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Abstract. We consider a loop of a chain thrown like a lasso on a fixed
right circular cone. The system is in the standard homogeneous gravity
field. The axis of the cone is vertical. It is shown that under certain
vertex angles chain’s loop has an oblique equilibrium.

1. Statement of the Problem and Main Theorem

In inheritance from the classical epoch we have obtained two most famous
variational problems.

The first one is the catenary problem was formulated and solved by Jo-
hann Bernoulli in 1690.

The brachistochrone curve problem was independently considered and
solved also approximately about 1690 by Johann Bernoulli, Christiaan Huy-
gens and Gottfried Wilhelm Leibniz.

These both variational problems are simultaneously beautiful non trivial
and can be solved by pure analytical means.

This is absolutely exclusive situation: there are very few variational prob-
lems that are not artificially composed but shows up from mechanics and
can be solved by hands.

In this short note we propose one of such problems.
Ends of thin homogeneous chain are connected to obtain a loop. The mass

of the chain is m and its length is l. This loop is putted on a right cone with
vertex angle 2α, α ∈ (0, π/2); see Fig. 1. The surface of the cone is
smooth. The axis of the cone is vertical. The system is in the standard
mg−gravity field.

Find all equilibriums of chain’s loop on the cone.
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Figure 1.

This problem has trivial solution: the loop forms a circle lying in hori-
zontal plane. But do another equilibriums exist?

Theorem 1. If π/6 < α < π/4, then there is a unique (up to rotations
about cone’s axis) oblique equilibrium (see Fig. 1).

For all another α the chain has only trivial equilibrium.

Remark 1. Numerical simulations show that at this oblique equilibrium the
chain is not contained in a plane.

2. Proof

Introduce a Cartesian frame Oxyz such that the axis Z is directed down
along the cone axis and the origin O is cone’s vertex. Introduce also a
cylindrical coordinate frame such that

(z, r, ψ), x = r cosψ, y = r sinψ.

The cone is given by the equation

z = ar, a = cotα > 0.

Let

r = r(ψ), r(ψ + 2π) = r(ψ)

be the equation of the curve described by the chain. Infinitesimal arclength
element of such a curve is as follows

ds =
√
dx2 + dy2 + dz2 =

√
(1 + a2)(r′)2 + r2dψ, r′ =

d

dψ
r(ψ).
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Then Z−coordinate of the centre of mass of the chain is expressed by the
formula.

Z[r(·)] = a

l

∫ 2π

0
r(ψ)ds.

So we are looking for conditional extremals of the functional r(·) 7→ Z[r(·)]
in class of 2π−periodic functions r(ψ) under the condition∫ 2π

0
ds = l. (2.1)

The corresponding Lagrange function is

L(r, r′) =
(a
l
r + λ

)√
(1 + a2)(r′)2 + r2,

with a Lagrange multiplier λ [1].
Since the Lagrangian L does not depend on ψ we have the following

integral of the Lagrange equations

h = r′
∂L

∂r′
− L,

or

−
(a
l
r + λ

)
r2 = h

√
(1 + a2)(r′)2 + r2. (2.2)

So that the constant h and the expression −
(
a
l r + λ

)
must have the same

sign for all ψ ∈ R i.e.

sgnh = −sgn
(a
l
r + λ

)
. (2.3)

Under this assumption (we justify this assumption in the sequel) take square
from both sides of (2.2)

(1 + a2)(r′)2 + r2 − 1

h2

(a
l
r + λ

)2
r4 = 0,

and perform a change of variables r 7→ ρ by the formula

r =
λl

a
ρ, ρ = ρ(ψ) (2.4)

to obtain
(1 + a2)(ρ′)2 + ρ2 − u2(ρ+ 1)2ρ4 = 0, (2.5)

where

u2 =
λ4l2

h2a2
. (2.6)

The condition (2.1) takes the form∫ 2π

0

√
(1 + a2)(ρ′)2 + ρ2dψ =

a

|λ|
. (2.7)

Our plan is as follows. Choosing a constant u2 we will find 2π−solution
ρ(ψ) of equation (2.5) and then take |λ| to satisfy (2.7).By reason that will
be clear in the sequel we assume that

λ < 0. (2.8)



4 OLEG ZUBELEVICH

Then already known u2 and |λ| we will substitute to (2.6) and find a constant
h2.

The solution ρ must also be such that the expression(a
l
r + λ

)
= λ(ρ+ 1)

is sign-definite for all ψ. If the solution ρ(ψ) provides this condition then
(2.3) is satisfied by choosing the sign of h.

Introducing new variable t = ψ/
√
a2 + 1, rewrite equation (2.5) as follows

1

(ρ+ 1)2ρ4
ρ̇2 +

1

ρ2(ρ+ 1)2
= u2, ρ̇ =

dρ

dt
. (2.9)

Now we are looking for the solution ρ(t) of equation (2.9) that has period

2π√
a2 + 1

.

Equation (2.9) has the form of energy integral of a classical mechanical
system with kinetic energy

E =
1

(ρ+ 1)2ρ4
ρ̇2

and a potential energy

V (ρ) =
1

ρ2(ρ+ 1)2
.

Use this observation to analyze system (2.9).
Having a graph of the function V we see that the point C = (−1/2, 0)

on the phase plane (ρ, ρ̇) is an equilibrium of the type ”centre”. This equi-
librium is surrounded with closed curves that are squeezed between vertical
lines ρ = −1 and ρ = 0. These trajectories are marked with parameter u2.
There are no periodic orbits in other domains of the phase space.

Therefore all the periodic solutions satisfy the condition

ρ(t) ∈ (−1, 0), t ∈ R
consequently one has ρ(t) + 1 > 0. By virtue of formulas (2.8) and (2.4) it
follows that r > 0.

The equilibrium C corresponds to the value u2 = 16 and gives the trivial
equilibrium of the chain.

Separating variables in (2.9), find period of the trajectory ρ(t) by the
formula:

T (u) = −2

∫ ρ+

ρ−

dρ

ρ
√
u2(ρ+ 1)2ρ2 − 1

, ρ± =
−1±

√
1− 4/u

2
.

The function T (u) is defined for u > 4. It is not hard to show that the
function T is continuous and decreased.

Thus each root u of the equation

T (u) =
2π√
1 + a2
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corresponds to the solution of (2.9) with desired period. This solution gives
the oblique equilibrium.

The proof of the theorem is concluded by a lemma.

Lemma 1. The following formulas hold

lim
u→4+

T (u) =
√
2π, lim

u→∞
T (u) = π. (2.10)

Indeed, the oblique equilibrium shows up iff

π <
2π√
1 + a2

<
√
2π,

or

π/6 < α < π/4.

The theorem is proved.

2.1. Proof of the Lemma. The first one of formulas (2.10) is most simple;
we prove it by using little bit informal mechanical argument. Rigorous proof
of this formula follows by the same manner as we employ below to prove the
second formula of (2.10).

Up to third order terms in the neighbourhood of the point C equation
(2.9) has the form

ξ̇2 + 2ξ2 = const, ρ = −1

2
+ ξ.

So that the period of small oscillations is equal to 2π/
√
2 or

lim
u→4+

T (u) =
√
2π.

Let us check the second formula. Observe that

T (u) = −2

u

∫ ρ+

ρ−

dρ

ρ
√

(ρ− ρ−)(ρ− ρ+)(ρ− ρ̃−)(ρ− ρ̃+)
,

where

ρ̃± =
−1±

√
1 + 4/u

2
.

Introducing a small parameter ϵ = 1/u→ 0 as u→ ∞, we get

ρ+ = −ϵ+O(ϵ2), ρ− = −1 + ϵ+O(ϵ2),

ρ̃+ = ϵ+O(ϵ2), ρ̃− = −1− ϵ+O(ϵ2).

For small ϵ the following inequalities hold

ρ+ < −ϵ, ρ− > −1 + ϵ.

It is easy to see that

T (u) = −2ϵ

∫ ρ+

− 1
2

dρ

ρ
√

(ρ− ρ−)(ρ− ρ+)(ρ− ρ̃−)(ρ− ρ̃+)
+O(

√
ϵ).
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Transform this integral as follows:∫ ρ+

− 1
2

dρ

ρ
√

(ρ− ρ−)(ρ− ρ+)(ρ− ρ̃−)(ρ− ρ̃+)

=

∫ ρ+

− 1
2

(1 +O(ϵ)) dρ

ρ(ρ+ 1)
√

(ρ− ρ+)(ρ+ ρ+ − ρ+ − ρ̃+)
.

Sinse −ρ+ − ρ̃+ = O(ϵ2) the last integral equals∫ ρ+

− 1
2

(1 +O(ϵ)) dρ

ρ(ρ+ 1)
√
ρ2 − ρ2+

.

The integral ∫ ρ+

− 1
2

dρ

ρ(ρ+ 1)
√
ρ2 − ρ2+

is computed explicitly, nevertheless the formula is very large and we do not
bring it; write down the asymptotic∫ ρ+

− 1
2

dρ

ρ(ρ+ 1)
√
ρ2 − ρ2+

= − π

2ϵ
+O

(
ln

1

ϵ

)
.

Gathering all these formulas we yield T (u) = π +O(
√
ϵ).

The Lemma is proved.
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