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Abstract
We consider the boundary-value problem for the Helmholtz equation con-

nected with an in…nite circular cone with an impedance boundary on its
face. The scheme of solution includes applying the Kontorovich-Lebedev
(KL) transform, derivation of an integral equation satis…ed by the KL spec-
tral amplitude and obtaining alternative near and far …eld representations
together with the conditions of validity of these representations for a given
set of problem parameters. As such, this article presents a second application
to a problem solving strategy that was proposed in [1].

1 Introduction

One of the important problems of acoustic …eld theory concerns the evalua-
tion of source excited acoustic …elds in the presence of an impedance cone.
This class of boundary conditions is usually considered to approximate im-
perfectly re‡ecting surfaces. In fact, near …eld evaluation as well as the
scattering and di¤raction of waves by an impedance cone are very di¢cult
problems to solve in closed form analytically. To this day, there is no ex-
plicit closed-form solution for these problems. Recently ([2-3]) a KL-based
formulation has been proposed for the rigorous solution of the problem of the
di¤raction by a cone with mixed boundary conditions of constant impedance
type. Additionally [1] has presented a strategy to solve the problem of dif-
fraction by a material cone. The formulation presented here is an attempt
to adapt the techniques of [1] to the impedance cone case in order to evalu-
ate the near …elds as well as to obtain alternative representations for the far
…elds.

In section 2 the problem is formulated. Section 3 derives the integral
equation satis…ed by the KL spectral function. In section 4 the …eld rep-
resentations are given. Conclusions are given in section 5. Appendix A
presents a scheme to numerically solve the integral equation. In Appendix
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B the singularities of the KL spectral function are identi…ed and quanti-
…ed. The formal structure of this paper is essentially the same as in [1], and
the results which follow represent the impedance cone simpli…cations of the
material cone results in [1].

It should be mentioned that the integral equation given here is a par-
ticular case of the one found by Bernard [2], Bernard and Lyalinov [3-4]
and recovered by Antipov [5]. Additionally, as mentioned and shown in [2-3],
these integral equations are not of the L2 type, so that Fredholm theorems on
existence and uniqueness do not apply. However, the existence and unique-
ness can be proved by some speci…c process [2-3]. Also given in [3] that
uniqueness could fail if Re = 0, where  is the surface impedance of the
cone.

2 Formulation

We consider the inhomogeneous Helmholtz equation [6]

(r2 + 2)( ) = ¡
( ¡ 0) ( ¡ 0)

0 sin 0
(1)

in a cone  = f0   1 0 ·   ¡ ·  · g with the impedance
boundary condition on its face

( ) = ( ). (2)

( ) is the acoustic pressure, ( ) is the component of the velocity
…eld, V( ), normal to the cone surface with [6]

V( ) =
¡


[r0



+ µ0

1






]( ). (3)

 = 


is the wave number,  =
q



is the acoustic speed with  and  are

respectively the density and incompressibility of the medium in . r2 stands
for the Laplacian in spherical coordinates (  ). A time factor expf¡g
is assumed and omitted throughout. Acoustic …eld excitation is provided by
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an impressed rotationally invariant unit force density located at (0 0). 
is the surface admittance of the cone.

Similar to [1], for a while we shall assume that  is purely imaginary with
arg  = 

2
.

The …elds are required to decay exponentially to zero as  ! 1. This
replaces the Sommerfeld radiation condition for the Im  = 0 case.

An edge condition [6] is imposed on the …eld behavior near the tip of the
cone which requires

 = (¡
1
2 ) jVj = (¡

3
2 ) ! 0   0. (4)

Similar to [1], we propose to solve the problem by means of a KL transform
pair [6] :

 ( ) =

Z 1

0

( )
(1)

¡1
2

() (5)

( ) =




Z 1

¡1

¡ 1
2
() ( ) (6)

where ¡ 1
2
() and 

(1)

¡1
2

() are spherical Bessel functions given by

() = (2)
1
2+1

2
() (1) () = (2)

1
2

(1)

+1
2

().

() and 
(1)
 () are the standard Bessel and Hankel functions respec-

tively and  is purely imaginary.
Since 

(1)
¡ () = 

(1)
 (), the de…nition in Eq. (5) implies that

 (¡ ) =  ( ). (7)

There are two additional ways of writing the inverse transform of Eq. (5)
which will be needed during the course of the analysis:

( ) =


2

Z 1

¡1


(1)

¡ 1
2

() ( ), (8)
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( ) =
¡



Z 1

0

 sin
(1)

¡1
2

() ( ). (9)

From Eq. (3), ( ) is given by

( ) =
¡



1







Z 1

0

 sin
(1)

¡ 1
2

() ( ). (10)

Thus,

( ) =
¡



1



Z 1

0

 sin
(1)

¡ 1
2

()



 ( ). (11)

Applying the KL-transform to Eq. (1), we get the ordinary di¤erential
equation

[
1

sin 




(sin 




)+(2¡

1

4
)] ( ) = ¡


(1)

¡ 1
2

(0)( ¡ 0)

sin 0
 0 ·   , (12)

whose general solutions are the Legendre functions [6].
We represent the …eld in  as the sum over an unperturbed …eld (0)V(0)

plus a scattered …eld (1)V(1) due to the presence of the cone. Hence

( ) = (0)( ) + (1)( ) (13)

leading to

 ( ) =  (0)( ) +  (1)( ). (14)

2.1 The unperturbed …eld

Since  (0)( ) satis…es the source conditions of Eq. (12) and must be
bounded at  = 0 , we obtain (see [1, Eq. (22)]),
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 (0)( ) =


2


(1)

¡ 1
2

(0)

sin 0 sin( ¡
1
2
)
¡ 1

2
(cos )¡ 1

2
(¡ cos ) (15)

where j is the greaterjlesser of  and 0.

From Eqs. (11) and (15), 
(0)
 ( ) is given by


(0)
 ( ) =

¡



1



Z 1

0

 sin
(1)

¡ 1
2

()



 (0)( ) (16)

where, for   0




 (0)( ) =



2


(1)

¡ 1
2

(0)

sin 0 sin( ¡
1
2
)
¡ 1

2
(cos 0)




¡ 1

2
(¡ cos ) (17)

and for   0




 (0)( ) =



2


(1)

¡ 1
2

(0)

sin 0 sin( ¡
1
2
)
¡ 1

2
(¡ cos 0)




¡ 1

2
(cos ). (18)

2.2 The scattered …eld

Since  ( ) must be bounded at  = 0 we represent  (1)( ) by

 (1)( ) = ()¡ 1
2
(cos ). (19)

() is a KL spectral function to be determined from the boundary con-
dition. Eq. (7) together with [6]

¡1
2
() = ¡¡ 1

2
() (20)

enforce

(¡) = (). (21)
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Additionally, the convergence of the KL integrals [7] at  =  implies
that, when Im  ! +1, the spectral function, (), must vanish as

() =  [exp(¡ Im )] . (22)

From the above we obtain

(1)( ) =
¡



Z 1

0

 sin
(1)

¡ 1
2

()()¡ 1
2
(cos ), (23)


(1)
 ( ) =

¡



1



Z 1

0

 sin
(1)

¡ 1
2

()()



¡1

2
(cos ). (24)

Eq. (2) now reads


(0)
 ( ) + 

(1)
 ( ) = [

(0)( ) + (1)( )]. (25)

3 The integral equation derivation

The integral equation on () is derived by multiplying Eq. (25) by 


(1)

¡ 1
2

() and integrating with respect to  from 0 to 1. Making use of

[8, formula 6.576 (4)],

Z 1

0

¡(¡)(¡) =
2¡2¡(¡)¡+¡1(¡)

¡(1¡ )
1(  )2(  )

where

1(  ) = ¡(
1¡ + + 

2
)¡(

1¡ ¡ + 

2
)¡(

1¡ + ¡ 

2
)¡(

1¡ ¡ ¡ 

2
),

2(  ) =  (
1¡ + + 

2

1¡ ¡ + 

2
; 1¡ ; 1¡2)
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with Re(¡ ¡ )  0 and Re   1¡ jRe j ¡ jRe j.
For  = 0  = 1 and using [9, formula 6.1.30]

¡(
1

2
+ )¡(

1

2
¡ ) =



cosh


cosh(¡ ) cosh(+ ) =
1

2
(cosh 2+ cosh 2)

we obtain

¤2( ) =

Z 1

0

 
(1)

¡ 1
2

()
(1)

¡ 1
2

() = ¡(+)2
1

cosh + cosh
.

(26.a)

From [10] we get

( ) =

Z 1

0


(1)

¡ 1
2

()
(1)

¡ 1
2

() =


 sin 
[(Im ¡Im)+(Im +Im)].

(26.b)

For the particular case which is considered here ( Im  0, Im   0),
the (Im  + Im) in Eq. (26.b) will be removed. We obtain

()¡



Z 1

0

( )() = ()() Im > 0Re = 0 (27)

where

() = 1() + 2(), (28.a)

1() = ¡


2


(1)

¡ 1
2

(0)

sin 0 sin(¡
1
2
)
¡ 1

2
(cos 0)




¡ 1

2
(¡ cos), (28.b)
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2() = ¡



Z 1

0

 sin ̂¤2( )
(0)
1 ( ), (28.c)

 (0)( ) =


2


(1)

¡1
2

(0)

sin 0 sin( ¡
1
2
)
¡1

2
(cos 0)¡1

2
(¡ cos), (28.d)

where 

¡ 1

2
(¡ cos) stands for 


¡ 1

2
(¡ cos )j=, which notation

will be used throughout.
Additionally,

( ) =  sin ̂¤2( )¡ 1
2
(cos), (29.a)

() =



¡ 1

2
(cos), (29.b)

̂¤2( ) = ¡¡(+)2
1

cos + cos 
 (29.c)

 =
1


, (29.d)

where  is the acoustic admittance.
In order to adapt the integral equation for the numerical scheme of Ap-

pendix A, we re-write Eq. (27) as

~()¡



1

()

Z 1

0

( ) ~() = ~() Im > 0Re = 0 (30.a)

where

~() = () + f (0)( )¡ 1
2
(cos)g, (30.b)
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~() = ¡

(1)

¡1
2

(0)

sin 0 sin

¡ 1
2
(cos 0)

¡1
2
(cos) 


¡ 1

2
(cos)

. (30.c)

In Appendix A an approximate solution for the integral equation in Eq.
(30) using a collocation method is given. The scheme is inspired by the one
used by Antipov [5]. In Appendix B the spectrum of () is analytically
continued from the imaginary axis into the right half of the complex -plane.

4 Field representations

With the results of Appendices A and B, we proceed to derive near and far
…eld representations.

4.1 The near …eld

As was shown in Appendix B, () is a meromorphic function whose only
singularities in the complex -plane are poles. The conditions under which
some of these poles are of higher order have also been established. The second
order poles that may be present indicate that the acoustic pressure (velocity)
…eld near the tip of the cone may contain the logarithm of the distance in
addition to its power, namely ¡

1
2 log  (¡

3
2 log ).

For   0, the near …eld is calculated from Eq. (13). To that end we
re-write Eq. (27) as

() =
1()

()
¡



1

()

Z 1

0

( ) ~() (31)

where ~() is given in Eq. (30.b).
Utilizing the KL representation in Eq. (6),

(1)( ) =




Z 1

¡1

¡ 1
2
()()¡ 1

2
(cos ), (32)

and substituting for (), from Eq.(31), in Eq. (32) we obtain
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(1)( ) = 1( ) + 2( ) (33)

where

1( ) = f1( )g1 + f1( )g2 + f1( )g3, (34.a)

with

f1( )g1 = ¡2

0
X



Res[
1()

()
]¡1

2
()¡1

2
(cos ) (34.b1)

where the prime on the sum over  denotes omission of the  = 1
2

term
and

Res[
1()

()
] =

¡
(1)

¡ 1
2

(0)¡ 1
2
(cos 0)



¡ 1

2
(¡ cos)

2 sin 0 sin[( ¡
1
2
)] 




¡ 1

2
(cos)

j. (34.b2)

From the identity [8, formula 8.733(1)]




¡ 1

2
(§ cos ) = ¨( ¡

1

2
)( +

1

2
)¡1

¡ 1
2

(§ cos ) (35.a)

where ¡1
¡ 1

2

(§ cos ) are Associated Legendre functions, from [8, formula

8.721(4)]

 (cos) s

r
2

  
cos[( +

1

2
)¡



4
]  !1, (35.b)

 ¡1
 (cos) s

r
2

  
cos[( +

1

2
)¡



2
]  !1, (35.c)

from [6]
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() s
1

p
2

(
2


)¡,  !1, (36.a)

(1)
 () s

1
p

2
(
2


),  !1 (36.b)

the behavior of the summand of the series in Eq. (34.b1) is given by

1


(


0
),  !1. (37)

f1( )g2 = ¡2

1X

=1

(+
1

2
)Res[

1()

()
]()(cos ), (38.a1)

where

Res[
1()

()
] =

(¡1)+1
(1)
 (0)(cos 0)



(¡ cos)

2 sin 0


(cos)

  = 1 2 3 1.

(38.a2)

The summand behaves as

1


(


0
), !1. (38.a3)

The contribution from the pole at  = 1
2

is given by

f1( )g3 =
¡

(1)
0 (0) cot

2(
2
)

2 sin 0
0(). (39)

Additionally,

2( ) = ¡

2

Z 1

¡1

¡ 1
2
()̂()¡1

2
(cos ) (40.a)
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where

̂() =
1

()

Z 1

0

(0 ) ~(0) 0. (40.b)

From Eq. (35.a) and [8, formula 8.721(1)]

¡1
2
(cos ) s jjjj

1
2   ! §1, (41.a)

¡1
¡1

2

(cos ) s jjjj
3
2   ! §1, (41.b)

and from[6]

() s 
jj

2
+ arg jj12  ! §1 (42)

we infer that the integrand in Eq. (40.a) decays exponentially as


¡jj(¡)+

jj12  ! §1,  = arg , (43)

and the integral exists when

   ¡  (44)

From Eq. (44) we infer that for the lossless case,  = 0 , the representation
given in Eq. (40.a) exists for all the observation angles, whereas for the lossy
case it has a gap, as given by Eq. (44), in the angular domain where it cannot
be used.

The above …eld representation has the advantage of numerical e¢ciency
and the disadvantages of hiding part of the strength of the …eld singularities
near the tip of the cone associated with  

3
2

and all the strength of the
…eld singularities associated with 1 

3
2

as well as, for the lossy case, the
angular gap where the representation cannot be used. However, if the main
interest is to quantify the singular …eld behavior near the tip of the cone,
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it is possible to recover the full strength of the …eld singularities associated
with ( 1) 

3
2

by isolating

()( ) = f()( )g1 (45.a)

where

f()( )g1 = ¡2


1
2X
¡1

2
()Res[()]¡1

2
(cos ) (45.b)

and

V()( ) =
¡


[r0



+ µ0

1






](f()( )g1 + f()( )g2) (45.c)

where f()( )g1 is given in Eq. (45.b) with the sum running to  
3
2

and

f()( )g2 = ¡2

1
3
2X
11¡ 1

2
()Res[(1)]1¡ 1

2
(cos ) (45.d)

where ()( ) (V()( )) is the singular pressure (velocity) …eld near the
tip of the cone. One then needs to compute the residues of () from Eqs.
(B.9)-(B.10) only for (0 1) 

3
2
. It should be noted that the contribution

from the pole at  = 1
2

is not included since the corresponding …eld is non-
singular.

An alternative …eld representation is available by closing contours of Eq.
(32) in the right-hand side of the complex -plane and collecting residue
contributions from the four pole sets of (). This …eld representation has
the advantage of being valid for all observation angles (lossless and lossy
cases) and the disadvantage of very cumbersome expressions for the residues
of the poles. It should also be emphasized that since it is possible for the
poles  to accumulate at in…nity, forming a dense set on the real line, in
addition to the possibility of higher order poles, either of these possibilities
could avoid the convergence of the residue sum. The truncated residue sum
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should, therefore, be understood as giving some asymptotic approximation
to the …eld in terms of …rst identi…ed poles.

The contribution of (0)( ) results from its residue sum over the poles
at ,  = 0 1 2 .

The velocity …eld is also computed through the same procedures except
for  =  where it is better to compute it through the boundary condition
since there some of the poles of () cancel with 


¡ 1

2
(cos).

4.2 The far …eld

For   0 the …eld representation is given by the scattered …eld (1)( ) and
adding the contribution of (0)( ). Making use of the KL representation in
Eqs. (8) and (9) and substituting for () from Eq. (31), we obtain

(1)( ) = ̂1( ) + ̂2( ). (46.a)

̂1( ) =
¡

2



Z 1

0

 sin 
(1)

¡ 1
2

()̂()¡ 1
2
(cos ) (46.b)

where ̂() as given in Eq. (40.b) and

̂2( ) =




Z 1

¡1


(1)

¡ 1
2

()()¡1
2
(cos ) (46.c)

where

() = ¡


2()

¡ 1
2
(0)

sin 0 sin( ¡
1
2
)
¡ 1

2
(cos 0)




¡ 1

2
(¡ cos ). (46.d)

Equation (46.c) is obtained after making use of


(1)

¡ 1
2

(10) = 2¡ 1
2
(10)¡ 

(2)

¡ 1
2

(10),

Eq. (20) and that from 
(1)(2)
¡ () = §

(1)(2)
 (), [

(1)

¡1
2

()
(2)

¡1
2

(0)]

is an even function of .
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From [6]


(1)

¡1
2

() s jj(

2
¡arg )jj12  ! 1 (47)

Eqs. (35.a), (41.a) and (41.b), the integrand of Eq. (46.b) decays expo-
nentially and the integral exists when

   +  (48)

which is trivially satis…ed by all observation angles when   0.
Similar to section 4.1, the representation in Eq. (46.c) is further reduced

to sums over the residues of the poles at ,  and  = 1
2
. The expressions

of these series are similar to those given in Eqs. (34.b1), (34.b2), (38.a1),
(38.a2) and (39) with  and 0 interchanged. The behavior of the summands
is given by Eqs. (37) and (38.a3) with  and 0 interchanged.

Another …eld representation which invokes the reciprocity principle is also
available. Thus to calculate the …elds when   0 we employ the sum on
the residues of all the poles of () with the source located at ( ) and
the observer located at (0 0), and the truncated sum is understood as
an asymptotic approximation related to …rst identi…ed poles. It is worth
mentioning that this alternative cannot be used to derive far …eld results for
plane wave illumination, since the convergence is an asymptotic result for
source near the tip. This …eld representation has the disadvantage of very
cumbersome expressions for the residues of the poles. It is mentioned here
only for the completeness of the discussion.

Far …eld (  1) expressions are obtained by utilizing the large argu-
ment asymptotic approximation for the Hankel function [6]

(1)
 () »

r
2


(¡2¡4). (49)

Substituting from Eq. (49) in Eqs. (46.b) and (46.c), we get

̂1( ) =
¡1

2



(¡4)

Z 1

0

 sin 2̂()¡ 1
2
(cos ) (50)

15



The integrand of Eq. (50) decays exponentially and the integral exists
when

   (51)

̂2( ) =
1


(¡4)

Z 1

¡1

¡2()¡ 1
2
(cos ) (52)

The representation in Eq. (52) is further reduced to sums over the residues
of the poles at ,  and  = 1

2
. From Eqs. (35.a), (35.b), (35.c) and (36.a),

the summands from Eq. (52) behave as

1

j¹j12
(
 jj0

2¹
)¹ ¹ !1. (53)

where ¹ stands for  and .

5 Conclusion

The integral equation satis…ed by the KL spectral function, (), has been
given in Eq. (27). A collocation scheme for the numerical evaluation of the
KL spectral function in Eq. (30.a) was constructed in Appendix A. It was
established in Eqs. (A.13a)-(A.13b) that the scheme has a source-boundary
separation requirement for its validity. In Appendix B, analytic continuation
was utilized to establish the meromorphic nature of () and to identify its
pole singularities. Near …eld alternative representations, together with the
advantages and disadvantages of each, were given in Sec. 4.1, Eqs. (34.a),
(40.a). Situations under which the residue sum over the poles of () turns
into an asymptotic approximation were discussed in Sec. 4.1. The condition
under which Eq. (40.a) is not valid, for a given set of problem parameters,
has been established in Sec. 4.1, Eq. (44) revealing an angular gap in which
Eq. (40.a) cannot be used. Far …elds were given in Sec. 4.2, Eqs. (46.a)
and (50), (52) . The conditions of their validity have been established in Sec.
4.2, Eqs. (48) and (51) respectively. The application presented here together
with that in [1] establish the KL formulation as a viable solution strategy
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for di¤raction problems involving cones and wedges with impedance-type
and …eld continuity-type boundary conditions on their faces. The ambitious
goal of deriving analytical, exact or approximate, solutions to the integral
equations describing the KL spectral amplitudes, if obtained, would widely
expand the power of the scheme. This issue is now under study.

Appendix A. Numerical scheme to solve the integral equation
in Eq. (30.a)

The scheme used here is inspired by the one used by Antipov [5]. The
structure of this Appendix is the same as for the material cone in [1, Ap-
pendix A], and the results which follow are simpli…cations pertaining to the
impedance cone.

Let f¡1g, = 1 2 +1 be a set of points de…ned on the imaginary
axis of the complex -plane such that

¡1 =  (¡ 1),   0,   0. (A.1a)

Let also

 = (¡1 + )2  = 1 2  . (A.1b)

We approximate the integral equation in Eq. (30.a) with the linear system
of algebraic equations

~() = ~()¡


 ()

X

=1

Z 

¡1

1( ) ~()
sin ()

cos () + cos ()


(A.2a)

with  = 1 2  and

1( ) = ¡(¡)2¡ 1
2
(cos). (A.2b)

Eq. (A.2a) is further approximated as

~() = ~()¡


 ()

X

=1

1(̂ ) ~()  = 1 2  (A.3a)
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where

̂ = (¡1 + )2, (A.3b)

 =

Z 

¡1

sin ()

cos () + cos ()
. (A.3c)

The integral in Eq. (A.3c) is given by

 =
¡1


ln(

cos () + cos ()

cos (¡1) + cos ()
). (A.3d)

Thus we can re-write the linear system as

~A = ~s¡C¤ ~A (A.4a)

with ~A and ~s as vectors and C¤ as the matrix

¤ =


 ()
1(̂ ). (A.4b)

Next we estimate the behavior of ~() as  ! 1 ( ! 1). From
Eqs. (35.a), (41.a), (41.b) and (47), we infer that

~() = (¡jj(2+¡

2
¡0)jj) !1. (A.5a)

Therefore, ~() decays exponentially as !1 ( ! 1) when



2
+ 0  2 + . (A.5b)

Additionally, for  …xed and !1, writing  as

 =
¡1


[ln(1 +

cos ()

cos ()
)¡ [ln(1 +

cos (¡1)

cos ()
)], (A.6a)
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followed by the series representation

ln(1 + ) = ¡
2

2
+(3)   1 (A.6b)

we obtain

 = (¡jj) !1 is …xed. (A.6c)

From Eqs. (35.a), (41.b) and (A.6c) , we estimate the behavior of ¤
as !1 ( ! 1),  is …xed, as

¤ = (¡jj(+

2
)jj

12) !1 is …xed. (A.7)

Hence, ¤ decays exponentially as !1,  is …xed.
Additionally, for  …xed and !1

 s
¡1


ln

cos ()

cos (¡1)
! ¡( ¡ ¡1) (A.8a)

leads, on account of Eq. (A.1a), to

 = (jj)!1  is …xed. (A.8b)

From Eqs. (41.a) and (A.8b)

¤ = (jj
32 

¡jj(

2
¡)


)!1  is …xed, (A.9)

where we have made use of the fact that ̂ and  are practically equal
for !1.

Thus ¤ decays exponentially as !1,  is …xed when

 


2
. (A.10)
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Assuming that the inequalities in Eqs. (A.5b) and (A.10) are satis…ed
and that an inverse exists for the matrix f + ¤g ( = 1 2 )
then the approximate solution ~() converges to the exact one ~¤ and the
rate of convergence is exponential (see [5]).

The two inequalities in Eqs. (A.5b) and (A.10) could be changed by a
slight modi…cation to the numerical scheme through a normalization process.
This is outlined as follows:

a) Normalize ~() in Eq. (30.a) as

~() = ̂()¡(

2
¡¡) (A.11)

leading to modifying Eq. (30.a) to

̂() = ̂()¡̂()

Z 1

0

̂1( )̂()
sin ()

cos () + cos ()
 Im > 0Re = 0

(A.12a)

where

̂() = ~()(

2
¡¡), (A.12b)

̂() =


 ()
(


2
¡¡), (A.12c)

̂1( ) = 1( )
¡(

2
¡¡). (A.12d)

b) Use the numerical scheme to …nd ̂()
Assuming that the involved matrix has an inverse and that the inequalities

  0 (A.13a)

  0 (A.13b)
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are satis…ed, then the approximate solution ̂()() converges to the
exact one ̂¤.

c) De-normalize ̂().
Hence the two inequalities in Eqs. (A.5b) and (A.10) are changed to Eqs.

(A.13a)-(A.13b).

Appendix B. Poles and Residues of () in Eq. (27)
Here again, the stepwise results are the impedance cone reductions of the

material cone results in [1, App. B].
Let us cast Eq. (27) as

() =
1

()
f1()+


2

[2()+

Z 1

¡1

( )()]gRe = 0 Im 2 (¡11)

(B.1)

where

2() =

Z 1

¡1

̂¤2( )
(0)( ), (B.2a)

( ) = ̂¤2 ( )¡ 1
2
(cos) (B.2b)

with ̂¤2 ( ) as given in Eq. (29.c).
Eq. (B.1) de…nes () on the imaginary axis of the complex -plane and

is also valid for the strip 0fRe 2 (0 1) Im 2 (¡11)g and reveals that
the singularities of () in 0 are:

(A) One set of poles located at  with




¡ 1

2
(cos) = 0. (B.3a)

(C) A pole located at

 =
1

2
. (B.3b)
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To continue () into the strip 1fRe 2 (1 3) Im 2 (¡11)g we
collect two residue contributions from the poles of ̂¤2 ( ) located at  =
§ + 1. Poles of ̂¤2( ) at  = § ¡ 1 are located in the left-hand side
of the complex -plane and, therefore, are not captured by the process of
analytic continuation to Re  0.

Utilizing Eqs. (20) and (21), () in the 1 strip is given by

() =
1

()
f1()+


2

[2()+cot(+12 ()++1()(¡1))+

Z 1

¡1

( )()]g,

(B.4a)

where

+12 () = ¡4(¡ 1)(0)(¡ 1 ), (B.4b)

+1() = 4(¡ 1)(¡1)¡ 1
2
(cos). (B.4c)

Thus for  2 1, () has the singularities:
(A) A set of poles at  for which




¡ 1

2
(cos) = 0. (B.5a)

(B) A set of poles satisfying




(¡1)¡ 1

2
(cos) = 0. (B.5b)

(C) Two poles located at

 =
3

2

5

2
. (B.5c)

(D) A pole located at
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 = 2. (B.5d)

We generalize to the  strip fRe 2 (2¡1 2+1) Im 2 (¡11)g
 = 2 3 ,

() =
1

()
f1() +


2

[2() + cot

=X

=1

(+2 () ++()(¡ 2 + 1))

+

Z 1

¡1

( )()]g (B.6a)

where

+2 () = 4(¡1)(¡ 2 + 1)(0)(¡ 2 + 1 ), (B.6b)

+() = 4(¡1)+1(¡ 2 + 1)(¡2+1)¡ 1
2
(cos). (B.6c)

We infer from Eq. (B.6a) that for  2 ,   1, () has the singulari-
ties:

(A) A set of poles at  for which




¡ 1

2
(cos) = 0. (B.7a)

(B)  sets of poles satisfying




(¡2+1)¡ 1

2
(cos) = 0,  = 1 2 . (B.7b)

(C) Two poles at

 = 2 §
1

2
. (B.7c)
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(D) Two poles at

 = 2 ¡ 1  = 2. (B.7d)

In order to assess the order of the poles in Eq. (B.7d), we need to in-
vestigate the products fcot( ¡ 2 + 1)g in Eq. (B.6a). For  = 2, at
 = 3, both cot and (¡ 1) have a simple pole. Hence the pole of ()
at  = 3 is a second order pole. At  = 4 cot has a simple pole while
(¡ 1) has a second order pole. Hence the pole of () at  = 4 is a third
order pole. Moving on to  = 3 4 , we infer that the pole at  = 2 ¡ 1 is
of order 2 ¡ 2 and the pole at  = 2 is of order 2 ¡ 1,  ¸ 2.

Throughout, we will adopt the terminology:
(i)  for poles of type (A),




¡ 1

2
(cos) = 0  = 1 2 3 1. (B.8a)

These are simple poles.
(ii)  for poles of type (B),

 =  + 2 ¡ 1  = 1 2 1;  = 1 2 3 1 (B.8b1)

with  satisfying Eq. (B.8a).
When  happens to be equal to 0,

0 =  + 2 ¡ 1, (B.8b2)

then () has a second order pole at .
(iii)  for poles of type (C),

 = +
1

2
  = 0 1 2 1. (B.8c)

These are simple poles.
(iv)  for poles of type (D),
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 =   = 2 1. (B.8d)

These poles are of order ¡ 1.

Residues Computation
a) Poles of the type  in the  strip
The residue is given by

Res[()] =
1

 0()
f¤()+


2

cot

=X

=1

(+2 ()++()(¡2+1))g,

(B.9a)

where

¤() = 1() +


2
[2() +

Z 1

¡1

( )()], (B.9b)


0

() =
()


j. (B.9c)

b) Poles of the type ,  = 1 2 1
The residues of these poles are computed once the  residues are com-

puted and are given by

Res[())] = f
cot

()


2

+()gRes[()]  = 1 2 3 1. (B.10)

The residues when one or some poles of  are of second order are not
detailed here but are straightforward and require the utilization of the second
order residue formula instead of the …rst order formula used in this analysis.

The residues of the poles  and  are straightforward, though the ones
for  require the use of the formulae for higher order poles.
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