sd) and

radius h′, where h′ > 0 is some positive real number, for all ε ∈ D(0, ε0).

Remark: The analytic functions F d(T,m, ε) (resp. Ud(T,m, ε)) can be called the
(mk2 ,mk1)−sums in the direction d of the formal series F (T,m, ε) (resp. U(T,m, ε)) introduced
in the Section 4.1, following the terminology of [1], Section 6.1.

In the next proposition, we construct analytic solutions to the problem (70) with analytic forcing
term and for vanishing initial data.

Proposition 16 The function Ud(T,m, ε) solves the following equation

(146) Q(im)(∂TU
d(T,m, ε))− T (δD−1)(k2+1)∂δDT RD(im)Ud(T,m, ε)

= ε−1 c1,2(ε)

(2π)1/2

∫ +∞

−∞
Q1(i(m−m1))Ud(T,m−m1, ε)Q2(im1)Ud(T,m1, ε)dm1

+

D−1∑
l=1

Rl(im)ε∆l−dl+δl−1T dl∂δlT U
d(T,m, ε)

+ ε−1 c0(ε)

(2π)1/2

∫ +∞

−∞
C0(T,m−m1, ε)R0(im1)Ud(T,m1, ε)dm1

+ ε−1 c0,0(ε)

(2π)1/2

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)Ud(T,m1, ε)dm1 + ε−1cF (ε)F d(T,m, ε)

for given initial data Ud(0,m, ε) = 0, for all T ∈ Sd,θ,h′, m ∈ R, all ε ∈ D(0, ε0).

Proof Since the function ωdk2(u,m, ε) solves the integral equation (129), one can check by direct
computations similar to those described in Proposition 8, using the integral representations
(145) that Ud(T,m, ε) solves the equation (121) where the formal series F (T,m, ε) is replaced
by F d(T,m, ε) and hence solves the equation (70) where F d(T,m, ε) must be put in place of
F (T,m, ε). 2

5 Analytic solutions of a nonlinear initial value Cauchy prob-
lem with analytic forcing term on sectors and with complex
parameter

Let k1, k2 ≥ 1, D ≥ 2 be integers such that k2 > k1. Let δl ≥ 1 be integers such that

(147) 1 = δ1 , δl < δl+1,
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for all 1 ≤ l ≤ D − 1. For all 1 ≤ l ≤ D − 1, let dl,∆l ≥ 0 be nonnegative integers such that

(148) dl > δl , ∆l − dl + δl − 1 ≥ 0.

Let Q(X), Q1(X), Q2(X), Rl(X) ∈ C[X], 0 ≤ l ≤ D, be polynomials such that

(149) deg(Q) ≥ deg(RD) ≥ deg(Rl) , deg(RD) ≥ deg(Q1) , deg(RD) ≥ deg(Q2),

Q(im) 6= 0 , Rl(im) 6= 0 , RD(im) 6= 0

for all m ∈ R, all 0 ≤ l ≤ D − 1.
We require that there exists a constant rQ,Rl > 0 such that

(150) |Q(im)

Rl(im)
| ≥ rQ,Rl

for all m ∈ R, all 1 ≤ l ≤ D. We make the additional assumption that there exists an unbounded
sector

SQ,RD = {z ∈ C/|z| ≥ rQ,RD , |arg(z)− dQ,RD | ≤ ηQ,RD}
with direction dQ,RD ∈ R, aperture ηQ,RD > 0 for the radius rQ,RD > 0 given above, such that

(151)
Q(im)

RD(im)
∈ SQ,RD

for all m ∈ R.

Definition 7 Let ς ≥ 2 be an integer. For all 0 ≤ p ≤ ς−1, we consider open sectors Ep centered
at 0, with radius ε0 and opening π

k2
+ κp, with κp > 0 small enough such that Ep ∩ Ep+1 6= ∅, for

all 0 ≤ p ≤ ς − 1 (with the convention that Eς = E0). Moreover, we assume that the intersection
of any three different elements in {Ep}0≤p≤ς−1 is empty and that ∪ς−1

p=0Ep = U \ {0}, where U is
some neighborhood of 0 in C. Such a set of sectors {Ep}0≤p≤ς−1 is called a good covering in C∗.

Definition 8 Let {Ep}0≤p≤ς−1 be a good covering in C∗. Let T be an open bounded sector
centered at 0 with radius rT and consider a family of open sectors

Sdp,θ,ε0rT = {T ∈ C∗/|T | < ε0rT , |dp − arg(T )| < θ/2}

with aperture θ > π/k2 and where dp ∈ R, for all 0 ≤ p ≤ ς − 1, are directions which satisfy the
following constraints: Let ql(m) be the roots of the polynomials (131) defined by (132) and Sdp,
0 ≤ p ≤ ς − 1 be unbounded sectors centered at 0 with directions dp and with small aperture. Let
ρ > 0 be a positive real number. We assume that
1) There exists a constant M1 > 0 such that

(152) |τ − ql(m)| ≥M1(1 + |τ |)

for all 0 ≤ l ≤ (δD − 1)k2 − 1, all m ∈ R, all τ ∈ Sdp ∪ D̄(0, ρ), for all 0 ≤ p ≤ ς − 1.
2) There exists a constant M2 > 0 such that

(153) |τ − ql0(m)| ≥M2|ql0(m)|

for some l0 ∈ {0, . . . , (δD − 1)k2 − 1}, all m ∈ R, all τ ∈ Sdp ∪ D̄(0, ρ), for all 0 ≤ p ≤ ς − 1.
3) There exist a family of unbounded sectors Udp with bisecting direction dp and bounded sectors
Sbdp with bisecting direction dp, with radius less than ρ, with aperture π

κ + δp, with 0 < δp <

ap(Udp), for all 0 ≤ p ≤ ς − 1, with the property that Sbdp ∩ S
b
dp+1
6= ∅ for all 0 ≤ p ≤ ς − 1 (with

the convention that dς = d0).
4) For all 0 ≤ p ≤ ς − 1, for all t ∈ T , all ε ∈ Ep, we have that εt ∈ Sdp,θ,ε0rT .

We say that the family {(Sdp,θ,ε0rT )0≤p≤ς−1, T } is associated to the good covering {Ep}0≤p≤ς−1.
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We consider a good covering {Ep}0≤p≤ς−1 and a family of sectors {(Sdp,θ,ε0rT )0≤p≤ς−1, T }
associated to it. For all 0 ≤ p ≤ ς − 1, we consider the following nonlinear initial value problem
with forcing term

(154) Q(∂z)(∂tu
dp(t, z, ε)) = c1,2(ε)(Q1(∂z)u

dp(t, z, ε))(Q2(∂z)u
dp(t, z, ε))

+ ε(δD−1)(k2+1)−δD+1t(δD−1)(k2+1)∂δDt RD(∂z)u
dp(t, z, ε) +

D−1∑
l=1

ε∆ltdl∂δlt Rl(∂z)u
dp(t, z, ε)

+ c0(t, z, ε)R0(∂z)u
dp(t, z, ε) + cF (ε)fdp(t, z, ε)

for given initial data udp(0, z, ε) ≡ 0.
The functions c1,2(ε) and cF (ε) are holomorphic and bounded on the disc D(0, ε0) and are

such that c1,2(0) = cF (0) = 0. The coefficient c0(t, z, ε) and the forcing term fdp(t, z, ε) are
constructed as follows. Let c0(ε) and c0,0(ε) be holomorphic and bounded functions on the disc
D(0, ε0) which satisfy c0(0) = c0,0(0) = 0. We consider sequences of functions m 7→ C0,n(m, ε),
for n ≥ 0 and m 7→ Fn(m, ε), for n ≥ 1, that belong to the Banach space E(β,µ) for some
β > 0, µ > max(deg(Q1) + 1,deg(Q2) + 1) and which depend holomorphically on ε ∈ D(0, ε0).
We assume that there exist constants K0, T0 > 0 such that (69) hold for all n ≥ 1, for all
ε ∈ D(0, ε0). We deduce that the function

C0(T, z, ε) = c0,0(ε)F−1(m 7→ C0,0(m, ε))(z) +
∑
n≥1

c0(ε)F−1(m 7→ C0,n(m, ε))(z)Tn

represents a bounded holomorphic function on D(0, T0/2) ×Hβ′ ×D(0, ε0) for any 0 < β′ < β
(where F−1 denotes the inverse Fourier transform defined in Proposition 9). We define the
coefficient c0(t, z, ε) as

(155) c0(t, z, ε) = C0(εt, z, ε)

The function c0 is holomorphic and bounded on D(0, r)×Hβ′ ×D(0, ε0) where rε0 < T0/2.
We make the assumption that the formal mk1−Borel transform

ψk1(τ,m, ε) =
∑
n≥1

Fn(m, ε)
τn

Γ( nk1 )

is convergent on the disc D(0, ρ) given in Definition 8 and can be analytically continued w.r.t τ

as a function τ 7→ ψ
dp
k1

(τ,m, ε) on the domain Udp ∪D(0, ρ), where Udp is the unbounded sector

given in Definition 8, with ψ
dp
k1

(τ,m, ε) ∈ F
dp
(ν,β,µ,k1,k1) and such that there exists a constant

ζψk1 > 0 such that

(156) ||ψdp
k1

(τ,m, ε)||(ν,β,µ,k1,k1) ≤ ζψk1
for all ε ∈ D(0, ε0).

From Lemma 4, we know that the accelerated function

ψ
dp
k2

(τ,m, ε) := Adp
mk2 ,mk1

(h 7→ ψ
dp
k1

(h,m, ε))(τ)

defines a function that belongs to the space F
dp
(ν′,β,µ,k2) for the unbounded sector Sdp and the

bounded sector Sbdp given in Definition 8. Moreover, we get a constant ζψk2 > 0 with

(157) ||ψdp
k2

(τ,m, ε)||(ν′,β,µ,k2) ≤ ζψk2
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for all ε ∈ D(0, ε0). We take the mk2−Laplace transform

(158) F dp(T,m, ε) := k2

∫
Ldp

ψ
dp
k2

(u,m, ε)e−( u
T

)k2 du

u

which exists for all T ∈ Sdp,θ,h′ , m ∈ R, ε ∈ D(0, ε0), where Sdp,θ,h′ is a sector with bisecting
direction dp, aperture π

k2
< θ < π

k2
+ ap(Sdp) and radius h′, where h′ > 0 is some positive real

number, for all ε ∈ D(0, ε0).
We define the forcing term fdp(t, z, ε) as

(159) fdp(t, z, ε) := F−1(m 7→ F dp(εt,m, ε))(z)

By construction, fdp(t, z, ε) represents a bounded holomorphic function on T ×Hβ′×Ep (provided
that the radius rT of T satisfies the inequality ε0rT ≤ h′ which will be assumed in the sequel).

In the next first main result, we construct a family of actual holomorphic solutions to the
equation (154) for given initial data at t = 0 being identically equal to zero, defined on the
sectors Ep with respect to the complex parameter ε. We can also control the difference between
any two neighboring solutions on the intersection of sectors Ep ∩ Ep+1.

Theorem 1 We consider the equation (154) and we assume that the constraints (147), (148),
(149), (150) and (151) hold. We also make the additional assumption that

(160) dl + k1 + 1 = δl(k1 + 1) + d1
l,k1 , d1

l,k1 > 0 ,
1

κ
=

1

k1
− 1

k2
,

k2

k2 − k1
≥ dl + (1− δl)
dl + (1− δl)(k1 + 1)

, d1
l,k1 > (δl − 1)(k2 − k1) , δD ≥ δl +

1

k2
,

for 1 ≤ l ≤ D − 1. Let the coefficient c0(t, z, ε) and the forcing terms fdp(t, z, ε) be constructed
as in (155), (159). Let a good covering {Ep}0≤p≤ς−1 in C∗ be given, for which a family of sectors
{(Sdp,θ,ε0rT )0≤p≤ς−1, T } associated to this good covering can be considered.

Then, there exist radii rQ,Rl > 0 large enough, for 1 ≤ l ≤ D and constants ζ1,2, ζ0,0, ζ1,0, ζF >
0 small enough such that if

(161) sup
ε∈D(0,ε0)

|c1,2(ε)

ε
| ≤ ζ1,2 , sup

ε∈D(0,ε0)
|c0(ε)

ε
| ≤ ζ1,0 , sup

ε∈D(0,ε0)
|c0,0(ε)

ε
| ≤ ζ0,0,

sup
ε∈D(0,ε0)

|cF (ε)

ε
| ≤ ζF ,

thereafter for every 0 ≤ p ≤ ς − 1, one can construct a solution udp(t, z, ε) of the equation (154)
with udp(0, z, ε) ≡ 0 which defines a bounded holomorphic function on the domain T ×Hβ′ × Ep
for any given 0 < β′ < β.

Moreover, the next estimates hold for the solution udp and the forcing term fdp : there exist
constants 0 < h′′ ≤ rT , Kp,Mp > 0 (independent of ε) with the following properties:
1) Assume that the unbounded sectors Udp and Udp+1 have sufficiently large aperture in such a
way that Udp ∩ Udp+1 contains the sector Udp,dp+1 = {τ ∈ C∗/arg(τ) ∈ [dp, dp+1]}, then

(162) sup
t∈T ∩D(0,h′′),z∈Hβ′

|udp+1(t, z, ε)− udp(t, z, ε)| ≤ Kpe
− Mp

|ε|k2 ,

sup
t∈T ∩D(0,h′′),z∈Hβ′

|fdp+1(t, z, ε)− fdp(t, z, ε)| ≤ Kpe
− Mp

|ε|k2
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for all ε ∈ Ep+1 ∩ Ep.
2) Assume that the unbounded sectors Udp and Udp+1 have empty intersection, then

(163) sup
t∈T ∩D(0,h′′),z∈Hβ′

|udp+1(t, z, ε)− udp(t, z, ε)| ≤ Kpe
− Mp

|ε|k1 ,

sup
t∈T ∩D(0,h′′),z∈Hβ′

|fdp+1(t, z, ε)− fdp(t, z, ε)| ≤ Kpe
− Mp

|ε|k1

for all ε ∈ Ep+1 ∩ Ep.

Proof Let 0 ≤ p ≤ ς − 1. Under the assumptions of Theorem 1, using Proposition 16, one can
construct a function Udp(T,m, ε) which satisfies Udp(0,m, ε) ≡ 0 and solves the equation

(164) Q(im)(∂TU
dp(T,m, ε))− T (δD−1)(k2+1)∂δDT RD(im)Udp(T,m, ε)

= ε−1 c1,2(ε)

(2π)1/2

∫ +∞

−∞
Q1(i(m−m1))Udp(T,m−m1, ε)Q2(im1)Udp(T,m1, ε)dm1

+
D−1∑
l=1

Rl(im)ε∆l−dl+δl−1T dl∂δlT U
dp(T,m, ε)

+ ε−1 c0(ε)

(2π)1/2

∫ +∞

−∞
C0(T,m−m1, ε)R0(im1)Udp(T,m1, ε)dm1

+ ε−1 c0,0(ε)

(2π)1/2

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)Udp(T,m1, ε)dm1 + ε−1cF (ε)F dp(T,m, ε)

where C0(T,m, ε) =
∑

n≥1C0,n(m, ε)Tn is a convergent series on D(0, T0/2) with values in E(β,µ)

and F dp(T,m, ε) is given by the formula (158), for all ε ∈ D(0, ε0). The function (T,m) 7→
Udp(T,m, ε) is well defined on the domain Sdp,θ,h′ × R.

Moreover, Udp(T,m, ε) can be written as mk2−Laplace transform

(165) Udp(T,m, ε) = k2

∫
Lγp

ω
dp
k2

(u,m, ε) exp(−(
u

T
)k2)

du

u

along a halfline Lγp = R+e
√
−1γp ⊂ Sdp ∪ {0} (the direction γp may depend on T ), where

ω
dp
k2

(τ,m, ε) defines a continuous function on (Sbdp ∪ Sdp) × R × D(0, ε0), which is holomorphic

with respect to (τ, ε) on (Sbdp ∪ Sdp)×D(0, ε0) for any m ∈ R and satisfies the estimates: there
exists a constant C

ω
dp
k2

> 0 with

(166) |ωdp
k2

(τ,m, ε)| ≤ C
ω
dp
k2

(1 + |m|)−µe−β|m| |τ |
1 + |τ |2k2

exp(ν ′|τ |k2)

for all τ ∈ Sbdp ∪Sdp , all m ∈ R, all ε ∈ D(0, ε0). Besides, the function ω
dp
k2

(τ,m, ε) is the analytic
continuation w.r.t τ of the function

(167) τ 7→ Acc
dp
k2,k1

(ω
dp
k1

)(τ,m, ε) =

∫
L
γ1p

ω
dp
k1

(h,m, ε)G(τ, h)
dh

h

where the path of integration is a halfline Lγ1p = R+e
√
−1γ1p ⊂ Udp (the direction γ1

p may depend

on τ), which defines an analytic function on Sdp,κ,δp,(c2/ν)1/κ/2 ⊂ Sbdp which is a sector with
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bisecting direction dp, aperture π
κ + δp and radius (c2/ν)1/κ/2. We recall that ω

dp
k1

(h,m, ε)
defines a continuous function on (Udp ∪D(0, ρ))×R×D(0, ε0), which is holomorphic w.r.t (τ, ε)
on (Udp ∪D(0, ρ))×D(0, ε0), for any m ∈ R and satisfies the estimates: there exists a constant
C
ω
dp
k1

> 0 with

(168) |ωdp
k1

(τ,m, ε)| ≤ C
ω
dp
k1

(1 + |m|)−µe−β|m| |τ |
1 + |τ |2k1

exp(ν|τ |κ)

for all τ ∈ Udp ∪D(0, ρ), all m ∈ R, all ε ∈ D(0, ε0).
Using the estimates (166), we get that the function

(T, z) 7→ Udp(T, z, ε) = F−1(m 7→ Udp(T,m, ε))(z)

defines a bounded holomorphic function on Sdp,θ,h′×Hβ′ , for all ε ∈ D(0, ε0) and any 0 < β′ < β.
For all 0 ≤ p ≤ ς − 1, we define

udp(t, z, ε) = Udp(εt, z, ε) =
k2

(2π)1/2

∫ +∞

−∞

∫
Lγp

ω
dp
k2

(u,m, ε) exp(−(
u

εt
)k2)eizm

du

u
dm.

Taking into account the construction provided in 4) from Definition 8, the function udp(t, z, ε)
defines a bounded holomorphic function on the domain T × Hβ′ × Ep. Moreover, we have
udp(0, z, ε) ≡ 0 and using the properties of the Fourier inverse transform from Proposition 9, we
deduce that udp(t, z, ε) solves the main equation (154) on T ×Hβ′ × Ep.

Now, we proceed to the proof of the estimates (162). We detail only the arguments for the
functions udp since the estimates for the forcing terms fdp follow the same line of discourse as
below with the help of the estimates (157) instead of (166).

Let 0 ≤ p ≤ ς − 1 such that Udp ∩ Udp+1 contains the sector Udp,dp+1 . First of all, from
the integral representation (167) by using a path deformation between Lγ1p and Lγ1p+1

, we

observe that the functions Acc
dp
k2,k1

(ω
dp
k1

)(τ,m, ε) and Acc
dp+1

k2,k1
(ω

dp+1

k1
)(τ,m, ε) must coincide on

the domain (Sdp,κ,δp,(c2/ν)1/κ/2 ∩ Sdp+1,κ,δp+1,(c2/ν)1/κ/2) × R × D(0, ε0). Hence, there exists a

function that we denote ω
dp,dp+1

k2
(τ,m, ε) which is holomorphic w.r.t τ on Sdp,κ,δp,(c2/ν)1/κ/2 ∪

Sdp+1,κ,δp+1,(c2/ν)1/κ/2, continuous w.r.t m on R, holomorphic w.r.t ε on D(0, ε0) which coincides

with Acc
dp
k2,k1

(ω
dp
k1

)(τ,m, ε) on Sdp,κ,δp,(c2/ν)1/κ/2 × R×D(0, ε0) and with Acc
dp+1

k2,k1
(ω

dp+1

k1
)(τ,m, ε)

on Sdp+1,κ,δp+1,(c2/ν)1/κ/2 × R×D(0, ε0).

Now, we put ρν,κ = (c2/ν)1/κ/2. Using the fact that the function

u 7→ ω
dp,dp+1

k2
(u,m, ε) exp(−(

u

εt
)k2)/u

is holomorphic on Sdp,κ,δp,ρν,κ ∪Sdp+1,κ,δp+1,ρν,κ for all (m, ε) ∈ R×D(0, ε0), its integral along the
union of a segment starting from 0 to (ρν,κ/2)eiγp+1 , an arc of circle with radius ρν,κ/2 which
connects (ρν,κ/2)eiγp+1 and (ρν,κ/2)eiγp and a segment starting from (ρν,κ/2)eiγp to 0, is equal
to zero. Therefore, we can write the difference udp+1 − udp as a sum of three integrals,

(169) udp+1(t, z, ε)− udp(t, z, ε) =
k2

(2π)1/2

∫ +∞

−∞

∫
Lρν,κ/2,γp+1

ω
dp+1

k2
(u,m, ε)e−( u

εt
)k2eizm

du

u
dm

− k2

(2π)1/2

∫ +∞

−∞

∫
Lρν,κ/2,γp

ω
dp
k2

(u,m, ε)e−( u
εt

)k2eizm
du

u
dm

+
k2

(2π)1/2

∫ +∞

−∞

∫
Cρν,κ/2,γp,γp+1

ω
dp,dp+1

k2
(u,m, ε)e−( u

εt
)k2eizm

du

u
dm
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where Lρν,κ/2,γp+1
= [ρν,κ/2,+∞)eiγp+1 , Lρν,κ/2,γp = [ρν,κ/2,+∞)eiγp and Cρν,κ/2,γp,γp+1

is an

arc of circle with radius ρν,κ/2 connecting (ρν,κ/2)eiγp and (ρν,κ/2)eiγp+1 with a well chosen
orientation.

We give estimates for the quantity

I1 =

∣∣∣∣∣ k2

(2π)1/2

∫ +∞

−∞

∫
Lρν,κ/2,γp+1

ω
dp+1

k2
(u,m, ε)e−( u

εt
)k2eizm

du

u
dm

∣∣∣∣∣ .
By construction, the direction γp+1 (which depends on εt) is chosen in such a way that cos(k2(γp+1−
arg(εt))) ≥ δ1, for all ε ∈ Ep ∩ Ep+1, all t ∈ T , for some fixed δ1 > 0. From the estimates (166),
we get that

(170) I1 ≤
k2

(2π)1/2

∫ +∞

−∞

∫ +∞

ρν,κ/2
C
ω
dp+1
k2

(1 + |m|)−µe−β|m| r

1 + r2k2

× exp(ν ′rk2) exp(−cos(k2(γp+1 − arg(εt)))

|εt|k2
rk2)e−mIm(z)dr

r
dm

≤
k2C

ω
dp+1
k2

(2π)1/2

∫ +∞

−∞
e−(β−β′)|m|dm

∫ +∞

ρν,κ/2
exp(−(

δ1

|t|k2
− ν ′|ε|k2)(

r

|ε|
)k2)dr

≤
2k2C

ω
dp+1
k2

(2π)1/2

∫ +∞

0
e−(β−β′)mdm

∫ +∞

ρν,κ/2

|ε|k2

( δ1
|t|k2 − ν

′|ε|k2)k2(
ρν,κ

2 )k2−1
×

( δ1
|t|k2 − ν

′|ε|k2)k2r
k2−1

|ε|k2

× exp(−(
δ1

|t|k2
− ν ′|ε|k2)(

r

|ε|
)k2)dr

≤
2k2C

ω
dp+1
k2

(2π)1/2

|ε|k2

(β − β′)( δ1
|t|k2 − ν

′|ε|k2)k2(
ρν,κ

2 )k2−1
exp(−(

δ1

|t|k2
− ν ′|ε|k2)

(ρν,κ/2)k2

|ε|k2
)

≤
2k2C

ω
dp+1
k2

(2π)1/2

|ε|k2
(β − β′)δ2k2(

ρν,κ
2 )k2−1

exp(−δ2
(ρν,κ/2)k2

|ε|k2
)

for all t ∈ T and |Im(z)| ≤ β′ with |t| < ( δ1

δ2+ν′ε
k2
0

)1/k2 , for some δ2 > 0, for all ε ∈ Ep ∩ Ep+1.

In the same way, we also give estimates for the integral

I2 =

∣∣∣∣∣ k2

(2π)1/2

∫ +∞

−∞

∫
Lρν,κ/2,γp

ω
dp
k2

(u,m, ε)e−( u
εt

)k2eizm
du

u
dm

∣∣∣∣∣ .
Namely, the direction γp (which depends on εt) is chosen in such a way that cos(k2(γp −
arg(εt))) ≥ δ1, for all ε ∈ Ep ∩ Ep+1, all t ∈ T , for some fixed δ1 > 0. Again from the esti-
mates (166) and following the same steps as in (170), we get that

(171) I2 ≤
2k2Cωdp

k2

(2π)1/2

|ε|k2
(β − β′)δ2k2(

ρν,κ
2 )k2−1

exp(−δ2
(ρν,κ/2)k2

|ε|k2
)

for all t ∈ T and |Im(z)| ≤ β′ with |t| < ( δ1

δ2+ν′ε
k2
0

)1/k2 , for some δ2 > 0, for all ε ∈ Ep ∩ Ep+1.

Finally, we give upper bound estimates for the integral

I3 =

∣∣∣∣∣ k2

(2π)1/2

∫ +∞

−∞

∫
Cρν,κ/2,γp,γp+1

ω
dp,dp+1

k2
(u,m, ε)e−( u

εt
)k2eizm

du

u
dm

∣∣∣∣∣ .
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By construction, the arc of circle Cρν,κ/2,γp,γp+1
is chosen in such a way that cos(k2(θ−arg(εt))) ≥

δ1, for all θ ∈ [γp, γp+1] (if γp < γp+1), θ ∈ [γp+1, γp] (if γp+1 < γp), for all t ∈ T , all ε ∈ Ep∩Ep+1,
for some fixed δ1 > 0. Bearing in mind (166), we get that

(172) I3 ≤
k2

(2π)1/2

∫ +∞

−∞

∣∣∣∣∣
∫ γp+1

γp

max{C
ω
dp
k2

, C
ω
dp+1
k2

}(1 + |m|)−µe−β|m| ρν,κ/2

1 + (ρν,κ/2)2k2

× exp(ν ′(ρν,κ/2)k2) exp(−cos(k2(θ − arg(εt)))

|εt|k2
(
ρν,κ

2
)k2) e−mIm(z)dθ

∣∣∣ dm
≤
k2(max{C

ω
dp
k2

, C
ω
dp+1
k2

})

(2π)1/2

∫ +∞

−∞
e−(β−β′)|m|dm×|γp−γp+1|

ρν,κ
2

exp(−(
δ1

|t|k2
−ν ′|ε|k2)(

ρν,κ/2

|ε|
)k2)

≤
2k2(max{C

ω
dp
k2

, C
ω
dp+1
k2

})

(2π)1/2(β − β′)
|γp − γp+1|

ρν,κ
2

exp(−δ2(
ρν,κ/2

|ε|
)k2)

for all t ∈ T and |Im(z)| ≤ β′ with |t| < ( δ1

δ2+ν′ε
k2
0

)1/k2 , for some δ2 > 0, for all ε ∈ Ep ∩ Ep+1.

Finally, gathering the three above inequalities (170), (171) and (172), we deduce from the
decomposition (169) that

|udp+1(t, z, ε)− udp(t, z, ε)| ≤
2k2(C

ω
dp
k2

+ C
ω
dp+1
k2

)

(2π)1/2

|ε|k2
(β − β′)δ2k2(

ρν,κ
2 )k2−1

exp(−δ2
(ρν,κ/2)k2

|ε|k2
)+

2k2(max{C
ω
dp
k2

, C
ω
dp+1
k2

})

(2π)1/2(β − β′)
|γp − γp+1|

ρν,κ
2

exp(−δ2(
ρν,κ/2

|ε|
)k2)

for all t ∈ T and |Im(z)| ≤ β′ with |t| < ( δ1

δ2+ν′ε
k2
0

)1/k2 , for some δ2 > 0, for all ε ∈ Ep ∩ Ep+1.

Therefore, the inequality (162) holds.

In the last part of the proof, we show the estimates (163). Again, we only describe the
arguments for the functions udp since exactly the same analysis can be made for the forcing
term fdp using the estimates (156) and (157) instead of (166) and (168).

Let 0 ≤ p ≤ ς − 1 such that Udp ∩ Udp+1 = ∅. We first consider the following

Lemma 7 There exist two constants KAp ,M
A
p > 0 such that

(173) |Acc
dp+1

k2,k1
(ω

dp+1

k1
)(τ,m, ε)−Acc

dp
k2,k1

(ω
dp
k1

)(τ,m, ε)| ≤ KAp exp(−
MAp
|τ |κ

)(1 + |m|)−µe−β|m|

for all ε ∈ Ep+1 ∩ Ep, all τ ∈ Sdp+1,κ,δp+1,ρν,κ ∩ Sdp,κ,δp,ρν,κ, all m ∈ R.

Proof We first notice that the functions τ 7→ ω
dp
k1

(τ,m, ε) and τ 7→ ω
dp+1

k1
(τ,m, ε) are analytic

continuations of the common mk1−Borel transform ωk1(τ,m, ε) =
∑

n≥1 Un(m, ε)τn/Γ(n/k1)
which defines a continuous function on D(0, ρ)×R×D(0, ε0), holomorphic w.r.t (τ, ε) on D(0, ρ)×
D(0, ε0) for any m ∈ R with estimates : there exists a constant Cωk1 > 0 with

(174) |ωk1(τ,m, ε)| ≤ Cωk1 (1 + |m|)−µe−β|m| |τ |
1 + |τ |2k1

eν|τ |
κ
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for all τ ∈ D(0, ρ), all m ∈ R, all ε ∈ D(0, ε0). From the proof of Proposition 13, we know
that the function G(τ, h) is holomorphic w.r.t (τ, h) ∈ C2 whenever τ/h belongs to an open
unbounded sector with direction d = 0 and aperture π/κ. As a result, the integral of the function
h 7→ ωk1(h,m, ε)G(τ, h)/h, for all (m, ε) ∈ R×D(0, ε0), all τ ∈ Sdp+1,κ,δp+1,ρν,κ∩Sdp,κ,δp,ρν,κ , along

the union of a segment starting from 0 to (ρ/2)eiγ
1
p+1 , an arc of circle with radius ρ/2 which

connects (ρ/2)eiγ
1
p+1 and (ρ/2)eiγ

1
p and a segment starting from (ρ/2)eiγ

1
p to 0, is equal to zero.

Therefore, we can write the difference Acc
dp+1

k2,k1
(ω

dp+1

k1
)−Acc

dp
k2,k1

(ω
dp
k1

) as a sum of three integrals

(175) Acc
dp+1

k2,k1
(ω

dp+1

k1
)(τ,m, ε)−Acc

dp
k2,k1

(ω
dp
k1

)(τ,m, ε)

=

∫
L
ρ/2,γ1p+1

ω
dp+1

k1
(h,m, ε)G(τ, h)

dh

h
−
∫
L
ρ/2,γ1p

ω
dp
k1

(h,m, ε)G(τ, h)
dh

h

+

∫
C
ρ/2,γ1p,γ

1
p+1

ωk1(h,m, ε)G(τ, h)
dh

h

where Lρ/2,γ1p+1
= [ρ/2,+∞)eiγ

1
p+1 , Lρ/2,γ1p = [ρ/2,+∞)eiγ

1
p and Cρ/2,γ1p ,γ1p+1

is an arc of circle

with radius ρ/2 connecting (ρ/2)eiγ
1
p and (ρ/2)eiγ

1
p+1 with a well chosen orientation.

We give estimates for the quantity

IA1 = |
∫
L
ρ/2,γ1p+1

ω
dp+1

k1
(h,m, ε)G(τ, h)

dh

h
|.

From the estimates (114) and (168), we get that

(176) IA1 ≤
∫ +∞

ρ/2
C

dp+1
ωk1

(1 + |m|)−µe−β|m| r

1 + r2k1
eνr

κ
c1 exp(−c2(

r

|τ |
)κ)

dr

r

≤ c1C
dp+1
ωk1

(1 + |m|)−µe−β|m|
∫ +∞

ρ/2

|τ |κ

(c2 − |τ |κν)κ(ρ/2)κ−1
× (c2 − |τ |κν)κrκ−1

|τ |κ

× exp(−(c2 − |τ |κν)(
r

|τ |
)κ)dr

≤ c1C
dp+1
ωk1

(1 + |m|)−µe−β|m| |τ |κ

(c2 − |τ |κν)κ(ρ/2)κ−1
exp(−(c2 − |τ |κν)(

ρ/2

|τ |
)κ)

≤ c1C
dp+1
ωk1

(1 + |m|)−µe−β|m| |τ |κ

c2(1− 1
2κ )κ(ρ/2)κ−1

exp(−(c2(1− 1

2κ
)(
ρ/2

|τ |
)κ))

for all ε ∈ Ep+1 ∩ Ep, all τ ∈ Sdp+1,κ,δp+1,ρν,κ ∩ Sdp,κ,δp,ρν,κ , all m ∈ R.

In the same way, we also give estimates for the integral

IA2 = |
∫
L
ρ/2,γ1p

ω
dp
k1

(h,m, ε)G(τ, h)
dh

h
|.

Namely, from the estimates (114) and (168), following the same steps as above in (176), we get
that

(177) IA2 ≤ c1C
dp
ωk1

(1 + |m|)−µe−β|m| |τ |κ

c2(1− 1
2κ )κ(ρ/2)κ−1

exp(−(c2(1− 1

2κ
)(
ρ/2

|τ |
)κ))
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for all ε ∈ Ep+1 ∩ Ep, all τ ∈ Sdp+1,κ,δp+1,ρν,κ ∩ Sdp,κ,δp,ρν,κ , all m ∈ R.

Finally, we give upper bound estimates for the integral

IA3 = |
∫
C
ρ/2,γ1p,γ

1
p+1

ωk1(h,m, ε)G(τ, h)
dh

h
|.

Bearing in mind (114) and (174), we get that

(178) IA3 ≤ |
∫ γ1p+1

γ1p

Cωk1 (1 + |m|)−µe−β|m| ρ/2

1 + (ρ/2)2k1
eν(ρ/2)κc1 exp(−c2(

ρ/2

|τ |
)κ)dθ|

≤ c1Cωk1
ρ

2
|γ1
p − γ1

p+1|(1 + |m|)−µe−β|m| exp(−(c2 − |τ |κν)(
ρ/2

|τ |
)κ)

≤ c1Cωk1
ρ

2
|γ1
p − γ1

p+1|(1 + |m|)−µe−β|m| exp(−(c2(1− 1

2κ
))(
ρ/2

|τ |
)κ)

for all ε ∈ Ep+1 ∩ Ep, all τ ∈ Sdp+1,κ,δp+1,ρν,κ ∩ Sdp,κ,δp,ρν,κ , all m ∈ R.

Finally, gathering the above inequalities (176), (177), (178), we deduce from the decomposi-
tion (175) that

(179) |Acc
dp+1

k2,k1
(ω

dp+1

k1
)(τ,m, ε)−Acc

dp
k2,k1

(ω
dp
k1

)(τ,m, ε)|

≤ c1(C
dp+1
ωk1

+ C
dp
ωk1

)(1 + |m|)−µe−β|m|
ρκν,κ

c2(1− 1
2κ )κ(ρ/2)κ−1

exp(−(c2(1− 1

2κ
)(
ρ/2

|τ |
)κ))

+ c1Cωk1
ρ

2
|γ1
p − γ1

p+1|(1 + |m|)−µe−β|m| exp(−(c2(1− 1

2κ
))(
ρ/2

|τ |
)κ)

for all ε ∈ Ep+1 ∩ Ep, all τ ∈ Sdp+1,κ,δp+1,ρν,κ ∩ Sdp,κ,δp,ρν,κ , all m ∈ R. We conclude that the
inequality (173) holds. 2

Using the analytic continuation property (167) and the fact that the functions

u 7→ ω
dp
k2

(u,m, ε) exp(−( uεt)
k2)/u (resp. u 7→ ω

dp+1

k2
(u,m, ε) exp(−( uεt)

k2)/u ) are holomorphic on

Sbdp ∪Sdp (resp. on Sbdp+1
∪Sdp), we can deform the straight lines of integration Lγp (resp. Lγp+1)

in such a way that

(180) udp+1(t, z, ε)− udp(t, z, ε)

=
k2

(2π)1/2

∫ +∞

−∞

∫
Lρν,κ/2,γp+1

ω
dp+1

k2
(u,m, ε) exp(−(

u

εt
)k2)eizm

du

u
dm

− k2

(2π)1/2

∫ +∞

−∞

∫
Lρν,κ/2,γp

ω
dp
k2

(u,m, ε) exp(−(
u

εt
)k2)eizm

du

u
dm

+
k2

(2π)1/2

∫ +∞

−∞

∫
Cρν,κ/2,θp,p+1,γp+1

ω
dp+1

k2
(u,m, ε) exp(−(

u

εt
)k2)eizm

du

u
dm

− k2

(2π)1/2

∫ +∞

−∞

∫
Cρν,κ/2,θp,p+1,γp

ω
dp
k2

(u,m, ε) exp(−(
u

εt
)k2)eizm

du

u
dm

+
k2

(2π)1/2

∫ +∞

−∞

∫
L0,ρν,κ/2,θp,p+1

(
Acc

dp+1

k2,k1
(ω

dp+1

k1
)(u,m, ε)−Acc

dp
k2,k1

(ω
dp
k1

)(u,m, ε)
)

× exp(−(
u

εt
)k2)eizm

du

u
dm
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where Lρν,κ/2,γp+1
= [ρν,κ/2,+∞)e

√
−1γp+1 , Lρν,κ/2,γp = [ρν,κ/2,+∞)e

√
−1γp , Cρν,κ/2,θp,p+1,γp+1

is

an arc of circle with radius ρν,κ/2, connecting (ρν,κ/2)e
√
−1θp,p+1 and (ρν,κ/2)e

√
−1γp+1 with a well

chosen orientation, where θp,p+1 denotes the bisecting direction of the sector Sdp+1,κ,δp+1,ρν,κ ∩
Sdp,κ,δp,ρν,κ and likewise Cρν,κ/2,θp,p+1,γp is an arc of circle with radius ρν,κ/2, connecting the points

(ρν,κ/2)e
√
−1θp,p+1 and (ρν,κ/2)e

√
−1γp with a well chosen orientation and finally L0,ρν,κ/2,θp,p+1

=

[0, ρν,κ/2]e
√
−1θp,p+1 .

Following the same lines of arguments as in the estimates (170) and (172), we get the next
inequalities

(181) J1 = | k2

(2π)1/2

∫ +∞

−∞

∫
Lρν,κ/2,γp+1

ω
dp+1

k2
(u,m, ε) exp(−(

u

εt
)k2)eizm

du

u
dm|

≤
2k2C

ω
dp+1
k2

(2π)1/2

|ε|k2
(β − β′)δ2k2(

ρν,κ
2 )k2−1

exp(−δ2
(ρν,κ/2)k2

|ε|k2
),

J2 = | k2

(2π)1/2

∫ +∞

−∞

∫
Lρν,κ/2,γp

ω
dp
k2

(u,m, ε) exp(−(
u

εt
)k2)eizm

du

u
dm|

≤
2k2Cωdp

k2

(2π)1/2

|ε|k2
(β − β′)δ2k2(

ρν,κ
2 )k2−1

exp(−δ2
(ρν,κ/2)k2

|ε|k2
),

J3 = | k2

(2π)1/2

∫ +∞

−∞

∫
Cρν,κ/2,θp,p+1,γp+1

ω
dp+1

k2
(u,m, ε) exp(−(

u

εt
)k2)eizm

du

u
dm|

≤
2k2C

ω
dp+1
k2

(2π)1/2(β − β′)
|γp+1 − θp,p+1|

ρν,κ
2

exp(−δ2(
ρν,κ/2

|ε|
)k2),

J4 = | k2

(2π)1/2

∫ +∞

−∞

∫
Cρν,κ/2,θp,p+1,γp

ω
dp
k2

(u,m, ε) exp(−(
u

εt
)k2)eizm

du

u
dm|

≤
2k2Cωdp

k2

(2π)1/2(β − β′)
|γp − θp,p+1|

ρν,κ
2

exp(−δ2(
ρν,κ/2

|ε|
)k2)

for all t ∈ T and |Im(z)| ≤ β′ with |t| < ( δ1

δ2+ν′ε
k2
0

)1/k2 , for some δ1, δ2 > 0, for all ε ∈ Ep ∩ Ep+1.

In the last part of the proof, it remains to give upper bounds for the integral

J5 = | k2

(2π)1/2

∫ +∞

−∞

∫
L0,ρν,κ/2,θp,p+1

(
Acc

dp+1

k2,k1
(ω

dp+1

k1
)(u,m, ε)−Acc

dp
k2,k1

(ω
dp
k1

)(u,m, ε)
)

× exp(−(
u

εt
)k2)eizm

du

u
dm|.

By construction, there exists δ1 > 0 such that cos(k2(θp,p+1−arg(εt))) ≥ δ1 for all ε ∈ Ep∩Ep+1,
all t ∈ T . From Lemma 7, we get that

(182) J5 ≤
k2

(2π)1/2

∫ +∞

−∞

∫ ρν,κ/2

0
KAp (1 + |m|)−µe−β|m| exp(−

MAp
rκ

)

× exp(−cos(k2(θp,p+1 − arg(εt)))

|εt|k2
rk2)e−mIm(z)dr

r
dm

≤
k2K

A
p

(2π)1/2

∫ +∞

−∞
e−(β−β′)|m|dm× J5(εt)
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where

(183) J5(εt) =

∫ ρν,κ/2

0
exp(−

MAp
rκ

) exp(− δ1

|εt|k2
rk2)

dr

r
.

The study of estimates for J5(εt) as ε tends to zero rests on the following two lemmas.

Lemma 8 (Watson’s Lemma. Exercise 4, page 16 in [1]) Let b > 0 and f : [0, b] → C
be a continuous function having the formal expansion

∑
n≥0 ant

n ∈ C[[t]] as its asymptotic
expansion of Gevrey order κ > 0 at 0, meaning there exist C,M > 0 such that∣∣∣∣∣f(t)−

N−1∑
n=0

ant
n

∣∣∣∣∣ ≤ CMNN !κ|t|N ,

for every N ≥ 1 and t ∈ [0, δ], for some 0 < δ < b. Then, the function

I(x) =

∫ b

0
f(s)e−

s
xds

admits the formal power series
∑

n≥0 ann!xn+1 ∈ C[[x]] as its asymptotic expansion of Gevrey

order κ+ 1 at 0, it is to say, there exist C̃, K̃ > 0 such that∣∣∣∣∣I(x)−
N−1∑
n=0

ann!xn+1

∣∣∣∣∣ ≤ C̃K̃N+1(N + 1)!1+κ|x|N+1,

for every N ≥ 0 and x ∈ [0, δ′] for some 0 < δ′ < b.

Lemma 9 (Exercise 3, page 18 in [1]) Let δ, q > 0, and ψ : [0, δ] → C be a continuous
function. The following assertions are equivalent:

1. There exist C,M > 0 such that |ψ(x)| ≤ CMnn!q|x|n, for every n ∈ N, n ≥ 0 and
x ∈ [0, δ].

2. There exist C ′,M ′ > 0 such that |ψ(x)| ≤ C ′e−M ′/x
1
q

, for every x ∈ (0, δ].

We make the change of variable rk2 = s in the integral (183) and we get

J5(εt) =
1

k2

∫ (ρν,κ/2)k2

0
exp(−

MAp

sκ/k2
) exp(− δ1

|εt|k2
s)
ds

s
.

We put ψA,p(s) = exp(− MAp
sκ/k2

)/s. From Lemma 9, there exist constants C,M > 0 such that

|ψA,p(s)| ≤ CMn(n!)
k2
κ |s|n

for all n ≥ 0, all s ∈ [0, (ρν,κ/2)k2 ]. In other words, ψA,p(s) admits the null formal series
0̂ ∈ C[[s]] as asymptotic expansion of Gevrey order k2/κ on [0, (ρν,κ/2)k2 ]. By Lemma 8, we
deduce that the function

IA,p(x) =

∫ (ρν,κ/2)k2

0
ψA,p(s)e

− s
xds
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has the formal series 0̂ ∈ C[[x]] as asymptotic expansion of Gevrey order k2
κ + 1 = k2

k1
on some

segment [0, δ′] with 0 < δ′ < (ρν,κ/2)k2 . Hence, using again Lemma 9, we get two constants
C ′,M ′ > 0 with

IA,p(x) ≤ C ′ exp(− M ′

xk1/k2
)

for x ∈ [0, δ′]. We deduce the existence of two constants CJ5 > 0, MJ5 > 0 with

(184) J5(εt) ≤ CJ5 exp(−MJ5

|εt|k1
)

for all ε ∈ Ep ∩ Ep+1, all t ∈ T ∩ D(0, hA,p), for some hA,p > 0. Gathering the last inequality
(184) and (182) yields

(185) J5 ≤
2CJ5k2K

A
p

(2π)1/2(β − β′)
exp(− MJ5

hk1A,p|ε|k1
)

for all ε ∈ Ep ∩ Ep+1, all t ∈ T ∩D(0, hA,p).

In conclusion, taking into account the above inequalities (181) and (185), we deduce from
the decomposition (180) that

|udp+1(t, z, ε)− udp(t, z, ε)| ≤
2k2(C

ω
dp+1
k2

+ C
ω
dp
k2

)

(2π)1/2

|ε|k2
(β − β′)δ2k2(

ρν,κ
2 )k2−1

exp(−δ2
(ρν,κ/2)k2

|ε|k2
)

+
2k2

(2π)1/2(β − β′)

(
C
ω
dp+1
k2

|γp+1 − θp,p+1|+ C
ω
dp
k2

|γp − θp,p+1|
)
ρν,κ

2
exp(−δ2(

ρν,κ/2

|ε|
)k2)

+
2CJ5k2K

A
p

(2π)1/2(β − β′)
exp(− MJ5

hk1A,p|ε|k1
)

for all t ∈ T with |t| < ( δ1

δ2+ν′ε
k2
0

)1/k2 and |t| ≤ hA,p for some constants δ1, δ2, hA,p > 0, |Im(z)| ≤
β′, for all ε ∈ Ep ∩ Ep+1. Therefore the inequality (163) holds. 2

6 Existence of formal series solutions in the complex parameter
and asymptotic expansion in two levels

6.1 Summable and multisummable formal series and a Ramis-Sibuya theo-
rem with two levels

In the next definitions we recall the meaning of Gevrey asymptotic expansions for holomorphic
functions and k−summability. We also give the signification of (k2, k1)−summability for power
series in a Banach space, as described in [1].

Definition 9 Let (E, ||.||E) be a complex Banach space and let E be a bounded open sector
centered at 0. Let k > 0 be a positive real number. We say that a holomorphic function
f : E → E admits a formal power series f̂(ε) =

∑
n≥0 anε

n ∈ E[[ε]] as its asymptotic expansion
of Gevrey order 1/k if, for any closed proper subsectorW ⊂ E centered at 0, there exist C,M > 0
with

(186) ||f(ε)−
N−1∑
n=0

anε
n||E ≤ CMN (N !)1/k|ε|N
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for all N ≥ 1, all ε ∈ W.
If moreover the aperture of E is larger than π

k + δ for some δ > 0, then the function f is the

unique holomorphic function on E satisfying (186). In that case, we say that f̂ is k−summable
on E and that f defines its k−sum on E. In addition, the function f can be reconstructed from
the analytic continuation of the k1−Borel transform

B̂k1 f̂(τ) =
∑
n≥0

an
τn

Γ(1 + n
k1

)

on an unbounded sector and by applying a k1−Laplace transform to it, see Section 3.2 from [1].

Definition 10 Let (E, ||.||E) be a complex Banach space and let 0 < k1 < k2 be two positive real
numbers. Let E be a bounded open sector centered at 0 with aperture π

k2
+ δ2 for some δ2 > 0

and let F be a bounded open sector centered at 0 with aperture π
k1

+ δ1 for some δ1 > 0 such that
the inclusion E ⊂ F holds.

A formal power series f̂(ε) =
∑

n≥0 anε
n ∈ E[[ε]] is said to be (k2, k1)−summable on E if

there exist a formal series f̂2(ε) ∈ E[[ε]] which is k2−summable on E with k2−sum f2 : E → E
and a second formal series f̂1(ε) ∈ E[[ε]] which is k1−summable on F with k1−sum f1 : F → E
such that f̂ = f̂1+ f̂2. Furthermore, the holomorphic function f(ε) = f1(ε)+f2(ε) defined on E is
called the (k2, k1)−sum of f̂ on E. In that case, the function f(ε) can be reconstructed from the
analytic continuation of the k1−Borel transform of f̂ by applying successively some acceleration
operator and Laplace transform of order k2, see Section 6.1 from [1].

In this section, we state a version of the classical Ramis-Sibuya theorem (see [13], Theorem
XI-2-3) with two different Gevrey levels which describes also the case when multisummability
holds on some sector. We mention that a similar multi-level version of the Ramis-Sibuya theorem
has already been stated in the manuscript [32] and also in a former work of the authors, see [15].

Theorem (RS) Let 0 < k1 < k2 be positive real numbers. Let (E, ||.||E) be a Banach space
over C and {Ei}0≤i≤ν−1 be a good covering in C∗, see Definition 7. For all 0 ≤ i ≤ ν − 1,
let Gi be a holomorphic function from Ei into the Banach space (E, ||.||E) and let the cocycle
∆i(ε) = Gi+1(ε)−Gi(ε) be a holomorphic function from the sector Zi = Ei+1 ∩ Ei into E (with
the convention that Eν = E0 and Gν = G0). We make the following assumptions.

1) The functions Gi(ε) are bounded as ε ∈ Ei tends to the origin in C, for all 0 ≤ i ≤ ν − 1.

2) For some finite subset I1 ⊂ {0, . . . ν−1} and for all i ∈ I1, the functions ∆i(ε) are exponentially
flat on Zi of order k1, for all 0 ≤ i ≤ ν − 1. This means that there exist constants Ki,Mi > 0
such that

(187) ||∆i(ε)||E ≤ Ki exp(− Mi

|ε|k1
)

for all ε ∈ Zi.

3) For all i ∈ I2 = {0, . . . , ν − 1} \ I1, the functions ∆i(ε) are exponentially flat of order k2 on
Zi, for all 0 ≤ i ≤ ν − 1. This means that there exist constants Ki,Mi > 0 such that

(188) ||∆i(ε)||E ≤ Ki exp(− Mi

|ε|k2
)

for all ε ∈ Zi.
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Then, there exist a convergent power series a(ε) ∈ E{ε} near ε = 0 and two formal series
Ĝ1(ε), Ĝ2(ε) ∈ E[[ε]] such that Gi(ε) owns the following decomposition

(189) Gi(ε) = a(ε) +G1
i (ε) +G2

i (ε)

where G1
i (ε) is holomorphic on Ei and has Ĝ1(ε) as asymptotic expansion of Gevrey order 1/k1

on Ei, G2
i (ε) is holomorphic on Ei and carries Ĝ2(ε) as asymptotic expansion of Gevrey order

1/k2 on Ei, for all 0 ≤ i ≤ ν − 1.

Assume moreover that some integer i0 ∈ I2 is such that Iδ1,i0,δ2 = {i0 − δ1, . . . , i0, . . . , i0 +
δ2} ⊂ I2 for some integers δ1, δ2 ≥ 0 and with the property that

(190) Ei0 ⊂ Sπ/k1 ⊂
⋃

h∈Iδ1,i0,δ2

Eh

where Sπ/k1 is a sector centered at 0 with aperture a bit larger than π/k1. Then, the formal

series Ĝ(ε) is (k2, k1)−summable on Ei0 and its (k2, k1)−sum is Gi0(ε) on Ei0 .

Proof We consider two holomorphic cocycles ∆1
i (ε) and ∆2

i (ε) defined on the sectors Zi in the
following way:

∆1
i (ε) =

{
∆i(ε) if i ∈ I1

0 if i ∈ I2

, ∆2
i (ε) =

{
0 if i ∈ I1

∆i(ε) if i ∈ I2

for all ε ∈ Zi, all 0 ≤ i ≤ ν − 1. We need the following lemma.

Lemma 10 1) For all 0 ≤ i ≤ ν − 1, there exist bounded holomorphic functions Ψ1
i : Ei → C

such that

(191) ∆1
i (ε) = Ψ1

i+1(ε)−Ψ1
i (ε)

for all ε ∈ Zi, where by convention Ψ1
ν(ε) = Ψ1

0(ε). Moreover, there exist coefficients ϕ1
m ∈ E,

m ≥ 0, such that for each 0 ≤ l ≤ ν − 1 and any closed proper subsector W ⊂ El, centered at 0,
there exist two constants K̆l, M̆l > 0 with

(192) ||Ψ1
l (ε)−

M−1∑
m=0

ϕ1
mε

m||E ≤ K̆l(M̆l)
M (M !)1/k1 |ε|M

for all ε ∈ W, all M ≥ 1.

2) For all 0 ≤ i ≤ ν − 1, there exist bounded holomorphic functions Ψ2
i : Ei → C such that

(193) ∆2
i (ε) = Ψ2

i+1(ε)−Ψ2
i (ε)

for all ε ∈ Zi, where by convention Ψ2
ν(ε) = Ψ2

0(ε). Moreover, there exist coefficients ϕ2
m ∈ E,

m ≥ 0, such that for each 0 ≤ l ≤ ν − 1 and any closed proper subsector W ⊂ El, centered at 0,
there exist two constants K̂l, M̂l > 0 with

(194) ||Ψ2
l (ε)−

M−1∑
m=0

ϕ2
mε

m||E ≤ K̂l(M̂l)
M (M !)1/k2 |ε|M

for all ε ∈ W, all M ≥ 1.



62

Proof The proof is a consequence of Lemma XI-2-6 from [13] which provides the so-called
classical Ramis-Sibuya theorem in Gevrey classes. 2

We consider now the bounded holomorphic functions

ai(ε) = Gi(ε)−Ψ1
i (ε)−Ψ2

i (ε)

for all 0 ≤ i ≤ ν − 1, all ε ∈ Ei. By definition, for i ∈ I1 or i ∈ I2, we have that

ai+1(ε)− ai(ε) = Gi+1(ε)−Gi(ε)−∆1
i (ε)−∆2

i (ε) = Gi+1(ε)−Gi(ε)−∆i(ε) = 0

for all ε ∈ Zi. Therefore, each ai(ε) is the restriction on Ei of a holomorphic function a(ε) on
D(0, r) \ {0}. Since a(ε) is moreover bounded on D(0, r) \ {0}, the origin turns out to be a
removable singularity for a(ε) which, as a consequence, defines a convergent power series on
D(0, r).

Finally, one can write the following decomposition

Gi(ε) = a(ε) + Ψ1
i (ε) + Ψ2

i (ε)

for all ε ∈ Ei, all 0 ≤ i ≤ ν − 1. Moreover, a(ε) is a convergent power series and from (192)
we know that Ψ1

i (ε) has the series Ĝ1(ε) =
∑

m≥0 ϕ
1
mε

m as asymptotic expansion of Gevrey

order 1/k1 on Ei and due to (194) Ψ2
i (ε) carries the series Ĝ2(ε) =

∑
m≥0 ϕ

2
mε

m as asymptotic
expansion of Gevrey order 1/k2 on Ei, for all 0 ≤ i ≤ ν − 1. Therefore, the decomposition (189)
holds.

Assume now that some integer i0 ∈ I2 is such that Iδ1,i0,δ2 = {i0−δ1, . . . , i0, . . . , i0 +δ2} ⊂ I2

for some integers δ1, δ2 ≥ 0 and with the property (190). Then, in the decomposition (189), we
observe from the construction above that the function G1

i0
(ε) can be analytically continued on

the sector Sπ/k1 and has the formal series Ĝ1(ε) as asymptotic expansion of Gevrey order 1/k1

on Sπ/k1 (this is the consequence of the fact that ∆1
h(ε) = 0 for h ∈ Iδ1,i0,δ2). Hence, G1

i0
(ε) is

the k1−sum of Ĝ1(ε) on Sπ/k1 in the sense of Definition 9. Moreover, we already know that the

function G2
i0

(ε) has Ĝ2(ε) as asymptotic expansion of Gevrey order 1/k2 on Ei0 , meaning that

G2
i0

(ε) is the k2−sum of Ĝ2(ε) on Ei0 . In other words, by Definition 10, the formal series Ĝ(ε) is
(k2, k1)−summable on Ei0 and its (k2, k1)−sum is the function Gi0(ε) = a(ε) + G1

i0
(ε) + G2

i0
(ε)

on Ei0 . 2

6.2 Construction of formal power series solutions in the complex parameter
with two levels of asymptotics

In this subsection, we establish the second main result of our work, namely the existence of
a formal power series û(t, z, ε) in the parameter ε whose coefficients are bounded holomorphic
functions on the product of a sector with small radius centered at 0 and a strip in C2, that
is a solution of the equation (195) and which is the common Gevrey asymptotic expansion of
order 1/k1 of the actual solutions udp(t, z, ε) of (154) constructed in Theorem 1. Furthermore,
this formal series û and the corresponding functions udp own a fine structure which involves two
levels of Gevrey asymptotics.

We first start by showing that the forcing terms fdp(t, z, ε) share a common formal power series
f̂(t, z, ε) in ε as asymptotic expansion of Gevrey order 1/k1 on Ep.
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Lemma 11 Let us assume that the hypotheses of Theorem 1 hold. Then, there exists a formal
power series

f̂(t, z, ε) =
∑
m≥0

fm(t, z)εm/m!

whose coefficients fm(t, z) belong to the Banach space F of bounded holomorphic functions on
(T ∩ D(0, h′′)) × Hβ′ equipped with supremum norm, where h′′ > 0 is constructed in Theorem
1, which is the common asymptotic expansion of Gevrey order 1/k1 on Ep of the functions fdp,
seen as holomorphic functions from Ep into F, for all 0 ≤ p ≤ ς − 1.

Proof We consider the family of functions fdp(t, z, ε), 0 ≤ p ≤ ς − 1 constructed in (159). For

all 0 ≤ p ≤ ς−1, we define Gfp(ε) := (t, z) 7→ fdp(t, z, ε), which is by construction a holomorphic
and bounded function from Ep into the Banach space F of bounded holomorphic functions on
(T ∩D(0, h′′))×Hβ′ equipped with the supremum norm, where T is introduced in Definition 8
and h′′ > 0 is set in Theorem 1.

Bearing in mind the estimates (162) and (163) and from the fact that k2 > k1, we see

in particular that the cocycle Θf
p(ε) = Gfp+1(ε) − Gfp(ε) is exponentially flat of order k1 on

Zp = Ep ∩ Ep+1, for all 0 ≤ p ≤ ς − 1.
From the Theorem (RS) stated above in Section 6.1, we deduce the existence of a convergent

power series af (ε) ∈ F{ε} and a formal series Ĝ1,f (ε) ∈ F[[ε]] such that Gfp(ε) owns the following
decomposition

Gfp(ε) = af (ε) +G1,f
p (ε)

where G1,f
p (ε) is holomorphic on Ep and has Ĝ1,f (ε) as its asymptotic expansion of Gevrey order

1/k1 on Ep, We define

f̂(t, z, ε) =
∑
m≥0

fm(t, z)εm/m! := af (ε) + Ĝ1,f (ε).

2

The second main result of this work can be stated as follows.

Theorem 2 a) Let us assume that the hypotheses of Theorem 1 hold. Then, there exists a
formal power series

û(t, z, ε) =
∑
m≥0

hm(t, z)εm/m!

solution of the equation

(195) Q(∂z)(∂tû(t, z, ε)) = c1,2(ε)(Q1(∂z)û(t, z, ε))(Q2(∂z)û(t, z, ε))

+ ε(δD−1)(k2+1)−δD+1t(δD−1)(k2+1)∂δDt RD(∂z)û(t, z, ε) +
D−1∑
l=1

ε∆ltdl∂δlt Rl(∂z)û(t, z, ε)

+ c0(t, z, ε)R0(∂z)û(t, z, ε) + cF (ε)f̂(t, z, ε)

whose coefficients hm(t, z) belong to the Banach space F of bounded holomorphic functions on
(T ∩ D(0, h′′)) × Hβ′ equipped with supremum norm, where h′′ > 0 is constructed in Theorem
1, which is the common asymptotic expansion of Gevrey order 1/k1 on Ep of the functions udp,
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seen as holomorphic functions from Ep into F, for all 0 ≤ p ≤ ς − 1. Additionally, the formal
series can be decomposed into a sum of three terms

û(t, z, ε) = a(t, z, ε) + û1(t, z, ε) + û2(t, z, ε)

where a(t, z, ε) ∈ F{ε} is a convergent series near ε = 0 and û1(t, z, ε), û2(t, z, ε) belong to F[[ε]]
with the property that, accordingly, the function udp shares a similar decomposition

udp(t, z, ε) = a(t, z, ε) + u
dp
1 (t, z, ε) + u

dp
2 (t, z, ε)

where ε 7→ u
dp
1 (t, z, ε) is a F−valued function owning û1(t, z, ε) as asymptotic expansion of Gevrey

order 1/k1 on Ep and where ε 7→ u
dp
2 (t, z, ε) is a F−valued function owning û2(t, z, ε) as asymp-

totic expansion of Gevrey order 1/k2 on Ep, for all 0 ≤ p ≤ ς − 1.

b) We make now the further assumption completing the four properties described in Definition
8 that the good covering {Ep}0≤p≤ς−1 and that the family of unbounded sectors {Udp}0≤p≤ς−1

satisfy the following property:

5) There exist 0 ≤ p0 ≤ ς − 1 and two integers δ1, δ2 ≥ 0 such that for all p ∈ Iδ1,p0,δ2 =
{p0−δ1, . . . , p0, . . . , p0 +δ2}, the unbounded sectors Udp are such that the intersection Udp∩Udp+1

contains the sector Udp,dp+1 = {τ ∈ C∗/arg(τ) ∈ [dp, dp+1]} and such that

Ep0 ⊂ Sπ/k1 ⊂
⋃

h∈Iδ1,p0,δ2

Eh

where Sπ/k1 is a sector centered at 0 with aperture slightly larger than π/k1.

Then, the formal series û(t, z, ε) is (k2, k1)−summable on Ep0 and its (k2, k1)−sum is given by
udp0 (t, z, ε).

Proof We consider the family of functions udp(t, z, ε), 0 ≤ p ≤ ς − 1 constructed in Theorem
1. For all 0 ≤ p ≤ ς − 1, we define Gp(ε) := (t, z) 7→ udp(t, z, ε), which is by construction a
holomorphic and bounded function from Ep into the Banach space F of bounded holomorphic
functions on (T ∩D(0, h′′))×Hβ′ equipped with the supremum norm, where T is introduced in
Definition 8, h′′ > 0 is set in Theorem 1 and β′ > 0 is the width of the strip Hβ′ on which the
coefficient c0(t, z, ε) and the forcing term fdp(t, z, ε) are defined with respect to z, see (155) and
(159).

Bearing in mind the estimates (162) and (163) we see that the cocycle Θp(ε) = Gp+1(ε)−Gp(ε)
is exponentially flat of order k2 on Zp = Ep ∩ Ep+1, for all p ∈ I2 ⊂ {0, . . . , ς − 1} such that
the intersection Udp ∩ Udp+1 contains the sector Udp,dp+1 and is exponentially flat of order k1 on
Zp = Ep ∩ Ep+1, for all p ∈ I1 ⊂ {0, . . . , ς − 1} such that the intersection Udp ∩ Udp+1 is empty.

From the Theorem (RS) stated above in Section 6.1, we deduce the existence of a convergent
power series a(ε) ∈ F{ε} and two formal series Ĝ1(ε), Ĝ2(ε) ∈ F[[ε]] such that Gp(ε) owns the
following decomposition

Gp(ε) = a(ε) +G1
p(ε) +G2

p(ε)

where G1
p(ε) is holomorphic on Ep and has Ĝ1(ε) as its asymptotic expansion of Gevrey order

1/k1 on Ep, G2
p(ε) is holomorphic on Ep and carries Ĝ2(ε) as its asymptotic expansion of Gevrey

order 1/k2 on Ep, for all 0 ≤ p ≤ ν − 1. We set

û(t, z, ε) =
∑
m≥0

hm(t, z)εm/m! := a(ε) + Ĝ1(ε) + Ĝ2(ε).
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This yields the first part a) of Theorem 2.
Furthermore, under the assumption b) 5) described above, the Theorem (RS) claims that the

formal series Ĝ(ε) = a(ε)+ Ĝ1(ε)+ Ĝ2(ε) is (k2, k1)−summable on Ep0 and that its (k2, k1)−sum
is given by Gp0(ε).

It remains to show that the formal series û(t, z, ε) solves the main equation (195). Since
udp(t, z, ε) (resp. fdp(t, z, ε) ) has û(t, z, ε) (resp. f̂(t, z, ε)) as its asymptotic expansion of
Gevrey order 1/k1 on Ep, we have in particular that

(196) lim
ε→0,ε∈Ep

sup
t∈T ∩D(0,h′′),z∈Hβ′

|∂mε udp(t, z, ε)− hm(t, z)| = 0,

lim
ε→0,ε∈Ep

sup
t∈T ∩D(0,h′′),z∈Hβ′

|∂mε fdp(t, z, ε)− fm(t, z)| = 0,

for all 0 ≤ p ≤ ς − 1, all m ≥ 0. Now, we choose some p ∈ {0, . . . , ς − 1}. By construction,
the function udp(t, z, ε) is a solution of (154). We take the derivative of order m ≥ 0 w.r.t ε
on the left and right handside of the equation (154). From the Leibniz rule, we deduce that
∂mε u

dp(t, z, ε) verifies the following equation

(197) Q(∂z)∂t∂
m
ε u

dp(t, z, ε) =
∑

m1+m2+m3=m

m!

m1!m2!m3!
∂m1
ε c1,2(ε)

(
Q1(∂z)∂

m2
ε udp(t, z, ε)

)
×
(
Q2(∂z)∂

m3
ε udp(t, z, ε)

)
+

∑
m1+m2=m

m!

m1!m2!
∂m1
ε (ε(δD−1)(k2+1)−δD+1)t(δD−1)(k2+1)

× ∂δDt RD(∂z)∂
m2
ε udp(t, z, ε) +

D−1∑
l=1

(
∑

m1+m2=m

m!

m1!m2!
∂m1
ε (ε∆l)tdl∂δlt Rl(∂z)∂

m2
ε udp(t, z, ε))

+
∑

m1+m2=m

m!

m1!m2!
∂m1
ε c0(t, z, ε)R0(∂z)∂

m2
ε udp(t, z, ε)

+
∑

m1+m2=m

m!

m1!m2!
∂m1
ε cF (ε)∂m2

ε fdp(t, z, ε)

for all m ≥ 0, all (t, z, ε) ∈ (T ∩D(0, h′′))×Hβ′ × Ep. If we let ε tend to zero in (197) and if we
use (196), we get the recursion

(198)

Q(∂z)∂thm(t, z) =
∑

m1+m2+m3=m

m!

m1!m2!m3!
(∂m1
ε c1,2)(0) (Q1(∂z)hm2(t, z)) (Q2(∂z)hm3(t, z))

+
m!

(m− ((δD − 1)(k2 + 1)− δD + 1))!
t(δD−1)(k2+1)∂δDt RD(∂z)hm−((δD−1)(k2+1)−δD+1)(t, z)

+
D−1∑
l=1

m!

(m−∆l)!
tdl∂δlt Rl(∂z)hm−∆l

(t, z) +
∑

m1+m2=m

m!

m1!m2!
(∂m1
ε c0)(t, z, 0)R0(∂z)hm2(t, z)

+
∑

m1+m2=m

m!

m1!m2!
(∂m1
ε cF )(0)fm2(t, z)

for all m ≥ max1≤l≤D−1{∆l, (δD − 1)(k2 + 1)− δD + 1}, all (t, z) ∈ (T ∩D(0, h′′))×Hβ′ . Since
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the functions c1,2(ε), c0(t, z, ε) and cF (ε) are analytic w.r.t ε at 0, we know that

(199) c1,2(ε) =
∑
m≥0

(∂mε c1,2)(0)

m!
εm , c0(t, z, ε) =

∑
m≥0

(∂mε c0)(t, z, 0)

m!
εm,

cF (ε) =
∑
m≥0

(∂mε cF )(0)

m!
εm

for all ε ∈ D(0, ε0), all z ∈ Hβ′ . On the other hand, one can check by direct inspection from
the recursion (198) and the expansions (199) that the series û(t, z, ε) =

∑
m≥0 hm(t, z)εm/m!

formally solves the equation (195). 2

7 Application. Construction of analytic and formal solutions
in a complex parameter of a nonlinear initial value Cauchy
problem with analytic coefficients and forcing term near the
origin in C3

In this section, we give sufficient conditions on the forcing term F (T,m, ε) for the functions
udp(t, z, ε) and its corresponding formal power series expansion û(t, z, ε) w.r.t ε constructed in
Theorem 1 and Theorem 2 to solve a nonlinear problem with holomorphic coefficients and forcing
term near the origin given by (224).

7.1 A linear convolution initial value problem satisfied by the formal forcing
term F (T,m, ε)

Let k1 ≥ 1 be the integer defined above in Section 5 and let D ≥ 2 be an integer. For 1 ≤ l ≤ D,
let dl,δl,∆l ≥ 0 be nonnegative integers. We assume that

(200) 1 = δ1 , δl < δl+1,

for all 1 ≤ l ≤ D− 1. We make also the assumption that

(201) dD = (δD−1)(k1+1) , dl > (δl−1)(k1+1) , ∆l−dl+δl−1 ≥ 0 , ∆D = dD−δD+1

for all 1 ≤ l ≤ D− 1. Let Q(X),Rl(X) ∈ C[X], 0 ≤ l ≤ D, be polynomials such that

(202) deg(Q) ≥ deg(RD) ≥ deg(Rl) , Q(im) 6= 0 , RD(im) 6= 0

for all m ∈ R, all 0 ≤ l ≤ D − 1. Let β, µ > 0 be the integers defined above in Section 5. We
consider sequences of functions m 7→ C0,n(m, ε), for all n ≥ 0 and m 7→ Fn(m, ε), for all n ≥ 1,
that belong to the Banach space E(β,µ) and which depend holomorphically on ε ∈ D(0, ε0). We
assume that there exist constants K0,T0 > 0 such that

(203) ||C0,n(m, ε)||(β,µ) ≤ K0(
1

T0
)n , ||Fn(m, ε)||(β,µ) ≤ K0(

1

T0
)n

for all n ≥ 1, for all ε ∈ D(0, ε0). We define

C0(T,m, ε) =
∑
n≥1

C0,n(m, ε)Tn , F(T,m, ε) =
∑
n≥1

Fn(m, ε)Tn
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which are convergent series on D(0,T0/2) with values in E(β,µ). Let c0(ε), c0,0(ε) and cF(ε) be
bounded holomorphic functions on D(0, ε0) which vanish at the origin ε = 0.

We make the assumption that the formal series F (T,m, ε) =
∑

n≥1 Fn(m, ε)Tn, where the
coefficients Fn(m, ε) are defined after the problem (154) in Section 5 satisfies the next linear
initial value problem

(204) Q(im)(∂TF (T,m, ε)) =
D∑
l=1

Rl(im)ε∆l−dl+δl−1Tdl∂δlT F (T,m, ε)

+ ε−1 c0(ε)

(2π)1/2

∫ +∞

−∞
C0(T,m−m1, ε)R0(im1)F (T,m1, ε)dm1

+ ε−1 c0,0(ε)

(2π)1/2

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)F (T,m1, ε)dm1 + ε−1cF(ε)F(T,m, ε)

for given initial data F (0,m, ε) = 0.

The existence and uniqueness of the formal power series solution of (204) is ensured by the
following

Proposition 17 There exists a unique formal series

F (T,m, ε) =
∑
n≥1

Fn(m, ε)Tn

solution of (204) with initial data F (0,m, ε) ≡ 0, where the coefficients m 7→ Fn(m, ε) belong to
E(β,µ) for β, µ > 0 given above and depend holomorphically on ε in D(0, ε0).

Proof From Proposition 4, we get that the coefficients Fn(m, ε) of F (T,m, ε) are well defined,
belong to E(β,µ) for all ε ∈ D(0, ε0), all n ≥ 1 and satisfy the following recursion relation

(205) (n+ 1)Fn+1(m, ε)

=

D∑
l=1

Rl(im)

Q(im)

(
ε∆l−dl+δl−1Πδl−1

j=0 (n+ δl − dl − j)
)
Fn+δl−dl(m, ε)

+
ε−1c0(ε)

Q(im)

∑
n1+n2=n,n1≥1,n2≥1

1

(2π)1/2

∫ +∞

−∞
C0,n1(m−m1, ε)R0(im1)Fn2(m1, ε)dm1

+
ε−1c0,0(ε)

(2π)1/2Q(im)

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)Fn(m1, ε)dm1 +

ε−1cF(ε)

Q(im)
Fn(m, ε)

for all n ≥ max1≤l≤D dl. 2

7.2 Analytic solutions for an auxiliary linear convolution problem resulting
from a mk1−Borel transform applied to the linear initial value convolution
problem

Using the formula (8.7) from [31], p. 3630, we can expand the operators T δl(k1+1)∂δlT in the form

(206) T δl(k1+1)∂δlT = (T k1+1∂T )δl +
∑

1≤p≤δl−1

Aδl,pT
k1(δl−p)(T k1+1∂T )p
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where Aδl,p, p = 1, . . . , δl − 1 are real numbers, for all 1 ≤ l ≤ D. We define integers dl,k1 ≥ 0
to satisfy

(207) dl + k1 + 1 = δl(k1 + 1) + dl,k1

for all 1 ≤ l ≤ D. Multiplying the equation (204) by T k1+1 and using (206), (207) we can rewrite
the equation (204) in the form

(208) Q(im)(T k1+1∂TF (T,m, ε))

=

D∑
l=1

Rl(im)
(
ε∆l−dl+δl−1Tdl,k1 (T k1+1∂T )δlF (T,m, ε)

+
∑

1≤p≤δl−1

Aδl,p ε
∆l−dl+δl−1T k1(δl−p)+dl,k1 (T k1+1∂T )pF (T,m, ε)

)
+ ε−1T k1+1 c0(ε)

(2π)1/2

∫ +∞

−∞
C0(T,m−m1, ε)R0(im1)F (T,m1, ε)dm1

+ ε−1T k1+1 c0,0(ε)

(2π)1/2

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)F (T,m1, ε)dm1 + ε−1cF(ε)T k1+1F(T,m, ε).

As above, we denote ψk1(τ,m, ε) the formal mk1−Borel transform of F (T,m, ε) w.r.t T and
ϕk1(τ,m, ε) the formal mk1−Borel transform of C0(T,m, ε) with respect to T and ψk1(τ,m, ε)
the formal mk1−Borel transform of F(T,m, ε) w.r.t T ,

ψk1(τ,m, ε) =
∑
n≥1

Fn(m, ε)
τn

Γ( nk1 )
, ϕk1(τ,m, ε) =

∑
n≥1

C0,n(m, ε)
τn

Γ( nk1 )
,

ψk1(τ,m, ε) =
∑
n≥1

Fn(m, ε)
τn

Γ( nk1 )
.

Following a similar reasoning as in the steps (76), (77), (78) and (79), using (203) we get

that ϕk1(τ,m, ε) ∈ F dp
(ν,β,µ,k1,k1) and ψk1(τ,m, ε) ∈ F dp

(ν,β,µ,k1,k1), for all ε ∈ D(0, ε0), for all the
unbounded sectors Udp centered at 0 and bisecting direction dp ∈ R introduced in Definition 8,
for some ν > 0.

Observe that dD,k1 = 0. Using the computation rules for the formal mk1−Borel transform
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in Proposition 8, we deduce the following equation satisfied by ψk1(τ,m, ε),

(209) Q(im)(k1τ
k1ψk1(τ,m, ε)) = RD(im)

(
kδD1 τδDk1ψk1(τ,m, ε)

+
∑

1≤p≤δD−1

AδD,p
τk1

Γ(δD − p)

∫ τk1

0
(τk1 − s)δD−p−1 (kp1s

pψk1(s1/k1 ,m, ε))
ds

s

)

+
D−1∑
l=1

Rl(im)

ε∆l−dl+δl−1 τk1

Γ(
dl,k1
k1

)

∫ τk1

0
(τk1 − s)

dl,k1
k1
−1

(kδl1 s
δlψk1(s1/k1 ,m, ε))

ds

s

+
∑

1≤p≤δl−1

Aδl,pε
∆l−dl+δl−1 τk1

Γ(
dl,k1
k1

+ δl − p)

∫ τk1

0
(τk1 − s)

dl,k1
k1

+δl−p−1
(kp1s

pψk1(s1/k1 ,m, ε))
ds

s

)

+ ε−1 τk1

Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1

×
(

c0(ε)

(2π)1/2
s

∫ s

0

∫ +∞

−∞
ϕk1((s− x)1/k1 ,m−m1, ε)R0(im1)ψk1(x1/k1 ,m1, ε)

1

(s− x)x
dxdm1

)
ds

s

+ε−1 τk1

Γ(1 + 1
k1

)

∫ τk1

0
(τk1−s)1/k1

c0,0(ε)

(2π)1/2
(

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)ψk1(s1/k1 ,m1, ε)dm1)

ds

s

+ ε−1cF(ε)
τk1

Γ(1 + 1
k1

)

∫ τk1

0
(τk1 − s)1/k1ψk1(s1/k1 ,m, ε)

ds

s
.

We make the additional assumption that there exists an unbounded sector

SQ,RD
= {z ∈ C/|z| ≥ rQ,RD

, |arg(z)− dQ,RD
| ≤ ηQ,RD

}

with direction dQ,RD
∈ R, aperture ηQ,RD

> 0 for some radius rQ,RD
> 0 such that

(210)
Q(im)

RD(im)
∈ SQ,RD

for all m ∈ R. We factorize the polynomial Pm(τ) = Q(im)k1 − RD(im)kδD1 τ (δD−1)k1 in the
form

(211) Pm(τ) = −RD(im)kδD1 Π
(δD−1)k1−1
l=0 (τ − ql(m))

where

(212) ql(m) = (
|Q(im)|

|RD(im)|kδD−1
1

)
1

(δD−1)k1

× exp(
√
−1(arg(

Q(im)

RD(im)kδD−1
1

)
1

(δD − 1)k1
+

2πl

(δD − 1)k1
))

for all 0 ≤ l ≤ (δD − 1)k1 − 1, all m ∈ R.
We choose the family of unbounded sectors Udp centered at 0, a small closed disc D̄(0, ρ)

(introduced in Definition 8) and we prescribe the sector SQ,RD
in such a way that the following

conditions hold.

1) There exists a constant M1 > 0 such that

(213) |τ − ql(m)| ≥M1(1 + |τ |)



70

for all 0 ≤ l ≤ (δD − 1)k1 − 1, all m ∈ R, all τ ∈ Udp ∪ D̄(0, ρ), for all 0 ≤ p ≤ ς − 1.

2) There exists a constant M2 > 0 such that

(214) |τ − ql0(m)| ≥M2|ql0(m)|

for some l0 ∈ {0, . . . , (δD − 1)k1 − 1}, all m ∈ R, all τ ∈ Udp ∪ D̄(0, ρ), for all 0 ≤ p ≤ ς − 1.

By construction of the roots (212) in the factorization (211) and using the lower bound
estimates (213), (214), we get a constant CP > 0 such that

(215) |Pm(τ)| ≥M
(δD−1)k1−1
1 M2|RD(im)|kδD1 (

|Q(im)|
|RD(im)|kδD−1

1

)
1

(δD−1)k1 (1 + |τ |)(δD−1)k1−1

≥M
(δD−1)k1−1
1 M2

kδD1

(kδD−1
1 )

1
(δD−1)k1

(rQ,RD
)

1
(δD−1)k1 |RD(im)|

× (min
x≥0

(1 + x)(δD−1)k1−1

(1 + xk1)
(δD−1)− 1

k1

)(1 + |τ |k1)
(δD−1)− 1

k1

= CP(rQ,RD
)

1
(δD−1)k1 |RD(im)|(1 + |τ |k1)

(δD−1)− 1
k1

for all τ ∈ Udp ∪ D̄(0, ρ), all m ∈ R, all 0 ≤ p ≤ ς − 1.
In the next proposition, we give sufficient conditions under which the equation (209) has a

solution ψ
dp
k1

(τ,m, ε) in the Banach space F
dp
(ν,β,µ,k1,k1) where β, µ are defined above.

Proposition 18 Under the assumption that

(216) δD ≥ δl +
1

k1

for all 1 ≤ l ≤ D − 1, there exist a radius rQ,RD
> 0, a constant υ > 0 and constants

ς0,0, ς0, ς1, ς1,0, ςF , ς2 > 0 (depending on k1, CP, µ, ν, ε0,Rl,∆l, δl,dl for 0 ≤ l ≤ D) such that
if

(217) sup
ε∈D(0,ε0)

|c0(ε)

ε
| ≤ ς1,0 , ||ϕk1(τ,m, ε)||(ν,β,µ,k1,k1) ≤ ς1,

sup
ε∈D(0,ε0)

|c0,0(ε)

ε
| ≤ ς0,0 , ||C0,0(m, ε)||(β,µ) ≤ ς0,

sup
ε∈D(0,ε0)

|cF(ε)

ε
| ≤ ςF , ||ψk1(τ,m, ε)||(ν,β,µ,k1,k1) ≤ ς2

for all ε ∈ D(0, ε0), the equation (209) has a unique solution ψ
dp
k1

(τ,m, ε) in the space F
dp
(ν,β,µ,k1,k1)

with the property that ||ψdp
k1

(τ,m, ε)||(ν,β,µ,k1,k1) ≤ υ, for all ε ∈ D(0, ε0), where β, µ > 0 are

defined above, for any unbounded sector Udp and disc D̄(0, ρ) that satisfy the constraints (213),
(214), for all 0 ≤ p ≤ ς − 1.

The proof of Proposition 18 follows exactly the same steps as the corresponding one of Propo-
sition 14, therefore we skip completely the details.

As a result, we get that the mk1−Borel transform ψk1(τ,m, ε) of the formal series F (T,m, ε)
solution of the equation (204) is convergent w.r.t τ on D(0, ρ) as series in coefficients in E(β,µ),
for all ε ∈ D(0, ε0), and can be analytically continued on each unbounded sector Udp as a

function τ 7→ ψ
dp
k1

(τ,m, ε) which belongs to the space F
dp
(ν,β,µ,k1,k1). In other words, the assumed

constraints (156) are fulfilled.
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7.3 A linear initial value Cauchy problem satisfied by the analytic forcing
terms f dp(t, z, ε)

We keep the notations and the assumptions made in the previous subsection. From the assump-
tion (203), we deduce that the functions

(218) Č0(T, z, ε) = c0,0(ε)F−1(m 7→ C0,0(m, ε))(z) +
∑
n≥1

c0(ε)F−1(m 7→ C0,n(m, ε))(z)Tn,

F̌(T, z, ε) =
∑
n≥1

F−1(m 7→ Fn(m, ε))(z)Tn

represent bounded holomorphic functions on D(0,T0/2) × Hβ′ × D(0, ε0) for any 0 < β′ < β
(where F−1 denotes the inverse Fourier transform defined in Proposition 9). We define the
coefficients

(219) c0(t, z, ε) = Č0(εt, z, ε) , f(t, z, ε) = F̌(εt, z, ε)

which are holomorphic and bounded on D(0, r)×Hβ′ ×D(0, ε0) where rε0 ≤ T0/2.

Proposition 19 Under the constraints (200), (201), (202), (203) and the assumptions (210),
(213), (214), (216), (217), the forcing term fdp(t, z, ε) represented by the formula (159) solves
the following linear Cauchy problem

(220) Q(∂z)(∂tf
dp(t, z, ε)) = ε(δD−1)(k1+1)−δD+1t(δD−1)(k1+1)∂δDt RD(∂z)f

dp(t, z, ε)

+

D−1∑
l=1

ε∆ltdl∂δlt Rl(∂z)f
dp(t, z, ε) + c0(t, z, ε)R0(∂z)f

dp(t, z, ε) + cF(ε)f(t, z, ε)

for given initial data fdp(0, z, ε) ≡ 0, for all t ∈ T , z ∈ Hβ′ and ε ∈ Ep (provided that the radius
rT of T fulfills the restriction ε0rT ≤ min(h′, T0/2,T0/2)).

Proof From Proposition 18, we know that the formal series F (T,m, ε) =
∑

n≥1 Fn(m, ε)Tn

is mk1−summable w.r.t T in all directions dp, 0 ≤ p ≤ ς − 1 (in the sense of Definition 4).
Therefore, from the estimates (156), we deduce that the mk1−Laplace transform

Ldpmk1 (τ 7→ ψ
dp
k1

(τ,m, ε))(T ) = k1

∫
Ldp

ψ
dp
k1

(u,m, ε)e−( u
T

)k1 du

u

defines a bounded and holomorphic function on any sector Sdp,θk1 ,h
′
k1

w.r.t T , for all m ∈ R,

all ε ∈ D(0, ε0), where Sdp,θk1 ,h
′
k1

is a sector with bisecting direction dp, aperture π
k1
< θk1 <

π
k1

+ap(Udp) and some radius h′k1 > 0. Moreover, using the algebraic properties of the mk1−sums

in the formula (??), we deduce that Ldpmk1 (τ 7→ ψ
dp
k1

(τ,m, ε))(T ) solves the equations (208) and
then (204) for all T ∈ Sdp,θk1 ,h′k1 , all m ∈ R, all ε ∈ D(0, ε0) and vanishes at T = 0. Now, let

F dp(T,m, ε) defined in (158).

Lemma 12 The following identity

F dp(T,m, ε) = Ldpmk1 (τ 7→ ψ
dp
k1

(τ,m, ε))(T )

holds, for all T ∈ Sdp,θ,h′, m ∈ R, ε ∈ D(0, ε0), as defined just after the definition (158), for
π
k2
< θ < π

k2
+ ap(Sdp) and some radius h′ > 0.
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Proof By construction, we can write

F dp(T,m, ε) = k2

∫
Ldp

(∫
Ldp

ψ
dp
k1

(h,m, ε)

×(−k2k1

2iπ
uk2
∫
Vdp,k2,δ′

exp(−(
h

v
)k1 + (

u

v
)k2)

dv

vk2+1
)
dh

h

)
e−( u

T
)k2 du

u

for some 0 < δ′ < π
κ , where Vdp,k2,δ′ is defined in Proposition 13. Using Fubini’s theorem yields

(221) F dp(T,m, ε) = k1

∫
Ldp

ψ
dp
k1

(h,m, ε)A(T, h)
dh

h

where

(222) A(T, h) = k2

∫
Ldp

−k2

2iπ
uk2

(∫
Vdp,k2,δ′

exp(−(
h

v
)k1 + (

u

v
)k2)

dv

vk2+1

)
e−( u

T
)k2 du

u

= Ldpmk2 (u 7→ (Bdpmk2 (v 7→ e−(h
v

)k1 ))(u))(T )

for all T ∈ Sdp,θ,h′ , m ∈ R, ε ∈ D(0, ε0). But we observe from the inversion formula (110) that
A(T, h) = exp(−(h/T )k1). Gathering (221) and (222) yields the lemma 13. 2

From Lemma 13, we deduce that F dp(T,m, ε) solves the equation (204) for all T ∈ Sdp,θ,h′ , all
m ∈ R and all ε ∈ D(0, ε0). Hence, using the properties of the Fourier inverse transform from
Proposition 9, we deduce that the analytic forcing term fdp(t, z, ε) = F−1(m 7→ F dp(εt,m, ε))(z)
solves the linear Cauchy problem (220), for all t ∈ T , all z ∈ Hβ′ and all ε ∈ Ep. 2

We are in position to state the main result of this section

Theorem 3 We take for granted that the assumptions of Theorem 1 hold. We also make the
hypothesis that the constraints (200), (201), (202), (203) and the assumptions (210), (213),
(214), (216), (217) hold. We denote P (t, z, ε, ∂t, ∂z) and P(t, z, ε, ∂t, ∂z) the linear differential
operators

(223) P (t, z, ε, ∂t, ∂z) = Q(∂z)∂t − ε(δD−1)(k2+1)−δD+1t(δD−1)(k2+1)∂δDt RD(∂z)

−
D−1∑
l=1

ε∆ltdl∂δlt Rl(∂z)− c0(t, z, ε)R0(∂z),

P(t, z, ε, ∂t, ∂z) = Q(∂z)∂t − ε(δD−1)(k1+1)−δD+1t(δD−1)(k1+1)∂δDt RD(∂z)

−
D−1∑
l=1

ε∆ltdl∂δlt Rl(∂z)− c0(t, z, ε)R0(∂z).

Then, the functions udp(t, z, ε) constructed in Theorem 1 solve the following nonlinear PDE

(224) P(t, z, ε, ∂t, ∂z)P (t, z, ε, ∂t, ∂z)u
dp(t, z, ε)

= c1,2(ε)P(t, z, ε, ∂t, ∂z)
(
Q1(∂z)u

dp(t, z, ε)×Q2(∂z)u
dp(t, z, ε)

)
+ cF (ε)cF(ε)f(t, z, ε)

whose coefficients and forcing term f are analytic functions on D(0, rT )×Hβ′ ×D(0, ε0), with
vanishing initial data udp(0, z, ε) ≡ 0, for all t ∈ T , all z ∈ Hβ′ and all ε ∈ Ep. Moreover, the
formal power series û(t, z, ε) =

∑
m≥0 hm(t, z)εm/m! constructed in Theorem 2 formally solves

the same equation (224).
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Proof The reason why udp(t, z, ε) solves the equation (224) follows directly from the fact that
udp(t, z, ε) solves the nonlinear equation

P (t, z, ε, ∂t, ∂z)u
dp(t, z, ε) = c1,2(ε)(Q1(∂z)u

dp(t, z, ε)×Q2(∂z)u
dp(t, z, ε)) + cF (ε)fdp(t, z, ε)

according to Theorem 1 and from the additional feature that fdp(t, z, ε) solves the linear equation

P(t, z, ε, ∂t, ∂z)f
dp(t, z, ε) = cF(ε)f(t, z, ε)

as shown in Proposition 19. Finally in order to show that û(t, z, ε) formally solves (224) we
see that with the help of the second equality in (196) and following exactly the same lines of
arguments as in the last part of Theorem 2, one can show that the power series f̂(t, z, ε) =∑

m≥0 fm(t, z)εm/m! constructed in Lemma 11 formally solves the linear equation

(225) P(t, z, ε, ∂t, ∂z)f̂(t, z, ε) = cF(ε)f(t, z, ε)

Combining the equations (195) and (225) yields the result. 2
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