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Abstract. We prove the global well-posedness in H1(R2,CN) for certain systems of the
critical Nonlinear Schrödinger equations coupled linearly or nonlinearly with nonlinear su-
percritical dissipation terms, generalizing the previous result of [8] obtained for a single
equation of this kind.
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1 Introduction

There has been a substantial amount of work on nonlinear partial differential equations
involving dissipative terms accomplished in recent years. Article [8] is devoted to the
studies of the focusing, critical in two dimensions (with the cubic nonlinearity) Nonlinear
Schrödinger (NLS) equation. It was established that when linear or nonlinear dissipative
terms are incorporated in such an equation, it becomes globally well -posed in H1(R2).
Work [5] is a numerical approach to the studies of singular solutions of the critical and
supercritical NLS equation with the nonlinear dissipation. In paper [1] the authors show
the global well-posedness for the cubic NLS with nonlinear damping when the external
quadratic confining potential is present. The present article is the generalization of the ideas
of [8] to the case of certain systems of NLS equations with the cubic nonlinearities, which
are critical in two dimensions. We show the arrest of collapse occuring when the supercritical
nonlinear dissipation is involved in such systems of equations. Apparently, such an effect has
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similarities with the enhanced binding in nonrelativistic Quantum Electrodynamics (QED)
(see e.g. [2], [4], [6]). It is well known that in R3 the Schrödinger operator with a
negative, shallow, short-range potential does not possess square integrable bound states. It
was established that when the quantized radiation field in the Pauli-Fierz model is turned
on, the particle absorbs the energy from it, its mass is getting increased and the negative
eigenvalues with corresponding eigenfunctions belonging to L2(R3) appear. Certain systems
of coupled NLS equations without dissipation were studied in [9] and [10] from the point
of view of understanding the spectral stability of solitary waves. In the present work we will
be using the H1(R2,CN) Sobolev space equipped with the norm

‖ψ‖2H1(R2,CN ) := ‖ψ‖2L2(R2,CN ) + ‖∇ψ‖2L2(R2,CN ) =

N
∑

k=1

{‖ψk‖
2
L2(R2) + ‖∇ψk‖

2
L2(R2)}

for a vector-function ψ = (ψ1, ψ2, ..., ψN )
T . The inner product of two square integrable

functions f, g ∈ L2(R2) will be designated as

(f, g)L2(R2) :=

∫

R2

f(x)ḡ(x)dx.

The first part of the article deals with the system of N focusing critical NLS equations in
two dimensions with the supercritical nonlinear dissipation, coupled linearly, such that

i
∂ψk

∂t
= −∆ψk − iδk|ψk|

pψk − |ψk|
2ψk +

N
∑

s=1

aksψs, 1 ≤ k ≤ N. (1.1)

The coupling matrix here and in system (1.2) is assumed to be arbitrary, constant in space
and time and Hermitian, such that aks = āsk for all 1 ≤ s, k ≤ N . Here and in (1.2)
δk > 0, 1 ≤ k ≤ N are meant to be arbitrary constants as well. Let us denote δmin :=
min{δk}

N
k=1 > 0. For the supercritical power involved in the nonlinear dissipative term both

in (1.1) and (1.2) we have p := 2(1 + α) with some constant α > 0. The initial condition
for systems (1.1) and for (1.2) analogously would be ψ(x, 0) = ψ0(x) ∈ H1(R2,CN). In
the absence of nonlinear dissipation in two dimensions, for system (1.1) we have the blow
up, which can be studied by virtue of the fairly standard scaling argument for NLS type
equations (see e.g. Section 6 of [3]). The situation in (1.2) will depend on the choice of
coefficients aks. Our first main result is as follows.

Theorem 1. For every initial condition ψ(x, 0) ∈ H1(R2,CN), there is a unique mild
solution ψ(x, t), t ∈ [0,∞) of (1.1) with ψ(x, t) ∈ H1(R2,CN).

The second part of the article is devoted to the studies of the system of critical NLS
equations in two dimensions with the nonlinear supercritical dissipation coupled nonlinearly,
namely

i
∂ψk

∂t
= −∆ψk − iδk|ψk|

pψk −
1

N

N
∑

s=1

aks|ψs|
2ψk, 1 ≤ k ≤ N. (1.2)
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We also assume for the system above that for all k, s = 1, ..., N we have aks real valued and
symmetric, namely aks = ask and |aks| ≤ a with some constant a > 0. Our second main
statement is as follows.

Theorem 2. For an arbitrary initial condition ψ(x, 0) ∈ H1(R2,CN), there exists a
unique mild solution ψ(x, t), t ∈ [0,∞) of system (1.2) with ψ(x, t) ∈ H1(R2,CN).

First we turn our attention to the case of the supercritical nonlinear dissipation in a
system of critical NLS equations coupled linearly.

2 The system of focusing, critical NLS with the non-

linear dissipation coupled linearly

Proof of Theorem 1. We rewrite the system of equations (1.1) as

∂ψk

∂t
= i∆ψk + (F [ψ])k, 1 ≤ k ≤ N (2.1)

with (F [ψ])k := −δk|ψk|
pψk + i|ψk|

2ψk − i
∑N

s=1 aksψs. The mild solution of our system
satisfies the Duhamel’s principle

ψk(x, t) = eit∆ψ0,k(x) + eit∆
∫ t

0

e−is∆(F [ψ(s)])kds, 1 ≤ k ≤ N

in H1(R2,CN) for t ∈ [0, T ). The local well-posedness for our problem can be established
using the Strichartz estimates (see e.g. Section 4 of [3] for the standard argument for the
NLS type equations). Moreover,

limt→T−‖ψ(t)‖H1(R2,CN ) = ∞

if T is finite. With a slight abuse of notations we will be using the same letter T in such
context in the proof of the consecutive theorem as well. Our goal is to establish that this
solution is in fact global in time. Using the system of equations (2.1), we easily compute for
t ∈ [0, T ) :

d

dt
‖ψ(t)‖2L2(R2,CN ) = −2

N
∑

k=1

δk

∫

R2

|ψk(t)|
p+2dx− 2Im

N
∑

k=1

(ψk(t),

N
∑

s=1

aksψs(t))L2(R2).

Note that the last expression in the right side of the identity above vanishes since the coupling
matrix in our system is Hermitian as assumed. Thus, we arrive at

d

dt
‖ψ(t)‖2L2(R2,CN ) = −2

N
∑

k=1

δk

∫

R2

|ψk(t)|
p+2dx ≤ 0, t ∈ [0, T ), (2.2)
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which is analogous to formula (3.13) of [8] proven for the single NLS equation. Hence

‖ψ(t)‖2L2(R2,CN ) ≤ ‖ψ0‖
2
L2(R2,CN ), t ∈ [0, T ) (2.3)

and for t ∈ [0, T ) we have

‖ψ(t)‖2L2(R2,CN ) + 2

N
∑

k=1

δk

∫ t

0

∫

R2

|ψk(x, s)|
p+2dxds = ‖ψ0‖

2
L2(R2,CN ). (2.4)

Therefore, the L2(R2,CN) norm of our mild solution is well under control. Using the system
of equations (2.1) and taking the sufficiently regular solutions, we evaluate

d

dt
‖∇ψ(t)‖2L2(R2,CN ) =

= 2
N
∑

k=1

δkRe(ψ̄k(t)∆ψk(t), |ψk(t)|
p)L2(R2) − 2

N
∑

k=1

Im(ψ̄k(t)∆ψk(t), |ψk(t)|
2)L2(R2). (2.5)

In the computation above we used that

Im

N
∑

k=1

(−∆ψk(t),

N
∑

s=1

aksψs(t))L2(R2) = 0.

Indeed, since the coupling matrix for our system is constant and Hermitian as assumed, its
product with the Laplacian operator is self-adjoint and therefore, the term above vanishes.
We will make use of the trivial identity

ψ̄k∆ψk − ψk∆ψ̄k = div(ψ̄k∇ψk − ψk∇ψ̄k), 1 ≤ k ≤ N (2.6)

to obtain

Im(ψ̄k∆ψk, |ψk|
2)L2(R2) = Im

∫

R2

ψ2
k(∇ψ̄k)

2
dx. (2.7)

A straightforward computation yields that the first term in the right side of (2.5) equals to

−2
N
∑

k=1

δkRe

∫

R2

ψ̄k(t)∇ψk(t).∇|ψk(t)|
pdx− 2

N
∑

k=1

δk

∫

R2

|∇ψk(t)|
2|ψk(t)|

pdx. (2.8)

Thus we arrive at
d

dt
‖∇ψ(t)‖2L2(R2,CN ) =

= −2Im
N
∑

k=1

∫

R2

ψ2
k(t)(∇ψ̄k(t))

2
dx− 2

N
∑

k=1

δkRe

∫

R2

ψk(t)∇ψ̄k(t).∇|ψk(t)|
pdx−
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−2
N
∑

k=1

δk

∫

R2

|∇ψk(t)|
2|ψk(t)|

pdx, t ∈ [0, T ). (2.9)

A trivial calculation gives us

Re

∫

R2

ψk∇|ψk|
p.∇ψ̄kdx =

p

4

∫

R2

[∇|ψk|
2]2|ψk|

p−2dx ≥ 0, 1 ≤ k ≤ N. (2.10)

Let us introduce the following auxiliary quantity

Pk(t) :=

∫

R2

|ψk|
p|∇ψk|

2dx, 1 ≤ k ≤ N. (2.11)

We use the Hölder’s inequality to obtain the following estimate from above

∫

R2

|ψk|
2|∇ψk|

4
p |∇ψk|

2− 4
pdx ≤

(

Pk(t)
)

2
p

‖∇ψk‖
2(p−2)

p

L2(R2). (2.12)

Note that p > 2 as assumed. We recall the Young’s inequality

ab ≤
ap

p
+
bq

q
(2.13)

for a, b ≥ 0 and
1

p
+

1

q
= 1. In the context of our work the conjugate exponents are

p

2
and

p

p− 2
. This gives us the following upper bound for the right side of inequality (2.12)

δkPk(t) +
p− 2

p

( 2

δkp

)
2

p−2
‖∇ψk‖

2
L2(R2). (2.14)

Let us introduce the constant

C(δmin, p) := 2
p− 2

p

( 2

δminp

)
2

p−2

> 0. (2.15)

Hence, due to the estimates above, we arrive at the differential inequality

d

dt
‖∇ψ(t)‖2L2(R2,CN ) ≤ C(δmin, p)‖∇ψ(t)‖

2
L2(R2,CN ), t ∈ [0, T ). (2.16)

Apparently, differential inequality (2.16) yields the bound

‖∇ψ(x, t)‖2L2(R2,CN ) ≤ ‖∇ψ0‖
2
L2(R2,CN )e

C(δmin,p)t, t ∈ [0, T ). (2.17)

Note that similarly to single NLS equations studied in [8], the supercritical nonlinear dissi-
pation gives us the factor exponentially growing in time. Via the blow-up alternative, (2.17)
implies that the system of NLS equations (1.1) is globally well-posed in H1(R2,CN).
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3 The system of critical NLS with nonlinear dissipa-

tion coupled nonlinearly

Proof of Theorem 2. Clearly, the system of equations (1.2) can be easily written as

∂ψk

∂t
= i∆ψk + (G[ψ])k, 1 ≤ k ≤ N (3.1)

with (G[ψ])k := −δk|ψk|
pψk +

i

N

N
∑

s=1

aks|ψs|
2ψk. The mild solution of system (3.1) satisfies

the Duhamel’s principle

ψk(x, t) = eit∆ψ0,k(x) + eit∆
∫ t

0

e−is∆(G[ψ(s)])kds, 1 ≤ k ≤ N

in H1(R2,CN) for t ∈ [0, T ) and the local well- posedness can be established via the standard
argument for NLS type equations by applying the Strichartz estimates (see e.g. Section 4 of
[3]). Furthermore,

limt→T−‖ψ(t)‖H1(R2,CN ) = ∞

if T is finite. We are going to prove that such solution is global in time. A straightforward
computation yields that estimates (2.2), (2.3) and (2.4) hold here as well. Using system (3.1)
and considering sufficiently regular solutions, we obtain for t ∈ [0, T ) :

d

dt
‖∇ψ(t)‖2L2(R2,CN ) = 2

N
∑

k=1

δkRe(ψ̄k(t)∆ψk(t), |ψk(t)|
p)L2(R2)−

−2
N
∑

k=1

Im
1

N

N
∑

s=1

aks(ψ̄k(t)∆ψk(t), |ψs(t)|
2)L2(R2).

For the first term in the right side of the identity above we will use formula (2.8). A
straightforward computation yields

Im(ψ̄k∆ψk, |ψs|
2)L2(R2) = −Im(ψ̄k∇ψk,∇|ψs|

2)L2(R2,C2).

Clearly, via the Schwarz inequality we obtain
∣

∣

∣
Im(ψ̄k∇ψk, ψ̄s∇ψs)L2(R2,C2)

∣

∣

∣
≤ ‖ψ̄k∇ψk‖L2(R2)‖ψ̄s∇ψs‖L2(R2),

∣

∣

∣
Im(ψ̄k∇ψk, ψs∇ψ̄s)L2(R2,C2)

∣

∣

∣
≤ ‖ψ̄k∇ψk‖L2(R2)‖ψs∇ψ̄s‖L2(R2).

Therefore, we arrive at

−2

N
∑

k=1

Im
1

N

N
∑

s=1

aks(ψ̄k∆ψk, |ψs|
2)L2(R2) ≤ 4a

N
∑

k=1

‖ψ̄k∇ψk‖
2
L2(R2), (3.2)
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such that
d

dt
‖∇ψ(t)‖2L2(R2,CN ) + 2

N
∑

k=1

δkRe

∫

R2

ψ̄k(t)∇ψk(t).∇|ψk(t)|
pdx+

+2
N
∑

k=1

δk

∫

R2

|∇ψk(t)|
2|ψk(t)|

pdx ≤ 4a
N
∑

k=1

‖ψ̄k(t)∇ψk(t)‖
2
L2(R2).

We use identity (2.10) for the second term in the left side of the inequality above. The
argument analogous to (2.12) and (2.14) yields

4a

N
∑

k=1

∫

R2

|ψk|
2|∇ψk|

2dx ≤

N
∑

k=1

2δkPk(t) + C̃(δmin, p)‖∇ψ‖
2
L2(R2,CN )

with Pk(t) given by (2.11) and

C̃(δmin, p) := 4a
p− 2

p

( 4a

δminp

)
2

p−2

> 0.

Hence we obtain the differential inequality

d

dt
‖∇ψ(t)‖2L2(R2,CN ) ≤ C̃(δmin, p)‖∇ψ(t)‖

2
L2(R2,CN ), t ∈ [0, T )

Finally, we arrive at the bound

‖∇ψ(x, t)‖2L2(R2,CN ) ≤ ‖∇ψ0‖
2
L2(R2,CN )e

C̃(δmin,p)t, t ∈ [0, T ). (3.3)

Analogously to (2.17), the supercritical nonlinear dissipation gives us the factor exponentially
growing in time. By means of the blow-up alternative, this implies that the system of NLS
equations (1.2) is globally well-posed in H1(R2,CN).
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