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Abstract. The aim of the paper is to derive spectral estimates into several
classes of magnetic systems. They include three-dimensional regions with
Dirichlet boundary as well as a particle in R3 confined by a local change of
the magnetic field. We establish two-dimensional Berezin-Li-Yau and Lieb-
Thirring-type bounds in the presence of magnetic fields and, using them, get
three-dimensional estimates for the eigenvalue moments of the corresponding
magnetic Laplacians.

1 Introduction

Let −∆Ω be the Dirichlet Laplacian corresponding to an open bounded do-
main Ω ⊂ Rd, defined in the quadratic form sense on H1

0(Ω). The operator
is obviously non-negative and since the embedding H1

0 ↪→ L2(Ω) is compact,
its spectrum is purely discrete accumulating at infinity only. It is well known
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that for d = 3, up to a choice of the scale, the eigenvalues describe energies
of a spinless quantum particle confined to such a hard-wall ‘bottle’.

Motivated by this physical problem, we consider in the present work a
magnetic version of the mentioned Dirichlet Laplacian, that is, the operator
HΩ(A) = (i∇+ A(x))2 associated with the closed quadratic form

∥(i∇+ A)u∥2L2(Ω) , u ∈ H1
0(Ω) ,

where the real-valued and sufficiently smooth function A is a vector potential.
The magnetic Sobolev norm on the bounded domain Ω is equivalent to the
non-magnetic one and the operator HΩ(A) has a purely discrete spectrum as
well. We shall denote the eigenvalues by λk = λk(Ω, A), assuming that they
repeat according to their multiplicities.

One of the objects of our interest in this paper will be bounds of the
eigenvalue moments of such operators. For starters, recall that for non-
magnetic Dirichlet Laplacians the following bound was proved in the work
of Berezin, Li and Yau [Be72a,Be72b,LY83],∑

k

(Λ− λk(Ω, 0))
σ
+ ≤ Lcl

σ,d |Ω|Λσ+ d
2 for any σ ≥ 1 and Λ > 0 , (1.1)

where |Ω| is the volume of Ω and the constant on the right-hand side,

Lcl
σ,d =

Γ(σ + 1)

(4π)
d
2Γ(σ + 1 + d/2)

,

is optimal. Furthermore, the bound (1.1) holds true for 0 ≤ σ < 1 as well,
but with another, probably non-sharp constant on the right-hand side,∑

k

(Λ− λk(Ω, 0))
σ
+ ≤ 2

(
σ

σ + 1

)σ

Lcl
σ,d |Ω|Λσ+ d

2 , 0 ≤ σ < 1 . (1.2)

see [La97]. In the particular case σ = 1 the inequality (1.1) is equivalent, via
Legendre transformation, to the lower bound

N∑
j=1

λj(Ω, 0) ≥ Cd|Ω|−
2
dN1+ 2

d , Cd =
4πd

d+ 2
Γ(d/2 + 1)

2
d . (1.3)

Turning next to the magnetic case, we note first that the pointwise dia-
magnetic inequality [LL01], namely

|∇|u(x)|| ≤ |(i∇+ A)u(x)| for a.a. x ∈ Ω ,
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implies λ1(Ω, A) ≥ λ1(Ω, 0), however, the estimate λj(Ω, A) ≥ λj(Ω, 0) fails
in general if j ≥ 2. Nevertheless, momentum estimates are still valid for
some values of the parameters. In particular, it was shown [LW00] that the
sharp bound (1.1) holds true for arbitrary magnetic fields provided σ ≥ 3

2
,

and the same sharp bound holds true for constant magnetic fields if σ ≥ 1,
see [ELV00]. Furthermore, in the dimension d = 2 the bound (1.2) holds true
for constant magnetic fields if 0 ≤ σ < 1 and the constant on its right-hand
side cannot be improved [FLW09].

Our main aim in the present work is to derive sufficiently precise two-
dimensional Berezin-type estimates for quantum systems exposed to a mag-
netic field and to apply them to the three-dimensional case. We are going
to address two questions, one concerning eigenvalue moments estimates for
magnetic Laplacians on three dimensional domains having a bounded cross
section in a fixed direction, and the other about similar estimates for mag-
netic Laplacians defined on whole R3.

Let us review the paper content in more details. In Sec. 2 we will describe
the dimensional-reduction technique [LW00] which allows us to derive the
sought spectral estimates for three-dimensional magnetic ‘bottles’ using two-
dimensional ones. Our next aim is to derive a two-dimensional version of
the Li-Yau inequality (1.3) in presence of a constant magnetic field giving
rise to an extra term on the right-hand side. The result will be stated and
proved in first part of Sec. 3. This in turn will imply, by means of Legendre
transformation, a magnetic version of the Berezin inequality which we are
going to present in second part of Sec. 3. It has to be added that the question
of semiclassical spectral bounds for such systems has been addressed before,
in particular, another version of the magnetic Berezin inequality was derived
by two of us [KW13]. In final part of Sec. 3 we are going to compare the
two results and show that the one derived here becomes substantially better
when the magnetic field is strong.

In some cases the eigenvalues of the magnetic Dirichlet Laplacian with a
constant magnetic field can be computed exactly in terms of suitable special
functions. In the first part of Sec. 4 we are present such an example con-
sidering the magnetic Dirichlet Laplacian on a two-dimensional disc with a
constant magnetic field. Its eigenvalues will be expressed in terms of Kummer
function zeros. Next, in the second part, we are going to consider again the
magnetic Dirichlet Laplacian on a two-dimensional disc, now in a more gen-
eral situation when the magnetic field is no longer homogeneous but retains
the radial symmetry; we will derive the Berezin inequality for the eigenvalue
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moments. In Sec. 5 we shall return to our original motivation and use the
mentioned reduction technique to derive Berezin-type spectral estimates for
a class of three-dimensional magnetic ‘bottles’ characterized by a bounded
cross section in the x3 direction.

Turning to the second one of the indicated questions, from Sec. 6 on, we
shall be concerned with magnetic Laplacians in L2(R3) associated with the
magnetic field B : R3 → R3 which is as a local perturbation of a constant
magnetic field of intensity B0 > 0. Again, as before, we first derive suitable
two-dimensional estimates; this will be done in Sec. 6. In the last two sections
we apply this result to the three-dimensional case. In Sec. 7 we show that the
essential spectrum of the magnetic Laplacian with corresponding perturbed
magnetic field coincides with [B0,∞). The Sec. 7.1 we then prove Lieb-
Thirring-type inequalities for the moments of eigenvalues below the threshold
of the essential spectrum for several types of magnetic ‘holes’.

2 Dimensional reduction

As indicated our question concerns estimating eigenvalues due to confine-
ment in a three-dimensional ‘bottle’ by using two-dimensional Berezin type
estimates. In such situation one can use the dimension-reduction tech-
nique [LW00]. In particular, let −∆Ω be the Dirichlet Laplacian on an open
domain Ω ⊆ R3, then for any σ ≥ 3

2
the inequality

tr (Λ− (−∆Ω))
σ
+ ≤ Lcl

1,σ

∫
R
tr
(
Λ− (−∆ω(x3))

)σ+ 1
2

+
dx3 (2.1)

is valid, where −∆ω(x3) is the Dirichlet Laplacian on the section

ω(x3) =
{
x′ = (x1, x2) ∈ R2| x = (x′, x3) = (x1, x2, x3) ∈ Ω

}
,

see [LW00], and also [ELM04,Wei08]. The integral at the right-hand side of
(2.1), in fact restricted to those x3 for which inf spec(−∆ω(x3)) < Λ, yields the
classical phase space volume. Note that in this way one can obtain estimates
also in some unbounded domains [GW11] as well as remainder terms [Wei08].

A similar technique can be used also in the magnetic case. To describe
it, consider a sufficiently smooth magnetic vector potential A(·) : Ω → R3

generating the magnetic field

B(x) = (B1(x), B2(x), B3(x)) = rotA(x) .
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For the sake of definiteness, the shall use the gauge with A3(x) = 0. Fur-
thermore, we consider the magnetic Dirichlet Laplacians

HΩ(A) = (i∇x − A(x))2 on L2(Ω)

and
H̃ω(x3)(Ã) = (i∇x′ − Ã(x))2 on L2(ω(x3)) ,

where Ã(x) := (A1(x), A2(x)). Note that for the fixed x3 the two-dimensional

vector potential Ã(x′, x3) corresponds to the magnetic field

B̃(x′, x3) = B3(x) =
∂A2

∂x1
− ∂A1

∂x2
.

Referring to [LW00, Sec. 3.2] one can then claim that for a σ ≥ 3
2
we have

tr(Λ−HΩ(A))
σ
+ ≤ Lcl

1,σ

∫
R
tr(Λ− H̃ω(x3)(Ã))

σ+1/2
+ dx3 . (2.2)

3 Berezin-Li-Yau inequality with a constant

magnetic field

Suppose that the motion is confined to a planar domain ω being exposed to
influence of a constant magnetic field of intensity B0 perpendicular to the
plane, and let A : R2 → R2 be a vector potential generating this field. We
denote by Hω(A) the corresponding magnetic Dirichlet Laplacian on ω and
µj(A) will be its eigenvalues arranged in the ascending with repetition ac-
cording to their multiplicity. Our first aim is to extend the Li-Yau inequality
(1.3) to this situation with an additional term on the right-hand side depend-
ing on B0 only. This will be then used to derive the Berezin-type inequality.
Conventionally we denote by N the set of natural numbers, while the set of
integers will be denoted by Z.
The following result is not new. Indeed, it can be recovered from [ELV00,
Sec. 2], however, for the sake of completeness we include a proof.

3.1 Li-Yau estimate

Theorem 3.1. Assume that ω ⊂ R2 is open and finite. Then the inequality∑
j≤N

µj(A) ≥
2πN2

|ω|
+
B2

0

2π
|ω|m(1−m) (3.1)
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holds, where m :=
{

2πN
B0|ω|

}
is the fractional part of 2πN

B0|ω| .

Proof. Without loss of generality we may assume that B0 > 0. Let Pk be the
orthogonal projection onto the k-th Landau level, B0(2k− 1), of the Landau
Hamiltonian (i∇ + A(x))2 in L2(R2) which is an integral operator with the
kernel Pk(x, y) – see [KW13]. Note that we have

Pk(x, x) =
1

2π
B0 , (3.2)

∫
R2

(∫
ω

|Pk(y, x)|2 dx
)

dy =

∫
ω

(∫
R2

Pk(y, x)Pk(x, y) dy

)
dx

=

∫
ω

Pk(x, x) dx =
B0

2π
|ω| . (3.3)

Let ϕj be a normalized eigenfunction corresponding to the eigenvalue µj(A).
We put fk,j(y) :=

∫
ω
Pk(y, x)ϕj(x) dx, where y ∈ R2, and furthermore

FN(k) :=
∑
j≤N

∥fk,j∥2L2(R2) .

We have the following identity,∑
j≤N

µj(A) =
∑
j≤N

∥(i∇− A)ϕj∥2L2(ω)

=
∑
j≤N

∑
k∈N

∥(i∇− A)fk,j∥2L2(R2)

=
∑
k∈N

B0(2k − 1)
∑
j≤N

∥fk,j∥2L2(R2)

=
∑
k∈N

B0(2k − 1)FN(k) =: J [FN ] .

Moreover, the normalization of the functions ϕj implies∑
k∈N

FN(k) =
∑
j≤N

∑
k∈N

∥fk,j∥2L2(R2) =
∑
j≤N

∥ϕj∥2L2(ω) = N . (3.4)
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Finally, in view of Bessel’s inequality the following estimate holds true,

FN(k) =
∑
j≤N

∥fk,j∥2L2(R2) =

∫
R2

∣∣∣∣∣∑
j≤N

∫
ω

Pk(y, x)ϕj(x) dx

∣∣∣∣∣
2

dy

≤
∫
R2

(∫
ω

|Pk(y, x)|2 dx
)

dy =
B0

2π
|ω| . (3.5)

Let us now minimize the functional J [FN ] under the constraints (3.4) and
(3.5). To this aim, recall first the bathtub principle [LL01]:

Given a σ-finite measure space (Ω, Σ, µ), let f be a real-valued measurable
function on Ω such that µ{x : f(x) < t} is finite for all t ∈ R. Fix further a
number G > 0 and define a class of measurable functions on Ω by

C =

{
g : 0 ≤ g(x) ≤ 1 for all x and

∫
Ω

g(x)µ(dx) = G

}
.

Then the minimization problem of the functional

I = inf
g∈C

∫
Ω

f(x)g(x)µ(dx)

is solved by
g(x) = χ{f<s}(x) + cχ{f=s}(x) , (3.6)

giving rise to the minimum value

I =

∫
{f<s}

f(x)µ(dx) + csµ{x : f(x) = s} ,

where
s = sup{t : µ{x : f(x) < t} ≤ G}

and
cµ{x : f(x) = s} = G− µ{x : f(x) < s} .

Moreover, the minimizer given by (3.6) is unique if G = µ{x : f(x) < s} or
if G = µ{x : f(x) ≤ s}.
Applying this result to the functional J [FN ] with the constraints (3.4) and
(3.5) we find that the corresponding minimizers are

FN(k) =
B0

2π
|ω| , k = 1, 2, . . . ,M ,
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FN(M + 1) =
B0

2π
|ω|m,

FN(k) = 0, k > M + 1,

whereM =
[

2πN
B0|ω|

]
is the entire part andm =

{
2πN
B0|ω|

}
, so thatM+m = 2πN

B0|ω| .

Consequently, we have the lower bound

J [FN ] ≥
B0

2π
|ω|

M∑
k=1

(2k − 1)B0 +
B0

2π
|ω|m(2M + 1)B0

=
B0

2π
|ω|(M2 + 2Mm+m)

=
B2

0

2π
|ω|(M +m)2 +

B2
0

2π
|ω|(m−m2)

which implies ∑
j≤N

µj(A) ≥
2πN2

|ω|
+
B2

0

2π
|ω|m(1−m) .

This is the claim we have set out to prove.

Since 0 ≤ m < 1 by definition the last term can regarded as a non-
negative remainder term, which is periodic with respect to N

Φ
, where Φ = B0|ω|

2π

is the magnetic flux, i.e. the number of flux quanta through ω. Note that for
N < Φ the right-hand side equals NB and for large enough B0 this estimate
is better than the lower bound in terms of the phase-space volume.

3.2 A magnetic Berezin-type inequality

The result obtained in the previous subsection allows us to derive an exten-
sion of the Berezin inequality to the magnetic case. We keep the notation
introduced above, in particular, Hω(A) is the magnetic Dirichlet Laplacian
on ω corresponding to a constant magnetic field B0 and µj(A) are the respec-
tive eigenvalues. Without loss of generality we assume again that B0 > 0.
Then we can make the following claim.

Theorem 3.2. Let ω ⊂ R2 be open and finite, then for any Λ > B0 we have

N∑
j=1

(Λ− µj(A)) ≤
(Λ2 −B2

0)|ω|
8π

+
(Λ−B0)B0|ω|

4π

{
Λ +B0

2B0

}
. (3.1)
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Proof. Subtracting NΛ from both sides of inequality (3.1), we get

N∑
j=1

(Λ− µj(A)) ≤ NΛ− 2πN2

|ω|
− B2

0

2π
|ω|m(1−m) , (3.2)

and consequently

N∑
j=1

(Λ− µj(A))+ ≤
(
NΛ− 2πN2

|ω|
− B2

0

2π
|ω|m(1−m)

)
+

.

We are going to investigate the function f : R+ → R,

f(z) := zΛ− 2πz2

|ω|
− B2

0 |ω|
2π

{
2πz

B0|ω|

}(
1−

{
2πz

B0|ω|

})
,

on the intervals

B0|ω|k
2π

≤ z <
B0|ω|(k + 1)

2π
, k = 0, 1, 2, . . . ,

looking for an upper bound. It is easy to check that

f ′(z) = Λ− 4π

|ω|
z − B2

0 |ω|
2π

2π

B0|ω|
+

2B2
0 |ω|
2π

{
2πz

B0|ω|

}
2π

B0|ω|

= Λ− 4π

|ω|
z −B0 + 2B0

{
2πz

B0|ω|

}
,

thus the extremum of f is achieved at the point z0 such that

Λ−B0 −
4π

|ω|
z0 + 2B0

{
2πz0
B0|ω|

}
= 0 . (3.3)

Denoting x0 := 2πz0
B0|ω| , the condition reads Λ − 2B0x0 − B0 + 2B0{x0} = 0

giving

x0 =
Λ−B0 + 2B0{x0}

2B0

.
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It yields the value of function f at z0, namely

f(z0) =
ΛB0|ω|
2π

(Λ−B0 + 2B0{x0})
2B0

− B2
0 |ω|
2π

(
Λ−B0 + 2B0{x0}

2B0

)2

−B
2
0 |ω|
2π

{x0}(1− {x0})

=
Λ|ω|
4π

(Λ−B0 + 2B0{x0})−
|ω|
8π

(Λ−B0 + 2B0{x0})2

−B
2
0 |ω|
2π

{x0}(1− {x0})

=
|ω|
4π

(
Λ(Λ−B0 + 2B0{x0})−

(Λ−B0 + 2B0{x0})2

2

−2B2
0{x0}(1− {x0})

)
=

|ω|
4π

(
Λ2 − ΛB0 + 2ΛB0{x0} −

Λ2

2
+ ΛB0 −

B2
0

2
− 2ΛB0{x0}

+2B2
0{x0} − 2B2

0{x0}2 − 2B2
0{x0}+ 2B2

0{x0}2
)

=
|ω|(Λ2 −B2

0)

8π
. (3.4)

Furthermore, the values of f at the endpoints B0k|ω|
2π

, k = 0, 1, 2, . . . , equal

f

(
B0k|ω|
2π

)
=
B0Λk|ω|

2π
− 2π

|ω|
B2

0k
2|ω|2

4π2
=
B0k|ω|
2π

(Λ− kB0) .
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Consider now an integer m satisfying 1 ≤ m ≤
[
Λ+B0

2B0

]
, then

f

(
B0|ω|
2π

([
Λ +B0

2B0

]
−m

))
=
B0|ω|
2π

([
Λ +B0

2B0

]
−m

)(
Λ−

([
Λ +B0

2B0

]
−m

)
B0

)
≤ B0|ω|

2π

(
Λ +B0

2B0

−m

)(
Λ−

(
Λ +B0

2B0

−m

)
B0 +

{
Λ + B0

2B0

}
B0

)
=

(Λ− (2m− 1)B0) |ω|
4π

(
Λ + (2m− 1)B0

2
+

{
Λ +B0

2B0

}
B0

)
=

(Λ2 − (2m− 1)2B2
0) |ω|

8π
+

(Λ− (2m− 1)B0)B0|ω|
4π

{
Λ +B0

2B0

}
≤ (Λ2 −B2

0)|ω|
8π

+
(Λ−B0)B0|ω|

4π

{
Λ +B0

2B0

}
. (3.5)

On the other hand, for integers satisfying k ≥
[
Λ+B0

2B0

]
one can check easily

that
4B2

0k
2 − 4B0Λk + Λ2 −B2

0 ≥ 0 ,

which means
B0k|ω|
2π

(Λ−B0k) ≤
(Λ2 −B2

0)|ω|
8π

. (3.6)

Combining inequalities (3.5) and (3.6) we conclude that at the interval end-

points, z = B0k|ω|
2π

, k = 0, 1, 2, . . . , the value of function f does not exceed
(Λ2−B2

0)|ω|
8π

+ (Λ−B0)B0|ω|
4π

{
Λ+B0

2B0

}
. Hence in view of (3.4) we have

f(z) ≤ (Λ2 −B2
0)|ω|

8π
+

(Λ−B0)B0|ω|
4π

{
Λ + B0

2B0

}
for any z ≥ 0. Combining this inequality above with the bound (3.2), we
arrive at the desired conclusion.

Remark 3.3. Using the Aizenman-Lieb procedure [AL78] and the fact that
inf σ(Hω(A)) ≥ B0 we can get also bound for other eigenvalue moments.
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Specifically, for any σ ≥ 3/2 Theorem 3.2 implies

N∑
j=1

(Λ− µj(A))
σ+1/2
+ =

Γ(σ + 3/2)

Γ(σ − 1/2)Γ(2)

∫ ∞

0

(Λ− t)
σ−3/2
+

N∑
j=1

(t− µj(A))+ dt

≤ Γ(σ + 3/2)

Γ(σ − 1/2)

∫ ∞

0

(Λ− t)
σ−3/2
+

(
(t2 −B2

0)+|ω|
8π

+
(t−B0)+B0|ω|

4π

{
Λ +B0

2B0

})
dt

≤ Γ(σ + 3/2)|ω|
Γ(σ − 1/2)

(
(Λ2 −B2

0)+
8π

+
(Λ−B0)+B0

4π

{
Λ + B0

2B0

})∫ ∞

0

(Λ− t)
σ−3/2
+ dt

=
Γ(σ + 3/2)Λσ−1/2|ω|
Γ(σ − 1/2)(2σ − 1)

(
(Λ2 −B2

0)+
4π

+
(Λ−B0)+B0

2π

{
Λ +B0

2B0

})
.

3.3 Comparison to earlier results

Given a set ω ⊂ R2 and a point x ∈ ω, we denote by

δ(x) = dist(x, ∂ω) = min
y∈∂ω

|x− y|

the distance of x to the boundary, then

R(ω) = sup
x∈ω

δ(x)

is the in-radius of ω. Furthermore, given a β > 0 we introduce

ωβ = {x ∈ ω : δ(x) < β} , β > 0 ,

and define the quantity

σ(ω) := inf
0<β<R(ω)

|ωβ|
β

. (3.7)

Using these notions and the symbols introduced above we can state the fol-
lowing result obtained in the work of two of us [KW13]:

12



Theorem 3.4. Let ω ⊂ R2 be an open convex domain, then for any Λ > B0

we have

N∑
j=1

(Λ− µj(A)) ≤
Λ2|ω|
8π

− 1

512π

σ2(ω)

|ω|
Λ (3.8)

−B2
0

(
1

2
−
{
Λ +B0

2B0

})2( |ω|
2π

− 1

128π

σ2(ω)

|ω|Λ

)
.

To make a comparison to the conclusions of the previous section, let us make
both B0 and Λ large keeping their ratio fixed. Specifically, we choose a Λ
from the interval (B0, 2B0) writing it as Λ = B0(1 + α) with an α ∈ (0, 1).

The second term on the right-hand side of (3.1) is then
α2B2

0 |ω|
8π

, and we want
to show that the difference between the bounds (3.8) and (3.1) tends to plus
infinity as B0 → ∞. To this aim, we write Λ = B0(1+α) with an α ∈ (0, 1),
then

(Λ2 −B2
0)|ω|

8π
+

(Λ−B0)B0|ω|
4π

{
Λ +B0

2B0

}
=
B2

0 |ω|
4π

α(1 + α) . (3.9)

On the other hand, a short calculation shows that for our choice of B0 and
Λ the right-hand side of the bound (3.8) becomes

=
Λ2|ω|
8π

− B2
0 |ω|
2π

(
1

2
− α

2

)2

+
Λ

512π

σ2(ω)

|ω|

(
−1 +

(1− α)2

(1 + α)2

)
,

in particular, after another easy manipulation we find that for large B0 this

expression behaves as
B2

0 |ω|
2π

α + O(B0). Comparing the two bounds we see
that

rhs of (3.8)− rhs of (3.1) =
B2

0 |ω|
4π

α(1− α) +O(B0) (3.10)

tending to plus infinity as B0 → ∞. At the same time,

rhs of (3.8)

rhs of (3.1)
=

2

1 + α
+O(B−1

0 ) (3.11)

illustrating that the improvement represented by Theorem 3.2 is most pro-
nounced for eigenvalues near the spectral threshold.
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4 Examples: a two-dimensional disc

Spectral analysis simplifies if the domain ω allows for a separation of vari-
ables. In this section we will discuss two such situations.

4.1 Constant magnetic field

We suppose that ω is a disc and the applied magnetic field is homogeneous.
As usual in cases of a radial symmetry, the problem can be reduced to de-
generate hypergeometric functions. Specifically, we will employ the Kummer
equation

r
d2ω

dr2
+ (b− r)

dω

dr
− aω = 0 (4.1)

with real valued parameters a and b which has two linearly independent
solutions M(a, b, r) and U(a, b, r), the second one of which has a singularity
at zero [AS64].

Given an α > 0, we denote by
{
ak|m|,α

}
k∈N the set of the first parameter

values such thatM(ak|m|,α, |m|+1, α) = 0. Since for any a, b ≥ 0 the function

M(a, b, r) has no positive zeros [AS64], all the ak|m|,α are negative. Then the
following claim is valid.

Theorem 4.1. Let Hω(A) be the magnetic Dirichlet Laplacian corresponding
to a constant magnetic field B0 and ω being the two dimensional disc with
center at the origin and radius r0 > 0. The eigenvalues of Hω(A) coincides
with {

B0 +B0

(
|m| −m− 2ak|m|,

√
B0 r0/

√
2

)}
m∈Z, k∈N

.

Proof. We employ the standard partial wave decomposition – see, e.g., [Er96]

L2(ω) =
∞⊕

m=−∞

L2((0, r0), 2πr dr) , (4.2)

and Hω(A) =
⊕∞

m=−∞ hm, where

hm := − d2

dr2
− 1

r

d

dr
+

(
m

r
− B0r

2

)2

. (4.3)

The last named operator differs by mB0 from the operator

h̃m = − d2

dr2
− 1

r

d

dr
+
m2

r2
+
B2

0r
2

4
(4.4)

14



on the interval (0, r0) with Dirichlet boundary condition at the endpoint r0.
Looking for solutions to the eigenvalue equation

h̃mu = λu (4.5)

we employ the Ansatz

u(r) = r|m|e−B0r2/4v(r) ,

where v ∈ L2((0, r0), rdr). Computing the first two derivatives we get

h̃mu =

(
−v′′ − 2|m|+ 1

r
v′ +B0(|m|+ 1)v(r) +B0rv

′
)
r|m|e−B0r2/4,

hence the equation (4.5) can rewritten as

v′′ +

(
2|m|+ 1

r
−B0r

)
v′ − (B0(|m|+ 1)− λ)v = 0 . (4.6)

Using the standard substitution we pass to the function g(r) = v
( √

2r√
B0

)
belonging to L2 (0, B0r

2
0/2). Expressing the derivatives of v in terms of those

of g, one can rewrite equation (4.6) as

rg′′(r) + (|m|+ 1− r) g′ − ((|m|+ 1)B0 − λ)

2B0

g(r) = 0 ,

which is the Kummer equation with b = |m| + 1 and a = (|m|+1)B0−λ
2B0

. The
mentioned singularity of its solution U(a, b, r) for small r, namely [AS64]

U(a, b, r) =
Γ(b− 1)

Γ(a)
r1−b +O(rb−2) for b > 2

and

U(a, 2, z) =
1

Γ(a)

1

r
+O(ln r) , U(a, 1, r) = − 1

Γ(a)
ln r +O(1)

means that u(r) = r|m|e−B0r2/4U
(

(|m|+1)B0−λ
2B0

, |m|+ 1, B0 r2

2

)
does not belong

to H1
0((0, r0), rdr). Consequently, the sought solution of (4.5) has the form

r|m|e−B0r2/4M

(
(|m|+ 1)B0 − λ

2B0

, |m|+ 1,
B0 r

2

2

)
,

15



and in view of the Dirichlet boundary conditions at r0 we arrive at the spec-
tral condition

M

(
(|m|+ 1)B0 − λ

2B0

, |m|+ 1,
B0 r

2
0

2

)
= 0 .

which gives
{
(|m|+ 1)B0 − 2B0a

k
|m|,

√
B0 r0/

√
2

}
m∈Z, k∈N

as the eigenvalue set;

returning to the original operator hm we get the claim of the theorem.

4.2 Radial magnetic field

If the magnetic field is non-constant but still radially symmetric, in general
one cannot find the eigenvalues explicitly but it possible to find a bound to
the eigenvalue moments in terms of an appropriate radial two-dimensional
Schrödinger operator.

Theorem 4.2. Let Hω(A) be the magnetic Dirichlet Laplacian Hω(A) on a
disc ω of radius r0 > 0 centered at the origin with a radial magnetic field
B(x) = B(|x|). Assume that

α :=

∫ r0

0

sB(s) ds <
1

2
. (4.7)

Then for any Λ, σ ≥ 0, the following inequality holds true

tr(Λ−Hω(A))
σ
+ ≤

(
1√

1− 2α
+ sup

n∈N

{
n√

1− 2α

})
(4.8)

× tr

Λ−

−∆ω
D +

1

x2 + y2

(∫ √
x2+y2

0

sB(s) ds

)2
σ

+

.

In particular, the estimate (4.8) implies

inf σ(Hω(A)) ≥ inf σ

−∆ω
D +

1

x2 + y2

(∫ √
x2+y2

0

sB(s) ds

)2
 .

Proof. Let us again employ the partial-wave decomposition (4.2), with the
angular component (4.3) replaced by

hm := − d2

dr2
− 1

r

d

dr
+

(
m

r
− 1

r

∫ r

0

sB(s) ds

)2

, (4.9)
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and inspect the eigenvalues of this operator. Obviously, for m ≤ 0 we have

hm ≥ − d2

dr2
− 1

r

d

dr
+
m2

r2
+

1

r2

(∫ r

0

sB(s) ds

)2

, (4.10)

while for any m > 0 we can use the inequality

2|m|
r2

∫ r

0

sB(s) ds ≤ 2m2

r2

∫ r

0

sB(s) ds

which in view of the assumption (4.7) yields

hm ≥ − d2

dr2
− 1

r

d

dr
+ (1− 2α)

m2

r2
+

1

r2

(∫ r

0

sB(s) ds

)2

.

Next we divide the set of natural numbers into groups such that for all the
elements of any fixed group the entire part

[√
1− 2αm

]
is the same, and we

estimate the operator hm from below by

hm ≥ − d2

dr2
− 1

r

d

dr
+

[√
1− 2αm

]2
r2

+
1

r2

(∫ r

0

sB(s) ds

)2

. (4.11)

Since the number of elements in each group is bounded from above by the

sum 1√
1−2α

+ supn∈N

{
n√

1−2α

}
, using (4.10) and (4.11) one infers that

tr(Λ−Hω(A))
σ
+ ≤

(
1√

1− 2α
+ sup

n∈N

{
n√

1− 2α

})
×

∞∑
m=−∞

tr

(
Λ−

(
− d2

dr2
− 1

r

d

dr
+
m2

r2
+

1

r2

(∫ r

0

sB(s) ds

)2
))σ

+

=

(
1√

1− 2α
+ sup

n∈N

{
n√

1− 2α

})
× tr

(
Λ−

∞⊕
m=−∞

(
− d2

dr2
− 1

r

d

dr
+
m2

r2
+

1

r2

(∫ r

0

sB(s) ds

)2
))σ

+

with any σ, Λ ≥ 0. However, the direct sum in the last expression is nothing
else than a partial-wave decomposition of the two-dimensional Schrödinger

operator with the radial potential V (r) = 1
r2

(∫ r

0
sB(s) ds

)2
and the Dirichlet

condition at the boundary of the disc; this yields the desired claim.
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5 Application to the three-dimensional case

Let us return now to our original motivation of estimating eigenvalues due to
confinement in a three-dimensional ‘bottle’. One can employ inequality (2.2)
in combination with the results of the previous sections to improve in some
cases the spectral bound by taking the magnetic field into account instead
of just dropping it.

Let Ω ⊂ R3 with the bounded x3 cross sections. The class of fields to
consider are those of the form B(x) = (B1(x), B2(x), B3(x3)), that is, those
for which the component B3 perpendicular to the cross section depends on
the variable x3 only. Such fields certainly exist, for instance, one can think of
the situation when the ‘bottle’ is placed into a homogeneous magnetic field.
The field is induced by an appropriate vector potential A(·) : Ω → R3,

B(x) = (B1(x), B2(x), B3(x3)) = rotA(x),

and we consider the magnetic Dirichlet Laplacians

HΩ(A) = (i∇x − A(x))2 on L2(Ω).

We use the notion introduced in Sec. 2. In view of the variational principle
we know that the ground-state eigenvalue of H̃ω(x3)(Ã) cannot fall below the
first Landau level B3(x3). Consequently, integrating with respect to x3 in the
formula (2.2) one can drop for all the x3 for which B3(x3) ≥ Λ. Combining
this observation with Remark 3.3 we get

tr(Λ−HΩ(A))
σ
+ ≤ Γ(σ + 3/2)Λσ−1/2

4π(2σ − 1)Γ(σ − 1/2)
Lcl

1,σ

∫
{x3:B3(x3)<Λ}

|ω(x3)|

×
[(
Λ2 −B3(x3)

2
)
+ 2B3

(
Λ−B3(x3)

) {Λ +B3

2B3

}]
dx3

for any σ ≥ 3/2.

Example 5.1. (circular cross section) Let Ω be a three-dimensional cusp
with a circular cross section ω(x3) of radius r(x3) such that r(x3) → 0 as
x3 → ∞. Then the above formula in combination with Theorem 4.1 yields

tr(Λ−HΩ(A))
σ
+ ≤ Lcl

1,σ

∑
m∈Z, k∈N

∫
R

(
Λ−B3(x3)

−B3(x3)

(
|m| −m− 2ak

|m|,
√

B3(x3)r0(x3)/
√
2

))σ+1/2

+

dx3
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for any σ ≥ 3/2. The particular case B(x) = {0, 0, B} applies to a cusp-
shaped region placed to a homogeneous field parallel to the cusp axis.

Example 5.2. (radial magnetic field) Consider the same cusp-shaped region
Ω in the more general situation when the third field component can depend
on the radial variable, B(x) = (B1(x), B2(x), B3(x

2
1+x22, x3)), assuming that

sup
x3∈R

α(x3) = sup
x3∈R

∫ r0(x3)

0

sB3(s, x3) ds <
1

2
.

Then the dimensional reduction in view of Theorem 4.2 gives

tr(Λ−HΩ(A))
σ
+ ≤ Lcl

1,σ

∫
R

(
1√

1− 2α(x3)
+ sup

n∈N

{
n√

1− 2α(x3)

})

× tr

Λ−

−∆
ω(x3)
D +

1

x21 + x22

(∫ √
x2
1+x2

2

0

sB3(s, x3) ds

)2
σ+1/2

+

for any σ ≥ 3/2.

6 Spectral estimates for eigenvalues from

perturbed magnetic field

Now we change the topic and consider situations when the discrete spectrum
comes from the magnetic field alone. We are going to demonstrate a Berezin-
type estimate for the magnetic Laplacian on R2 with the field which is a radial
and local perturbation of a homogeneous one. We consider the operator
H(B) in L2(R2) defined as follows,

H(B) = −∂2x + (i∂y + A2)
2, A =

(
0, B0 x− f(x, y)

)
, (6.1)

with f given by

f(x, y) = −
∫ ∞

x

g(
√
t2 + y2) dt .

with g : R+ → R+; the operator H(B) is then associated with the magnetic
field

B = B(x, y) = B0 − g(
√
x2 + y2 ) .
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Since have chosen the vector potential in such a way that the unperturbed
part corresponds to the Landau gauge, we have

H(B0) = −∂2x + (i∂y +B0x)
2.

Using a partial Fourier transformation, it is easy to conclude from here that
the corresponding spectrum consists of identically spaced eigenvalues of infi-
nite multiplicity, the Landau levels,

σ(H(B0)) = {(2n− 1)B0, n ∈ N } . (6.2)

It is well known that inf σess(H(B)−B) = 0, hence the relative compactness
of B0 −B with respect to H(B)−B0 in L2(R2) implies

inf σess(H(B)) = B0.

We have to specify the sense in which the magnetic perturbation is local. In
the following we will suppose that

(i) the function g ∈ L∞(R+) is non-negative and such that both f and
∂x2f belong to L∞(R2), and

lim
x2
1+x2

2→∞

(
|∂x2f(x1, x2)|+ |f(x1, x2)|

)
= 0 .

(ii) ∥g∥∞ ≤ B0 .

Let us next rewrite the vector potentials A0 and A associated to B0 and B
in the polar coordinates. Passing to the circular gauge we obtain

A0 = (0, a0(r)) , A = (0, a(r)) , (6.3)

with

a0(r) =
B0r

2
, a(r) =

B0r

2
− 1

r

∫ r

0

g(s) s ds . (6.4)

Hence the operators H(B0) and H(B) are associated with the closures of the
quadratic forms in L2(R+, rdr) with the values

Q(B0)[u] =

∫ 2π

0

∫ ∞

0

(
|∂ru|2 + | ir−1∂θu+ a0(r)u|2

)
r dr dθ (6.5)
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and

Q(B)[u] =

∫ 2π

0

∫ ∞

0

(
|∂ru|2 + | ir−1∂θu+ a(r)u|2

)
r dr dθ , (6.6)

respectively, both defined on C∞
0 (R+). Furthermore, for every k ∈ N0 we

introduce the following auxiliary potential,

Vk(r) :=
2k

r
(a0(r)− a(r)) + a2(r)− a20(r) , (6.7)

and the functions

ψk(r) =

√
B0

Γ(k + 1)

(
B0

2

)k/2

rk exp

(
−B0 r

2

4

)
. (6.8)

Finally let us denote by

α =

∫ ∞

0

g(r) r dr (6.9)

the flux associated with the perturbation; recall that in the rational units we
employ the flux quantum value is 2π. Now we are ready to state the result.

Theorem 6.1. Let the assumptions (i) and (ii) be satisfied, and suppose
moreover that α ≤ 1. Put

Λk =
(
ψk,
(
Vk( ·)

)
− ψk

)
L2(R+,rdr)

. (6.10)

Then the inequality

tr(H(B)−B0)
γ
− ≤ 2γ

∞∑
k=0

Λγ
k , γ ≥ 0 , (6.11)

holds true whenever the right-hand side is finite.

Remark 6.2. For a detailed discussion of the asymptotic distribution of
eigenvalue of the operator H(B) we refer to [RT08].

Proof. We are going to employ the fact that both A0 and A are radial func-
tions, see (6.3), and note that by the partial-wave decomposition

tr (H(B)−B0)
γ
− =

∑
k∈Z

tr (hk(B)−B0)
γ
− , (6.12)
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where the operators hk(B) in L2(R+, rdr) are associated with the closures of
the quadratic forms

Qk[u] =

∫ ∞

0

(
|∂ru|2 +

∣∣∣∣kr u− a(r)u

∣∣∣∣2
)
r dr ,

defined originally on C∞
0 (R+), and acting on their domain as

hk(B) = −∂2r −
1

r
∂r +

(
k

r
− a(r)

)2

.

In view of (6.7) it follows that

hk(B) = hk(B0) + Vk(r) ,

where

hk(B0) = −∂2r −
1

r
∂r +

(
k

r
− a0(r)

)2

.

To proceed we need to recall some spectral properties of the two-dimensional
harmonic oscillator,

Hosc = −∆+
B2

0

4
(x2 + y2) in L2(R2) .

It is well known that the spectrum of Hosc consists of identically spaced
eigenvalues of a finite multiplicity,

σ
(
Hosc

)
= {nB0, n ∈ N } , (6.13)

where the first eigenvalue B0 is simple and has a radially symmetric eigen-
function. The latter corresponds to the term with k = 0 in the partial-wave
decomposition of Hosc, which implies

σ
(
Hosc

)
=
∪
k∈Z

σ

(
−∂2r −

1

r
∂r +

k2

r2
+
B2

0 r
2

4

)
,

where the operators in the brackets at the right-hand side act in L2(R+, rdr).
Hence in view of (6.13) we have

inf
k ̸=0

σ

(
−∂2r −

1

r
∂r +

k2

r2
+
B2

0 r
2

4

)
≥ 2B0 . (6.14)
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On the other hand, for k < 0 it follows from (ii), (6.7) and (6.9) that

Vk(r) =
2k

r

∫ r

0

g(s) s ds−B0

∫ r

0

g(s) s ds+
1

r2

(∫ r

0

g(s) s ds

)2

≥ kB0−B0 .

By (6.14) we thus obtain the following inequality which holds in the sense of
quadratic forms on C∞

0 (R+) for any k < 0,

hk(B) = hk(B0) + Vk(r) = −∂2r −
1

r
∂r +

k2

r2
+
B2

0 r
2

4
− kB0 + Vk(r)

≥ −∂2r −
1

r
∂r +

k2

r2
+
B2

0 r
2

4
− αB0

≥ (2− α)B0 .

Since α ≤ 1 holds by hypothesis, this implies that

tr (H(B)−B0)
γ
− =

∑
k∈Z

tr (hk(B)−B0)
γ
− =

∑
k≥0

tr (hk(B)−B0)
γ
− , (6.15)

see (6.12). In order to estimate tr (hk(B)−B0)
γ
− for k ≥ 0 we employ

Πk = (· , ψk)L2(R+,rdr) ψk ,

the projection onto the subspace spanned by ψk, and note that

ψk ∈ ker(hk(B0)−B0) , ∥ψk∥L2(R+,rdr) = 1 ∀ k ∈ N ∪ {0} . (6.16)

Let Qk = 1 − Πk. From the positivity of
(
Vk(·)

)
− it follows that for any

u ∈ C∞
0 (R+) it holds(

u,
(
Πk

(
Vk(·)

)
−Qk +Qk

(
Vk(·)

)
−Πk

)
u
)

≤
(
u,Πk

(
Vk(·)

)
−Πk u

)
+
(
u,Qk

(
Vk(·)

)
−Qk u

)
, (6.17)

where the scalar products are taken in L2(R+, rdr). From (6.17) we infer
that

hk(B)−B0 = (Πk +Qk) (hk(B0)−B0 + Vk(·)) (Πk +Qk)

≥ (Πk +Qk)
(
hk(B0)−B0 −

(
Vk(·)

)
−

)
(Πk +Qk)

≥ Πk

(
hk(B0)−B0 − 2

(
Vk(·)

)
−

)
Πk

+Qk

(
hk(B0)−B0 − 2

(
Vk(·)

)
−

)
Qk . (6.18)
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The operator hk(B0) has for each k ∈ N0 discrete spectrum which consists
of simple eigenvalues. Moreover, from the partial-wave decomposition of the
operator H(B0) we obtain

σ(H(B0)) = {(2n− 1)B0, n ∈ N} =
∪
k∈Z

σ(hk(B0)) ,

see (6.2). It means that

∀ k ∈ Z : σ(hk(B0)) ⊂ {(2n− 1)B0, n ∈ N} ,

and since ψk is an eigenfunction of hk(B0) associated to the simple eigenvalue
B0, see (6.16), it follows that

Qk (hk(B0)−B0)Qk ≥ 2B0Qk , ∀ k ∈ N ∪ {0} . (6.19)

On the other hand, by (6.7) and (6.9) we infer

sup
r>0

(
Vk(r)

)
− ≤ αB0 ∀ k ∈ N ∪ {0}.

The last two estimates thus imply that

Qk

(
hk(B0)−B0 − 2

(
Vk(·)

)
−

)
Qk ≥ Qk (2B0(1− α))Qk ≥ 0 ,

where we have used the assumption α ≤ 1. With the help of (6.18) and the
variational principle we then conclude that

tr (hk(B)−B0)
γ
− ≤ tr

(
Πk

(
hk(B0)−B0 − 2

(
Vk(·)

)
−

)
Πk

)γ
−

= tr
(
−2Πk

(
Vk(·)

)
−Πk

)γ
−
= 2γ tr

(
Πk

(
Vk(·)

)
−Πk

)γ
= 2γ

(
ψk,
(
Vk(·)

)
− ψk

)γ
L2(R+,rdr)

= 2γ Λγ
k ,

see (6.10). To complete the proof it now remains to apply equation (6.15).

7 Three dimensions: a magnetic ‘hole’

Let us return to the three-dimensional situation and consider a magnetic
HamiltonianH(B) in L2(R3) associated to the magnetic field B : R3 → R3 re-
garded as a perturbation of a homogeneous magnetic field of intensity B0 > 0
pointing in the x3-direction,

B(x1, x2, x3) = (0, 0, B0)− b(x1, x2, x3) , (7.1)
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with the perturbation b of the form

b(x1, x2, x3) =

(
−ω′(x3) f(x1, x2), 0, ω(x3) g

(√
x21 + x22

))
.

Here ω : R → R+ , g : R+ → R+ and

f(x1, x2) = −
∫ ∞

x1

g

(√
t2 + x22

)
dt . (7.2)

The resulting field B thus has the component in the x3-direction given the
B0 plus a perturbation which is a radial field in the x1, x2−plane with a
x3−dependent amplitude ω(x3). The first component of B then ensures that
∇ · B = 0, which is required by the Maxwell equations which include no
magnetic monopoles; it vanishes if the field is x3-independent.

A vector potential generating this field can be chosen in the form

A(x1, x2, x3) = (0, B0 x1 − ω(x3) f(x1, x2), 0) ,

which reduces to Landau gauge in the unperturbed case, and consequently,
the operator H(B) acts on its domain as

H(B) = −∂2x1
+ (i∂x2 +B0 x1 − ω(x3) f(x1, x2))

2 − ∂2x3
. (7.3)

We have again to specify the local character of the perturbation: we will
suppose that

(i) the function g ∈ L∞(R+) is non-negative, such that f and ∂x2f belong
to L∞(R2), and

lim
x2
1+x2

2→∞

(
|∂x2f(x1, x2)|+ |f(x1, x2)|

)
= 0 ,

(ii) ω ≥ 0, ω ∈ L2(R) ∩ L∞(R), and

∥ω∥∞ ∥g∥∞ ≤ B0 , lim
|x3|→∞

ω(x3) = 0 .

Lemma 7.1. The assumptions (i) and (ii) imply σess(H(B)) = [B0,∞).
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Proof. We will show that the essential spectrum of H(B) coincides with the
essential spectrum of the operator

H(B0) = −∂2x1
+ (i∂x2 +B0 x1)

2 − ∂2x3
,

which is easy to be found, we have σ(H(B0)) = σess(H(B0)) = [B0,∞). Let

T = H(B)−H(B0) = −2ωf (i∂x2 +B0x1)− iω ∂x2f + ω2f 2.

From assumption (i) in combination with [Da, Thm. 5.7.1] it follows that the
operator (ω ∂x2f +ω

2f 2)(−∆+1)−1 is compact on L2(R3). The diamagnetic
inequality and [Pi79] thus imply that the sum iω ∂x2f + ω2f 2 is relatively
compact with respect to H(B0).

As for the first term of the perturbation T , we note that since (i∂x2+B0x1)
commutes with H(B0), it holds

ωf (i∂x2 +B0x1) (H(B0) + 1)−1

= ωf (H(B0) + 1)−1/2 (i∂x2 +B0x1) (H(B0) + 1)−1/2. (7.4)

In the same way as above, with the help of [Da, Thm.5.7.1], diamagnetic
inequality, and [Pi79], we conclude that ω f (H(B0) + 1)−1/2 is compact on
L2(R3). On the other hand, (i∂x2 + B0x1) (H(B0) + 1)−1/2 is bounded on
L2(R3). As their product the operator (7.4) is compact; by Weyl’s theorem
we then have σess(H(B)) = σess(H(B0)) = [B0,∞).

7.1 Lieb-Thirring-type inequalities for H(B)

Now we are going to formulate Lieb-Thirring-type inequalities for the nega-
tive eigenvalues of H(B)−B0 in three different cases corresponding to differ-
ent types of decay conditions on the function g. Let us start from a general
result. We denote by

α(x3) = ω(x3)

∫ ∞

0

g(r) r dr

the magnetic flux (up to the sign) through the plane {(x1, x2, x3) : (x1, x2) ∈
R2} associated with the perturbation. From Theorem 6.1 and inequality
(2.2) we make the following conclusion.
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Theorem 7.2. Let assumptions (i) and (ii) be satisfied. Suppose, moreover,
that supx3

α(x3) ≤ 1 and put

Λk(x3) =
(
ψk,
(
Vk(·;x3)

)
− ψk

)
L2(R+,rdr)

. (7.5)

Then the inequality

tr (H(B)−B0)
σ
− ≤ Lcl

σ,1 2σ+ 1
2

∫
R

∞∑
k=0

Λk(x3)
σ+ 1

2 dx3 , σ ≥ 3

2
, (7.6)

holds true whenever the right-hand side is finite.

7.1.1 Perturbations with a power-like decay

Now we come to the three cases mentioned above, stating first the results
and then presenting the proofs. We start from magnetic fields (7.1) with the
perturbation g which decays in a powerlike way. Specifically, we shall assume
that

0 ≤ g(r) ≤ B0 (1 +
√
B0 r)

−2β , β > 1 . (7.7)

We have included the factor
√
B0 on the right hand side of (7.7) having

in mind that B
−1/2
0 is the Landau magnetic length which defines a natural

length unit in our model.

For any β > 1 and γ > max
{

1
β−1

, 2
}
we define the number

K(β, γ) = 2−γ +
∞∑
k=1

(
Γ ((k + 1− β)+)

Γ(k)
+

1

2
√
2πk

)γ

, (7.8)

and recall also the classical Lieb-Thirring constants in one dimension,

Lcl
1,σ =

Γ(σ + 1)

2
√
π Γ(σ + 3/2)

, σ > 0 . (7.9)

Theorem 7.3. Assume that g satisfies (7.7) and that ∥ω∥∞ ≤ 2(β − 1).
Then

tr (H(B)−B0)
σ
− ≤ Lcl

1,σ K
(
β, σ +

1

2

)( 2B0

β − 1

)σ+ 1
2
∫
R
ω(x3)

σ+ 1
2 dx3

holds true for all

σ > max

{
3

2
,
3− β

2β − 2

}
. (7.10)
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Remark 7.4. Since ω ∈ L∞(R) ∩ L2(R), it follows that ω ∈ Lσ+ 1
2 (R) for

any σ ≥ 3/2. Note also that by the Stirling formula we have

Γ (k + 1− β)

Γ(k)
∼ k1−β as k → ∞ .

Hence the constant K
(
β, σ + 1

2

)
is finite for any σ satisfying (7.10).

7.1.2 Gaussian decay

Next we assume that the perturbation g has a Gaussian decay, in other words

0 ≤ g(r) ≤ B0 e
−εB0r2 , ε > 0. (7.11)

Theorem 7.5. Assume that g satisfies (7.11) and that ∥ω∥∞ ≤ 2ε. Then
for any σ > 3/2 it holds

tr (H(B)−B0)
σ
− ≤ Lcl

σ,1

(
B0

ε

)σ+ 1
2

G(ε, σ)

∫
R
ω(x3)

σ+ 1
2 dx3 ,

where

G(ε, σ) = 1 +
∞∑
k=1

(
(1 + 2ε)−k +

1

2
√
2πk

)σ+ 1
2

. (7.12)

7.1.3 Perturbations with a compact support

Let D be a circle of radius R centered at the origin and put

g(r) =

{
B0 r ≤ R
0 r > R

. (7.13)

Theorem 7.6. Assume that g satisfies (7.13) with R such that B0R
2 ≤ 2.

Suppose moreover that ∥ω∥∞ ≤ 1. Then for any σ > 3/2 it holds

tr (H(B)−B0)
σ
− ≤ Lcl

σ,1 J
(
B0 , σ

)
B

σ+ 1
2

0

∫
R
ω(x3)

σ+ 1
2 dx3 , (7.14)

where

J(B0, σ) =
(
B0R

2
)σ+ 1

2

1 +
∞∑
k=1

((
B0R

2

2

)k+1
1

k!
+

1

2
√
2πk

)σ+ 1
2

 .

(7.15)
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7.2 The proofs

Note that the assumptions of these theorems ensure that supx3
α(x3) ≤ 1,

hence in all the three cases we may apply Theorem 6.1 and, in particular,
the estimate (7.6). To this note it is useful to realize that by (6.4), (6.7) and
(6.9) we have

Vk(r;x3) = −α(x3)B0 +
2α(x3)k

r2
− 2k ω(x3)

r2

∫ ∞

r

g(s) s ds

+B0 ω(x3)

∫ ∞

r

g(s) s ds+
ω2(x3)

r2

(∫ r

0

g(s) s ds

)2

. (7.16)

Consequently, we obtain a simple upper bound on the negative part of Vk,(
Vk(r; x3)

)
− ≤ 2k ω(x3)

r2

∫ ∞

r

g(s) s ds+ α(x3)

(
B0 −

2k

r2

)
+

(7.17)

for all k ∈ N ∪ {0}. For k = 0 we clearly we have

Λ0(x3) ≤ α(x3)B0 , (7.18)

by (6.16). In order to estimate Λk(x3) with k ≥ 1 we denote by λk(x3) the
contribution to Λk(x3) coming from the first term on the right-hand side of
(7.17), i.e.

λk(x3) = 2ω(x3) k

∫ ∞

0

ψ2
k(r)

(∫ ∞

r

g(s) s ds

)
r−1 dr . (7.19)

Before coming to the proofs we need an auxiliary result.

Lemma 7.7. For any k ∈ N it holds

Λk(x3) ≤ λk(x3) +
α(x3)B0√

2πk
.

Proof. In view of (7.5), (7.17), and (7.19) the claim will follow if we show
that ∫ ∞

0

ψ2
k(r)

(
B0 −

2k

r2

)
+

r dr ≤ B0√
2πk

. (7.20)

29



Let rk =
√

2k
B0
. Using (6.8) and the substitution s = B0r2

2
we then find∫ ∞

0

ψ2
k(r)

(
B0 −

2k

r2

)
+

r dr = B0

∫ ∞

rk

ψ2
k(r) r dr − 2k

∫ ∞

rk

ψ2
k(r) r

−1 dr

=
B0

Γ(k + 1)

∫ ∞

k

e−s sk ds− B0

Γ(k)

∫ ∞

k

e−s sk−1 ds .

Integration by parts gives∫ ∞

k

e−s sk ds = e−k kk + k

∫ ∞

k

e−s sk−1 ds ,

hence ∫ ∞

0

ψ2
k(r)

(
B0 −

2k

r2

)
+

r dr =
e−k kk B0

Γ(k + 1)
,

and inequality (7.20) follows from the Stirling-type estimate [AS64, Eq. 6.1.38]

Γ(k + 1) = k! ≥
√
2π k k+ 1

2 e−k , k ∈ N ;

this concludes the proof.

Proof of Theorem 7.3. In view of (7.18) and Lemma 7.7 it suffices to
estimate λk(x3) in a suitable way from above for k ≥ 1. Using (7.7) we find∫ ∞

0

g(r) r dr ≤ B0

∫ ∞

0

(1 +
√
B0 r)

−2β r dr ≤ B0

∫ ∞

0

(1 +
√
B0 r)

1−2β dr

=

∫ ∞

0

(1 + s)1−2β ds =
1

2(β − 1)
,

which implies

α(x3) ≤
ω(x3)

2(β − 1)
. (7.21)

Moreover, by virtue of (7.7)∫ ∞

r

g(s) s ds ≤
√
B0

∫ ∞

r

(1 +
√
B0 s)

1−2β ds =
1

2β − 2
(1 +

√
B0 r)

2−2β.
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Assume first that 1 ≤ k ≤ β− 1. In this case a combination of (6.8) and the
last equation gives

λk(x3) ≤
ω(x3)B0

(β − 1) Γ(k)

(
B0

2

)k ∫ ∞

0

e−
B0r

2

2 r2k−1(1 +
√
B0 r)

2−2β dr

=
ω(x3)B0

(β − 1) Γ(k)

∫ ∞

0

e−ssk−1 (1 +
√
2s)2−2β ds

≤ ω(x3)B0

(β − 1) Γ(k)

∫ ∞

0

e−s ds =
ω(x3)B0

(β − 1) Γ(k)
, (7.22)

where we have used again the substitution s = B0r2

2
.

On the other hand, for k > β − 1 we have

λk(x3) ≤
ω(x3)B0

(β − 1) Γ(k)

(
B0

2

)k ∫ ∞

0

e−
B0r

2

2 r2k−1(1 +
√
B0 r)

2−2β dr

≤ ω(x3)B0

(β − 1) Γ(k)

(
B0

2

)k ∫ ∞

0

e−
B0r

2

2 r2k−1(B0 r
2)1−β dr

≤ ω(x3)B0

(β − 1) Γ(k)

∫ ∞

0

e−ssk−β ds =
ω(x3)B0 Γ(k + 1− β)

(β − 1) Γ(k)
.

This together with equations (7.21), (7.18), (7.22) and Lemma 7.7 shows that

∞∑
k=0

Λγ
k(x3) ≤ K(β, γ)

(
B0

β − 1

)γ

ω(x3)
γ ,

with the constant K(β, γ) given by (7.8). The claim now follows from (7.6)
upon setting γ = σ + 1

2
.

Proof of Theorem 7.5. We proceed as in the proof of Theorem 7.3 and
use equation (7.18) and Lemma 7.7. Since

α(x3) ≤ ω(x3)B0

∫ ∞

0

B0 e
−εB0r2 r dr =

ω(x3)

2ε
(7.23)

holds in view of (7.11), for k = 0 we get

Λ0(x3) ≤ α(x3)B0 ≤ ω(x3)B0

2ε
.
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On the other hand,∫ ∞

r

g(s) s ds ≤ B0

∫ ∞

r

e−εB0s2 s ds =
1

2ε
e−εB0r2 .

Hence using the substitution s = B0r2

2
(1 + 2ε), we obtain

λk(z) ≤
ω(x3)B0

εΓ(k)

(
B0

2

)k ∫ ∞

0

e−
B0r

2

2
(1+2ε) r2k−1 dr

=
ω(x3)B0

2ε

(1 + 2ε)−k

Γ(k)

∫ ∞

0

e−s sk−1 ds =
ω(x3)B0

2ε
(1 + 2ε)−k

for any k ≥ 1. Summing up gives

∞∑
k=0

Λγ
k(x3) ≤

(
ω(x3)B0

2 ε

)γ
(
1 +

∞∑
k=1

(
(1 + 2ε)−k +

1

2
√
2πk

)γ
)
.

Theorem 6.1 applied with γ = σ + 1
2
then completes the proof.

Proof of Theorem 7.6. In this case we have

α(x3) = ω(x3)
B0R

2

2
.

Inequality (7.18) thus implies

Λ0(z) ≤ ω(z)
B2

0 R
2

2
.

For k ≥ 1 we note that in view of (7.13)∫ ∞

r

g(s) s ds =


1
2
(R2 − r2) r ≤ R

0 r > R

Hence from (6.8) and (7.19) we conclude that

λk(z) ≤ B2
0 R

2 ω(x3)

Γ(k)

(
B0

2

)k ∫ R

0

e−
B0r

2

2 r2k−1 dr

≤ B2
0 R

2 ω(x3)

2Γ(k)

∫ B0R
2

2

0

e−s sk−1 ds

≤ B2
0 R

2 ω(z)

2kΓ(k)

(
B0R

2

2

)k

=
B0 ω(x3)

Γ(k + 1)

(
B0R

2

2

)k+1

, k ∈ N .
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This in combination with the above estimate on Λ0(x3) and Lemma 7.7 im-
plies

∞∑
k=0

Λγ
k(x3) ≤ ω(x3)

γ Bγ
0

(
B0R

2

2

)γ
(
1 +

∞∑
k=1

((
B0R

2

2

)k
1

k!
+

1√
2πk

)γ )
,

and the claim follows again by applying Theorem 6.1 with γ = σ + 1
2
.
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